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Recent literature has pointed out pedagogical obstacles associated with the use
of computer environments on the learning of mathematics. In this paper, we focus
on the pedagogical role of computers’ limitations on the development of
learners’ concept images of derivative and limit. In particular, we intend to
discuss how the approach to the concepts can be properly designed to prompt a
positive conversion of those limitations to the enrichment of concept images. We
use the notion of theoretical-computational conflict (Giraldo, 2001a) to support
the discussion.

THE NOTION OF LOCAL STRAIGHTNESS

David Tall (1989) defines a generic organizer as a learning environment enabling
learners to handle examples and non-examples of a mathematical concept. Generic
organizers can be computer software providing quick responses to users’ exploration.
The design of a generic organizer must be based on a cognitive root, a central idea
holding two fundamental features: make sense (at least potentially) for the learners
and enable cognitive expansion. Generally speaking, a cognitive root does not
correspond to the formal definition. In the case of the concept of derivative, the
theoretical embedding – the concept of limit – is not familiar to students in
elementary calculus courses. On the contrary, it ends up being deeply unfamiliar to
human intuition, as its historical evolution testifies (see e.g. Cornu, 1991; Sierpinska,
1992). Therefore, the formal definition of derivative does not fit as a cognitive root,
since the first condition above does not apply (even though the second one certainly
does).

On the other hand, Tall (2000) claims that the notion of local straightness is suitable
as a cognitive root to this concept. This notion is based on the fact that a curve graph
looks straight if closely magnified. According to the author, it is a primitive human
perception of the visual aspects of a graph and is deeply related to the way an
individual looks along the graph and apprehends the changes in gradient. Thus, in an
approach based on the notion of local straightness as a cognitive root, the gradient is
presented as the slope of the line mingled with the curve. The associated generic
organizer is a computer environment allowing the user to draw a graph, change
graphic windows and observe the consequent changes in graph’s appearance
(Blokland, Giessen & Tall 2000). The local magnification process is instanced on
figure 1, for a differentiable curve, namely 2xy = , which acquires the aspect of a
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straight line, and for a non-differentiable one, the blancmange function1, which
preserve its wrinkled aspect.

Figure 1: The local magnification process for differentiable and non-
differentiable curves.

We have designed and tested a generic organizer (Giraldo, 2001b; Giraldo &
Carvalho, 2002b), named Best Line, which allows learners to compare graphic and
algebraic representations on the local magnification process. Best Line is a Maple
routine with inputs: a function f , a point 0x  in f ’s domain, a slope a for a line
passing through ))(,( 00 xfx and a value for xh ∆= ; and outputs: the graphs of f and of
the line )( 0xfahy += in the interval ],[ 00 hxhx −+ , a vertical segment linking the curve
to the line (representing the difference ))(()()( 00 xfahhxfh +−+=ρ ) and the numeric
values of )(hρ  and hh /)(ρ . The main idea is to compare the graphic and algebraic
local behaviours of the curve )(xfy =  and the line )( 0xfahy += , both for )( 0xfa ′=
and )( 0xfa ′≠ . Figure 2 reproduces examples of computer screens generated by Best
Line for 2)( xxf = and 10 =x , with )(2 0xfa ′==  (above) and )(5.2 0xfa ′≠=  (below).

By displaying both the graphic and algebraic representations, we aim to prompt a
broader view to the fact that, among all the straight lines passing through ))(,( 00 xfx ,
the tangent is the one which best approximates the curve, in the sense that not only
the difference )(hρ tends to zero, but so does the ratio hh /)(ρ . The picture of the
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graphs provides a geometrical interpretation to the approximation. As the user zooms
in, by changing the value of h , this value acts as reference unit to the picture. If the
straight line displayed is not the tangent, the vertical segment is always visible. On
the other hand, if it is the tangent, that segment quickly disappears from sight. In
other words, in this case, )(hρ approaches to zero, even when compared to the unit h .
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Figure 2: Screens from the generic organizer Best Line.

The approach described above has been tested in a calculus course in a Brazilian
university. Among the students who took that course, we select the subject of the case
study described in section 3. We instance below two excerpts (translated from
Portuguese) from other participants’ written questionnaires:

Roughly speaking, we could compare it [the local magnification process]
to the view of Earth we’d have if we observed it from the space,
something like a sphere. But, if we come back and observe it from the
surface again, it has details, which were undistinguishable before.

