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There are a lot of arguments for the inclusion of real world applications in
mathematics teaching. What is rarely mentioned is the following aspect: applica-
tions provide contexts for what I call reality-related proving. This is the topic of
my paper. It has three aims:

1) to explain the concept of reality-related proof by means of four examples,

2) to elaborate the role of Grundvorstellungen in these proofs,

3) to show why all this can be important for mathematics teaching.

I concentrate deliberately on theoretical considerations and do not refer to em-
pirical aspects.

1. An introductory example

Example 1: Let us presuppose a pupil knows the definition of
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as well as its interpretation as a number in certain real contexts. One instance might
be where, in a group of 11 friends, 4 of them are to be chosen by lot for a committee
to prepare the Christmas party. How many different committees are possible? That is,

as we know, 
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 , since there are 11 10 9 8⋅ ⋅ ⋅  different arrangements of 4 persons, and

4! of these, respectively, lead to the same committee.

Let us further assume that, by calculating some numerical examples, the pupil finds

that in all these cases
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THEOREM 1: 
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How can it be proved? The assertion means in the same real context as just stated:
With 11 persons, there are as many committees consisting of 4 persons as there are
committees of 7. The basic idea for proving this is, as we know, very simple. Every
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committee of 4 corresponds to a (non-)committee of 7 and vice versa, for in each case
we just take the remaining persons (Fig. 1).

1 3  94 ,,,? ? 2 5 1110 ,,,? ?8 ,6 , 7 ,

That’s it!

If the pupil should not see this correspondence immediately, we could argue in full
detail as follows (but this is not
so relevant).

We realise mentally all arran-
gements of 4 persons and put
these together in groups of 4!
arrangements each. Thus we

get the 
11

4






  possible commit-

tees of 4. We do the same with all arrangements of 7 persons. Now we look at every
single arrangement to see which persons are left, and we add these (mentally), in all
possible arrangements (Fig. 2). Thus, by combining everything, we obviously get all
11! permutations of 11 persons.

Now, in the first place, it is clear (using the same bijection as before) that there are as
many committees of 4 as committees of 7 and, in the second place, these numbers can
obviously be calculated as follows:
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So the equality can also be seen formally.

To this detailed contextual argumentation (which, as I said, is not necessary if the pu-
pil is sufficiently familiar with the real context), the following well-known formal-
mathematical argument corresponds:
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Fig. 1

1 3 4 9 2 5 6 7 8 10 111 3 4 91 3 4 9 2 5 6 7 8 10 112 5 6 7 8 10 11

Fig. 2
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Admittedly, this is formally trivial but, taken as such, it gives insight only on a higher
mathematical level (symmetry!).

2. On the concept of reality-related proving

What have we just done in example 1?

Here (Fig. 3), in a very simple model, we distinguish between Mathematics and the
Rest of the world, in short: Reality (note that this is a rather broad notion of reality,
including artificially dressed-up or constructed contexts as well). First _ we have in-
terpreted the premises (certain mathematical objects or operations and certain inter-
relations) in a specific real context, we have – as I call it – realised them. Second _

we have carried out certain arguments or actions
within this context by means of contextualized
knowledge. This has led to certain results. Third
_ we have mathematised  these results, i. e.
translated them back into mathematics, and
hereby obtained mathematical results. Altogether
we have thus proven a certain mathematical
theorem. That’s what I call a reality-related
proof (or contextual proof) of this theorem.

Note that this cycle “realisation-argumentation-
mathematisation” is essentially the reverse of the

usual (simple model of the) modelling cycle.

So a reality-related proof is – in short – a chain of certain correct conclusions based
on certain valid premises, where conclusions and premises are realised in a specific
context. It is important to note that some conditions have to be fulfilled before I call
this chain a “proof”:

– Some of the conclusions may consist simply of certain actions, actually carried out
or only imagined; in any case, all contextual actions or considerations have to be
accompanied by reflections upon the validity of these actions.

–  All conclusion must be capable of being generalised directly from the concrete
case, so that case has to be “generic“.

– If formalised, the conclusions have to correspond to correct formal-mathematical
arguments; it is, however, not necessary for such a formalisation to be actually ef-
fected or even recognisable.

The kind and extent of the conclusions depend heavily on the specific preknowledge
in the given real context. This may vary individually (see example 1). Therefore there
are different levels in step _. Sometimes the real context may be so familiar that after
step _, realisation, immediate insight is possible, which means step _ does not contain
any explicit arguments. It is, of course, subject to discussion whether one should
speak of a “proof” in this case. Example 2 (just as well-known as example 1) is an
example of that kind:

MathematicsReality
1

3

2

MathematicsReality
11

33

22

Fig. 3
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THEOREM 2: f in I f const in I' = ⇒ =0

Proof: Step : we interpret

x – time

f(x) – distance covered by a vehicle

We presuppose as known that then

f′(x) – instantaneous velocity (what the speedometer shows)

Step : from everyday knowledge it is clear that if the speedometer has been show-
ing zero all the time then the car has always been standing still.

