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Abstract: In this paper I present a study investigating ways in which secondary
school students (9th grade) conceive mathematical objects (like functions and
variables), in modelling activities. The focus is on how mathematical knowledge is
structured in the pupils and what mental dynamics play on activating mathematical
thinking. In particular, I analysed students' cognitive processes within the embodied
cognition perspective. My aim is to observe how metaphorical thinking and imagery
can foster the transition from perception  to theory, and the construction and
communication of mathematical thinking.

INTRODUCTION

Recent Mathematics Education researches have given an emphasis on the intuitive
and embodied nature of mathematical ideas and symbols. These researches have the
purpose of studying the cognitive foundations (and conceptual structures) of
Mathematics. They suggest connections with studies on the behaviour and structure
of the brain, in particular in terms of the modalities by which the brain manages and
elaborates perceptions. As such, their approach involves other fields, like biology,
physiology and neuroscience, and provides reasons why mathematical knowledge
seems to be deeply rooted in biological, neurological, cognitive mechanisms, and is
prone to emotional, historical and cultural constrains, linked to daily experience
(Berthoz, 1997; Dehaene, 2000; Lakoff & Núñez, 2000). Therefore, “the portrait of
mathematics has a human face” (Lakoff & Núñez, 2000), which means that human
beings reason in a certain way because they are made in a certain way. Embodied
cognition supports such believes by denying the mind-body split and considering
these not as two separate aspects but rather as depending on each other. Roughly
speaking, the activity of the mind has its roots in the activity of the body.

In this perspective, the following are crucial matters:

• How is mathematical knowledge structured in the students?

• How do students  activate mathematical thinking?

In order to tackle these issues, I consider some problems performed by students of the
same grade (the 9th grade), but attending different schools. These activities are
modelling tasks within the context of introducing algebraic symbolism, functions and
graphs at this school level. Starting from the idea that metaphorical thinking and
imagery seem to play an essential role in the processes of constructing and
communicating knowledge, the analysis pays attention to the passage from perception
to theory. Particularly, the paper focuses on how metaphorical thinking and mental
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images appear in students' (oral and written) language and gestures, and more
generally on how they affect the construction of mathematical meanings.

THEORETICAL FRAMEWORK

In the framework of cognitive science and linguistics, Lakoff & Núñez, investigating
on where mathematics comes from, use embodiment (which means “to put the body
into the mind”; Lakoff & Núñez, 2000) to explain the human mind’s manifestations
closely related to mathematical activity. They assert that our mind is deeply
embodied: human concepts, especially mathematical concepts, are structured by the
brain and by the nature of the body. Furthermore, abstract notions are organised
through metaphorical thinking: they are conceptualised in concrete terms through
precise inferential structures and ways of reasoning based on the sensory-motor
system.

The conceptual metaphors and image schemas are elements of metaphorical thinking.
The conceptual metaphors are fundamental cognitive mechanisms which allow to
understand abstract concepts in terms of concrete concepts, i.e. deep nets of
conceptual mappings that sistematically organise the concepts and preserve the
inferences of the net structure. They “project the inferential structure of a source
domain onto a target domain” (Núñez, 2000); these domains are ontologically
different, but inferentially equal. Lakoff & Núñez distinguish various kinds of
conceptual metaphors: they talk about grounding metaphors, linking metaphors and
redefinitional metaphors. The grounding metaphors are the most interesting for my
research, because they “ground our understandings of mathematical ideas in terms of
everyday experience” (Núñez, 2000). Their target domain is mathematical, while
their source domain lies outside mathematics.

The image schemas are (universal) topological and dynamic structures, which
characterise spatial inferences and relate language to visual and motor experience, to
perception and motion (Johnson, 1987). Their inferential structure is preserved under
metaphorical mappings, like grounding metaphors. The very important feature is that
“image schemas have a special cognitive function: they are both perceptual and
conceptual in nature. As such, they provide a bridge between language and
reasoning on the one hand and vision on the other” (Núñez, 2000).

