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THE QUALITY OF STUDENTS' EXPLANATIONS

ON A NON-STANDARD GEOMETRY ITEM
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Institute of Education, University of London

We report on the types of explanations that students gave for their answers to a non-
standard geometry item. We suggest that these response-types form a partially
ordered hierarchy on the basis of mathematical quality of explanation. Students were
given the item in Year 8 and again one year later, and a comparison of the frequency
of response-types in Years 8 and 9 suggest that many students evaluated the
mathematical quality of the responses in an alternative way.

Introduction

The analysis presented here forms part of The Longitudinal Proof Project (Hoyles
and Küchemann: http://www.ioe.ac.uk/proof; Hoyles and Küchemann, 2000), which
is analysing students’ learning trajectories in mathematical reasoning over time. Data
are collected through annual surveying of high-attaining students from randomly
selected schools within nine geographically diverse English regions. Initially 3000
Year 8 students (age 13) from 63 schools were tested in June 2000. The same
students were tested again in June 2001 using a new test that included some questions
from the previous test together with some new or slightly modified questions.
Altogether 1984 students from 59 schools took both the Year 8 and the Year 9 test.
The same students have again been tested in June 2002 with the similar aims of
testing understandings and development. Each test comprised items in
number/algebra and in geometry, some in open format and some multiple choice. The
first step in the process of devising the items was to review the research literature in
order to identify the major issues students are likely to face when learning to prove in
each domain. Subsequent steps involved discussion with teachers and piloting in six
schools. Following analysis item by item each year and longitudinally, the final stage
of the research will be to draw together these analyses to suggest more general trends
in development in a domain.

In geometry, we devised items for each annual test that set out to distinguish if
students reasoned from a basis of perception or from geometrical properties, to find
out if they were able to perform a series of angle calculations and to give reasons for
each step, and to assess whether they could decide what was or was not an adequate
proof of a simple conjecture. In this paper we focus on responses to one geometry
item, G2b, in which students were asked to determine the area of an overlapping
region and then to explain their answer. The item was part of each of the three annual
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tests so we are able to trace any changes in explanations over time. We report here on
the Year 8 and 9 responses.

Pedemonte (2003), in her paper in this volume, describes how two groups of students
working on a geometry task involving squares and triangles, come up with a
conjecture concerning the areas of the triangles. The students have relevant geometric
knowledge (eg, about congruence) and experience of argumentation and of writing
proofs. The students justify their conjecture by means of a series of abductions
(which one might represent as J→K, I→J, H→I, etc, where K is the conjecture)1 and
manage, more or less, to re-present the argumentation in the conventional form of a
written proof (ie H→I, I→J, J→K). Our students were younger than Pedemonte's
with less knowledge and experience. Another obvious difference between our studies
is that we only asked for an explanation, not a proof, and few, if any, of our students
represented their argumentation in proof form. On the other hand, many of the
explanations can be interpreted as abductions, which fits with Reid's (2003)
suggestion in this volume that abductive arguments are often used to explore and to
explain. However, as we discuss later in this paper, the number of abductive steps, in
particular connected steps, were usually fewer than exhibited by Pedemonte's
students.

Douek and Pichat (2003), in their paper in this volume, report that with focussed and
systematic teaching even very young children can learn to produce precise, carefully
structured written accounts of familiar scientific/mathematical situations. At the same
time, and perhaps closer to our students' experiences, Anderson et al (1997), in a
study of naturally occurring arguments in 4th grade classrooms, found that the
students' utterances were often vague and with no explicit conclusion, and that they
were usually missing, or seemingly missing, explicit warrants to authorise
conclusions.. They suggest that this is because students take the shared knowledge of
the participants as given and not needing to be spelt out, and they go on to suggest
that the underlying arguments are usually perfectly sound. Reid (1999), on the basis
of observing grade 10 mathematics classes, suggests there are several modes of
explaining, including non-explanations (where, for example, students refer to their
own or the teacher's authority), explaining how, explaining why, explaining to
someone else (spontaneously, or in response to a question) and explaining to oneself
(in an attempt to come to a personal understanding).