Step : translation back into mathematics yields the theorem.

A reality-related proof - with reference to a certain basis of argumentation - is com-
pletely valid! It is only codified in a non-formal way, it is - as Blum and Kirsch
(1991) have called it - pre-formal. There are other kinds of pre-formal proofs, for in-
stance what we call geometric-intuitive proofs (for examples see also Kirsch, 1979,
and Wittmann and Müller, 1990).

By the way, from a philosophical perspective it is actually the other way round: By
regarding certain premises as true and certain conclusions as admissible we define
our concepts of rigorous (pre-formal) proof and of truth. The concept of pre-formal
proving may constitute a sound philosophical basis for school mathematics.

It is necessary to remark that the idea of non-formal proving is not new, of course.
What is presumably new is our view of this concept and of its role in teaching, espe-
cially of reality-related proving, and our way of presenting some of the examples.

3. Pre-formal proofs in mathematics teaching

Why are pre-formal proofs so important for learning and teaching? For several rea-
sons, "to know proofs" and, more than that, “to be able to prove” belong to the im-
portant goals of mathematics instruction; proofs and proving are a characteristic fea-
ture of mathematics (see Hanna and Jahnke, 1996, ch. 3 and 5, for a survey of the di-
dactical role of proofs). Formal proofs are mostly the final stage in a genetic devel-
opment - historically as well as epistemologically as well as psychologically. In pre-
ceding stages, from grade 1 on, valid proofs are accessible to learners if these proofs
are just represented appropriately, corresponding to the stage of development of the
individual cognitive structures. This is provided by suitable pre-formal proofs. Such
proofs can also be much better kept in mind by the pupils.

In order to avoid misinterpretations I would like to emphasise that formal proofs re-
main absolutely relevant for learning and teaching, too. In particular, formalising pre-
formal proofs and studying connections between pre-formal and formal proofs cer-
tainly contribute to understanding on a higher (and, at least for pupils at schools, very
demanding) level.
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I ought to mention that there are also fundamental epistemological problems when
using pre-formal proofs in mathematics teaching, for instance: Who is to judge
whether a certain pre-formal argument is correct, whether a certain proof is valid? In
particular: How can a pupil realise if a conclusion is incorrect? For an example of this
problem and for more reflections on it see Blum and Kirsch (1991). In this paper I
concentrate on “positive” examples.

4. On the role of “Grundvorstellungen” for proving and understanding

Back to reality-related proofs in particular. A decisive question is the following: what
cognitive structures must be available so that such proofs can be carried out? To put it
another way: how have the translations between mathematics and reality in steps 
and , as well as the conclusions in step , in our examples been possible? For this,
what is absolutely necessary are appropriate reality-related “concept images”, “intui-
tions”, “fundamental notions”, (in German:) Grundvorstellungen (abbreviation: GV)
of the involved mathematical objects, operations and relations, realisable in the real
context in question.

In example 1 we used:

–  GV “product of natural numbers as a number of possibilities“, more concretely
possibilities of arrangements of certain real objects;

– GV “dividing as partitioning“ of certain objects;

– GV “variable as a placeholder“ for certain objects;

and, on a higher level,

– GV “binomial coefficient as a number“ of combinations of certain objects.

In example 2 we used:

– GV “variable as a varying quantity“;

– GV “real function as a 1-1 mapping“ between certain quantities, concretely as a
distance-time relation;

and, on a higher level,

– GV “derivative as a rate of change“ of certain quantities, concretely as instantane-
ous velocity.

What is, actually, a GV of a mathematical topic? I use this concept in the way we
have developed it in Kassel during the last decade (see Hofe, 1998). There is no space
here to elaborate on this. Very roughly speaking, GVs describe relations between
mathematical topics, real contexts and individual mental structures. They carry the
meaning (in German Bedeutung) of a mathematical topic and, to the learner, they rep-
resent the “essential“, the “heart“ of the topic. To be a bit more precise: they serve

– to constitute meaning (in German Sinn),
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– to construct mental representations which also allow for actions in the imagina-
tion,

– to create links to the real world and thus to enable individuals to translate between
mathematics and reality.

We distinguish between two different aspects:

– normative (prescriptive): GVs describe what learners ought to acquire - what we
also call “basic ideas“ of topics.

– descriptive: GVs describe what learners have actually acquired - what we also call
“individual images“ of topics (sometimes these may include Fehlvorstellungen,
misconceptions, wrong intuitions as well).