My interests focus on a particular image schema linked to motion. This schema is
part of the category of Source-Path-Goal Schemas (that is the schemas characterised
by a starting point, the source of the motion, a trajectory, which represents the path of
the motion, and a target, the intended goal of the motion). Lakoff and Núñez (2000),
using the same words introduced by Talmy (1988), name this schema fictive motion.
When one conceives of the static and mobile aspects of a continuous curve, one
activates the so-called fictive motion metaphor. The definition given by Núñez is:  “a
line is the motion of a traveler tracing that line” (Núñez et al., 1999). Therefore,
fictive motion is a metaphorical manifestation of a line, thought in terms of motion.
As such, it linguistically appears in everyday language, for example in sentences like
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“the path crosses the woods”, “the red line of the underground goes to the center”,
and so on. Using the same cognitive mechanism, in mathematics both students and
mathematicians speak of “functions going up”, “graphs reaching a maximum at a
certain value”, “two lines meeting at a point”, etc. Fictive motion concerns a trajector
(a dynamic entity) and a landscape (a static entity), in which the trajector moves. The
trajector’s motion produces a static line; using a terminology introduced by Sfard
(1991), the line is an object, obtained through a process, linked to the movement, like
that of a hand (the entity moving according to Eulero) or a pencil. As a consequence,
a crucial issue is how a static situation can be conceived in a dynamic way (as an
object and a process at the same time, that is as a procept, if we refer to the work of
Gray & Tall, 1994).

I would like to add to metaphorical thinking an important dynamic, which was
developed by Simon (1996) in his search for a sense of knowledge. Simon argues that
students, while “doing mathematics”, do not only use inductions and deductions. A
natural inclination towards a third kind of reasoning, named transformational
reasoning, seems to appear. Transformational reasoning is based on “the ability to
consider, non a static state, but a dynamic process by which a new state or a
continuum of states are generated” (Simon, 1996). Simon describes it as something
which involves, at its core, seeing, at a mental level, one or more transformations of a
mathematical situation and the results of those transformations. The process is
constituted of three key ingredients: a mental enactment, a physical enactment, and
an envisioning of the final state. The mental enactment results in a series of
operations performed on mental images. According to Piaget & Inhelder, these
images can have a reproductive or anticipatory nature (in Gruber & Vonèche, 1977).
In the first case, they refer to a previous perception; in the second one, they precede
transformations not previously perceived. Transformational reasoning is supported by
such kind of images. However, it can also be characterised by a further physical
enactment which leads to looking for a model to explore the final results of a
transformation.This step requires an anticipation in mental imagery.

There is another important factor, which justifies the choice of analysing students’
language and gestures. Some ongoing studies bear the importance of gestures in
teaching and learning at all levels, because they are considered a deep and leading
feature of cognitive development (Radford, 2000; Roth, in print; Roth & Lawless,
2002). Using gestures, in fact, students can already communicate without yet having
the right words and express new levels of understanding before expressing the new
understandings through language. Furthermore, pupils can refer to previous sensory-
motor actions carried out in the activities they were engaged in (see also the proposal
by Arzarello & Paola, accepted in Group 9 of this CERME). On the other hand, in his
study about the relationships between body motion and graphing, Nemirovsky
gathers that “when one participates in a conversation, one does not distinguish a
gesture as belonging to the body or to the mind” (Nemirovsky et al., 1998).
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Setting my research within this framework, my intention is to discuss analogous
cognitive behaviours in students who are trying to solve different tasks (in the context
mentioned above).

THE ACTIVITIES

the introduction of algebra is a crucial point in the teaching and learning of
mathematics at the very beginning of secondary school. On the one hand, algebraic
symbolism brings with it some cognitive difficulties and obstacles for the students
used to thinking and reasoning in arithmetical terms. On the other hand, it really
involves complex key concepts, like those of variable and function, which constitute
the curriculum at all levels, already in the elementary and middle grades, and not only
in the field of calculus. These concepts play a fundamental role when students face
modelling situations or compare graphs of functions; therefore modelling can be a
meaningful educational choice to approach these concepts (and graphs) from a
semantic point of view. Instead, the epistemological choice lies in conceiving a
function as the possible model of a (mathematical or extra-mathematical)
phenomenon.

