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Abstract: In this paper, we intend to show, on various examples, the relevance of predicate
calculus, and specially the model-theoretic approach introduced by Tarski, for a didactical analyse
of mathematical reasoning and proofs. The main interest of this framework is to help us in
elucidating the relationship between syntax, semantic and pragmatic as defined by Morris, allowing
consequently to consider rigorously how the knowledge of pupils and students may modify their
reasoning.

Introduction

As it is well known, most of pupils and students meet strong difficulties with
reasoning in mathematics, whatever the mathematical field studied. This question is
well explored in the field of cognitive psychology (Richard, 1990), and also by
didacticians ( Radford 1985, El Faqih 1991, Duval 1995). More often, the logic
system that is used for analysing these difficulties is propositional logic, truth-value
system, even when the authors assume (as did Russel 1903) that in mathematics we
need predicate calculus. According to us, three reasons at least may be given for
explaining this matter of fact. The first reason is that, in France, reasoning abilities
are developed mainly through geometry, for pupils 13-15 years old. For this purpose,
the only syllogism taught is Modus Ponens : « if p, then q ; p ; hence q »3. The second
reason is that, most often, teachers, as do mathematicians, don’t explicit the
quantification, specially concerning the conditional statements (Durand-Guerrier,
1996 & 2003).The third reason is that when mathematic teachers introduce the logic
language for formalizing mathematical statements, as it is done for postgraduate
students, specially for calculus, they generally consider that it’s enough to give some
syntactic rules allowing a right use of symbolic formulae.

In our own investigations, we have shown clearly that the accurate logic system for
analyzing the difficulties in mathematical reasoning is the predicate logic, even in
geometry, and more specially the elementary model theory with Tarski’s semantic
conception of truth as presented in Tarski (1944), and developed in Quine (1950,
1960). Indeed, this allows taking care of the kind of mathematical objects you are
working with, to explicit quantification and consequently the scope of the
quantification. More over, in such a theory, you can also consider how the knowledge
of pupils or students may modify their reasoning. In a didactical purpose, we assume,
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according with Costa (1997), that to study logical-mathematical fields, it’s necessary
to gasp simultaneously syntactic, semantic and pragmatic aspects, with Morris
(1938)’s acceptation for these three terms.

In this paper, we will illustrate these propositions through three examples held in
various situations. The first one concerns the solution of an apparent contradiction in
a pupil answer. The second one explores a disagreement between teachers and pupils
about the truth value of a conditional statement. In the third one, we wonder about the
possibly didactical obstacle created by using a non-valid logical rule in a proof held
in a mathematical handbook for calculus.

I. General theoretical framework : about syntax, semantic and pragmatic

As the three terms syntax, semantic and pragmatic may have various acceptations
according with the authors, we intend to precise here the framework we use. We
assume a logical point of view and follow the definitions as given by Morris (1938),
definitions which are used by most authors working in formal semantic.

I.1.The syntax is the study of the rules and constraints of well-formedness of
the sentences or the formulae of a given language. For example, the following
formula “ A∩ (B⊂C) = A∩B” (actually proposed by students) violates a syntax rule
of set theory. Indeed, “∩” is an operator that accepts two terms and provides a term,
while “B⊂C” is a binary relation (a predicate) that accepts terms and provides a
proposition, or a “open sentence4”. As this formula appears while formalizing the
sentence “The intersection of a set A with a set B included in a set C is the same as
the intersection of this set A with this set B”, it illustrates the fact that the translation
from “ ordinary language” in a formal language don’t respect necessarily the syntax
and therefore needs that we take care of the logical status of the letters we use.

