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The program committee assigned a very wide theme to this working group: different 
theoretical perspectives and approaches to research in mathematics education. In 
order to keep the work of the group focused and coherent, we published a somewhat 
narrower call for papers and, before the conference, decided, on the basis of the 
papers accepted, to concentrate discussion on research paradigms and/or theories 
within the context of their effect on empirical research. Specifically, we encouraged 
the working group participants to concentrate on one or more of the following: 
1. The influence of different theories on data analysis by: 

a) considering a given set of data or phenomena through different theoretical 
lenses and analyze the resulting differences; 

b) analyzing the interactions of two or more theories as they are applied to the 
same empirical research study. 

2. The relationship between theory and empirical research by: 
a) analyzing how a specific research paradigm influences empirical research 

and, 
b) exemplifying how empirical studies contribute to the development and 

evolution of theories; 
3. The relationship between research and practice by analyzing how research 

influences practice and vice versa. 

The over-riding theme during the group discussions turned out to be the need for a 
convergence in research, whether or not such convergence was desirable and 
possible, and, if so, how it may be achieved. In its research stance, mathematics 
education is multi-disciplinary, in the sense that researchers from different research 
communities - psychology, sociology, anthropology, mathematics, linguistics, and 
epistemology - contribute to it.  It is also multi-disciplinary in the sense that though 
the theoretical frameworks built and used by the community of mathematics 
education researchers are strongly influenced by theoretical constructions and 
approaches initially developed outside the field, they progressively become genuine 
constructions of mathematics education. 
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As a consequence, it is not easy for researchers in mathematics education, even if 
they restrict themselves to the learning and teaching processes in mathematics, to 
delimit the pertinent objects for their research after taking into account the diversity 
of the determinants for these processes. Choices at this level result also from 
theoretical choices, and from the basic principles underlying the researcher’s 
theoretical positions. 

Beyond diversity emerging from multi-disciplinarity, there is also a more intrinsic 
diversity linked to the diversity of educational cultures, and to the diversity of the 
institutional characteristics of the development of the field of mathematics education 
in different countries or global areas. This diversity is both a source of richness for 
the field – its helps us to question what we often tend to consider as the normal or 
only way of thinking about or acting upon educational systems – and a source of 
fragility for research if we don’t make specific efforts to counterbalance the difficulty 
that stem from communication. This is all the more so since the theoretical explosion 
we see today, the inflation of terms and notions, goes beyond what can be seen as a 
logical consequence of the sensitiveness of mathematics education to cultural 
differences. 

Although there was a general, if cautious, agreement that convergence in research 
would be beneficial, the view that diversity implies richness, and should therefore be 
maintained, was also expressed. Indeed, Cestari, Daland, Eriksen & Jaworski1 
implicitly contributed to this view by presenting a developmental research paradigm. 
However, it was agreed that to be too general could run the risk of losing the 
specificity of mathematics education, including the requirement that research in 
mathematics education should deal in an essential way with mathematics. 

The question thus arose whether or not there is a default research style or even a 
“mathematics education research paradigm” that can identify research in mathematics 
education. Kaldrimidou and Tzekaki gave hints of what we, as a community, may 
need to think about in generating such a paradigm and developing an all-embracing 
theory. It was a difficult conception to consider and no consensus was drawn, partly 
because of general problems of communication, linguistically, methodologically, and 
philosophically. 

For example, research paradigms emphasized on one hand the social context and 
institutional practice (Bosch, Chevallard & Gascón) and on the other cognition 
(Poynter & Tall), but the two positions hardly converged. These two presentations 
soundly illustrated the degree within which the basic principles underlying a 
theoretical position shape, what we consider to be, deserving research agendas in 
mathematics education. From the perspective of Bosch et al., a basic assumption is 
that the key to understanding the teaching and learning processes in mathematics lies 
in institutional practices; the mathematical thinking of individuals is tightly shaped 
                                                 
1 In this overview, we will frequently refer to the contributed papers that follow the overview. Such 
   reference will be made simply by author names. 
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by these. What is known and how it is known is, in a sense, a by-product of these 
practices — a learners knowledge reflects what it is the institutional practices allows 
them to know and learn. Thus, investigating and establishing theories in the cognitive 
development of individuals is of minor interest for research that wants to understand 
the life of mathematics in educational systems. 

Poynter and Tall, on the other hand, placed an emphasis on the cognitive growth of 
individuals, in an attempt to develop theory derived from the way in which 
individuals engage in mathematical activity. Though Tall and Chevallard agree that 
things, which look complex, may have a pattern that suggests that theory may be 
developed, they do not look for explanations in the same way. However, they agree 
on the importance of the mathematical component within their analysis, but once 
more they diverge because they are not led by the same intention. 

Most researchers don’t adopt such radical positions. The most prevalent practice is 
that of cross-breeding theories in varying degrees. Such cross-breeding often involves 
theories that are not exactly of the same nature and do not possess the same detail. 
This makes it possible to see them as either closely related or simply complimenting 
each other. Within then the working group several examples illustrated this feature. 
Some of the contributions suggested how context — including social context — and 
cognition might be brought to interact more closely. Bloch's work, for example, 
introduces semiotics into the theory of didactic situations. The integrated use of 
theories associated with cognitive and social perspectives was demonstrated by 
Bikner-Ahsbahs, whose contribution suggested how this might be done in one area of 
study. Kidron’s contribution carries the implication that the relationship between the 
strengths associated with theory derived from a social context and theory derived 
from a cognitive one may be mediated by a theory outlining cognitive construction 
for abstractions in context, whilst Arzarello and Olivero indicated how a combination 
of theories on a larger scale could possibly work. Particular frameworks are most 
clearly seen in approaches to data collection and analysis but a comparative analysis 
of data that emphasizes different disciplinary frameworks can be illuminating 
(Lenfant, Roditi & Artigue; Leron). 

A further difficulty in comparing, connecting or even unifying theories is presented 
by the fact that there exist different levels of theories. Researchers use theoretical 
frameworks as paradigms, perspectives, background theories, foreground theories, 
empirically grounded theories or local theories, to mention a few. Often, the 
theoretical level on which a researcher operates is implicit rather than explicit. 
Nevertheless, in this overview, we refer to all of the above by the collective term 
“theories”. 

Finally, even researchers who are quite explicit about the theoretical frameworks they 
use, are usually not explicit about, and can even be unaware of the assumptions 
underlying their theoretical approach. One possible exception to this lack of 
explicitness is the contribution by Wilhelmi, Godino & Lacaste. The approaches 
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discussed above, namely whether knowledge is constructed individually or socially, 
is one important example for underlying and often unquestioned paradigms. Other 
underlying assumptions concern ontological or epistemological questions such as the 
nature of mathematical objects, or how we can perceive the world by means of 
empirical research. If underlying assumptions are unclear, or even contradictory, 
there can be little hope of comparing theories, and even less for integrating them. 

On the unifying side, all working group participants appeared to aim to make a 
difference in the quality of learning as a result of their research. This difference was 
explicit within the several papers that constructed theory from practice (Cestari & al.; 
Ferrara, Robutti & Sabena; Assude, Paquelier & Sackur) and the way in which theory 
could be transformed into practical use (Ejersbo & Leron). 

The group-work provided an opportunity to examine ways in which theories that 
were new to individuals interacted with those that were known. It was an opportunity 
to restructure personal opinion. The meeting thus provided opportunities to become 
aware of and compare theoretical standpoints. 

In conclusion, the central term that emerged from the working group was networking. 
The overall conclusion was that because of the reasons cited above, there was no 
expectation that theories would be integrated into a “grand unified theory” in the near 
future. In fact, even in such a long established science as physics, the desire to 
integrate physical theories dealing with forces at different orders of magnitude have 
met, so far, with only partial success. Therefore, though we should maintain high 
hopes for future integration, we should also be realistic. If we can develop and 
maintain a certain degree of networking between some of the advocates of the 
different theoretical stances that are currently evident within mathematics education, 
this will constitute an important step on the path towards establishing mathematics 
education as a scientific discipline. 

The idea of networking theories thus appears as more realistic than integration. On 
the other hand, as a research community, we need to be aware that discussion 
between researchers from different research communities is insufficient to achieve 
networking. Collaboration between teams using different theories with different 
underlying assumptions is called for in order to identify the issues and the questions. 
Such collaboration could take the form of separately analyzing the same data and 
then meeting to consider and reflect upon each other’s analysis. The project presented 
by Cerulli, Pedemonte and Robotti is a start in this direction. It aims at building an 
integrated frame for research and design on technology-enhanced learning. While this 
may be too ambitious a goal for the present, the project strategy is interesting. 
Beyond finding tentative integrative lines by reading and analysing research work, 
each of the six teams involved in the project will analyse a piece of software 
produced by another team and build an experiment around it, relying on the team’s 
own theoretical frames, thus allowing later comparison with the analysis and 
experiments built by the team having produced the software. 
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In order to promote the networking of theories, we suggest two foci of discussion for 
the theory working group at the next CERME conference. First, it would be useful to 
make explicit the level at which a theory operates. This might be helpful in assessing 
the possibility of comparing, networking or integrating theories. Second, in any 
attempt to network theories, it is crucial to have an awareness of the underlying 
assumptions of each theory. Only on the basis of such awareness, can a discussion on 
the possible coherence of underlying assumptions begin to take place so that a 
common language supporting such networking can be developed. We therefore 
recommend that a second aim of the theory working group at the next CERME 
conference would be to work in teams with the objective of identifying and making 
explicit the underlying assumptions of some current theories. Finally, and possibly 
more importantly, we reiterate that collaborative work between teams using different 
theories is necessary for substantial progress towards networking theories, not only 
during but also in between conferences. 