Completing a written test, for researchers that the students do not know, is clearly
different from the classroom activities considered by Anderson et al and by Reid.
Nonetheless, it is possible that some of the factors that they identified are operating
with the written test. In particular, students might assume, through the habits of
everyday discourse or from a lack of familiarity with the conventions of
mathematical argument, that some of the knowledge that they share with the
researchers (whom they don't know, but who presumably know 'everything') does not
need to be made explicit. In this regard, a particularly interesting feature of many
students' responses to item G2b is that their explanations were vague, often just
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repeating the information that was given. This may in part also be due to a lack of
familiarity with the thorny issue of how far 'back' one needs to go to justify a
mathematical explanation and with the need to use 'transformational reasoning' (see
for example Simon, 1996) to transmute the givens in the question into something
more explicit. However, as we hope to show, some students also seem positively to
value certain characteristics of such answers despite the obvious shortcomings when
judged by standard mathematical criteria.

Students' responses to G2b

Item G2b was developed from a question used by Frant and Rabello (2000), and our
Year 9 version is shown in Figure 1 (the Year 8 version was almost identical except
for a slight difference in wording due to a difference in part a) of question G2).

We were attracted to the question for a number of reasons. First, it is non-standard2

and therefore, rather than simply calling-up a known procedure to solve it, students
would be more likely to consider the structure of the situation in some way. At the
same time, it does not require a great deal of formal geometric knowledge, so that our
students are unlikely to fail to find the required area through a simple lack of
knowledge. Further, it is amenable to a dynamic approach (involving rotation) and
we were curious to know how readily students would work in this way.

We were interested primarily in the nature of students' explanations for their answer,
rather than the answer per se. Nonetheless, we were surprised by the high proportion
of students giving the correct answer of 1/4 for the overlap: 86 % and 93 % of the
total sample (N = 1984) in Years 8 and 9 respectively. However, when it came to
students' explanations the situation was perhaps less impressive, - as well as being
more complex, as we shall see.

Fig 1: Item G2b (Y9 version)

After examining numerous students' scripts we came up with the coding scheme for
students' explanations shown in Table 1 below.
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A code with leading digit 1 (codes 11, 12 and 13) was given to students’ arguments
that appeared merely to be based on perception ('It looks like a quarter', or indeed,
'It's about one third'), or which arose from an attempt to measure (for example by
drawing a grid and counting squares). We also included correct answers with no
explanation under code 1.

A code with leading digit 2 (code 20) was given to the numerous explanations which,
though not incorrect, seemed to consist of little or nothing more that a rehearsal of the
givens (typically, 'It's a quarter because the corner is at the centre and is a right
angle')3.

Table 1: Coding scheme for answers and explanations in G2b

Arguments that we considered were more 'structural', ie based on geometrical
properties, were given a leading digit of 3 (codes 31 and 32). A code 31 response
involves rotating D until it has the same orientation as C so that the overlap becomes
a square a quarter the size of C, or, less usually, rotating D until its sides are at 45˚ to
the sides of C, so that the overlap is identical to one of the four equal regions that
would be formed by drawing the diagonals of C. It could be argued that the students
giving a code 31 response are merely presenting one case and claiming it as a proof
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(see Movshovitz-Hadar, 2002, for descriptions of the ‘because, for example’
phenomenon). However, we feel a code 31 response goes beyond a mere empirical
argument, such as one based on measurement, since the size of the overlap has been
determined on the basis of geometric properties, even if  the approach is 'visual-
contemplative' (Knipping, 2003) rather than truly analytic. A code 32 response
involves partitioning square C into 4 equal parts congruent to the overlap. The
partitioning might be seen in a 'static' way (by simply extending the two sides of D
that go through the centre of C on the given diagram), or it can be viewed in terms of
a succession of 90˚ rotations of square D (or, at least, of the given overlap).

Mathematically, a code 31 response is less complete than  a code 32 response, since it
does not in itself explain why the area of all possible overlaps is 1/4 (or, if the
diagram is interpreted as representing a specific situation, why the original overlap is
1/4). However, in devising the coding scheme we had no evidence to assume that
students choose a code 32 response, rather than a code 31, for this reason, and we
therefore decided to include both kinds of response under the same broad code (ie
code 3). From this cognitive point of view, we are still inclined to regard the two
response-types as equivalent rather than ordered.