I.2. The semantic is the study of interpretations and models of formal theories ;
it concerns truth values and hence references. According with Tarski (1944) and
Quine (1950, 1960) the basic notions are : “open sentences”, “designation”, and
“satisfaction for an open sentence by an assignment in a structure”. A structure Σ
consists in a domain for objects (for example the integer numbers set N), function (for
example successor, addition) properties (one place predicate, for example to be
primary) and relations (two or more places predicate, for example to be less than) ;
the syntax of the language provides sentences ; some of them are open (see note
number 3). An open sentence F with n free variables x1, x2, ..xn  is satisfied by n
objects a1, a2, …an if the proposition obtained while assigning the object ai to the
variable xi for every i from 1 to n is true in the considered structure. If every n-uplet
satisfies the open sentence in a structure Σ, then Σ is a model for F. As said Tarski,
this is exactly what we do in mathematics with equations and inequalities.

Here is an example.  Let us consider the following structure Σ : <N, +, ×, 0; 1;
s, α, β > with + for addition, × for multiplication, s for function, successor, α for even
                                                  
4 An open sentence has no truth value ; it appears when there are free variables ; in this case, « B ⊂C » is a proposition
if B and C are two set already introduced ; if not, it is an open sentence.
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number, and  β for primary number, and the open sentence F: “if x is an even
number, then its successor is a primary number.”  4 satisfies F ;
indeed 4 is even, and 5 is primary ; 8 doesn’t satisfy F, for 8 is even, and 9 is not
primary ; notice that, although this might not be obvious for most of us, every odd
number satisfies F ; indeed, the antecedent of the conditional is false.5 Then, we can
close F in order to get a proposition in two manners : (1) “∀xFx”  (for every x
, Fx)  ; (2) “∃xFx” (for at least one x Fx). In Σ (1) is false and (2) is true.

In Σ1 with only integers from 1 to 7, (1) and (2) are both true ; in Σ2 as {8 ; 14 ; 20 },
(1) and (2) are both false. So the semantic as developed in model-theoretical point of
view takes care of the objects you are working with, and the domain you consider.
This leads to consider pragmatic as defined below.

I.3. The pragmatic concerns the context, the situation, the persons who are
involved in the situation, and hence their knowledge about the situation.
Consequently, the pragmatic aspect is more than referential function ; it involves not
only the “real world”, but also what is possible and exploration of possibilities’ field
(Vignaux, 1976, p.273). We might thought that pragmatic doesn’t concern
mathematics at all, but our purpose is on mathematical education, and every teacher
knows that neither the way a situation is understood in mathematical classroom, nor
the truth value of sentences are necessarily the expected ones.

Let us consider a rather common classroom situation. The teacher says : “let us
consider a quadrilateral which diagonals are perpendicular : is it a rhomb ?”. Here
are some possible pragmatic aspects: we are at primary school/ middle school/ high
school/ university; the pupils (students) have already/never met counter-examples,
they have studied/not studied the theorems concerning diagonals; the quadrilateral is
drawn/not drawn, and if yes pupils can/cannot see it; pupils are allowed/not allowed
to draw, it is an exam, an evaluation, a problem session, they work alone/in
collaborative groups: there is a debate etc…. Of course, you can recognize, among
this, most of things studied in didactic in various theories. In our own work, we
assume that a logical point of view enriched the didactical analysis of pupils
reasoning, argumentation and more generally discourse. That’s what we try to show
now.

II. False or both true and false ?

How to solve an apparent contradiction in a pupil’s answer ?  Imagine a didactic
situation in which a pupil seems to be assuming « p and non p » (syntactic point of
view); is he (or she) illogical6. 

II.1. About tertium non datur
                                                  
5 For developpement about these questions, see Durand-Guerrier 1996
6 Notice that this question is not so strange as it looks like. In July 1996, a Symposium about Teaching logic and
reasoning in an illogical world was held, sponsored by the DIMACS Special Year on Logic and Algorithms and the
Association for Symbolic Logicin conjunction with the Federated Logic Conference. Hosted by Rutgers, State
University, New Jersey. .http://www.cs.cornell.edu/Info/People/gries/symposium/symp.htm