In this paper I consider three different modelling activities, each presented to an
Italian class of 9th grade students:

-  the ‘Two Squares on segment’ problem, solved by 18 students of a technically
oriented secondary school;

-  the ‘Biggest Area’ problem, solved by 25 students of a scientifically oriented
secondary school;

- the ‘L’ problem, solved by 20 students of a technically oriented secondary school.

Methodology

From the methodological point of view, these activities have some points in common.
They were all part of long-term teaching experiments carried out during the whole
school year. Each activity lasted two hours, in which the students worked in small
groups (generally two to three pupils) and collaborating with each other: pupils learn
in a social context, interacting with each other and sharing their understandings.

The usual routine of the classes consisted of: briefly reading the task, together with
the teacher, in order to tackle problems or doubts; writing (in the classroom or at
home) group or individual results; a final classroom discussion on the groups’
solutions guided by the teacher aimed to share the discoveries and to institutionalise
the knowledge. Each group handled the problem using a technological device or tool,
namely Derive in the first and third case, and a symbolic-graphic calculator (TI92
Plus) in the second case.

It is important to highlight that at the moment of the experiments the students had not
acquired or constructed any formalised algebraic understandings yet. Moreover, the
role of the teacher (besides guiding the discussion) was to help pupils in overcoming
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blocks, lacks, or troubles with the instruments. When possible, more people were
present in the classroom to observe and videotape a group and the discussion.

The ‘Two Squares on segment’ problem

A segment AC is 20 cm long. Point B belongs to segment AC. Construct the
squares ABGF and BCDE. Consider the perimeter of the figure constituted by
these two squares [ACDEGF]. If the position of B changes, how does the
perimeter change?

A possible configuration of the task appears in figure 1 on the right (pupils had other
two configurations on paper). The picture on the left shows the table given to the
students to complete.

Figure 1

The function which models the situation is a piecewise linear function. It reaches a
minimum value when k=10 and its graph is composed of two different segments
which are symmetric with respect to this point.

This is a brief excerpt of a student, Dario. It is part of the written protocol (that he
made himself at home after the classroom activity).

It has helped me a lot to write the data on the figure and the
segment. [he refers to figure2 drawn on paper]

Only this way, I found the correct function:
P(k)=3k+[(20–k)⋅4–k]

The function Dario found is not correct, because he only considers one part of the
whole algebraic expression. However, the first important point lies in his use of the
adverb ‘only’. It emphasises that only when Dario introduces the symbol k on the
segment AC, to indicate AB, he also understands that the remaining part, BC, can be
denoted in terms of the same symbol (namely, as 20-k). This way, he is able to find
an expression for the perimeter. The following observation of the teacher is crucial.
When Dario thinks of the static point B moving on AC, he moves his fingers from left
to right and vice versa some times, in order to show a series of shifts of B on the
segment. The segment AC (the landscape) is thought of as generated by point B
which, as a trajector of the segment, moves on it, tracing its length. Therefore, in

Figure 2
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Dario's gestures, fictive motion metaphor appears and induces the use of the symbol
k.

The teacher observes this cognitive behaviour, in similar shapes, in the whole class:
most of the students do gestures to refer to the motion of B on the segment AC;
supported by their hands, they think of the static point B enacting in this movement
as the trajector which traces the length of AC. Activating fictive motion allows them
to conceive the static situation as if it possesses dynamic features. This dynamic
interpretation leads pupils to the need of finding a general rule, starting from what
observed in a particular case (for example, if AB is 5 cm long then BC is 15 cm long
or if AB is 8 cm long then BC is 12 cm long, and so on). As a consequence, there are
both the introductions of k and (20-k ) on the segment AC. However, the
generalisation brings the students back to a static interpretation of the problem: it is
represented by the expression of the perimeter in terms of k (Bazzini et al., in print).