Working Group 11
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THEORETICAL ISSUES IN RESEARCH OF MATHEMATICS 
EDUCATION: SOME CONSIDERATIONS 

 

Maria Kaldrimidou, University of Ioannina, Greece 

Marianna Tzekaki, Aristotle University of Thessaloniki, Greece 

 

Abstract: In this paper, we use two key readings to demonstrate the importance of 
describing clearly the terms and the models presented in research of Mathematics 
Education: the tem “conception” and the model “norms”. Both examples were 
chosen to reveal the specificity and the complexity of mathematics, mathematical 
knowledge and the mathematics classroom interplay. Based on the researchers’ 
explanations, we attempt to raise some questions that the presentation of these terms 
and models puts forward. 

Keywords: research terms, research models, conceptions, norms. 

 

Introduction 
Theory or theorizing is the essential product of research activity. The great 
development of this activity in the field of Mathematics Education has led to an 
important production of terms, theoretical frameworks, models and methodological 
tools.  Thus, the need of convergence of the different theoretical perspectives 
/approaches in the research is recently raised in the community of M.E. 

In 1996, Serpinska and Lerman in their article “Epistemologies of Mathematics and 
of Mathematics Education” attempted to present the various theories that exist or are 
under development in the scientific field of Mathematics Education (Sierpinska & 
Lerman, 1996). Moreover, in 1998, an ICMI Study pinpointed a number of important 
theoretical questions concerning the aims, the objects, the specific theoretical 
questions and the research results in Mathematics Education (Sierpinska & 
Kilpatrick, 1998). A similar attempt was made in the Research Forum of PME26 
“Abstraction: Theories about the emergence of knowledge structures”, although it 
was more focused on the “description of processes during which new mathematical 
knowledge structures emerge” (Dreyfus & Gray, 2002). 

The issue of developing theoretical frameworks is proving exigent and difficult in the 
field of Mathematics Education, because the phenomena under study can be 
approached at different levels and from different perspectives. Even limiting the 
focus of our interest on the teaching and learning of Mathematics, inside and outside 
the school system, at different cognitive levels, it can be seen that: 

1244 CERME 4 (2005)



1. Research questions can be categorized in many different ways: according to the 
mathematical content, the cognitive level and the object of study or the aim of 
the research (theoretical or practical). 

2. The existing research or theoretical knowledge comes from inside or outside 
the Mathematics Education (mathematics, history, epistemology, psychology, 
sociology, pedagogy, etc.). 

3. Research in Mathematics Education uses theoretical terms, frameworks, 
models of analysis and methodologies borrowed from other scientific fields (i.e 
the psychology of Mathematics uses the tools of psychological research, the 
social interactionism the tools of sociological research, etc). 

Studying research outcomes, as far as the theoretical terms and the theoretical tools 
are concerned, we detect at least two important phenomena: the use of a single term 
with different meanings and the construction of similar models that researchers utilize 
in parallel. Although it could be argued that these phenomena are expected, because 
of the complexity of the questions about the teaching/learning of Mathematics, it is 
apparent that the use of ill-defined or polysemic terms and models is problematic in 
the research in Mathematics Education. In this paper, we present two examples to 
demonstrate the importance of describing clearly the terms and the models used in a 
piece of research for the validity of its results. These examples are as follows:  

(I) With regard to the existence of terms with different/multiple meanings, we 
examine the term “conceptions” as found in the literature. This term can be found in a 
large number of studies about “conceptualization” and the learning theories of 
Mathematics. 

(II) With regard to the construction of similar models in attempting to analyze 
classroom phenomena, we focus on the “socio /mathematics norms”, a notion found 
at the heart of the research concerning the study of the mathematics classroom. 

I. The term “Conceptions” 
The term “conceptions” is used in the relevant literature (Thompson, 1984) with 
various/multiple meanings, at least since 1984. In the following, an attempt is made 
to organize the meaning attached to the term by various researchers. 

A) In a first use, the term “conception” is used to refer to the different/multiple 
approaches (expressions and meanings) of a mathematical concept. Thus, in a 
number of research papers, the term “conceptions” is employed to discriminate 
between different aspects of a mathematical concept, according to its 
definition and the context in which it appears. 

The following citation gives an example of this use that can be traced in Selden & 
Selden’s article (1992) “Research Perspectives on Conceptions of Function”. 
Analyzing the concept of “function” according to the domain in which it occurs (set 
theory, calculus, mathematical structures, vector spaces) and its role in a context  
(description of relationships, operation on a structure, transformation, object of a set), 
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the authors claim that there are several conceptions about “function” since “a 
function can be regarded as a set of ordered pairs, a correspondence, a graph, a 
dependent variable, an action, a process or an object (entity)” (p.4). 

Since the word “conception” is related to the definition of the function and the 
context in which it appears, it could be argued that this use of the term expresses the 
differences in the mathematical nature of the concept and/or the concept category in 
which it belongs (set, correspondence, relation, etc). 

B) In a different approach, the term is employed to identify the difference 
between the meaning that students construct about a mathematical concept and 
the concept itself. It is related to the individual’s knowledge, usually erroneous 
or limited, about the concept. In this case, derivative terms like 
“misconceptions” are also used. 

The work by Breidenbach et al (1992) can be cited as an example of this kind of use 
of the term “conceptions”. In their article, the authors described as “object 
conceptions” (pp. 253-254) the students’ examples of the functions such as 
“F(x)=some algebraic or trigonometric expression”. They explain that these 
conceptions do not “represent ‘stages in development’ of the function concept, but 
rather, different ways of thinking about functions” (p. 253), thus attaching to the term 
the meaning that the students assign to the concept of “function”.  Breidenbach’s 
research is related to Dubinky & Harel’s (1992) approach for the function concept, 
which “adopts, for describing a function conception, the terms pre-function, action, 
process and object conceptions” (p. 85). This approach attaches the same meaning to 
the term. 

A similar use of the term “conception” can be traced in the process-object theories, in 
which Sfard (1992), considering “the ontological duality of mathematical 
conceptions …regarding the formation of such [mathematical] notions as number, set 
or function” (p. 59), identifies, in students’ answers, three categories of conceptions 
for the notion of function: the operational conceptions, the structural conceptions and 
the pseudostructural conceptions. 

In the same context, a different meaning of the term “conception” can be recognized. 
In the theory of conceptual fields, Vergnaud (1991, 1994) considers a “conception” 
as the equivalent to the individual’s mental construction of a concept. 

Balacheff & Gaudin (2002) give a formal definition of the “conception” as the 
quadruplet (P, R, L, �), in which P is a set of problems, R a set of operators, L a 
representation system and � a control system. In this approach, they consider 
knowing “as a set of conceptions, which refer to the same content of reference and a 
concept as the set of all knowing sharing the same content” (p. 18). Following their 
analysis, knowing can be considered as the projection of a concept in the individual’s 
mind, the equivalent to the individual’s mental construction of a concept; thus, 
“conception” that is “the instantiation of the knowing of a subject by a situation” (p. 
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19), does not characterize only the subject’s knowledge but also the subject/milieu 
system in a situation. 

In the aforementioned citations, the researchers use the term “conception” in their 
approaches, referring to the individual’s knowledge. Dubinsky and Sfard employ it to 
identify differences in the mathematical nature and the role of the corresponding 
intellectual development, related either to a specific mathematical concept or to all 
the mathematical notions (conceptualization). Vergnaud, on the other hand, employs 
the term in order to pinpoint the difference and the partiality of the individual 
knowledge concerning a scientific notion versus the scientific concept itself, while 
Balacheff and Gaudin employ it to identify the individual knowledge in a specific 
situation. 

C) A different way of using the term “conception” is also related to the 
individual’s knowledge, but expresses the differences in the ways a person 
conceives the epistemological and structural elements of Mathematics. 

An example of this use can be traced in Sierpinska (1992), where the author calls 
“conception” the individual’s partial or erroneous knowledge about a concept, such 
as “conceptions of function” (p. 46, 49), “conception of coordinates” (p. 51), 
“conception of a graph of function” (p. 52), “conception of variable” (p. 55). But, she 
also identifies, in the students’ ideas, the “conception of a definition”. As she explains 
in the same article, for the students, a “definition is a description of an object 
otherwise known by senses and insight. The definition does not determine the object; 
rather the object determines the definition…” (p. 47). Thus, she links the term 
“conception of a definition” to an erroneous or limited way of understanding not of a 
mathematical concept but of the epistemological and structural elements of 
Mathematics. 

D) Finally, in older papers, the term “conceptions” was employed as a synonym 
of the word “ideas” or “beliefs”, describing general convictions of students 
and teachers about Mathematics and its learning. 

For example, in 1992, Thompson presented the claim that “students learn better 
listening to the teacher’s explanation and answering to their questions” (p. 111) as a 
“conception” about the learning of Mathematics, while Borasi (1990) wrote about 
“the students’ conceptions for the nature of Mathematics and their 
expectations,…since their beliefs are deeply rooted,….to change conceptions” (pp. 
175-176). In this use, a “conception” is a way of understanding or learning 
Mathematics. 