Thematic Group 4 EUROPEAN RESEARCH IN MATHEMATICS EDUCATION III

V. Durand-Guerrier 4

Most often, teachers assume, as a law, that in Mathematics, every sentence is either
true, or false. This rule is generally identified with tertium non datur principle; yet
this is not exactly tertium non datur. In predicate logic, "p(x) or non-p(x)", where p is
a predicate, is a statement true in any model ( a logically valid statement, a
tautology), corresponding to tertium non datur principle, although neither "p(x)" nor
"non-p(x)" can receive a truth value. Aristotle, already, distinguished between the two
principles : the first one characterizes propositions, the second one can be applied to
statements without truth value, and more over, you can assume tertium non datur
even when you don't know which sentence, among “p” and “non-p”, is true (except,
in certain cases, if you are intuitionist). As we said before, open statements do not
have truth value. An important activity for mathematicians is to determinate for an
open statement which objects satisfy it, and which do not. According to Lakatos
(1976), looking for conjecture's counter-examples is very important for mathematics
discovery.

II.2. Is n2-n+11 a primary number for every n ?

In Arsac & al. (1989), which proposes mathematical situations for learning deductive
reasoning for 12-13 years old children, we can find a situation dedicated to the rule
“an example that satisfies a statement is not sufficient to conclude that this statement
is true”. The problem submitted to the pupils is to know if “for every n, n2-n+11 is a
primary number” is a true sentence or not. Pupils work first alone, then in small
groups ; each group writes down a poster ; the posters are then collectively
commented and there is a debate about the answers’ validity. Relating the situation,
the authors included a fragment of the dialog between pupils concerning the truth
value of the sentence. On the poster that is discussed, it is written that the sentence is
true ; there are some examples; other pupils have found the obvious counter-example
11 ; so they argue that as the sentence is not always true, so it is false, which is the
expected answer. However, some pupils, G. and M., don’t want to declare that the
sentence is false; there are several examples (at least every integer from one to ten),
and at the moment, only one counterexample ;  later a pupil gives 22 and 33 ; but M.
is not yet convinced for “they are all multiples” ; it’s only when 25 appears as a
counter-example that M. gives up. As for G., she says that it is true, and false. So G.,
less or more, seems to assume that a sentence might be both true and false, which
might be considered as illogical for this violates the contradiction principle.
According with Quine (1960), we prefer interpret it as a linguistic disagreement.
 Instead of considering that G. assumes “p ∧ ¬p” (syntactic point of view), we may
understand that she means  « there is a that satisfy “p”, and their is b that satisfy “non
p” », in other terms, “∃aP(a) ∧ ∃b¬p(b)” ; (semantic point of view). This offers a
way to solve the contradiction. As a theoretical position, we think that we must
follow the Charity principle as defined by Quine and Davidson7, considering that the
fact that a pupil is illogical is less probable than a misunderstanding.  On an other
hand, we can see here that the teacher insists on the fact that a sentence with a
                                                  
7 For a presentation, see for example Delpla (2001)
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counter-example is false (In mathematic, it’s like this !) ; however, M. who tries to
“save” the truth of the sentence by reducing the domain considered is not so far from
mathematical practice ; indeed, it is quite relevant to look the truth value of the
sentence in a structure which domain is N minus all the 11’s multiples. According
with this point of view, it is possible to change this kind of situation, proposing open
sentences, and asking for the largest domain on which the sentence is true; in this
case, pupils can’t give a definitive answer, because they can’t characterize examples
and counterexamples ; but in other cases, such a question may lead to elaborate one,
or two, or more theorems. The difference we can see here between children's point of
view and teacher's one emphasizes the difficulties with conditionals theorems that are
not bi-conditionals. In that case, teachers say that the converse theorem is false; yet
usually, the converse open statement has many examples, and even advanced students
do not agree with saying it is false. Then they do not recognize the lack of inference
and may assume invalid deductions. This pleads for investigating, in classroom,
about models for open sentences, beyond the necessary search of counterexamples.

III. True, false or can’t tell ?

 How can we understand that some good pupils declare, concerning a conditional
statement, that « they cannot decide if it is false or true », while teachers think that
it’s obviously false ?

