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ANALYZING CHANGES IN STUDENT PERFORMANCE:
WHAT IS THE ROLE OF TECHNOLOGY?
Michal Yerushalmy Daniel Chazan
University of Haifa University of Maryland

Changes in technology have implications for the teaching and learning of school
subjects. In this paper, we are interested in how to analyze changes in student
performance when curriculum is influenced by shifts in technological media. Taken
from a series of studies carried out in algebra classrooms we will offer examples
suggesting that technologically-supported curriculum change can transform
student learning and will reflect on the role of technology in such change.

Introduction

Technologists and educators interested in the ramifications of technology for the
teaching and learning of school subjects speculate about the degree to which shift in
technological media transform the content meant to be taught with these media and
the cognitive difficulties one might anticipate students might meet as they try to learn
that content. And, there is speculation about the degree to which new technologies
will lead to the wholesale replacement of current curricula with new content
(Examples of such are Papert 1996; Schwartz 1999; Noss 2001). Taken from a series
of studies carried out in algebra classrooms over the last decade, in the body of this
paper, we will present examples where students’ performance in a technology-
supported curriculum is different from the performance one might have predicted for
students learning this content in a non-technology supported environment. These
examples suggest an affirmative response to the question posed in the title:
technology can transform student learning. However, in analyzing these particular
examples, we will suggest that in understanding this particular change, it is more
appropriate to focus on the curriculum than it is to focus on the technology used in
the classroom. The curriculum which technology supported in this case changes the
order in which students meet key concepts. This change in order allowed students to
solve some kinds of problems that students typically might find difficult; it also
created new points of transition and difficulty that might not have been difficulties for
students learning in other ways. Thus, we argue that in examining examples of
technological change it is important to consider curricular change. Change that
involves the use of technology in the classroom may sometimes be understood more
deeply as an example of curricular change, rather than a change in the nature of the
media used in classrooms.

Critical Transitions: Identifying Changes in Cognitive Hierarchies

In the next sections we will analyze 2 examples. For each example we will look
briefly at the curricular and technological resources students had in their disposal. We
will proceed to describe data suggesting that students who used these resources
performed in atypically powerful ways. A powerful performance might be the
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demonstration of a skill typically acquired at a later stage in learning or a
demonstration of the non-routine use of a higher order skill to engage in a problem
usually solved with teacher-taught routine procedures. Related to this powerful
performance, we proceed to look at related data that tell a different story. This part of
our examination of the examples identifies a critical moment of transition. In this
moment of transition, students with the technological and curricular resources that
supported powerful performance perform in quite a different way. We examine
situations where they confront a new problem that in standard instruction would be
assumed to be simpler or similar to problems on which students’ performance was
strong, but where these students have difficulties. With this three-tier analysis of
these examples, we seek to illustrate that explanations for both strength and obstacles
should be looked for when studying curriculum that makes use of new technological
tools. In doing such analysis, we suggest that identifying critical transitions for
students is an important research tool. And, finally we argue (in response to Noss,
2001) that technologically-supported curricular change can lead to change in
students’ cognitive hierarchies, though such change may have as much to do with
curriculum as it has to do with technology.

Example 1: Tools for recursive modeling of algebraic patterns

Resources: Using technology such as simulations' software, MBL or other modeling
tools that includes dynamic forms of representations of computational processes, it is
now possible to construct graphical models without first writing symbolic
expressions with x’s and y’s. Several studies suggest that such emphasize on
modeling offers students means and tools to reason about differences and variations
(rate of change). The VisualMath curriculum is an example of an algebra curriculum
where the learning of algebra is preceded by such semi-qualitative modeling
(Yerushalmy and Shternberg 2001). In this curriculum, an MBL environment that
allows users to construct and model motion generated by the movement of the
computer’s mouse supports the introduction of modeling of motion.

Relative strengths of students using these resources: Apparently, throughout the
curriculum’s focus on qualitative modeling, the students we will describe had
developed ways of using tools to solve complex problems that concern non-constant
rate of change. Graphs, and what we will call staircases (a graphical depiction of
differences in y value for a set change in x) emerged as models of situations, and also
as models for reasoning about mathematical concepts. For example, when the
students looked at a distance-time graph to evaluate the speed in the middle of the
interval they discussed the possible results according to the change of the stairs.
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David: there is no speed -- we have time and
distance. Towards the end he started to drive
faster. Let's do stairs -- that would be the best.
The distance increases in time and he starts to
drive faster.

But it is hard to say. Each stair starts slow and
continues faster.

In other work, Shternberg (2001) interviewed thirty-four advanced calculus

students, as they solved the following problem from a qualitative calculus unit
(Taylor 1992).