Generally, there are several GVs of a given topic. Here are three examples.

Product of two natural numbers:

– “repeated addition“-GV

– “number of pairs“-GV

Fractional number:

– “part-whole“-GV (3/4 as a portion: 3 out of 4 parts)

– “operator“-GV (a given quantity is transformed into "3/4 of" this quantity)

– “ratio“-GV (3/4 as a relation between 3 parts and 4 parts)

Function:

– “mapping“-GV

– “covariation“-GV

– “object“-GV

GVs are, as I said, carriers of meaning. If we regard understanding as the process of
grasping the meaning - as Sierpinska (1994) proposes - then GVs are crucial, are nec-
essary for real understanding. Establishing a network of appropriate GVs with pupils
is, in my view, the most important task of mathematics teaching from grade 1 on.

In particular, if learners are really to understand mathematical facts and their proofs
then they definitely have to acquire appropriate GVs. If this is the case one gets
proofs that explain and not only proofs that prove, one gets proofs that give answers
to the question of "why is it true?" and not only to "is it true?" (this distinction has
been emphasised by Hanna, 1990, among others), one gets semantic proofs in the
sense of Knipping (2002). If understanding is an essential aim of mathematics teach-
ing, and if one regards explaining as the most important purpose of proving as does
Hersh (1993), a view I share, then pre-formal and particularly reality-related proofs
gain a crucial significance for mathematics teaching and learning. They are not
merely – pedagogically – a clever device for making theorems and their proofs acces-
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sible early (as has been emphasized in section 3), not merely a temporary stage on the
way to formal proofs, but rather – epistemologically – an appropriate means for re-
vealing the meaning of certain mathematical facts.

Now two more examples to illustrate further aspects of the concept of reality-related
proving and the role of GVs therein.

5. The “Schorle” proof

Example 3: What is well-known is the wrong strategy of pupils when adding frac-
tions: “numerator plus numerator and denominator plus denominator”, e.g. “
3
4

7
9

10
13

+ = ”. According to the educational principle of handling pupils’ mistakes in a

positive and constructive way, this unusual kind of addition can be the starting point
for reflections: what do we really get by doing this? (For recent instruction experi-
ences with this example see the case study described by Biermann and Blum, 2002.)
The pupils will find, by calculating some examples, that this peculiar “sum“ seems to
lie always between the two fractions; written out formally:

THEOREM 3: 
a

b

c

d

a

b

a c

b d

c

d
a b c d N< ⇒ <

+
+

< ∈ +( , , , )

Is this really always true, and how can we understand it?

Proof: Let’s take 3
4

 and 7
9

 as an example.

We activate the ratio-GV of fractional numbers and interpret  3
4

 as a mixture of 3

parts wine and 4 parts mineral water, and the same with 7
9

. Such a mixture of wine

and water is in South Germany called a Schorle. We assume all parts to be of the
same size.

We know from everyday experience with (idealised) Schorles: The mixture ratio de-
fines the “wininess” of a Schorle, which can be tasted (or seen, especially if it is red
wine). Two Schorles have the same wininess (that is the same taste or colour) if and
only if the fractions are equivalent; that means proportional enlargement of the two
components of a Schorle doesn’t change the wininess. Schorle 1 is less “winy“ that
Schorle 2 if and only if fraction 1 is less than fraction 2.

If we want to compare the two given fractional numbers we find 3
4

 and 
6

3
4

9
 hence

3
4

7
9

<  since 6
3
4

7< . So the 3
4

-Schorle is less winy than the 7
9

-Schorle.
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Now we pour the two Schorles together (Fig. 4; of course, real
Schorles look a bit different!).

We get a Schorle with 3+7=10  parts wine and 4+9=13 parts
water. Here this peculiar “addition” makes sense!

Now it should be clear from everyday experience with mixture
ratios (with respect to its wininess) that the mixed Schorle
truly lies between the two initial Schorles; that is it tastes a bit
more winy than the one and a bit less winy than the other. Re-
translation and generalisation result in our assertion!

How can we explain this experience? We could argue in a more detailed way as fol-
lows.

It is clear that if we pour together two Schorles with the same wininess then the

mixed Schorle has also the same wininess, for instance 3
4

 and 6 75
9
. .

If we take the 7
9

-Schorle instead of the 6 75
9
. -Schorle and mix it with the 3

4
-Schorle

then we obviously add a bit more wine, so the new mixed Schorle tastes a bit more
winy than the first one. That’s it!

What GVs have we used in this proof?

– ratio-GV of fractions (concretely as Schorle mixtures),

– GV of equivalent fractions (as Schorle mixture ratios),

– GV of “<“ for fractions (as  mixture ratios),

– GV of “<“ and of “+“ for positive rational numbers (concretely as volumes of liq-
uids).