III.1. Contingent statement for a subject at a certain moment

There is, in predicate logic, a rule named " universal instantiation ". When "for all x
F(x)", where F is a sentence with exactly one variable non-quantified, is true in a
certain set, then for every element a of this set, we may infer "F(a)". According to
this rule, we get an action rule for a subject solving a problem: as soon as a subject
knows "for all x P(x)" is true in a certain domain, he may infer P(a) for every element
a of the domain. More precisely, he can tell that, necessary "P(a)" is true. On the
contrary, when the subject knows that "exists x P(x)" is false, he can infer for every
element a of the set, that "P(a)" is false . On the other hand, when "for all x P(x)" is a
false sentence and "exists x P(x)" a true sentence, it is possible that "P(a)" is true, and
it is possible that "P(a)" is false. In that case, "P(a)", which has a truth value, is
contingent for the subject as far as he is able to know the truth value of the sentence.
So, for a subject solving a problem, at certain steps of his search, some sentences may
be necessarily true, impossibly true (necessarily false) or contingent (possibly true,
possibly false) according as he knows, or not, a convenient general theorem. We can
illustrate this with an example abstracted from an evaluation concerning 15-16 years
old pupils.

III.2. The labyrinth task
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This task is submitted to pupils 15-16, in mathematics class; it's an evaluation
elaborated by teachers involved in didactic search8 and proposed by voluntary
teachers to their own pupils. Subjects are told that a person named X managed to
cross a labyrinth and never use twice the same door. The labyrinth is drawn. There
are twenty rooms on four levels pointed by letters A, B, C, ... to T. Three ones have no
door: A, B & P. Two have exactly one door: H & T. Three ones have three doors: L,
N & R; one has four doors: I. The other ones have exactly two doors. According with
the configuration, you necessarily enter the labyrinth in room C and leave it crossing
successively N, Q, R. (see figure above)

The authors write:

“We may state sentences relevant to the situation. For some of these sentences, we can
state a truth value (TRUE or FALSE); for others, we don't have enough information to
decide if they are true or not; (in that case, answer CAN'T TELL). For example, the
sentence " X crossed C  " is a true sentence. Indeed, we affirm that X crossed the
labyrinth, and C is the only entrance room. “

Then they propose the six following sentences: 1- X crossed P ; 2- X crossed N ;3- X
crossed M ; 4- If X crossed O, then X crossed F ; 5- If X crossed K, then X crossed L ;
6- If X crossed L, then X crossed K.

Sentence one is necessarily false; indeed, P has no door. Sentence two is necessarily
true as we said before. Sentence three has a truth value; but we can't know it without
further information ; the right answer is "can’t tell". Sentence four is necessarily true;
indeed O is a room with exactly two doors and one is common with F; Sentence five
is necessarily true for a similar reason. For sentence six, we can't know the truth
value; indeed, you can cross the labyrinth, crossing successively C,D,I,L,M,N,Q,R; in
that case the sentence 6 is false; but you can also cross it, crossing successively
C,D,I,J,K,L,M,N,Q,R, and in that case the sentence is true ; so, the right answer is
"can’t tell". According to the authors, most of pupils (60%) answered " can’t tell " for
sentence 6; the surprise comes from the teachers themselves who consider that this
answer is wrong! They give as an example of false reasoning the following argues:

                                                  
8 EVAPM2/91, Association des Professeurs de Mathématiques de l’enseignement Public (APMEP, France)
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“The sentence number six is neither true nor false. We can't tell. For X might crossed
through K, but might also cross through I, a room which has a common door with L,
avoiding so K. “

Except for the fact that the sentence number six has actually a truth value, we agree
with this answer. However, we can understand the teacher's point of view through
this notice concerning the conditionals sentences number 4 to 6:

"Are they mathematical statements, which we must understand in their whole? In that
case, the important matter is the bound between the two sentences and not the particular
truth value of each one."