Summarizing, it can be argued that, a systematic study of the literature reveals that 
researchers use the term “conceptions” referring to different and sometimes opposite 
elements: 

• the mathematical concepts, but also the epistemological elements or more 
general ideas about the nature of Mathematics; 

Working Group 11

CERME 4 (2005) 1247



• specific concepts but also all mathematical concepts; 

• the content of Mathematics, but also the mathematical knowledge; 

• the individual knowledge, but also the knowledge shared between groups or 
individuals. 

These multiple uses and meanings of the term raise several questions about the nature 
of “conceptions”: 

• Are they elements of the conceptual knowledge and/or of the process of 
conceptualization (individuals’ mental constructs) or tools in the analysis of 
learning (researchers’ constructs)? 

• Are they connected to specific mathematical concepts (like function, number 
etc) or can describe other elements of Mathematics (definitions, fields, roles)? 

• Which of the above mentioned meanings is ascribed to the development of 
other terms expressing an individual’s inadequate or restricted or partial 
knowledge, like “concept-image/ concept-definition” (Vinner 1992), 
“embodied world/ proceptual world/ formal world” (Tall, 2004)? 

It has already been argued that this polysemy of the term “conceptions” reflects the 
complexity of Mathematics and of the mathematical knowledge. It expresses and is 
related to the multiple approaches and aspects which a mathematical concept can 
have, depending on the aim of its use, the context in which it’s applied and the ways 
of its construction and evolution. The teaching and learning of Mathematics carries 
the same complexity (multiple meanings, aspects and approaches). Thus, this 
polysemy could be possibly explained by the existence of multiple underlying 
theories about mathematical learning and diverging epistemological perspectives 
about what constitutes a mathematical knowledge. But the question still remains: why 
does the same term have to be used? It could be supported that it would be enough for 
a researcher to clarify the meaning of the term. However, we think that simply 
clarifying the use of the term each time is not profitable in the course of the 
development of theoretical tools urgently needed in the field of Mathematics 
Education nowadays. 

II. A model of analysis: “Norms” 

The development of a model of analysis of didactical phenomena in the mathematics 
classroom is shown to be a very demanding work. In this section, we try to examine 
different models, as they are presented in relevant readings. Based on the researchers’ 
explanations, we attempt to raise some questions that the presentation of these models 
puts forward. 

The models of analysis of the classroom activity attempt to explain the nature of the 
teaching and learning that takes place in the classroom and to explicate significant 
aspects of the teaching and learning situation. The assumption that something 
different, from a didactical point of view, happens in the mathematics classroom led 
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many researchers to bring to the foreground the specific practices and phenomena 
that are connected to Mathematics. An important model of such an analysis is based 
on what it is called “norms”, the “classroom norms”, the “mathematical norms”, the 
“social norms”, the “sociomathematical norms”, etc. 

The following citations present how the authors understand and define the term 
“norms”. Yackel (2001) explains that “norm is not an individual but a collective 
notion. One way to describe norms, in our case, classroom norms, is to describe the 
expectations and obligations that are constituted in the classroom. …The 
understanding that students are expected to explain their solutions is a social norm, 
whereas the understanding of what counts as an acceptable mathematical 
explanation is a sociomathematical norm”(p.6). 

Analyzing the social norm, Cobb (1998) clarifies that “…(they) include explaining 
solutions, attempting to make sense of explanations given by the others, indicating 
understanding or non - understanding, asking clarifying questioning and articulating 
alternatives when differences in interpretations have become apparent”. Still, “These 
norms, it should be noted, are not specific to Mathematics but apply to any subject 
matter area” (p.34). For this reason, the study of the mathematics classroom brought 
into light the necessity of introducing in social norms the characteristics that are 
specific to Mathematics. The socio-mathematical norms include “… what counts as 
different mathematical solution, as sophisticated mathematical solution, an efficient 
mathematical solution and an acceptable mathematical solution…The analysis of 
sociomathematical norms has helped to understand the process by which the 
teachers…fostered their students' development of what might be called a 
mathematical disposition” (p.34). 

Sullivan & Mousley (2001), adapting this framework to the specificity of the 
mathematics classroom, identified two complementary norms of activity. They called 
the first “mathematical norms”, which refers to “the principles, generalizations, 
processes and products which form the basis of the mathematics curriculum”. The 
second, named “socio-cultural norms”, is related to the “usual practices, 
organizational routines and modes of communication that impact on the approaches 
to learning teachers choose, the types of responses they value, their views about 
legitimacy of knowledge produced, the responsibility of individual learners and their 
acceptance of risk-taking and errors”. 

These approaches of classroom norms and their specialisation to Mathematics show 
the increasing need to find the relationship between general models and Mathematics 
(this need turned the social norms to sociomathematical norms). Still, this adaptation 
gives rise to important questions: 

• Who decides for the legitimacy of knowledge produced, what counts as an 
acceptable mathematical explanation etc. in the mathematics classroom?  The 
content (that is, Mathematics), the schoolteacher, the classroom? 
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• How mathematics norms are shaped? By the school programs, their 
implementation in the classroom, the way the schoolteacher handles them?  And, 
speaking of curricula, isn’t it necessary to examine the didactical transformation 
of Mathematics (content, nature, epistemological characteristics of school 
mathematics, etc), as it is revealed by Chevallard (1985)? 

• If social norms create the essential connection between individuals or groups 
(reciprocal expectations and obligations, what is expected from the 
schoolteacher, the students, how they interact), isn’t it also indispensable to 
study the knowledge produced from this interaction, which, again, takes us back 
to the mathematical meanings developed from it? 

• Finally, does the effort to bridge these elements using the model of the 
sociomathematical norms again put the social aspect in the foreground? In other 
words, isn’t the legitimacy of produced knowledge and what counts as 
Mathematics, the result of the interaction in the classroom that gives a 
significant role to how the teacher handles this knowledge? 

Trying to justify this last question we present an example used by Yackel (2001). In 
this episode, a teacher intervened in a student’s solution because s/he decided that the 
other students would not understand it and s/he also wanted to cover future 
instructive needs. The whole course was oriented to the significance of the 
(mathematical) “explanation” that includes- according to the author - “explicit and 
implicit negotiations” in the classroom, as “the meaning of acceptable mathematical 
explanation is not something that can be outlined in advance for students to ‘apply’. 
Instead, it is formed in and through the interactions of the participants in the 
classroom” (p. 6). But didn’t this teacher’s intervention destroy the mathematical 
characteristics of the explanation itself? 

Examining the above elements (at least on the basis of the available examples and 
explanations), it can be seen that all these questions concern the mathematical aspect 
of the studying phenomena. If this is the case, more questions arise: 

1. The “sociomathematical norms” concern all the elements of mathematical 
activity or only some specific procedures (justification, validation, problem 
solving etc.)? 

2. What indications do we have that the organisation of these norms is a regular 
element of mathematical activity in the classroom? Does the term “norms” have 
different meaning from practices, habits etc, and if so, what is the difference? 

3. Finally, what is the impact of these norms on the mathematical knowledge 
developed in this way?” 

In fact, the main question is whether these approaches can support the identification, 
description and analysis of didactical phenomena in the mathematics classroom, as 
new or well adapted models coming from neighbouring sciences. 
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Trying to counter this requirement, Brousseau (1997) presented a model that is 
argued to cover the classroom interactions, but is specific to the mathematical 
knowledge: “Then a relationship is formed which determinates –explicitly to some 
extent, but mostly implicitly- what each partner, the teacher and the student will have 
the responsibilities for managing and in some way or other, be responsible to the 
other person for. This system of reciprocal obligations resembles a contract. What 
interests here is the didactical contract”, Brousseau continues, “that is the part of this 
contract which is specific to the ‘content’, the target mathematical knowledge” (p. 
31). 

This definition could be seen as very close to that of socio-mathematical norm. 
However, despite the closeness of the two models, no attempt detecting similarities 
and differences between them could be traced in the literature. Shouldn’t this be 
necessary for two models concerning the same phenomenon? This would detect their 
limits and would therefore make possible their productive exploitation for further 
research. 

In a series of studies (Kaldrimidou et al., 2000, Tzekaki et al., 2002), we attempted to 
analyze teaching and learning phenomena using the model of mathematical and social 
(even socio-mathematical) norms. Our findings revealed an important interplay 
between the epistemological organization of the mathematical content and the 
organization of the mathematics classroom. More specifically, in these studies, which 
particularly focused on the ways teachers manage the construction of meaning in the 
mathematics classroom (that is, on the ways they handle the epistemological features 
of Mathematics and deal with pupils’ work and errors) and on the communicative 
patterns they adopt, we finally detected that the management of the mathematical 
content often distorts the mathematical meanings and it is dialectically related to the 
communicative practices employed. 

Discussion 
Summarizing, our analysis (an analysis that could be applied to other terms or models 
as well) denotes that all terms or models identified in the literature intend to be 
related to the mathematics knowledge or the mathematics classroom, but this 
relationship needs further elaboration. Sometimes, the interplay between individual 
and social, as well as between interaction and management of meanings is missing. 
Moreover, the question about their local or global character requires more 
clarification. 

In particular, using the term “conception” as a key reading, we presented the 
polysemy of this word in the literature, arguing that this is connected to the different 
epistemological perspectives about what is Mathematics and also about what 
constitutes a mathematical knowledge. Similarly, analyzing the models of “norms”, 
we argued that all the presented approaches attempt to develop a framework specific 
to the mathematics classroom. However, the “models” are not clearly defined but are 
simply described and neither delimit common or varying aspects nor clarify which 
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part of what is happening in the mathematics classroom they refer to. Both examples 
were chosen to reveal the specificity and the complexity of mathematics, 
mathematical knowledge and the mathematics classroom interplay. 