We used the code 40 for responses which would otherwise have been coded 31 but
which included some kind of compensation argument to show that turning D does not
change the area of the overlap. A minimal code 40 response might state that the
overlap is 1/4 when D is turned so that it is 'parallel' to C, with the additional
explanation that as D turns, 'the overlap gained is the same as the overlap lost'. More
typically, students would draw D in its original and 'parallel' positions and state that
the triangular region that was newly overlapped was the same as the triangular region
that was no longer overlapped. Sometimes students gave, say, a code 20 or 31
response but included in their explanation the claim that the overlap was always 1/4
but without any further statement to justify this claim. We noted such cases by adding
the letter A (for 'Always') to the response code (eg, 20A or 31A).

The claim that the overlap is always 1/4, and the justification for this in terms of
compensation, can be viewed as a series of abductions. Where the compensation
argument refers to the two small triangles mentioned above, a third abduction would
involve some kind of justification for the claim that they are the same, perhaps by
comparing some of the corresponding sides and angles (ie a congruence argument). It
was extremely rare for students to take this third step, and we did not include it in our
coding scheme.

Regarding the mathematical quality of students'
responses, we would argue that the codes in
Table 1 are more or less hierarchical. Thus for
example, a code 20 response is generally better
than a code 1 response (as it is concerned with
mathematical properties, even though it might not

Fig. 2: The response codes ordered by

'mathematical quality'
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be saying anything 'new'), but a code 20 response is less informative or 'revealing'
than a code 3 response. Similarly, a code 40 response is better than a code 31
response, as it goes a step 'further back' or is more fine-grained by explaining why the
area of the overlap is conserved under a rotation. Conservation of area is not relevant
for code 32, and it might be better to think of this code as being on a different branch
of the hierarchy than codes 31 and 40 - thus giving a partially ordered set as
illustrated in Figure 2, right.

Table 2 shows the frequency
distribution of the codes for
the students' responses in
Year 8. As mentioned
earlier, the vast majority of
students (86 % in Year 8)
could find the correct value
for the size of the overlap.
However, as can be seen
from Table 2, only about
half of the students who gave a correct value (and about 43 % of the total sample)
supported this with an explicit structural reason (codes 31, 32 and 40), whilst a
substantial minority (28 % of the total sample) gave code 20 responses.

Table 3 compares the Year 8 frequencies with those of Year
9. We found these frequencies quite puzzling at first. In
general, students made quite clear and substantial progress
from Year 8 to Year 9 on most of the items on the proof
test. However, progress on item G2b seems to be quite
modest: as can be seen, there are slightly fewer 'perceptual'
(code 1) or miscellaneous incorrect (code 9) responses in
Year 9. However, the clearest sign of 'progress', if that is
what it can be called, is the increase in code 20 responses,
from 28 % to 35 %.

Not only are these 'gains' small, there
is a high degree of inconsistency in
students' responses, as can be seen
from the adjacent two-way table
(Table 4). Thus, for example, only 14
of the 94 students who gave a code
40 response in Year 8 gave a code 40
response in Year 9.

If one ignores any code 9 responses,
but assumes that the other codes are
partially ordered as illustrated in Figure 2, then, from Table 4, the numbers of

Code Y8 % Y9 %
code 11 5 2
c12,
c13

16 15

code 20 28 35
code 31 26 31
code 32 12 8
code 40 5 5
code 9 9 5

Table 3: G2b Y8 and Y9 code
frequencies (N = 1984)

Code Code description
Numbe

r
Percent

code 11 Close but wrong estimate 90 5
code 12 Correct value; no structural explanation 297 15
code 13 Correct value; valid measurement 15 1
code 20 Correct value; only implicit reasons 548 28
code 31 Correct value; rotation to salient position 519 26

code 32
Correct value; partition or repeated
rotation

236 12

code 40 Correct value; compensation 94 5
code 9 No correct value; miscellaneous 185 9

Table 2: G2b Year 8 code frequencies (N = 1984)

G2b Y9

Code c11 12,13 c20 c31 c32 c40 c9 Total

c11 6 19 20 22 11 2 10 90

12,13 6 65 103 79 27 15 17 312

c20 5 70 270 134 33 18 18 548

Y8 c31 3 52 162 240 22 25 15 519

c32 5 36 68 63 43 11 10 236

c40 13 22 37 6 14 2 94

c9 5 43 45 42 14 9 27 185

Total 30 298 690 617 156 94 99 1984

Table 4: G2b Y8 by Y9 code frequencies (N = 1984)
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students who progress and regress are 508 (26 %) and 479 (24 %) respectively. The
net progress is then just 2 % !