The ‘Biggest Area’ problem

Among all rectangles with perimeter 16 cm, find that (or those) having maximum
area.

In this case, the teacher paid special attention to the reading of the text, analysing the
following steps: finding the rectangle/s means knowing its/their base and height; it
can be helpful to sketch examples satisfying the condition (perimeter of 16 cm); it is
better to introduce the symbol x to indicate the base and express the height and the
area in terms of the same letter x. There was no problem in accepting the possibility
to use decimal numbers to measure the sides; on the contrary, a student proposed to
draw on the blackboard the rectangle with base of 7.1 cm and height of 0.9 cm.

I will now consider a small excerpt of the initial classroom discussion.

Teacher: Therefore how many are the rectangles having perimeter 16 cm?

Filippo: There are infinite rectangles.

The first conjectures are aimed to find the rectangle solving the task. The square with
side of 4 cm is identified as the limit case of all rectangles with perimeter 16 cm.

Alessio: The more similar to a square, the bigger is the area. [his hands are
open and  his fingers outline the shape of a rectangle; he moves his
hands up, changing the dimensions of the rectangle until he gets a
square; then he quickly puts them away and come back to the initial
configuration]

Teacher: What will be the height if the perimeter has to be 16? [she draws on
the blackboard a generic rectangle having base x]

Alessio's gestures are very important. Supported by the movement of his hands (back
and forth), he imagines subsequent transformations of the initial rectangle and
consequent changes in the value of its area (as pointed out by his words). Three
consecutive steps can be identified. A mental enactment is embedded in the thinking
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of different rectangles having the same perimeter: this marks the first step. This
precedes the physical enactment (the second step) which arises in the gestures and
anticipates the envisioning of the final step (that consists of drawing a square).
Transformational reasoning features the mental process. It supports the hypothesis
that the square has the biggest area, even before finding the solution through the use
of x and the related mathematical expressions (the use of the symbols is introduced
by the teacher).

The ‘L’ problem

In a rectangle (whose sides are 4 and 3 cm long respectively), one of the longer
sides is divided into two halves: the first one is raised and the second one is
lowered simultaneously, of the same length. You obtain a polygon that resembles
the letter L. Express the general perimeter of this polygon in terms of the length of
raising/lowering.

The task also enclosed other questions, as for example finding, if possible, a
maximum or minimum for the raising/lowering and the perimeter (for further
information, see: http://www.bdp.it/set/area1_esperienzescuole/cm131/5.htm).

During the classroom discussion, some doubts arise from the case of the maximum
value for the shift (up and down). The teacher highlights the focus of the problem,
asking: “Is the final figure a rectangle with sides 2 and 6 cm long?” or “Is it
necessary to add the (double?) segment, on which lowered half side is supported?”.
These questions lead to the need of understanding (the teacher poses the attention on
the following issues): “Does it make sense to speak about the perimeter of a
rectangle degenerated in a segment?” and “What is the perimeter of a figure?”. One
of the students (Andrea) argues that: “If an ant walks around the boundary of the
figure, to come back to the starting point, it also should cover the segment twice”.

On the one side, the walking of the ant reveals the presence of the fictive motion
metaphor. The ant represents the trajector which, moving along the figure (the
landscape), covers its “perimeter”. The rectangle (as a shape) can be thought of as
generated, step by step, by the movement of the ant. This provides a dynamic
interpretation of the static figure. On the other side, together with the fictive motion,
Andrea shows the evidence of a transformational way to consider the relationships
between the shifts and the L polygon. Andrea does not see the L as a static figure
having particular dimensions. On the contrary he is able to think of the process that
generates subsequent L polygons, while a half of the longer side (the base) goes down
to the bottom and the other one goes up to the top. Therefore, Andrea knows that it is
necessary to “go around” the L and to return back (to the starting point), in order to
calculate the perimeter. This dynamic mental model allows Andrea to imagine the
consequent transformations on the starting figure till the last configuration
(corresponding to the maximum shift), as the limit case of the process. As a
consequence, the ant has first to walk on the segment in one direction, and then to
cover the same way in the opposite direction.
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As a result, transformational reasoning and the fictive motion metaphor prompt the
need for counting the segment twice in the calculation of the perimeter of the
“extreme” L polygon.