A cook has a large portion of meat at room temperature that should be cooked as quickly
as possible. He has at his disposal a conventional oven and a microwave. In the
microwave oven the meat temperature increases at a constant rate and in the
conventional oven the meat temperature increases at a changing rate. In a cooking trial
the cook found out that although the meat temperature in the conventional oven is always
higher than in the microwave, cooking time is 2 hours in both ovens. Could cooking time
be less than 2 hours using these 2 ovens?

Typically, these advanced students tried to solve this problem by fitting an
expression to the process of the change in the temperature of the meat. Since the
problem does not include any specific data most of the interviewees failed to
represent the situation symbolically and did not devise any other solution.
Shternberg also interviewed 7™ graders who had studied the VisualMath
curriculum’s materials on qualitative problem solving. The 7™ graders, unlike most
of the calculus students, started to represent the problem by exploring iconic
sketches that would match the problem conditions. The following sequence of
graphs from one interview represents the type of work done by the 7™ graders to
model and solve the problem:

From left to right: A model that represents the two processes, analysis of the curved
process using stairs, identification of a location with an equal rate of change for both
processes, and the creation of a single more efficient process.

The different components of the lexical system introduced by the curriculum (As
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described in Schwartz and Yerushalmy 1995, this system includes: graphical icons,
descriptive verbs, and the staircases.) seem to have been adopted by these 7™ grade
students as manipulable objects that provided them with support when solving
problems that were far too complicated for them to describe symbolically (they had
only begun to learn algebra!). Using the grammar of objects and the operations on
them, students constructed complex mathematical models, based on qualitative
analysis of variations using the staircases.

New transitions: When Richard Noss (2001) asks "what is natural anyway?" he
suggests that a new “digital culture” may shift our notions of pedagogical order. One
of the examples he gives concerns the "closed form" (that we call explicit here) and
the 'recursive form' for representing symbolically a function's table of values.
Recursive definitions are usually viewed as more complex and are usually studied
late in high school. Technology, like the one demonstrated above or like a
spreadsheet or graphing software may suggest that the explicit algebraic rule is no
longer a more natural way to describe a function (for related thoughts based on
student performance see Hershkovitz et al., 2002;Stacey and MacGregor 2000). But,
if students become familiar first with recursive forms, explicit forms may ironically
become more difficult. Here is an episode from an interview with Yael and Ronit (9"
grade VisualMath students) who tried to solve a problem given as a table of
numerical data that describes a quadratic process.

Yael and Ronit are trying to answer the question: If the following table describes the
post office rates for shipments, how much a 54 kg parcel would cost?

They solve the problem by developing the rule of squaring the weight at the end of a

Weight in kg Price in marks
FromOto 1 1
From 1 to 2 4
From 2 to 3 9
From 3 to 4 16
From 4 to 5 25

given range. And, they developed this rule quickly in line 3. But, they express
disappointment at not being able to connect idea of constantly increasing differences
that they identified with the explicit rule they have found (6-9). The explicit rule gave
the answer but it did not connect with the recursive thinking that provided an
explanation for how the cost grew. Earlier experience with recursive forms
complicated their use of explicit forms. This complication might not have arisen if
they had not had earlier support for recursive reasoning.

1. Yael: ... we (already) know that it increases by 2 each time. 5, then 7, then
9. That's not the purpose. I know there is a way, because it's not some... We
can also according to the graph. Increasing constantly. As if it would not be
constant.
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2. Ronit: If I'm looking at the table of values, I see...From weight 6 to 7 [ have
49,

3. So I want to propose a connection between the two. I see that 49 divided by
the larger number yields the larger number. I'm squaring.

4. The large number between two numbers and I have the price. It should be
54.

It would be 2916 the price of this package. Or it would be more. Or less.
Yael: We are raising weird ideas.

Interviewer: Why do you feel this way?

® =N W

Yael: That's my feeling. You asked what is our feeling. That's my feeling. I
need something to feel sure there.

9. Ronit: That's it. I don't feel sure. I want to find the rule. I know that the
slope ... I'm sure that the slope of my function will be price relative to
weight. Y is actually the price and X is the weight. If I do such a stair, I'll
have the weight relative to the price or the price relative to the weight.

Example 2: Conceptualizing equations as comparisons of functions

Resources: The lion’s share of the early parts of the Visual Math Algebra curriculum
focuses on functions of one variable and equations of one variable conceptualized as
the comparison of two functions of one variable. With this way of thinking about
equations, students acquire alongside the algebraic procedures alternative methods to
solve equations. Students are encouraged to use systematic guessing, intuitive
numerical and graphical analysis strategies to narrow down the search interval, all of
this without the use of symbolic manipulations. Students in many algebra curricula
that use linked graphic, tabular, and symbolic representations similarly learn to solve
equations in a variety of ways (see for example:(Huntley, Rasmussen et al. 2000;
Hershkowitz, Dreyfus et al. 2002).

