
Thematic Group 3 EUROPEAN RESEARCH IN MATHEMATICS EDUCATION III

H. Meissner 1

CONSTRUCTING MATHEMATICAL CONCEPTS
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Abstract: We will discuss theoretical aspects of learning and understanding mathe-
matics by the use of calculators or computers. We distinguish a syntactical mode of
working with these machines and a semantic mode. We discuss a dualism in concept
development and reflect, if this also affects the use of calculators and computers. Es-
pecially we analyze the role of guess-and-test procedures by the use of calculators
and computers (ONE-WAY-PRINCIPLE)

 1.  Constructing Knowledge by the Use of Calculators or Computers

In this paper we will analyze how the use of calculators and computers may influence
the learning of mathematics in schools. The process of learning and understanding
mathematics may be described1 by the following Fig. 1:

more "concrete":

We see mathematics as “something” independent from human beings or from human
brains like trees, birds, genetic codes, time, space, electricity, gravity, infinity, ...
(MEISSNER 2002b). And Darstellungen then are (external) representations of mathe-

                                                  
1 We will use the German words to emphasize the broad diversity of details.
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matical ideas, which we can read, or see, or hear, or feel, or manipulate, ... Darstel-
lungen can be objects, manipulatives, activities, pictures, graphs, figures, symbols,
sequences of key strokes on calculators or computers, tags, words, written or spoken
language, gestures, ... In a Darstellung the mathematical idea or example or concept
or structure is hidden or encoded.

Human beings are able to "associate" with these objects, activities, pictures, graphs,
or symbols a meaning. That means each Darstellung evokes a personal internal im-
age, a Vorstellung (cf. concept image, TALL & VINNER 1981). Thus Vorstellung is a
personal internal representation. A Vorstellung in this sense is similar to a cognitive
net, a frame, a script or a micro world. That means the same Darstellung may be as-
sociated with many individual different internal representations, images. Each learner
has his/her own Vorstellung.

We see two types of Vorstellungen which often interfere in mathematics education.
According to STRAUSS (1982) young children have a global non-differentiated con-
cept of a certain domain which is appropriate to solve operations or tasks adequately
within that domain. The concept is biological in origin and refers to a "common sense
knowledge". It is a spontaneous concept in the sense of VYGOTSKY, based on an in-
tuitive thinking (in the sense of Bruner). But then schooling starts and another con-
cept develops - a "cultural" (STRAUSS) or "scientific" (VYGOTSKY) concept - which is
reflective and self-conscious, and which is based on analytic thinking2.

These two concepts interfere. Abilities relating to the common sense knowledge de-
crease into a "chaos" while adequate abilities of a cultural knowledge have not yet
developed. The global view gets destroyed and the children suddenly cannot solve
problems which they could solve before3. But step by step the schooling builds up a
new and more structured concept. Some of the former abilities "reappear" more pow-
erful than before, now based on a different view. Other abilities are lost for ever.

A similar conflict situation GINSBURG has pointed out: Children sometimes "display a
gap between written work, on the one hand, and informal methods on the other”. We
also observe these contradictions when CARRAHER et al. (1985) report from the
mathematical abilities of children who sell fish and can add and multiply correctly
with money but never got a schooling.

I.e. there are two different "sides" or views of a problem which do not only exist tran-
sitionally as parts of developmental stages. The one side is informal (GINSBURG), in-
tuitive (BRUNER), a common sense knowledge (STRAUSS) or spontaneous (VY-

GOTSKY). The roots of these concepts are independent in origin from the roots of the
written work. DAVIS & MCKNIGHT (1980, p. 42) argue, "that students need to learn to
deal with mathematics in both of the two basic modes:

1. as a meaningless set of symbols that are manipulated according to explicit rules;

                                                  
2 also the theory of the VAN HIELES can be regarded as a developmental change from intuitive to analytic
3 examples see STRAUSS (1982) or MEISSNER (1986)
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2. as meaningful symbols, where the translation between real-world problems and
the abstract mathematical representation of these problems is an essential part of
the task."

The same distinction is made by RESNICK (1982) discussing "syntax and semantics in
learning to subtract" or by MEISSNER (1978, 1983) in discussing a digital versus an
analogues number sense to explain gaps between approximation and estimation or
between a semantic use of the calculator by guessing and testing or the syntactic use
in just pressing the correct sequence of buttons. This dualism exists in general when
we use calculators or computers.