Research in Mathematics Education is aware of this complexity and that is why it 
develops multiple and different tools to deal with it. There is no reason to support the 
convergence of the different theoretical approaches, because the phenomena under 
study are exceptionally compound and admit different opinions and different 
analysis.  However, it seems that the time has come for a systematic debate on some 
presuppositions. The range of the unanswered questions shows that the attempt to 
analyze, interpret and theorize the learning and teaching of Mathematics requires at 
least systems of knowledge, which are: 

- clearly adapted to the specificity of mathematical knowledge, thus putting the 
limits between Mathematics Education and other sciences; 

- more systematically organized in bodies with well defined terms and relevant 
models; 

- carefully tested and evaluated with respect to their implications for the classroom 
reality. 
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Abstract: The struggle to eliminate “magic mentality” has affected the development 
of all scientific disciplines. This process of “de-magification” has been sustained in 
the use of models created by every discipline. In this sense, any scientific approach in 
didactics of mathematics uses –more or less implicitly– a general model of 
mathematical activity and specific models of the different mathematical contents that 
are taught and learnt at school. Here we summarise the models proposed by the 
Anthropological Theory of Didactics and the minimal empirical unity of analysis 
required to use them. The scope of this approach is illustrated through a single 
example about limits and continuity of functions at secondary school in contrast with 
the analysis proposed about continuity in terms of “embodiment cognition”. 

Keywords: Praxeologies, didactic transposition, didactics of mathematics, 
epistemological models, limits of functions, continuity, Anthropological Theory of 
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1. The Magician and the Scientist 
In his presentation to the International Scientific Conference in Rome in 2002, 
Umberto Eco talked about “The Perception of Science by Public Opinion and the 
Media”. The Italian semiologist stated that, even if we believe ourselves to be living 
in the Age of Reason mastered by science, we are in fact submitted to the magic 
mentality that always re-emerges from its ashes and that is supported by the need of 
the immediate satisfaction of our wishes. 

“What was magic, what has it been for centuries and what is it still today, even if 
under a false appearance? The presumption that we can go directly from a cause to 
an effect by means of a short-circuit, without completing the intermediate steps. For 
example, you stick a pin in the doll of an enemy and get his/her death; you pronounce 
a formula and are all of a sudden able to convert iron into gold; you call the angels 
and send a message through them. Magic ignores the long chain of causes and effects 
and, especially, does not bother to find out, trial after trial, if there is any relation 
between cause and effect.” (Eco, 2002, our translation). 

An essential difference between the magician and the scientist is that, while the 
magician dares to give definite answers, the scientist tries hard and humbly to raise 
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questions that will only accept provisional answers. Whereas scientific theories are 
tentative models of some aspects of reality, magic expects to catch the whole reality 
to master and submit it. Scientific models are only tools (machines) that mediate 
between scientists –who cannot act directly– and reality. Magic, on the contrary, 
claims to act directly on reality through images or representations of it (for instance 
the doll that represents the enemy). 

According to the German sociologist Max Weber, scientific progress can be 
described as a process of de-magification that has been going on for millennia in 
Western culture (Weber, 1959). This struggle to eliminate the magic mentality in the 
explanation of facts has been present throughout history and has become visible in 
the periods of emergence and consolidation of all sciences. It is easy to follow the 
tracks of this struggle at the origins of most of the disciplines: physics, chemistry, 
biology, medicine, psychology, anthropology, sociology, political science. In all these 
cases, “de-magification” has been accompanied by the modelling of ‘a piece of 
reality’ by means of models that, far from being exact representations, turned out to 
be “machines” good at producing knowledge about the reality in question. 

With regard to didactics of mathematics, and given that we are part of the founding 
generation of this discipline, we are still immersed in the “de-magification” process. 
It is still usual to find some “magicians” who offer “magic” solutions to the problems 
of mathematical education. Their proposals come up in terms of general slogans that 
obviously promise immediate, direct and complete solutions. These are always based 
on common-sense notions that, being easily accepted and shared by teachers, provide 
the illusion of a photographic representation of the educational system. On the 
opposite side, any scientific approach to problems related to the teaching and learning 
of mathematics needs to elaborate (or to adapt) its own specific models, based on its 
own primitive terms and basic assumptions, about the domain of reality concerned. 

2. The Brousseaunian revolution in the didactics of mathematics 

At its initiation in the seventies, the Theory of Didactic Situations TDS (Brousseau, 
1997) was one of the first, it seems, to state the necessity of a specific scientific 
approach to the problems of teaching and learning mathematics. In this sense, we can 
say that it performed a Copernican revolution in the field of mathematics education. 
It proposes a methodology that starts questioning mathematical knowledge as it is 
implicitly assumed in educational institutions: what is geometry, what is statistics, 
what are decimal numbers, what is counting, what is algebra, etc. It then proposes 
specific epistemological models of mathematical knowledge –the situations– that are 
to be experimentally tested: a mathematical notion can only be analysed as far as it 
appears as the solution to a situation. This is the fundamental methodological 
principle of the TDS: a piece of mathematical knowledge is represented by a 
“situation” that involves problems that can be solved in an optimal manner using this 
knowledge. 
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Thus appears a new general model of mathematics as an alternative to the 
conceptualist ones most commonly used –implicitly or explicitly– in mathematics 
education. Following the TDS, mathematics is described in terms of situations and 
consists mainly in “dealing with problems” in a wide sense. Teaching and learning 
mathematics is not considered as teaching and learning mathematical ideas, notions 
or concepts, but as teaching and learning a situated human activity performed in 
concrete institutions. Moreover, a situation includes the “raison d’être” or rationale 
that gives sense to the performed mathematical activity. And it also contains 
institutional restrictions that provide and limit the application of the corresponding 
mathematical knowledge.  Therefore the TDS changes the old central questions in 
mathematics education: “How do students learn mathematics?” and “What can we do 
to improve their learning?” by more comprehensive ones: “What are the necessary 
conditions for a situation to implement the specific mathematical knowledge it 
defines?” and “How can situations be designed and their development managed in a 
given educational institution?” 

Thus the TDS has led to a change in the notions used to study learning and teaching 
processes, and, what is more, in the particular way of questioning educational reality. 
It has changed the problems, the models used and the system to study, stating that the 
study of any didactic phenomena needs to question common epistemological models 
of mathematics. We have called Epistemological Programme the new research 
paradigm in mathematics education originated by these assumptions of the TDS that 
situates the modelling of mathematical activity in the core of the study of any didactic 
phenomena (see Gascón, 1998 and 2003). 

3. The Anthropological Theory of Didactics  
Within the Epistemological Programme, it was soon made clear that mathematical 
activities performed at school could not be adequately interpreted without taking into 
account phenomena related to the reconstruction of mathematics in educational 
institutions. We thus need to go to the place where these phenomena start, that is, the 
institutions of production of mathematical knowledge. This is the first contribution of 
the theory of didactic transposition (Chevallard, 1985). If we want to understand (and 
thus to model in an appropriate manner) what kind of mathematical activity is done at 
school, we need to know the other kinds of mathematical activities that motivate and 
justify the teaching and learning of the former. And we also need to know the way 
these other activities are interpreted in the different institutions. Thus didactic 
phenomena cannot be separated from phenomena related to the production and the 
use of mathematics. Mathematical activities done at school are then integrated to the 
broader domain of the study of institutionalised mathematical practices. The domain 
of didactics goes beyond educational institutions to all those that embrace any kind of 
handling of mathematical knowledge. It can be said that the didactics of mathematics 
–as it is now considered by the Epistemological Programme– studies mathematical 
cognition in the sense of the conditions that make the production and development of 
mathematical knowledge possible in social institutions (Chevallard, 1992). 
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3.1. The minimal unity of analysis of didactic phenomena 

The Epistemological Approach considers that any didactic problem contains some 
mathematical activities that are being produced, taught, learnt, and practised. Even if 
these mathematical activities take place in a concrete institution (generally an 
educational one), their form of existence and their evolution depend mainly on 
educational constraints related to the process of didactic transposition. This process, 
first pointed out by Chevallard (1985), acts on the necessary changes a body of 
knowledge and its uses have to receive in order to be able to be learnt at school. It 
introduces a distinction between: (1) “original” or “scholarly” (in an ironic sense) 
mathematical knowledge as it is produced by mathematicians or other producers; (2) 
knowledge “to be taught” officially prescribed by the curriculum; (3) knowledge as it 
is actually taught by teachers in their classrooms and (4) knowledge as it is actually 
learnt by students. Figure 1 illustrates the various steps that compose the didactic 
transposition. It also includes the “reference” mathematical knowledge that 
constitutes the basic theoretical model for the researcher (Bosch and Gascón, in 
press) and is elaborated from the empirical data of the three corresponding 
institutions: the mathematical community, the educational system and the classroom. 

 

 

 

 

 

 

To take into account the process of didactic transposition means that the study of any 
didactic problem needs to adopt a particular standpoint (model) on the involved 
mathematical practices. For instance, what is this “content” we are considering? What 
is it for? Is it something existing in “scholarly mathematics’? In what way? In what 
practices? How has it become a piece of knowledge to be taught? In what school 
mathematical practices is it (or could it be) included? What kind of restrictions does it 
impose on the development of students’ and teachers’ practices? Etc.  