So, for the authors, the conditional statement is clearly the Russell's generalized
conditional, and in the sentences number four to six, X is a universally quantified
variable, which is not the case in the sentence three for which they expect the answer
"can’t tell". In fact, although the person is named X, X is not here a variable; we
might have call her Paul or John or every else. More over, there is no referee
population; endless, to describe the situation in logical language, the relevant variable
is the "crossing", as it appears in spontaneous treatment. Doing this (a crossing is a
succession of letters among the letter from A to T, with some rules), we can see that
for sentences three and six, the formal open sentences corresponding lead to a false
universal sentence and a true existential sentence; so, the formalization of the task
allows us to make clear that point : the truth values of sentences three and six are not
constrained by the situation.

The teachers' point of view corresponds to a very common practice in mathematics
classes, in France. Indeed, it is nearly never assume that some sentences may be
contingent for the subject. However, this experiment and others (see Noveck 1991, p
95) shows that when "can't tell"'s choice is given, pupils use it. So, in a certain way,
implicit quantification in mathematics class prevents the emergence of contingent
statements, which are rather "natural" for pupils and students.

IV. Valid or not valid ?

How can we decide if it is valid or non valid to use the following rule :

“ For every a, their is b such as fab and for every a there is b such as gab, so for every a there is b
such as fab and gab”(R1) ?

Imagine a calculus course9 in which this rule is implicitly assumed for demonstrating
that “if f and g have h and k respectively for limit in c, then f+g has h+k for limit in
c”. Probably, the proof will be considered as a correct one by most of
mathematicians ; but how can a student, just beginning studying calculus,  know
when this rule might be used, and when it must not be used ?

IV.1. Natural deduction in predicate logic, a tool to control proofs

For the question of rule R1’s validity, an answer can be given through mathematics, if
you know enough mathematics, as we will see below . It can also be given by logic,

                                                  
9 Houzel, C. (1996)
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and especially through natural deduction for predicate logic (Copi, 1954, Quine
1950). Indeed, this system provides us logical proofs in order to demonstrate the
theorem of the predicate calculus, the logically valid statements, merely named valid
statements. For this, it gives four rules for introducing and eliminating universal and
existential quantifiers, and some restrictions about the use of letters introduced by
eliminating existential quantifiers: such a letter must not be used for a new
elimination, and can’t be involved in introduction of universal quantifiers. A main
interest of this system, compared with other ones, is that it holds rather near with
classical mathematical proofs. More other, we can use this system for controlling
mathematical proofs, specially proofs by « generic element » (we prove « fa » for any
a, so we have proved « for every x, fx » (corresponding with the rule named
« universal generalization »).

IV.2 Where using the rule R1 leads to an incorrect mathematical proof

Many students meet strong difficulties when studying calculus, especially when they
have to deal with statements involving two different quantifications, such as
“∀x∃yFxy”. It is obvious that, as soon as you have to prove theorems, the frame
proposed by Duval for geometry is not relevant. The incorrect following proof will
illustrate this point. We first recall a well-known theorem

Theorem 1 (mean-value theorem). Let us consider two real numbers a et b such as a < b
and a function f defined on a closed interval [a; b]. If f is continuous on [a;b], and differentiable on
the open interval ]a;b[, then there is a point c in the open interval such as f(b)-f(a)=(b-a)f’(c), where
f’(c) is the first derivative of the function f in c.

The theorem to prove is a generalisation of the previous one with two functions

Theorem 2 (Cauchy’s mean-value theorem). Let us consider two real numbers a et b such
as  a < b and  two functions  f and g defined on bounded interval [a;b]. If f and g are continuous on
[a;b], and differentiable on ]a;b[, and if the first derivative of g, function g’, is never equal to zero
on ]a;b[, then there is a real number c in ]a;b[ such as 

A proof rather often provided by students in first year scientific university consists in
a deduction from theorem 1 toward theorem 2 as below :

Function f satisfies the conditions for applying theorem 1; hence there is a number c in ]a;b[,
such as f’(c)(b-a) = f(b)-f(a). Also g satisfies the conditions for applying theorem 1; hence
there is a number c in ]a;b[, such as g’(c)(b-a) = g(b)-g(a). As g’ is never equal to zero on
]a;b[, g’(c) ≠0 hence  g(b) - g(a) ≠ 0. The result comes from the quotient of the two above
equalities.