2.  Procedures, Concepts, and Procepts

Already PIAGET (1985, p. 49) has pointed out that "actions and operations become
thematized objects of thought or assimilation". This idea has become very important
today to understand the development of concept images (Vorstellungen) in mathe-
matics education as a process of interiorization or reification or encapsulation.

According to GRAY & TALL (1991, p. 72ff) there is a "duality between process and
concept in mathematics, in particular using the same symbolism to present both a
process (such as the addition of two numbers 3+2) and the product of that process
(the sum 3+2). The ambiguity of notation allows the successful thinker the flexibility
in thought to move between the process to carry out a mathematical task and the con-
cept to be mentally manipulated as part of a wider mental schema". The successful
mathematical thinker uses a mental structure called procept (TALL 1991, p. 251ff),
"which is an amalgam of process and concept".

In 1994 GRAY&TALL proposed the following definitions: "An elementary procept is
the amalgam of three components: a process which produces a mathematical object,
and a symbol which is used to represent either process or object. A procept consists
of a collection of elementary procepts which have the same object." In TALL et al.
(2000) we find examples for symbols as process and concept. For more details on the
theory of procepts see GRAY & TALL 1991, SFARD 1987, DUBINSKY 2000, MEISSNER

2002a, and others.

Which now is the role of calculators and computers in the process of developing
powerful mathematical concept images? We may quote DAVIS (1984, p.29f): "When
a procedure is first being learned, one experiences it almost one step at time; the
overall patterns and continuity and flow of the entire activity are not perceived. But
as the procedure is practiced, the procedure itself becomes an entity - it becomes a
thing" ... The procedure, formerly only a thing to be done - a verb - has now become
an object, ..., it is now, in this sense, a noun".

To use calculators or computers we press sequences of buttons to run algorithms or
procedures or programs. According to DAVIS and the theory of procepts we should
expect that this continuous use and application of procedures will lead to powerful
procepts. But obviously there is no automatism.
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Already SKEMP (1978) distinguished between instrumental understanding and rela-
tional understanding. Instrumental understanding is characterized by selecting and
applying appropriate rules to solve the problem without knowing why ("rules without
reasons"). Only a specific Darstellung, an external observable behavior, is expected:
"Tell me what to do and I will do so". There is not necessarily an adequate mathe-
matical concept image behind.

Thus we have to analyze the activities with calculators and computers more carefully.

Using these machines we distinguish a syntactical use and a semantic use (MEISSNER

1983). The syntactical use is given when we use the machine as an "operator" or a
"function machine" or a "computation aid" by pressing the correct sequence of but-
tons to get a wanted display like a sequence of digits, a graph, a table, etc... For ex-
ample we compute the four basic operations with a calculator or we press the keys
along a given formula, or we press the keys to draw a graph for a given function, or
we need certain values in a spread sheet, etc.

Indeed, here it only is necessary to know the correct sequence of buttons to press. An
instrumental understanding is sufficient to get the correct solution. From this point of
view many manuals for calculators or computers or software packages just provoke
the development of an instrumental understanding. The same is true for many manu-
als for handheld computers like ... (I do not want to blame specific products where
big lists of mnemonic codes must be learnt and hierarchies to apply them.)

In the semantic use the meaning of the problem situation is in the foreground and the
machine only is an aid to reduce the burden of sophisticated calculations or drawings
or it is an aid to visualize relations or properties. There are many nice examples how
calculators or computers can be used semantically, starting with the work from
DAVID TALL on calculus. Today we can observe plenty of semantic activities: Using
dynamic geometry software (Cabri, Euklid, and others), investigations with computer
algebra software, using appropriate software-hardware configurations4, …

But till now there are no general theories how calculators or computers can be used
semantically. Thus in the following chapters we will concentrate on the role of guess-
and-test procedures to develop mathematical Vorstellungen. We assume that guess-
and-test may be a bridge to connect the two basic modes of working, to connect the
spontaneous common sense knowledge with a “cultural” or “scientific” concept.

3.  The Role of Guess and Test

The development of understanding is a process of “communication”, see Fig. 2. In-
teraction is necessary and adaptation. In the PIAGETian meaning the learner realizes
(consciously or unconsciously) a conflict and seeks "equilibrium”. Calculators and
computers facilitate these interactions. For the syntactical use a specific output only is
wanted. The interaction process is simple, a behavioristic style of learning is suffi-
cient. Working semantically however needs an open minded view and flexibility and

                                                  
4 For example graphic calculators, see also the T_-Project.
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creativity and intuition and the knowledge of mathematical relationships. That means
we need more than simple stimulus response interactions with a machine.