The process of didactic transposition highlights the institutional relativity of 
knowledge and situates didactic problems at an institutional level, beyond individual 
characteristics of the institutions’ subjects. Its main consequence is that the minimal 
unity of analysis of any didactic problem cannot be limited to the consideration of 
how students learn (and teachers teach) mathematics. It must include all the steps of 
the process of didactic transposition, including data coming from each and every one 
of the involved institutions as an empirical basis. In this sense we can say that 
phenomena of didactic transposition are at the very core of any didactic problem. 

 

Figure 1. The process of didactic transposition  
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3.2. Modelling mathematics in terms of praxeologies 

The Anthropological Theory of Didactics, ATD, (Chevallard, 1997, 1999; Chevallard 
et al., 1997) emerged as a natural consequence of the development of the theory of 
didactic transposition (Chevallard, 1985 and 1992). It states that mathematical 
activity must be interpreted (that is, modelled) as a human activity among others, 
instead of regarding it only as the construction of a system of concepts, the use of a 
language and/or a cognitive process (in the sense of cognitive science). The ATD 
takes mathematical activity institutionally conceived as its primary object of research. 
It thus must explicitly specify what kind of general model is being used to describe 
mathematical knowledge and mathematical activities, including the production and 
diffusion of mathematical knowledge. 

The general epistemological model provided by the ATD proposes a description of 
mathematical knowledge in terms of mathematical praxeologies whose main 
components are types of tasks (or problems), techniques, technologies1 and theories. 
The most elementary mathematical praxeologies consist of a practical block or 
“know-how” (the praxis) integrating types of problems and techniques used to solve 
them, along with a theoretical block or “knowledge” (the logos) integrating both the 
technological and the theoretical discourse used to describe, explain and justify the 
practical block. Thus any “piece of mathematical knowledge” should be described 
through the statement of what kind of mathematical problems and techniques are 
involved and what kind of description and justification is given to this “way of 
doing”. For instance, in the case of limits and continuity of functions we are 
considering later (as a knowledge to be taught), and regarding a concrete institution 
as Spanish secondary school, the practical block includes problems such as the 
calculation of the limit of elementary functions at a given point and at infinity 
through different techniques based on algebraic transformations of the functions 
expression. The theoretical block accompanying this practice contains some 
definitions, properties and general statements about limits, continuity and algebraic 
transformations on functional expressions. 

Problems constitute the origin, the motor, of the process of producing mathematical 
praxeologies. However, doing mathematics does not only consist in solving 
problems. The resolution of a problematic question always produces much more than 
a single solution. It produces new knowledge (new problems, new techniques, new 
technologies and theories) and new arrangements of previous knowledge. 
Praxeologies can thus be used to describe mathematical knowledge as well as 
mathematical practice. Doing mathematics consists in trying to solve a problematic 
question using previously available techniques and theoretical elements in order to 
elaborate new ways of doing, new explanations and new justifications of these ways 
of doing. 

                                                 
1 The term “technology” is here used in the sense of discourse (logos) about a technique (technè).  
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The use of praxeologies to model mathematical practices can be extended to any kind 
of human activity, in particular to the process of studying a problem and building up 
new mathematical praxeologies (for the subjects of the activity) or helping others to 
do so. These are called didactic praxeologies and cover the whole process of study, 
from the first formulations of a problematic question to the validation and 
institutionalisation (making public) of the knowledge produced. We are not 
developing this kind of models here (see Chevallard, 1999; Bosch and Gascón, 2002). 

3.3. An example of a specific model of the taught mathematical knowledge  

In previous works (Bosch et al., 2004; Barbé et al., in press) we have analysed the 
taught mathematical knowledge about limits and continuity of functions at Spanish 
secondary schools. We showed that mathematical praxeologies prescribed by syllabi 
and made explicit by official textbooks offer two completely disconnected 
mathematical praxeologies: an “algebra of limits” reduced to the calculations of 
limits of functions at a given point, and a “topology of limits” centred on the problem 
of the existence of this limit. The absence of a link between both praxeologies hinders 
the teacher’s interpretation of syllabi about what is the mathematical knowledge to be 
taught concerning the limits and continuity of functions. On the one hand, the 
“algebra of limits” becomes the practical block of the mathematical praxeology to be 
taught because it is closer to the set of tasks and techniques that appear in syllabi and 
textbooks. On the other hand, and due certainly to the “imposition” of a “scholarly” 
technology (ε−δ definition of limit, etc.), the theoretical block remains close to the 
“topology of limits” praxeology. The result is a hybrid praxeology with a theoretical 
block that does not really fit with the practical block. 

This situation causes two kinds of difficulties, and even contradictions, in the 
teacher’s practice. The taught mathematical praxeology does not contain the 
technological elements needed to explain and justify the calculations of limits. 
Neither does it include a practice that would show the benefits of the theoretical 
definitions of limits and continuity. Therefore, it is rather impossible for the teacher 
to “give meaning” to the mathematical praxeologies to be taught, because the 
rationale of limits of functions (why we need to consider and calculate them) cannot 
be integrated in the mathematical practice that is actually developed at this level. 

Another particular consequence is the difficulty for the teacher to avoid a circular 
argument about the notion of “function continuous at a point”. In effect, the main 
technique to determine if a function f(x) is continuous at a given point x = a consists 
of comparing the limit of f(x) at x = a with the value f(a). However, in the “algebra of 
limits”, most of the techniques used to calculate the limit of a function f(x) at a point 
x = a are based on some algebraic transformations on f(x) that lead to an expression 
of the function where x can replaced by a (that is, the expression of a function 
continuous in a neighbourhood of a). So the implicit use of the continuity of some 
kinds of “elementary functions” appears as an essential tool for the determination of 
the continuity of a function at a given point. 
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The model of the “two-sided” or “hybrid” mathematical praxeology about limits and 
continuity of functions can thus explain some important “distortions” on the teacher’s 
and students’ practice that are entailed by constraints coming from the first steps of 
the process of didactic transposition. 

4. Embodied concepts VS praxeologies: the case of “continuity of functions”  
We will now contrast our results with the detailed analysis presented by Núñez et al 
(1999) in terms of embodiment cognition.  

4.1. The “pedagogical” problem according to the Cognitive Science of Mathematics 

Núñez et al. (1999, pp. 53–60) present a case study about continuity of functions to 
illustrate the bodily-grounded nature of cognition. The didactic problem that is taken 
as a starting point can be formulated in the following terms: Why is the teaching and 
learning of the concept of ‘continuity’ of a function such a difficult task? Is 
continuity per se a difficult concept? What are the cognitive difficulties underlying 
the understanding of continuity? 

The study of this problem starts considering two definitions –or models– of 
continuity as they are found in textbooks. An informal/intuitive one called the 
‘natural continuity’ based upon concepts, ideas and examples provided by ‘the 
everyday understanding of motion, flow, and wholeness’. And the ‘Cauchy-
Weierstrass definition’ that ‘involves radically different cognitive content’ […] 
‘dealing exclusively with static, discrete, and atomistic elements’. Both concepts are 
of the same nature (in the sense that they are both embodied) but grounded on 
different and even contradictory cognitive primitives (also embodied in nature). 

The ‘pedagogical’ problem initially considered is explained in the following terms: 

“Students are introduced to natural continuity using concepts, ideas, and examples 
which draw on inferential patterns sustained by the natural human conceptual 
system. Then, they are introduced to another concept –Cauchy-Weierstrass 
continuity– that rests upon radically different cognitive contents (although not 
necessarily more complex). These contents draw on different inferential structures 
and different entailments that conflict with those from the previous idea. The problem 
is that students are never told that the new definition is actually a completely 
different human-embodied idea. Worse, they are told that the new definition captures 
the essence of the old idea, which, by virtue of being ‘intuitive’ and vague, is to be 
avoided.” (Ibid., p. 55) 

The mathematical ‘piece of knowledge’ involved in the considered problem is the 
concept of continuity of a function, which is taken as completely isolated from the 
rest of concepts of calculus: the concept of function, of real number, of limit of a 
function at a point, etc. The only considered aspect of this piece of knowledge is its 
definition: a more intuitive versus a more formal one. There is no mention of 
problems that could give (or have given) utility to this concept. Neither are the 
mathematical techniques or ‘ways of doing’ that could be used to approach these 
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problems taken into consideration. And there is no mention of the propositions or 
general statements where the notion of continuous function could play a crucial role 
(for instance, when a function is given as a solution of a functional equation and we 
need to suppose it continous). 

The definition of a mathematical notion is taken here as the main factor to explain 
students’ difficulties in working with this notion. It reveals that the general 
epistemological model of mathematics underlying the analysis is close to a 
‘conceptualist’ one: mathematics is a system of concepts and doing (or learning) 
mathematics consists of building up concepts. This general model gives rise to 
specific or local models of previously defined mathematical concepts to show its 
dependence on embodied and social experience. It has the defect (as shown by 
Schirally and Sinclair, 2003) of considering only one dimension of mathematical 
practice (defining new objects) and does not provide a description of the dynamics of 
the construction, that is, the way mathematics is used as a tool to build up new 
knowledge and, in particular, to formulate and solve new problems. 