We can translate the detailed arguing directly into formal mathematics.

Let a

b

c

d
< . Determine c'   so that c

d

a

b

'
= .

Then obviously  c c' <  and c ra d rb' ,= =  for a certain r > 0.

Then a

b

r a

r b

a c

b d

a c

b d
=

+
+

=
+
+

<
+
+

( )
( )

'1
1

.

That’s it! (Second part analogously)

Note that we have obtained a new proof for this inequality, for usually it is proven
purely formally by “multiplying the denominators up” and so on. The usual formal
proof is more familiar to mathematicians, but it yields no insight at all, in contrast to
the reality-related proof. This example again supports our thesis from section 4: real
understanding is only possible when working with GVs.

Note that in example 3 (and likewise in examples 1 and 2) we have subsequently
proven a previously given assertion. However, in all examples it would have been

Fig. 4
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equally possible to argue within the context without a given assertion and to find it, to
discover it, or perhaps we should better say to create it – and, best of all, to have this
done by pupils on their own.

A final comment on example 3: a reality-related proof such as the Schorle proof con-
sists of three steps (see section 2), realising, contextual arguing, mathematizing. Here
(and in our other examples), the mathematical result is independent of the specific
context, and this has always to be the case, of course, when an individual carries out
such a proof. Taking into consideration the well-known context dependence when
learning and using mathematics, this is only possible if the relevant GVs have already
been built up in the individual before, and need only to be activated in a specific
context. In all examples we have assumed this – these are strong assumptions and
impose high demands indeed on mathematics teaching!

We also assume this in the following and final example. Here we are going to deal
with the GVs of derivative and integral. These are supposed to be generated already:

– derivative as a rate of change,

– integral as a “generalised product”, that is a limit of sums of products of quanti-
ties.

Now, in this example, a theorem is discovered by contextual reasoning (see Blum and
Kirsch, 1996). I myself have taught this example in a grade 12 class (basic course),
that means the students discovered the theorem by themselves, guided by the teacher,
of course.

6. Discovering an important theorem

Example 4: Given the derivative f x
dG x

dx
( )

( )
= , what does the integral  f x dx

a

b
( )∫  then

mean?

We interpret again

x – time

G(x)– distance covered by a vehicle

and hence

f(x) – instantaneous velocity of the vehicle.

The pupils  know that, for small pieces of time, we have
∆
∆
distance

time
instantaneous velocity of the vehicole≈

or         ∆ ∆distance velocity time≈ ⋅

This (idea of linear approximation) holds for sufficiently small  ∆time  as accurately as
desired.
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We now calculate the “generalised product“ of velocity and time. The pupils know
that this is done in four steps. First we divide the given time interval into small
pieces. Second we regard the velocity as constant in each sub-interval and calculate
the products, there; we get

velocity time distance⋅ ≈∆ ∆

Third we sum up all these products: velocity time⋅∑ ∆ .

It is clear that this sum approximately equals the total distance travelled in the time
interval. Fourth we let the number of sub-intervals increase beyond any limit and
their lengths ∆time 0→ . Now it’s absolutely clear that the result of this process, that is
the generalised product of velocity and time, is equal to the global distance travelled
(difference in displacement).

By the way, this was, on the whole, the way that Evangelista Torricelli argued as
early as the first half of the 17th century!

Re-translation and formalisation results in:

THEOREM 4: 
dG x

dx
dx G b G a

a

b ( )
( ) ( )∫ = −

This is nothing else than the second fundamental theorem of calculus! (A supple-
mentary analysis of the proof shows that f has to be continuous.)

Usually in calculus teaching, this theorem is formally deduced as a corollary to the
first fundamental theorem of calculus. Thus its meaning is reduced to a mere formula
for calculating integrals. A reality-related proof such as ours enables pupils genuinely
to understand the theorem and reveals so-to-speak its “true“ meaning: the integral of
a rate of change function (the “total effect“ of the rates of change) on an interval is
the increase of the original function there (that is “integrating as reconstructing“). By
the way, a purely geometrical argumentation (derivative as slope, integral as area)
will not be able to reveal this meaning (see Blum and Kirsch, 1996, for a more de-
tailed analysis).

In example 4 we found a theorem by certain contextual conclusions. As I said before
we could have done so in all examples (for examples at the primary school level see
Wittmann, 1996). This procedure brings to mind the so-called operative principle of
learning mathematics: “what happens with … if …”. Therefore I dare now to formu-
late the

Operative principle of reality-related proving:

Take any mathematical topics, translate them into some real context, then – on the
basis of contextual knowledge – carry out any correct arguments (or actions) whatso-
ever, and lastly translate the results back into mathematics. Then you have obtained a
certain – more or less interesting – mathematical theorem.
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