Fig. 2. Developing Understanding

Since more than 25 years we observe children, students, teachers, and colleagues
working with calculators or computers. Most of these “experts” have developed not
only powerful Vorstellungen but also two specific attitudes which were unusual till
now in a traditional mathematics class room. These “experts”

- use intensively guess-and-test procedures (often without being aware of it) and

- demonstrate a large and often unconscious Vorstellung without an adequate “com-
municable” understanding5.

Our key experiment originates from about 1980. At that time we used a calculator
(ABLE from Texas Instruments) where the keys to press had no symbol on it. That
means before using the calculator we had to figure out the meaning of each button.
Our test persons had to find out the mode of operation of a specific button. There
were “experts” with more than 1000 key strokes, there were a lot of “meaningless”
repetitions, and each “expert” estimated the amount of key strokes having done three
to ten times smaller then it really had been (MEISSNER 1982b).

We also realized that outside from mathematics education a guess-and-test behavior
is quite normal to build up a Vorstellung of the situation being confronted with and
that most of the people even are not aware of their guess-and-test behavior
(MEISSNER 1985). There also are systematic vocational training programs based on
guess-and-test activities, i.e. for training people at a simulator (pilots, car drivers),
using models instead of real situations, etc. Thus we assume that the intensive use of
calculators or computers can evoke the development of an intuitive, spontaneous,
common sense knowledge which not necessarily corresponds to an adequate “ana-
lytic thinking”.

                                                  
5 Being asked for rules they are quick in pressing diverse sequences of buttons, but very often they
cannot give precise verbal descriptions or explanations.

calculator / computer
teacher / peers / parents
books / media
environment / …

Darstellung A

Darstellung B

Vorstellung"communication"
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So we developed a specific approach for the use of calculators and computers in
mathematics education, the so called ONE-WAY-PRINCIPLE . It shall help building up
intuitive, spontaneous, common sense knowledge by using guess-and-test procedures
with calculators and computers.

4.  The One-Way-Principle

One of the fundamental ideas of mathematics is the concept of functions. In school
mathematics we apply this idea in many domains and we use calculators or comput-
ers as powerful tools. Related topics in school mathematics for example are

• the four basic operations,

• square roots,

• percentages,

• growth and decay,

• linear and quadratic functions,

• trigonometric functions, etc.

Each learner must "construct" his/her own individual Vorstellung for each of these
“functions”. Own experiences must be coordinated with external demands. Interac-
tion and adaptation are necessary, see Fig. 2. The "functions" must be experienced,
examples and counter examples are essential. And since calculators and computers
reduce the burden of computing we can without big efforts study the relations be-
tween different variables, we can analyze properties, we can draw graphs, etc.

To do this we recommend a specific method of teaching. To understand the concept
of function

        x  → y

(including in particular the four basic operations addition, subtraction, multiplication,
division) means to comprehend (x,f,y) as a unity, i.e. as a procept. We suggest that
the three different problems

(a) given x and f, find y

(b) given y and f, find x

(c) given x and y, find f

all are approached using the same algorithm.

The first step for the student is to learn the algorithm for the "direct" problem (a).
That means when using calculators or computers the student first must learn the syn-
tactical use of the machine to get the wanted result y. Finding solutions then for
problems of type (b) or (c) we still use the same sequence of syntactical key strokes,
but before starting to press the keys we first have to guess a value or key for x (or f).

For example, suppose we have a problem of type (b). An arbitrary choice of x leads
to a "wrong" result for y. But the magnitude of the “mistake” gives hints for a better

f
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choice of x. And with that x we get a "better" result for y, and new hints for a next
guess. Step by step we build up an intuitive model about the relations and rules be-
tween x, f, and y. We develop a concept image of the “procept (x,f,y)”.

We have called that method the One-Way-Principle (OWP), see MEISSNER 1979:
There is only one way to solve all related problems. Either we just work syntactically
(problems of type (a)) or we work semantically by guessing and testing, still using the
same syntactical sequence of keystrokes.