This propensity to switch strategies from one year to the next, or indeed to offer more
than one kind of explanation on a given occasion, which was not uncommon, has
echoes of the source-like argumentation structure described by Knipping (2003) in
this volume. The seeming dramatic lack of progress on item G2b has made us
question whether the mathematical hierarchy that we have assigned to the codes,
chimes with the way the students see these different kinds of responses, in particular
with respect to codes 20 and 3.

As part of our case studies of certain schools in our sample, we have interviewed
individual students about their Year 8 and 9 (and sometimes also Year 10) written
responses to G2b. In these interviews, we looked particularly at two response patterns
(both of which are quite common, as can be determined from Table 4):

Pattern A, where students gave a code 20 response in one or more years and did not
give any code 3 (or 4) responses;

Pattern B, where students switched from a code 20 response to a code 3 (or 4)
response, or vice versa.

In the case of Pattern A, we were interested in whether we could get the students to
elaborate on their code 20 responses, ie to explain why the givens (a 90˚ corner at the
centre of the square) mean that the area of overlap is a quarter. In other words, could
they shift to a code 3 or 4 response? Some students seemed unable to do this, which
fits our view that the codes are mathematically hierarchical. On the other hand, others
seemed able to move to a code 3 (or 4) response quite easily. In such cases, our
interested shifted to finding out which kind of response they preferred. This was also
our interest for Pattern B. However, when we tried to probe students' views on this,
their responses were often not very revealing. In part this can be explained by the fact
that our students were not very experienced in providing explanations (as opposed to
answers) - at least in geometry - and thus had no clear models to go by, in general,
and in our particular test/interview situation. Nonetheless, having produced both
kinds of response, we were surprised that the students often had difficulty describing
their characteristics. We were even more surprised that, with both kinds of response
in front of them, students did not always, and immediately, express a clear preference
for code 3 over code 20 responses.

From a mathematical point of view, a typical code 20 response is unsatisfactory,
because it does not reveal anything: it simply reiterates the givens and as such is
essentially circular, as it is a condensed version of 'If the corner is a right angle and is
at the centre, then it's a quarter because the corner is a right angle and is at the centre'.
This shortcoming may seem glaringly obvious to an experienced mathematician. On
the other hand, it could be argued that this is just an example (albeit an extreme one!)
of the difficult and ever present issue of how far one need go in unpacking
mathematical properties in order to prove a statement. (Thus for example, as we
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discussed earlier with regard to the code 40 compensation argument described in
Table 1, is it enough to state that the two triangular regions in the diagram are the
same, or does one need to justify this?). It is also worth pointing out that in this
particular item the givens do play a decisive role. The area of the overlap would not
be constant if C and D were rectangles, say, rather than squares, or if the corner of D
was not at the centre of C.

The deductive steps in a mathematical argument are tautological (Toulmin, 1958), in
the sense that the relationships used to construct the argument follow from the givens;
as such, though the steps may reveal what is hidden, essentially they say nothing new.
No wonder students have difficulty deciding what depth of explanation is required,
even if they can apply the transformational reasoning (Simon, 1996) necessary to
reveal fruitful relationships. In their paper in this volume, Heinze and Reiss (2003)
discuss the methodological knowledge involved in constructing proofs. In the light of
the difficulties described above, it is quite possible that students who are just
beginning to come to grips with this knowledge (for example, with the distinction
between empirical and conceptual proofs), may find code 20 responses appealing
because they seem general and concerned with mathematical properties. Moreover, a
basic code 31 response, say, can seem quite specific (in that it is concerned with the
overlap when the squares are in a particular orientation); as mentioned previously, it
might appear as more of a demonstration ('Look, here it is clearly a quarter') than a
proper, structural, explanation.

The argument here is that some students, at least, are content to give a code 20
response rather than a code 3 or 4 response, not because they are mathematically
unable to give a 'higher level' response, but because they value the characteristics of
code 20 responses described above. To probe this further, we compared students'
responses to item G2b with their total score4 on the national Key Stage 3 mathematics
tests that English school students are required, by statute, to take towards the end of
Year 9. Table 5, below, shows the average KS3 score for those groups of students
giving particular response-codes in Years 8 and 9. (Students for whom we do not
have an appropriate KS3 score have been omitted, which has reduced the sample
slightly, from 1984 to 1901.) As can be seen from the table, the pattern of average
KS3 scores is quite similar for Years 8 and 9. In particular, students who gave code
11 and code 9 responses have average
KS3 scores well below the sample
average, while students who gave code
20, code 31 and code 4 responses have
very similar (and above average)
average KS3 scores -although the
average for code 32 is markedly less
than for code 31 and in Year 9 it is less
than the average for the sample as a
whole. Thus the data support the