CONCLUSIONS

The issues raised in the paper are preliminary reflections about similar cognitive
behaviours of pupils dealing with different mathematical situations. As such, they are
still open problems. To investigate more deeply the role of metaphorical thinking and
mental imagery in the construction of mathematical knowledge, the following are
crucial suggestions.

Can metaphors and imagery be mathematical thinking and acting tools? Can they
enhance the teaching and learning of mathematics and allow students overcoming
obstacles and difficulties?

From the point of view of Mathematics Education research, it is also important to
reflect on how the role of technology can affect the creation and the use of
metaphorical and imaginative thinking (see also the proposal by Robutti, accepted in
Group 9 of this CERME).

To conclude, the fact that a mental anticipation (in imagery) comes before a physical
enactment (through gestures) reminds us of the idea that perception precedes action
(Berthoz, 1997). In this perspective, can the idea of Berthoz be a way of giving a
neuro-biological explanation of the fact that metaphors and transformational
reasoning are natural ways of reasoning?

I wish to thank the teachers of the three different classes whom the excerpts discussed
in this paper belong to: Francesco Fossati, Pierangela Accomazzo and Miranda
Mosca.

REFERENCES

Bazzini, L., Ferrara, F., Fossati, F. & Robutti, O. (in print). Embodiment and
technology in modelling activities. To appear in: Proceedings of CIEAEM54,
Vilanova ì la Geltrù, España, 13-19 Luglio 2002.

Berthoz, A. (1997). Le sens du mouvement. Paris: Odile Jacob.

Dehaene, S. (2000). Il pallino della matematica. Milano: Mondadori (Italian
translation from French of La bosse de la mathématique).

Gray, E. & Tall, D. (1994). Duality, ambiguity and flexibility: a proceptual view of
simple arithmetic. The Journal for Research in Mathematics Education, 26 (2),
115-141.

Gruber, H. & Vonèche, J. (1997). The essential Piaget. New York: Basic Books.

Johnson, M. (1987). The body in the mind. Chicago: University of Chicago Press.

Lakoff, G. & Núñez, R. (2000). Where Mathematics comes from: how the embodied
mind brings mathematics into being. New York: Basic Books.



Thematic Group 1 EUROPEAN RESEARCH IN MATHEMATICS EDUCATION III

F. Ferrara 9

Nemirovsky, R., Tierney, C. & Wright, T. (1998). Body motion and graphing.
Cognition and Instruction, 16 (2), 119-172.

Núñez, R. (2000). Mathematical idea analysis: What embodied cognitive science can
say about the human nature of mathematics. Proceedings of PME 24, 1, 3-22.

Núñez, R., Edwards, L. & Matos, J. F. (1999). Embodied cognition as grounding for
situatedness and context in mathematics education. Educational Studies in
Mathematics, 39, 45-65.

Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: a
semiotic analysis. Educational Studies in Mathematics, 42 (3), 237-268.

Roth, W. M. (in print). From action to discourse: the bridging function of gestures.
Journal of Cognitive Systems Research.

Roth, W. M. & Lawless, D. (2002). When up is down and down is up: body
orientation, proximity and gestures as resources for listeners. Language in Society,
31, 1-28.

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on
processes and objects as different sides of the same coin. Educational Studies in
Mathematics, 22, 1-36.

Simon, M. (1996). Beyond inductive and deductive reasoning: the search for a sense
of knowing. Educational Studies in mathematics, 30, 197-210.

Talmy, L. (1988). Force dynamics in language and cognition, Cognitive Science, 12
(1), 49-100.