We have practiced the OWP in many situations, see below. Our observations show
that children are working very concentrated with quite different strategies. Very often
they get an unconscious feeling about the new concept before they can explain their
discoveries or their good guesses. Important, the students get a (conscious or uncon-
scious) feeling for (mathematical) relations and properties which also is available
when they just have to guess or to estimate, especially in situations where a calculator
or computer is not available. In this sense the use of machines has developed a certain
type of an intuitive “common sense knowledge”.

And when guessing and testing gets boring the students themselves start asking for
more efficient solution procedures. Then we can introduce reverse functions and al-
gebraic transformations. In this sense the OWP is an intermediate step. It helps de-
veloping an intuitive, spontaneous common sense knowledge before an algebraic,
scientific concept gets started. The OWP fills an "understanding gap" between func-
tion and reverse function, it can reduce the instrumental understanding of algebraic
transformations. And when the students get lost in the algebraic approach, in the "sci-
entific" concept, they can "retire" to their guess-and-test procedures in their "infor-
mal" concept.

5.  Empirical Results from Using the One-Way-Principle

We will summarize some empirical findings from using the OWP.

5.1. Hit the Target

Hit the Target is a calculator game which trains the understanding of multiplicative
structures: An interval [A,B] is given and a number n. Find a second number s so that
the product of n and s is within the interval [A,B]. We have more than 1000 guess-
and-test protocols from primary school students (age 8 - 10). Our results (MEISSNER

1987) show that the students after a certain training develop excellent estimation
skills (guessing the starting number) and a very good proportional feeling (very often
less than three guesses to find a correct solution).

5.2. Calculator Games Using the "Constant Facility"

Simple calculators often have a "constant facility", that means "operators" like "-253"
or "÷47" can be stored. Discovering the hidden operator by guess-and-test trains ad-
ditive or multiplicative structures. In the game "BIG ZERO" we hide a subtraction
operator and ask "Which is the input for getting 0 ("big zero") in the display? In the
game "BIG ONE" we hide a division operator and ask "Which is the input for getting
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1 ("big one") in the display? Discovering these hidden operators by guess-and-test
develops an intuitive conceptual understanding of additive respectively multiplicative
structures. Playing these games we observe after some training excellent approxima-
tion skills. For more details see the dissertation from LANGE 1984.

5.3 Percentages

There are calculators which work syntactically like we speak in our daily life: "635 +
13 % =  ..." needs the key stroke sequence

We introduced the topic percentages in

about 10 classes (at different times) with

calculators using the OWP, results see post

test (white bars). We also administered the

same post test (6 problems) with about

500 students who got the traditional

course of teaching percentages (dark bars).

For more details see MEISSNER 1982a.

5.4. Linear and Quadratic Functions

The problem of teaching functions is given by a diagram. The traditional school cur-

riculum has not much success in developing a
deeper understanding between the gestalt of a
graph and the related algebraic term. In her dis-
sertation MUELLER-PHILIPP (1994) showed that
the use of the OWP developed that missing
link. For linear and quadratic functions the stu-
dents very easily could sketch the gestalt for a

given term and determine a term for a given graph.

5.5 Guess and Test Protocols

We urge our students to write protocols from their guess-and-test work. Each proto-
col is an excellent Darstellung of the related Vorstellungen. By reflecting the proto-
cols also unconscious Vorstellungen may become conscious. The protocols often al-
low effective discussions in the class room, and those discussions can bring the shift
from an “informal knowledge” to an “analytic thinking”.

5.6 Guess and Test Strategies

The guess-and-test protocols allow insight into diverse Vorstellungen. We studied
more than 1000 protocols (MEISSNER 1987) and found some typical guess-and-test

   50

1 2 3 4 5 6

graph

table term

6 3 5 + 1 3 % =
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behavior6:

- There are favorite starting numbers, independent from the specific data of the task.

- Many of the strategies used are selected unconsciously.

- Finding a possible strategy the user often does not use all the knowledge he/she has.

- A once chosen strategy is dominant. Arguing logically from the steps already done a
change of strategies often happens less and later than it should have been done.

- Most of the guesses follow a “proportional feeling approach”, often interrupted and
started again at a different domain when not quick enough.

- Approaching a goal from only one side is more often than approaching alternately
from both sides (nesting).

- There are more guesses than necessary (from a logical point of view).7

5.7 Summary

Teaching the concept of functions the syntactical use of calculators or computers can
be expanded systematically to a semantic use by the OWP. The guess-and-test activi-
ties seem to allow a shift from an “informal knowledge” to an “analytic thinking”.
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