Actually this function [the blancmange] really seems a mountain, a very
irregular one. [...] It’s like one’d take a big log and wanted to balance it on
this very irregular mount. You cannot do that.

THEORETICAL-COMPUTATIONAL CONFLICTS

Research results show that misused computational environments can have negative
effects to the learning of concepts. For instance, Hunter, Monaghan & Roper (1993)
observed that students using software Derive did not need to substitute values to get a
table and sketch functions’ graphs. As a result, students did not develop the skill of
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evaluating functions by substitution. Even students who could perform the evaluation
before the course seemed to have lost the skill afterwards.

In Brazil, Belfort & Guimarães (1998) observed teachers dealing with a dynamic
geometry environment. They were asked to find empirically the rectangle with
perimeter m40  and the greatest area. Due to floating point errors, the software would
give approximate results. Therefore, three pairs of teachers obtained the maximum
area of 2100m , but the values for the side AB were different. The authors report the
teachers ended up in a deadlock, and were unable to figure out which would be the
correct answer. However the investigation about the software ‘mistake’ led to the
necessity of a theoretical solution. The authors conclude that it is possible to use
software limitations as a tool for the development of deductive reasoning.

Hadas, Hershkowitz & Schwarz (2000) present a set of activities designed on a
dynamic geometry environment to motivate the need to prove, by causing surprise or
uncertainty from situations in which the possibility of a construction was against
students’ intuition. The number of deductive explanations increased considerably in
situations involving uncertainty. The authors conclude proofs were brought into the
realm of students’ actual arguments, and they naturally engaged into the
mathematical activity of proofing.

Doerr & Zangor (2000) report pre-calculus classroom observation on the use of
graphing calculators. The authors claim that, contrary to previous concerns, the
device did not become a source of mathematical authority. They remark that
perspective was a consequence of the approach adopted by the teacher, particularly
by her awareness to limitations of the calculator and her belief that conjectures are
proved on the basis of mathematical reasoning.

Many authors agree that the effects of computers on mathematics learning do not
depend on any inherent feature of the devices themselves. Rather, such effects are
consequent from the way they are (mis)used. Tall (2000) affirms that the focus on
certain aspects and the negligence of others may result in the atrophy of neglected
ones. The experiment reported by Hunter, Monaghan and Roper, in particular, has
uncovered a narrowing effect: intrinsic characteristics of the computational
representation led to limitations on the concept images developed by learners.
Generally speaking, many limitations of computational representations for
mathematical concepts arise from the algorithms’ finite structure. Figure 3 displays
the process of local magnification of the curve 2xy = , around the point 10 =x ,
performed by Maple. Since the curve is differentiable, it should look like a straight
line. Rather, due to floating point errors and/or limitations of the underlying
algorithm, for very small values of graphic windows ranges (on orders lower than

610− ) the software draws a polygonal.
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Figure 3: A theoretical-computational conflict.

To study more carefully those situations, we defined (Giraldo, 2001a) theoretical-
computational conflict to be any situation in which a computational representation
is apparently contradictory to the associated theoretical formulation (see also
Giraldo & Carvalho, 2002a; Giraldo, Carvalho & Tall, 2002).

In our own interpretation, the narrowing effect observed on Hunter, Monaghan and
Roper’s experiment was not due to the occurrence of theoretical-computational
conflicts, but, on the contrary, to their absence. Overuse of computational
environments – specially when not confronted to other forms of representation – may
contribute to the conception that limitations of the representation are characteristics
of the mathematical concept itself, leading to the development of narrowed concept
images. Sierpinska (1992) remarks that the awareness to the limitations of each of the
form of representations and to the fact that they represent the same concept are
fundamental conditions for the understanding of functions.