4.2. Praxeological analysis of the involved mathematical activity 

Using the epistemological model provided by the ATD (in terms of praxeologies 
institutionally conceived) we can show that mathematical practices actually 
developed in secondary schools do not really require a definition of continuity 
(neither ‘natural’, nor ‘formal’). In effect, it is very unusual to find a type of problems 
which resolution needs to use this notion as a main tool at this level. Certainly 
students are asked to determine if a given function (or a given type of functions) is 
continuous at a point and, if not, the kind of discontinuity it has. But these are 
‘formal’ problems, mathematically irrelevant, that do not lead anywhere. They are 
only proposed to ‘justify’ the inclusion of the notion of continuity in curricula and to 
provide some application cases to the computation of limits. 

The ‘transposition’ in the classrooms of a praxeological environment that really 
integrates the definition of continuity as an essential tool (it being intuitive or formal) 
would require some kind of problematic questions that are very difficult to set out at 
this level. We can ask what kind of questions could ‘give sense’ to the concept of 
continuity, in the ‘praxeological’ sense of leading to the production of a new 
praxeology with its types of problems, techniques to approach them and 
technological-theoretical environment to explain and justify the delimitation of 
problems and the use of the techniques. It can also be shown that an answer to this 
question would require to go beyond the work with functions determined by their 
algebraic expression (such as solving functional equations, differential ones in 
particular) and to approach the problem of the construction of the set of real numbers. 

In this situation, students’ difficulties in the learning of a “piece of knowledge” that is 
praxeologically ‘out of meaning’ can be taken as a positive symptom of the 
educational system, instead of a problem in itself. The permanence of this notion in 
secondary schools may be explained by the supremacy of the ‘scholarly’ point of 
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view about mathematics that implicitly defines (and puts pressure on) what 
mathematical ‘concepts’ should be learned, even if it is impossible to implement 
them praxeologically at this level. For this to be possible, we need to find a question 
that could ‘take sense’ in the mathematical universe of students and which answer 
would require the building up of a mathematical praxeology that includes the notion 
of continuous function in its theoretical block as well as in its practical one. 

The praxeological analysis also suggests that it is not always meaningful to talk about 
the teaching or learning of ‘a concept’, or to decide about the inclusion or the 
exclusion of ‘a concept’ in the curriculum. ‘Concepts’ and ‘definitions’ or ‘notions’ 
and ‘ideas’ correspond to particular interpretations of mathematics that have an 
indisputable usefulness in the production of mathematics, in what has been called the 
‘scholarly regime of mathematics’ (that is, in mathematical activities developed in 
particular institutions that are dominant since considered as ‘reference’ ones). But 
they are not necessarily the best way of approaching didactical problems, for instance 
the problem of the curriculum of mathematics. 

Furthermore, to elucidate didactic phenomena (including cognitive ones) it is 
essential to take into account empirical facts that arise in the intermediate institutions 
between individuals and scientific communities or between individuals and societies 
or cultures. It is essential to enlarge the empirical basis of research. The 
anthropological approach requires taking into consideration –and thus modelling– an 
empirical system that takes us out of the classroom, out of the educational system and 
impeles us to question mathematical knowledge through the different mathematical 
practices that exist in our social institutions. This means, in a sense, to consider all 
the stages of the process of didactic transposition, the minimal unity of analysis of 
didactic phenomena. 

Any research concerning educational problems uses models of the reality under 
study. In some cases, these models are close to the point of view of educational 
institutions, which implicitly define what learning and teaching are, what 
mathematics is, what elementary algebra is, what calculus is and why it is necessary 
to calculate the limit of a function. In this case institutional models appear as the 
“natural way of looking” at educational problems. They are rarely clarified, giving 
the impression that there is no need for specific theoretical approaches in 
mathematics education. These implicit assumptions, especially when widely shared, 
appear as the “common-sense vision” of problems and are quite impossible to discuss 
and contrast. In the anthropological approach here presented, specific theories and 
models allow researchers to protect themselves against the “common-sense 
definition” of educational problems, because educational institutions are considered 
part of the empirical reality we want to know and wish to change. They propose a 
vision of the educational world that does not intend to photographically represent it 
nor to obtain magic and global solutions of problems as complex as those related to 
the production and diffusion of mathematical knowledge. 
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There is nothing as practical as a good theory. (Richard Skemp, 1989, p. 27.) 

 

Abstract: This paper reports the coming together of two major goals, the first to 
build a cognitive theory of mathematical development that has wide application at 
different stages of development and in different contexts, the second to address a 
particular practical problem in the classroom. This problem related to the teaching 
of vectors, which lies at the confluence of mathematics and physics and builds from 
practical contexts to theoretical mathematics. We seek to generate a coherent theory 
that is consonant with many aspects from the literature rather than aggregating 
disparate aspects of different theories. In the practical context we listened to the 
voices in the classroom, both teachers and students, seeking a practical solution that 
would make sense to the participants and be of direct value in both teaching and 
learning. 

Introduction 
This paper is a contribution to a discussion on “Different theoretical perspectives in 
research: From Teaching problems to Research Problems”. Our purpose is to see 
how the development of a broad cognitive theory and a rich practical problem can be 
of mutual benefit. The specific problem considered is the teaching of vectors in the 
context of school physics and mathematics. The broader cognitive theory is the 
theory of three worlds of mathematics, which begins with the child’s perception and 
action on the world to carry out thought experiments to develop an increasingly 
sophisticated conceptual-embodied world, a focus on actions that are symbolised to 
give a proceptual-symbolic world of arithmetic and algebra and beyond, and a long-
term focus on properties that, for some, leads to a formal-axiomatic world of 
definitions and proof (Tall, 2004). The specific problem is the teaching of vectors in 
school with its embodiments in physics and mathematics developing into the 
symbolism of vectors in two dimensions (Watson1, Spyrou & Tall, 2002). Here we 
focus on the relationship between the worlds of embodiment and symbolism. 

                                           
1 Anna Poynter published under the name Anna Watson before her recent marriage. 
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The British culture is one of practical approaches to practical problems. The 
pragmatic solution to teaching vectors is to introduce them in practical situations in 
physics as forces, journeys, velocities, accelerations, and only later to study the 
mathematical theory in pure mathematics. The teaching of vectors has not gone well. 
It has followed the path of many other topics that students find difficult. The initial 
presentation has been made more and more practical and less and less dependent on 
mathematical theory. It shares a similar fate to other ‘difficult’ parts of mathematics, 
including fractions and algebra. 

In the pragmatic culture of Britain, the teachers are professionals. They take their 
work seriously, work hard with long hours and relatively little time scheduled for 
analysis and reflection. Our experience (Poynter & Tall, 2005) of interviewing 
colleagues show that they are aware that students have difficulties, but their 
awareness relates more to an episodic memory of what didn’t work last year rather 
than a theory that attempts to explain why it went wrong and what strategies might be 
appropriate to make it go right. Where there are problems, the response it to try a 
new strategy the following year in an attempt to improve matters. 

As an example, consider the case of adding two vectors geometrically. The students 
are told that a vector depends only on its magnitude and direction and not on the 
point at which the vector starts. Therefore vectors can be shifted around to start at 
any point and so, to add two vectors, it is simply a matter of moving the second to 
start at the point where the first one ends, to give a combined journey along the two 
vectors. All that is necessary is to draw the arrow from the start point of the first 
vector to the end point of the second to give the third side of the triangle, which is 
the sum. 

The problem is that many students don’t seem to be able to cope with these 
instructions. Some ‘forget’ to draw the final side of the triangle to represent the result 
of the sum, others have difficulties when the vectors are in non-standard positions to 
start with, such as two vectors pointing into the same point, or two vectors that cross. 
Some find it difficult to cope when two vectors start at the same point, and draw the 
‘result’ of the two vectors � AB

u ruu
 and � AC

u ruu
 as the third side of the triangle,� BC

u ruu
. 

Here we have a specific teaching problem that requires a solution. What theories are 
available to solve it? The science education theory of ‘alternative frameworks’ 
(Driver, 1981) suggests that that the students may have their own individual ways of 
conceptualising the concept of vector. However, it does not offer a theory of how to 
build a new uniform framework for free vector in a mathematical sense. Our goal is 
to study this problem not only in its own right to be meaningful to students and 
fellow teachers, but also within the goal of developing a wider theoretical 
framework. 

Some existing theories 
The embodied theory of Lakoff and his colleagues offers a viewpoint that encourages 
us to consider how students embody a concept such as vector. However, this theory 
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takes a high-level view of mathematical concepts to perform a top-down idea 
analysis theorizing how such concepts have their origins in embodiment rather than a 
global view that integrates the genesis of the mathematical concepts with the actual 
conceptual development of the child. For instance, Where Mathematics Comes From 
(Lakoff & Núñez, 2000) includes references from mathematics education papers in 
its bibliography but makes no reference to them anywhere in the main text. We find 
the notion of ‘idea analysis’ formulated by Lakoff and Núñez to be a valuable 
technique, but prefer to use an analysis that relates to the cognitive development of 
the individual. For us, cognitive development builds from perception and action 
through reflection to higher theoretical conceptions. We use the term ‘embodiment’ 
first in the colloquial sense that a sophisticated concept may be ‘embodied’ 
physically (such as fractions represented as part of a physical whole or a vector as a 
physical transformation) after the manner of Skemp (1971) and later in the sense of 
conceptual mental embodiment using thought experiments. This sense relates to 
Bruner’s notions of enactive and iconic modes of operation as distinct from his 
symbolic mode, which we see in three distinct parts: language which underpins all 
increasingly sophisticated modes of thought, and the two increasingly sophisticated 
worlds of proceptual symbolism in arithmetic and algebra and the more advanced 
logical symbolism of axiomatic mathematics. 