Year 8 Year 9
Code No. of

students
Average

KS3 score
No. of

students
Average

KS3 score
code 11 84 66.3 27 69.8
c12, c13 296 74.8 286 76.3
code 20 539 83.0 670 81.9
code 31 494 83.8 589 81.6
code 32 224 80.3 148 76.2
code 40 91 84.5 87 82.7
code 9 173 69.9 94 68.7
Total 1901 79.7 1901 79.7

Table 5: G2b Y8 and Y9 average KS3 scores for different
codes (N = 1901)
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conjecture that students giving code 20 responses are
not necessarily mathematical less able (as measured by
the KS3 test score) than those giving code 3 responses.

A feature of our coding scheme briefly mentioned
earlier is that we also noted whether, in their
explanations, students explicitly stated that the
overlapping area would always be a quarter. We did
this by adding the letter A (for 'Always') to the code. The code 20A and 31A
frequencies turned out to be quite high, especially in Year 9, and it is therefore
interesting to look at the average KS3 scores for these codes, which are shown (just
for Year 9) in Table 6, right.

As can be seen, the A codes have (markedly) higher average KS3 scores than the
corresponding non-A codes, which fits the notion that higher attaining students are
more concerned with generality.

Conclusion

The students in our sample, though relatively high attaining, are unlikely to have had
much experience of providing mathematical explanations in geometry, especially in
written form. This lack of experience can manifest itself in various ways, depending
on the item. For example, in a question involving a three step calculation to find the
size of an angle (Küchemann and Hoyles, 2002), most of our students could evaluate
the angle successfully, but when asked to explain each step, rather than give a
mathematical justification (such as 'The angle sum of a triangle is 180˚'), many
students gave procedural explanations (such  as 'I took 40˚ from 180˚ to find the
remaining angles'). In the case of item G2b, it is perhaps not surprising that students'
explanations were often less explicit than would conventionally be deemed desirable
and that progress was therefore not very evident. However, we were surprised by the
substantial number of students whose explanation were not only vague but essentially
circular, and in particular by the finding that the frequency of such explanations
increased rather than decreased from Year 8 to Year 9. Further consideration of the
data lead us to conclude that some students may have chosen to give such
explanations, not because they did not have access to more structural explanations,
but because they valued certain characteristics of these explanations, namely their
generality and reference to mathematical properties.

It is interesting to consider how one might help students to see the need to go beyond
the givens when constructing a mathematical argument, especially as the stopping
point in this process is essentially arbitrary. One heuristic which might help to bring
out the 'consequences' of the givens is to consider how one can transform a given
problem in such a way that the result still holds (for example, in the case of G2b, by
increasing the size of square D) or so that it no longer holds (for example, by
changing C and D into rectangles).

Year 9
Code No of

students
Average

KS3 score
code 20 446 80.2
code 20A 224 85.4
code 31 497 79.3
code 31A 92 94.2

Table 6: G2b Year 9 average KS3
scores for some 'Always' codes
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In general, we suggest that presenting students with unfamiliar questions such as G2b
can provide a rich context for classroom discussion as to the norms expected in a
mathematical argument. What are the consequences of the givens, how far should
reasons go beyond perception and how far should an argument be elaborated? Such a
situation has a strong didactical purpose, as it involves a result which students know
but which they need to explain and justify.
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Notes
1 Pedemonte represents the argumentation in a more detailed way, using notions of claim, data and
warrant taken from Toulmin (1958).
2 Strangely, a very similar task has since found its way into the government guidelines for teaching
lower secondary school mathematics (DfEE, 2001).
3 Most code 20 responses simply repeated some or all of the givens. However, the code included
responses where students did say something new, for example by referring to turning or
partitioning, but in too vague a way to be classed as code 31 or code 32 responses.
4 Most students in our sample took either the Level 5-7 KS3 tests or the Level 6-8 KS3 tests. We
used a conversion table kindly provided by the QCA to convert students' total score on the 5-7 tests
to an equivalent total score on the 6-8 tests. A small minority of students took the Level 4-6 tests,
for which we did not have a conversion table and so these students were omitted from the KS3
score analysis.
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