For example, the representation of derivatives as slopes of
tangent lines, as usually presented in classroom, comprises
some limitations. Tall (1989) observes that of notion of
tangent line in students’ concept images is strongly linked to
geometry problems about the construction of tangent to
circles. The approach to those problems focuses on global
geometric relationship between of the curve and the line,
particularly, on the number of points of intersections. Thus,
the notion of being tangent – to ‘touch’ in one single point –
figures in opposition to notion of being secant – to ‘cut’ in
two points; which do not corresponds to the concept of
tangent, in the sense of Infinitesimal Calculus (figure 4). It is
likely to expect that learners build narrow concept images
having those ideas as main references. In fact, Vinner (1983),
for example, observed that many students believe that a
tangent line can only ‘touch’ the curve, but not ‘cross’ it. Whe
tangent line to the curve 3xy = on the point )0,0( , some of those
with origin in the point, not crossing the curve, and others a tiny
point )0,0( , but with slope different from 0.
Figure 4: A line
which cuts the curve
only once, but is not
tangent; and a line
which cuts the curve
twice, but is tangent.
5
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However, into a richer context, where awareness to the limitations is encouraged, this
same representation can take on a converted pedagogical role: it can underline that, to
study the differentiability of a curve, it does not matter what happens far from the
tangency point. In the same way, if theoretical-computational conflicts are
emphasized instead of avoided, the limitations of computational representation can
assume a converted role: they can work for the enrichment, rather than the narrowing
of concept images. In particular, by emphasizing the conflicts arising from the finite
structure of computational algorithms, the infinite nature of the central concepts of
Infinitesimal Calculus can be highlighted.

A CASE STUDY

The experiment reported in this section is part of a wider study, in which six
participants, selected from the course described on the first section of this paper, were
observed in personal interviews dealing with theoretical-computational conflict
situations (using software Maple). The interviews were tape recorded and fully
transcribed. Global results are currently being analyzed. We will focus on the results
of one of the participants, Antônio (pseudonym). We will summarize his responses
(translated from Portuguese) to four interviews, concerning the concept of derivative.

Interview 1: Participants were given a few general questions concerning their
conceptions about functions, continuity and differentiability.

Antônio was asked how could he decide whether a function is differentiable, given
the algebraic expression. He stated that a function would be differentiable if he could
apply known formulae to evaluate derivatives. He was then asked how he could
decide about the differentiability if, instead of the expression, the graph of the
function on a computer screen is given. He stated that he would zoom the graph in to
have a more careful view, but it would be impossible to be sure, as computers are not
flawless.

Interview 2: Participants were asked to gradually zoom in the graph of the function
2xy =  around the point (1,1), and simultaneously explain what they were observing.

They would obtain screens similar to the ones shown on figure 3.

Antônio declared he would see something similar to the tangent straight line, as he
zoomed in on the graph. When the software started to display a polygonal, he claimed
that the computer was wrong, as this was not the expected result. After thinking for a
while, he explained the computer’s error:

It’s because the computer hasn’t got idea what it’s doing. It’s kind of
messing up the points. […] As the computer sketches the graph by linking
the points and these points are results of approximations, so it links
without thinking. It links the points, and whatever it gets will be the graph
for it, as it doesn’t know what goes on.

Interview 3: Participants were asked to zoom in the graph of the blancmange
function around a fixed point, and explain what they were observing.
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Antônio started by explaining the construction of the blancmange function. He
showed good comprehension of the process:

[…] You are taking a number and multiplying it by 1
2 , taking that one and

multiplying by 1
2 , by 1

2 . So, it’s a geometric progression with rate 1
2 .

[…] Then, it’s the sum of a geometric progression. The sum of a
geometric progression is a limit, then it converges to a point. […] Then
each point there is a geometric progression, it’s the limit of a convergent
geometric progression. It’s there. […] It’s well defined.

Starting the local magnification, he explained that, as the curve was not
differentiable, the graph would become more wrinkled. However, to sketch the graph,
the algorithm used a finite truncation of the series which defines the blancmange. As
a result, it did not look more wrinkled, as Antônio expected, but quickly acquired a
straight aspect. Antônio showed great surprise at that point, and asked the reason of
the unforseen result. After listening to our explanation, he commented:

Oh, I see. You could sum a few more steps, but not until infinity.

After thinking for a while, he proceeded, with increasing excitement:

But infinity it [the computer] can’t make. [...] Hey! I think nothing could
make! [...] It can’t add until infinite! There will be ever an infinity
missing. And nothing can represent the infinity, as a whole, but we can
show that it goes to that place, that it tends to that. [...] It’s impossible to
represent it, not on the computer, not on a sheet of paper, and not in
anything else! The computer only represents things that a human being
knows.