Focusing on the development from physical actions to mental conceptions, a relevant 
approach may be found in the APOS theory of Dubinsky (Dubinsky & MacDonald, 
2001). Dubinsky theorizes that mathematical objects are constructed by reflective 
abstraction in a dialectic sequence A-P-O-S, beginning with Actions that are 
perceived as external, interiorised into internal Processes, encapsulated as mental 
Objects developing within a coherent mathematical Schema. The actions with which 
the theory begins may be physical or mental and, in the case of vector, we see 
transformations as actions on physical objects being routinized into thinkable 
processes and then encapsulated as mathematical objects in the form of free vectors. 
There is, however, a possible problem. Several papers in the literature show how 
students may routinize actions as processes but in several cases (including the notion 
of limit or of function) the further step to an object conception is less easily 
accomplished (e.g. Cottrill et al 1996, Dubinsky & Harel, 1992). This signals a 
possible problem in the shift from a procedural action to a conceptual mental object. 

We considered Skemp’s (1976) theory of instrumental and relational understanding. 
It seemed evident that many students were learning instrumentally how to add 
vectors without any relational understanding. But what is the relational 
understanding that is necessary and how is it formulated? Likewise the theories of 
procedural and conceptual knowledge (Hiebert & Lefevre, 1986, Hiebert & 
Carpenter, 1992) suggest that the students may be learning procedurally and not 
conceptually. But here again, what is the conceptual structure and how are 
procedures and concepts related? 
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It is apparent that students learn based on their own experiences. They meet various 
practical examples of vectors, including vectors as journeys and vectors as forces. 
Many theories (e.g. Dienes 1960) suggest that students must experience variance in 
different examples and abstract the essential properties that are common while 
ignoring incidental properties that occur in some examples but do not generalise. In 
the case of vector, these incidental properties are coercive and lead to alternative 
frameworks that are difficult to shift. 

We considered other frameworks, for example the framework of intuition and rigour 
that occurs in Skemp’s (1971) distinction between intuitive and reflective thinking or 
in Fischbein’s (1987, 1993) tripartite system of intuitive, algorithmic and formal 
thinking. Indeed the latter theory is strongly related to our own development of three 
worlds of mathematics except that the three categories exist as separate aspects, as 
they did in the first design of the English National Curriculum where Concepts and 
Skills were put under separate headings. 

Our inspiration for putting these elements together in an integrated manner arose 
from several theories that include both a global development of successive modes of 
operation (such as Piaget’s stage theory or the enactive-iconic-symbolic modes of 
Bruner) and also a local sequence of concept formation within each of these modes. 
In particular, the SOLO taxonomy of Biggs and Collis (1982) made a significant step 
forward involving not only successive development of different modes (sensori-
motor, ikonic, concrete-symbolic, formal and post-formal) but also local cycles of 
concept formation within each mode which were termed uni-structural, multi-
structural, relational, extended abstract. 

Pegg (2002) took a further step by noting how the Biggs and Collis cycle of concept 
formation operates in a similar sequence to the compression of process to concept, 
linking to the theory of Gray & Tall (1994) in which action-schemas such as 
counting (uni-structural) are developed into more compressed procedures such as 
count-all, count-on, count-on-from-larger (multi-structural), to the overall process of 
addition that may be implemented by different routes (relational), and the concepts of 
number and sum seen as mentally manipulable concepts (extended abstract). 

This opens up a vision of a cognitive development from embodied beginnings 
encompassing the SOLO sensori-motor and ikonic (a combination of Bruner’s 
enactive and iconic modes) through successive encapsulations of actions as 
processes represented by symbols to symbolic manipulation of symbols as thinkable 
entities, relating the worlds of conceptual-embodiment and proceptual-symbolism. 

Developing a general theory that also fits the problem 
At this point, a single incident gave us a sudden insight into the relationship between 
embodiment and symbolic compression. The first-named author (Anna Poynter) was 
convinced that the problem arising from the complications of the examples of 
physics with their different meanings for journey, force, velocity, acceleration and so 
on, could be replaced by a much simpler framework in mathematics, if only (and this 
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is a big if) the students could focus on the fundamental mathematical ideas. The 
problem was how to give a meaning to the notion of ‘free vector’ in a mathematical 
way that was meaningful and applied to all the other contexts in an overall coherent 
way. 

The breakthrough came from a single comment of a student called Joshua. The 
students were performing a physical activity in which a triangle was being pushed 
around on a table to emulate the notion of ‘action’ on an object. Joshua explained 
that different actions can have the same ‘effect’. For example, he saw the 
combination of one translation followed by another as having the same effect as the 
single translation corresponding to the sum of the two vectors. He also observed that 
solving problems with velocities or accelerations is mathematically the same. 

This single example led to a major theoretical development. In performing an action 
on objects, initially the action focuses on what to do, but abstraction (to coin a phrase 
of John Mason, 1989) is performed by ‘a delicate shift of attention’, to the effect of 
that action. Instead of saying that two actions are equivalent in a mathematical sense, 
one can focus on the embodied idea of having the same effect. At a stroke, this deals 
with the difficult compression from action to process to object formulated in APOS 
theory, by focusing attention on shifting from embodied action to effect.  

In the case of a translation of an object on a table, what matters is not the path taken, 
but the change from the initial position to the final position. The change can be seen 
by focusing on any point on the object and seeing where it starts and ends. All such 
movements may be represented by an arrow from start point to end point and all 
arrows have the same magnitude and direction. In this way any arrow with given 
magnitude and direction can represent the translation, and the addition of two vectors 
can be performed by placing two such arrows nose to tail and replacing them by the 
equivalent arrow from the starting point of the first arrow to the end of the second. 
The embodied world of action has a graphical mode of representation that is more 
than a static picture: it represents the mental act of carrying out the transformations 
so that the learner can focus not just on the actions but on their effect. 

This theory of compressing action via process to mental object by concentrating on 
the embodied effect of an action is widely applicable. It is a practical idea that can 
prove of value in the classroom, as well as bringing together a range of established 
theories developed over the last half century by Piaget, Bruner, Dienes, Biggs & 
Collis, Fischbein, Skemp, Dubinsky, Lakoff & Núñez and many others. In the 
following sections we give a brief outline of our empirical evidence from Poynter 
(2004a) which are summarized on the web (Poynter, 2004b). 

Empirical results 
Poynter (2004a) compared the progress of two classes in the same school, Group A 
taught by the researcher using an embodied approach focusing on the effect of a 
translation, Group B taught in parallel using the standard text-book approach by a 
comparable teacher. The changes were monitored by a pre-test, post-test and delayed 
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post-test, and a spectrum of students were selected for individual interviews. The 
tests studied the students’ progress in developing through a cycle of concept 
construction in both graphic (embodied) and symbolic modes of representation. 

In figure 1, two cycles of concept construction are involved. Stage 1 refers to the 
earlier cycle formulating the notion of a signed number in one dimension as journey 
or as a signed number. Stages 2, 3 and 4 are successive stages of encapsulation of the 
notion of free vector in two dimensions, starting from a graphical representation of 
an arrow as a journey represented symbolically as horizontal and vertical 
components, then focusing on the effect of the shifty as shifts with the same 
magnitude and direction or as a column vector as a relative shift, then finally as a 
manipulable free vector that can be given a single symbol that can be operated upon. 
A similar cycle was formulated for the encapsulation of the process of adding two 
vectors to give the concept of sum, starting from addition of signed numbers in one 
dimension, then in two, where the arrows are seen, for example, as one journey 
following another then focusing on the effect to see the sum of two vectors as the 
single vector with the same effect and finally as free vectors added as mental entities. 

Poynter (2004a) focused on several aspects of the desired change that could be 
tested. Here we consider three of them. It was hypothesised that students, who 
encapsulate the process of translation as a free vector, are able to focus on the effect 
of the action rather than the action itself. This should enable them to add together 
free vectors geometrically even if the vectors are in ‘singular’ (non-generic) 
positions, such as vectors that meet in a point or which cross over each other. It 
should enable them to use the concept of vector in other contexts, e.g. as journey or 
force. In the case of a journey, it should allow the student to recognise that the sum 
of free vectors is commutative. (As a journey, the equation � AB

u ruu
+ BC

u ruu
= BC

u ruu
+ AB

u ruu
 does 

not make sense, because � AB
u ruu

+ BC
u ruu

 traces from A to B to C but, � BC
u ruu

+ AB
u ruu

 first 
represents a journey from B to C and requires a jump from C to B before continuing. 
As free vectors, �  u = AB

u ruu
 and v =� BC

u ruu
, we have  u + v = v + u .) 

It was hypothesised that experimental students would be more able to: 

1. add vectors in singular (non-generic) cases 
2. use the concept of vector in other contexts (eg as journey or as force) 
3. use the commutative property for addition. 

Students were asked to add two vectors in three different examples: 

Stage Graphical Symbolic 
0 No response No response 
1 Journey in one dimension A signed number 
2 Arrow as a journey from A to B Horizontal and vertical components 
3 Shifts with same magnitude and direction Column vector as relative shift 
4 Free vector Vector u as a manipulable symbol 

Figure 1: Fundamental cycle of concept construction of free vector  
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2) In each case add the two 
vectors together 

3) If there is any other way 
you could have done any of 
the additions of the two 
vectors in Q2 show it. 