Relative strengths of students using these resources: Algebra beginners who
studied the VisualMath curriculum and whose class had not learned procedures
beyond the linear equation were able to analyze and solve correctly the following
problem, with and without use of graphic software (Yerushalmy and Gilead 1997):

Jo was asked to determine the number of solutions for the following equation:
2
x"+4=x+24

1. Using the table of values he decided that the equation has one solution.. Explain how he
arrived at his conclusion.

2. Was Jo right? Can you suggest how he could check his answer? Explain.
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X | & g(x) J)-g(x)
4 20 28 -8
5 29 29 0
6 40 30 10
7 53 31 22
8 66 30 36

The problem yielded a crop of answers from a group of students who had not learned
to solve quadratic equations. Most of their suggested strategies blended numerical
and graphical analysis with algebraic symbols and sometimes even included
reasoning about procedures. For example, Eli sketched the two functions, marked the
intersection points and expressed objection to Jo’s domain interval.

"Jo determined the number of solutions by looking at the 0 in the difference. Since 0
difference indicates an intersection point where there is no difference between the
two graphs. And since the y values are the same at that x value. Jo was wrong since
he did not construct the negative values part of the table. I would suggest that he
check the number of solutions using graphs."

As this example illustrates, viewing an equation as a comparison of two functions,
students can solve problems for which they have not yet been taught an algorithmic
solution method.

New transitions: Elsewhere (Yerushalmy & Chazan 2002), we described at some
length why a class teacher wondered whether his students could solve a task
involving systems of equations in two variables without being taught a method for
solving such systems. We also described why he decided instead to explore how his
students would approach a single equation in two unknowns rather than a system of
equations. He asked his students: "How would you represent the equation x+y=2x-
y?" And, we described three different groups in the class and their correct and faulty
suggestions. One group of students decided to view both x and y as independent
variables and to view this equation as a comparison of two functions of two variables.
They then began to explore three-dimensional representations. Another group viewed
y as a parameter that could take on a range of values. For every value of y, a new
linear function in x would be generated. Another group began approaching the
question by thinking of the equation as a comparison of two functions: f(x,y)= x+y
and g(x,y) = 2x-y. By using the difference function and symbolic manipulations, they
reduced the question of finding the solution of an equation in two variables, to a
question about the zeros of a single function in two variables. In the end, they
changed —x+2y=0 to y=1/2x.

In typical algebra instruction, the transition from equations in one variable to
equations in two variables is not a large one. One uses similar solution techniques and
learns how to apply them to a wider class of equations. The main change is in the
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nature of the solution set one might uncover. When viewing equations as
comparisons of two functions, this transition seems more substantial. The graphical
and tabular representations of functions of two variables must be developed in order
to help students see their connections to the ways of representing functions of one
variable with which they are familiar.

Discussion

One important way in which mathematics education research findings are used is to
help teachers anticipate student difficulties. For example, one might use research by
Filloy and Rojano (1989) in this way. They found that students in the classrooms they
studied found problems of the form ax+b=cx+d substantially harder than problems of
the form ax+b=c, for example. In explaining this phenomenon, they suggest that
algebra beginners bring to the classroom experiences of arithmetic. The harder
problems frustrate arithmetic solutions and thus form a key transition point, or what
they call a “didactical cut.” One might imagine that this work would provide a solid
basis for teachers’ knowledge of student performance in algebra. Yet, assuming that
new understanding is build upon prior knowledge and experiences, a key question in
mathematics education research is the degree of stability that one might expect to find
for such didactical phenomena. On the one had, some researchers seem to feel that
some didactical phenomena reflect deep cultural understandings and are thus quite
stable over time. From this perspective, understanding difficulties that unfolded
historically sheds light on difficulties students may experience in the classroom (the
notion of an epistemological obstacle, see Sierpinska 1994 , seems to function in this
way). On the other hand, technologists seem to believe that didactical phenomena are
more mutable; they depend on the media in which instruction takes place.

In this paper, we have provided examples that suggest that didactical phenomena are
mutable. Are phenomena, like Filloy and Rojano’s didactical cut approach-
independent? Or are they, as suggested by several studies (e.g. Noss 2001, Papert
1996), related to how students learn and to the cognitive tools they have to tackle
such problems? Our evidence suggests that didactical cuts are related to the tools
students have and are not fixed in stone. The use of new resources can lead students
to exhibit strengths not exhibited by students not utilizing such resources. At the
same time, use of these resources can lead to new didactical transitions or difficulties.
While we might thus seem to be supporting the position of technologists, our analysis
of the factors leading to this mutability are not media-based. Although we are
interested in the use of technology and in software design, in the examples we have
just given, we would emphasize the importance of considering the curricular
resources provided to students in these examples. What seems as a contradiction
might be explained by our view that in analyzing such examples technology is
important, but not as something separate, rather as but one component of the
curriculum with which students interact.
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