Interview 4: While dealing with the Best Line routine, participants were asked to
explain their impressions.

Antônio declared:

[…] So, this guy here [points to the vertical segment on the screen] will
have to decrease faster than h, because it h went faster, this guy would
always be there. […] In the case of the derivative, this guy runs faster. We
see it’s a special property. [...] We’ve found a way to express the
definition, but it’s more [..] it’s less hidden what it means. […] One can
feel what’s going on. Actually, we’ve written the definition, but this way
is much clearer than the usual way, the limit and the straight line, and so
on.

DISCUSSION

Since the first interview, Antônio clearly expressed his preference for algebraic
representation. He states that the criteria for deciding about the differentiability of a
function must be based on formulae. Moreover, he appears to be aware of the
limitations of computational algorithms. Such mental attitude gave him means to
quickly grasp the cause of the unexpected result on interview 2. In this sense, the
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theoretical-computational conflict was almost immediately solved by the student. On
the other hand, in interview 3 a theoretical-computational conflict played a central
role on Antônio’s reasoning (see figure 5). In fact, Antônio’s enthusiasm suggests the
conflict actually triggered a new idea for him: it is not possible to represent the
concept of infinite by any physical means. Moreover, he points out the reason for the
impossibility: infinity can never be attained. The conflict led Antônio to grasp not
only the limitations of the computational representation, but of other forms as well;
and to figure out a conceptual distinction between finite and infinite.

Antônio’s mental attitude towards conflict situations contributed to the results
reported. The outcomes of the four interviews summarized above suggest that the
conflict have acted as positive factor for the enrichment of Antônio’s concept image
of derivative and related notions. Nevertheless, other participants show quite different
behaviors. In some cases, the conflicts do prompt students to engage into a rich
reasoning. In others, the conflicts are barely noticed by students, as they are quickly
solved. But some students seem not to cope with conflict situations at all. The global
results of the investigation in which this experiment is comprised are currently being
analyzed. One of our aims is to understand more clearly in which situations conflicts
do have a positive role for the enrichment of learners’ concept images, in particular,
in which sense and in which extent learners’ previous attitudes and background
determine that role.

Figure 5: A theoretical-computational conflict acting in Antônio’s reasoning.

PERSPECTIVES

Undergraduate teaching of mathematics often follows a model of purely formal
approach, in which contents are presented into the same structure and order as the
theoretical formulation. Several pedagogical obstacles have been pointed out as
associated to that model. Cornu (1991) remarks that many expressions used in
mathematical definitions have different meanings from current language. This is the
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case of the fundamental concepts of infinitesimal calculus, as ‘limit’ and ‘continuity’.
Once the mathematical definition is formulated, the defined concept acquires the
status of object itself, independent of the language employed. Thus, despite the fact
that definitions are grounded on current language, their logical handling demands the
abstraction of language. The main ideas necessary for the building of further
theoretical developments often do not come out from formal definitions, but from
related intuitive ideas (see e.g. Cornu, 1991; Tall & Vinner, 1981). Vinner (1991)
stresses that the processes by which mathematical theories are formulated hardly
correspond to their final organization. That being so, on introducing a given
mathematical concept, we often appeal to representation forms different from the
formal definition, and limited in relation to it – this is the case of the computational
representations of Calculus concepts, the focus of this work. On the other hand, a
model of approach supported by a single representation form is often associated to
pedagogical obstacles from a different nature. As we have observed, if that is the
case, a narrowing effect on concept images is likely to take place.

We read in the classic What is Mathematics:

Whatever our philosophical standpoint may be, for all purposes of
scientific observation an object exhausts itself in the totality of possible
relations to the perceiving subject or instrument. (Courant & Robbins,
1941, p. xvii)

The aim of this work is to put forward an alternative model of approach, not purely
grounded on formalism nor purely on imprecise representation forms. It is not meant
to undervalue of the formalism, in relation to the imprecise. On the contrary, through
the emphasis of limitations and differences, we intend to prompt the development of
rich concept images, as well to stress the central role of the formal conceptualization
on the construction of a mathematical theory.
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