This proof is not correct ; it may be shown on an example, considering two functions
such as it’s not possible to choose “the same number c”10. Analyzing this proof with
Duval’s frame shows that the involved mathematical theorems, explicit or implicit,
are used in a right way. Incorrectness is not a consequence of a wrong application of
                                                  
10 For example x2 and sinx ; notice that for two polynoms with degreeunder two, you can choose the same number.
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modus ponens. The error in the proof can be analyzed with two different points of
view. In the first one, we can argue that when we apply in a proof a sentence such as
“∀x∃y Fxy”, it’s necessary to add that “y depends on x” ;  so; when you apply
successively two such statements,  you have to change the letter in the second
statement (you write for example “∀x∃z Gxz”)11. We will say that in this case we
study empirically the rules effectively used in mathematical proofs. It’s empirical for
there is no mathematical, nor logical relevance to change the name of a mute letter (a
bounded variable) in a statement ;  it is a rule for action, in order to prevent errors. In
the second one, we interpret the proof in predicate logic, and we use natural
deduction extended to predicate logic as a tool for controlling validity. The error is
here to use a letter for a bounded variable as if it was a letter for an object. The
semantic inference following the assertion of the existential statement doesn’t
appears, and then the restrictions about the object introduced with this type of
inference are not applied. In this case, we use a theoretical model to describe the
practise above.

Anyway, the proof is incorrect, and this example provides a structure in which the
statement R1 is false ; this proves that R1 is not a theorem in predicate logic ; it is not
valid12. Opposite with the proof for sum’s limit, it is quite obvious that no
mathematician will considered that this proof is correct. Yet, it is the same logical
rule that has been implicitly used for the two proofs. The difference is that, in the first
case, we can easily built a number that holds for the two functions, while, as we told
above, it’s generally not possible in the second case. The incorrect use of R1 can be
found in many situations, even in situations where it leads students to “prove” a false
statement. Here is a very important difference between an expert, and a novice. If you
are an expert in a mathematical field, you know when it is dangerous to slack off the
rigor requirement while a novice has to learn it, in the same time he learns
mathematical knowledge, and this can’t be done separately. However, to slack off
rigor, you need at least to gasp what rigor is. So, in a didactical purpose, in order to
promote a right understanding of what are mathematical proofs, we claim that it is
necessary to introduce semantic considerations in learning mathematics at university,
and to offer students tools for controlling the proofs they study and the proofs they
build. We assume that natural deduction in predicate logic is well profiled for this
purpose, allowing validity’s control in a rather economical way (for other examples
see Arsac & Durand-Guerrier 2000)

Conclusion

The examples presented here, added with other ones described elsewhere13, show that
the model-theoretic point of view as developed by Tarski offers a general framework
for analyzing mathematical proofs or reasoning, in addition with classical didactical
theories. Coming back with our general theoretical framework, we think that the

                                                  
11 For more developement see Arsac & Durand-Guerrier (2000)
12 Obviously, it is very easy to build  more elementary models in which  R1 is false.
13 Durand-Guerrier, 1996, 1999, 2000.
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cases described here emphasize the necessity of considering the three aspects we
have introduced : syntax (the linguistic form of R1), semantic (the mathematical
objects we work with), pragmatic (the situation, and the subject’s knowledge about
the mathematical field). We might also have related our analyses with the formal
semantic as developed in linguistic by Montague (1974), whose program was to
apply model-theory to natural languages, and Kamp (1981), specially the Discourse
Referent Theory (DRT), which main interest is to introduce conceptual rigor in an
empirical domain where it is easy to be loosed (Corblin, 2002, p.2). As for us,
another interest is that a model-theoretic approach for argumentation might plead for
continuity between argumentation and proof opposite with the idea of a cognitive
discontinuance14.
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