(a) (b) (c)  

Figure 2: questions that could be considered singular 

When we asked other teachers what they felt students would find difficult, we 
encountered differences between the responses of a colleague who taught physics 
and two others who taught mathematics. As mathematicians, we saw part (a) to be in 
a general position, because it only required the right-hand arrow to be pulled across 
to the end of the left-hand arrow to add as free vectors; (b) evoked the idea of a 
parallelogram of forces; (c) was considered singular because it was known to cause 
problems with some students embodying it as two fingers pressing together to give 
resultant zero. 

All teachers considered part (c) would cause difficulties. However, they differed 
markedly in their interpretations of parts (a) and (b). The physics teacher considered 
that the students would see the sum of vectors either as a combination of journeys, 
one after another, or as a sum of forces. For her, (a) was problematic because it does 
not fit either model, but (b) would invoke a simple application of the parallelogram 
law. As an alternative some students might measure and add the separate horizontal 
and vertical components. The two mathematics teachers considered that students 
would be more likely to solve the problems by moving the vectors ‘nose to tail’ with 
the alternative possibility of measuring and adding components. One of them 
considered that students might see part (a) as journeys and connect across the gap, 
and in part (b) might use the triangle law in preference to the parallelogram law. The 
other sensed that (b) could cause a problem because ‘they have to disrupt a diagram’ 
to shift the vectors nose to tail—an implicit acknowledgement of the singular 
difficulty of the problem—and part (c) would again involve shifting vectors nose to 
tail although she acknowledged that some students might do this but not draw the 
resultant (which intimated again that they see the sum as a combination of journeys 
rather than of free vectors). 

The performance on the three questions assigning an overall graphical level to each 
student is given in Table 1. 

Group A (Experimental) (N=17) Group B (Control) (N=17) Graphical 
stage Pre-test Post-test Delayed Pre-test Post-test Delayed 

4 0 1 12 2 0 7 
3 1 9 4 1 10 3 
2 4 6 1 1 3 2 
1 4 1 0 4 1 0 
0 8 0 0 9 3 5 

Table 1: Graphical responses to the singular questions 
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Using the t-test on the numbers of students in the stages reveals that there is a 
significant improvement in the experimental students from pre-test to delayed post-
test (p < 0.01) but not in the control students. 

Similar results testing the responses to questions in different contexts and questions 
involving the commutative law are shown in tables 2 and 3. 

Group A (Experimental) (N=17) Group B (Control) (N=17) Graphical 
stage Pre-test Post-test Delayed Pre-test Post-test Delayed 

4 0 0 8 0 0 2 
3 0 9 3 2 3 5 
2 1 2 2 0 3 3 
1 1 5 4 0 2 3 
0 15 1 0 15 9 4 

Table 2: Graphical responses to questions set in different contexts 

The change is again statistically significant from pre-test to delayed post-test 
(p<0.01) using a t-test. 

Graphical stage Group A (Experimental) Group B (Control) 
 Pre-test Post-test Delayed Pre-test Post-test Delayed 

TOTAL 0 7 12 4 6 5 

Table 3: Responses using the commutative law of addition 

In this case the change is from a significant difference in favour of Group B on the 
pre-test (p<0.05 using a χ2-test) to a significant difference in favour of Group A 
(p<0.05 using a χ2-test). Further details may be found on the web (Poynter, 2004a, 
b). 

What is clearly important here is not the statistical significance, but the evident 
changes which can be seen not only to improve the situation for Group A from pre-
test to post-test, but more importantly to increase the level of success by the delayed 
post-test. There is a clear difference in the long-term effect of the experimental 
teaching programme. 

Broader theoretical aspects 
The theory reveals a parallel between focusing on the effect of embodied actions and 
the compression of symbolism from procedure to process to object has the potential 
to be simple to describe and implement with teachers and students. The theory has 
proved to be a practical theory, in that the idea of focusing on the effect of an action 
in the case of vector has proved to be not only successful with students, as in the 
experiment described, but also in subsequent discussion with other teachers (Poynter 
2004b). All that is necessary to have appropriate activities and to mentor the 
participants to focus on the effects of carefully designed actions. 

This applies in a variety of areas, not only in representing vectors dually as 
transformations and as free vectors, but also in other areas where symbols represent a 
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process being encapsulated into a concept. For instance the process of counting is 
compressed to the concept of number by focusing on the effect of counting in terms 
of the last number spoken in the counting schema. Likewise, the process of sharing 
and the concept of fraction, in which, say, sharing something into 4 equal parts and 
taking 3 of them has the same effect as sharing into 8 equal parts and taking 6. This 
corresponds symbolically to having equivalent fractions ( 

3
4 or 

6
8 ). Likewise different 

algebraic procedures having the same effect gives an alternative way of looking at 
the idea of equivalent algebraic expressions. Other processes in mathematics, such as 
the concept of function, also result from a focus on the effect of an input-output 
action, rather than on the particular sequence of actions to carry out the process, 
revealing the wide range of topics in mathematics that benefit from this theoretical 
analysis. 

This research into a single classroom problem has therefore stimulated developments 
in the relationship between embodiment and (proceptual) symbolism as part of a 
wider general theory of the cognitive development of three worlds of mathematics 
(embodied, symbolic and formal), (Watson, Spyrou & Tall, 2003, Tall, 2004). This 
theory, in turn, also builds on earlier work that theorizes three distinct kinds of 
mathematical object: “One is an embodied object, as in geometry and graphs that 
begin with physical foundations and steadily develop more abstract mental pictures 
through the subtle hierarchical use of language. The second is the symbolic procept 
which acts seamlessly to switch from an often unconscious ‘process to carry out’ 
using an appropriate algorithm to a ‘mental concept to manipulate’. The third is an 
axiomatic concept in advanced mathematical thinking where verbal/symbolical 
axioms are used as a basis for a logically constructed theory” (Gray & Tall, 2001). 

In this way, looking at how a particular teaching problem benefits from different 
theories can be fruitful, not only in addressing the teaching problem in a way that 
makes practical sense to pupils and teachers, but also in analysing and synthesising 
aspects of a range of theories to produce a practical theory. 

References 
Biggs, J. & Collis, K., 1982: Evaluating the Quality of Learning: the SOLO Taxonomy. New York: 
Academic Press. 
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., Vidakovic, D., 1996: 
‘Understanding the Limit Concept: Beginning with a Coordinated Process Scheme’, Journal of 
Mathematical Behavior, 15 (2), 167–192. 
Dienes, Z. P., 1960: Building up Mathematics. London: Hutchinson. 
Driver, R., 1981: ‘Alternative Frameworks in Science’, European Journal of Science Education, 3, 
93–101. 
Dubinsky, E. & Harel, G., 1992: ‘The Nature of the Process Conception of Function’. In Harel G. 
and Dubinsky, E., The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 85–106). 
Washington, D.C.: MAA. 

Working Group 11

1272 CERME 4 (2005)



  

Dubinsky. E. & MacDonald, M. A., 2001, ‘APOS: A Constructivist Theory of Learning in 
Undergraduate Mathematics Education Research’. In D. Holton et al. (Eds.), The Teaching and 
Learning of Mathematics at University Level: An ICMI Study, Dordrecht: Kluwer, 273-280. 
http://www.math.kent.edu/~edd/ICMIPaper.pdf 
Fischbein, E., 1987: Intuition in science and mathematics: An educational approach. Dordrecht: 
Kluwer. 
Fischbein, E., 1993: ‘The interaction between the formal, the algorithmic and the intuitive 
components in a mathematical activity’. In R. Biehler, R. W. Scholz, R. Strasser, & B. Winkelmann 
(Eds.), Didactics of mathematics as a scientific discipline, (pp. 231–245). Dordrecht: Kluwer. 
Gray, E. M. & Tall, D. O., 1994: ‘Duality, ambiguity and flexibility: A proceptual view of simple 
arithmetic’. Journal for Research in Mathematics Education, 25 2, 115–141. 
Gray, E. M. & Tall, D. O., 2001: ‘Relationships between embodied objects and symbolic procepts’. 
In Marja van den Heuvel-Panhuizen (Ed.) Proceedings of the 25th Conference of PME, 3, 65–72. 
Utrecht, The Netherlands. 
Hiebert, J. & Carpenter, T. P., 1992: ‘Learning and Teaching with Understanding’. In D. Grouws, 
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 65–97). New York: 
MacMillan. 
Hiebert, J. & Lefevre, P., 1986: ‘Conceptual and Procedural Knowledge in Mathematics: An 
Introductory Analysis’. In Hiebert (Ed.) Conceptual and procedural Knowledge: The Case for 
Mathematics, (pp. 1–27). Hillsdale. N.J.: Erlbaum. 
Lakoff, G., & Núñez, R. E., 2000: Where Mathematics Comes From. New York: Basic Books. 
Mason, J., 1989: ‘Mathematical Abstraction Seen as a Delicate Shift of Attention’, For the 
Learning of Mathematics, 9 (2), 2–8. 
Pegg, J., 2002: ‘Fundamental Cycles of Cognitive Growth’. In A. D. Cockburn & E. Nardi (Eds), 
Proceedings of the 26th Conference of PME, 4, 41–48. Norwich: UK. 
Poynter, A., 2004a: ‘Effect as a pivot between actions and symbols: the case of vector’. 
Unpublished PhD, University of Warwick. http://ww.annapoynter.net 
Poynter, A., 2004b: ‘Mathematical Embodiment and Understanding’. Proceedings of BSRLM, 
November 2004. Pre-print from http://ww.annapoynter.net. 
Poynter, A. & Tall, D. O., 2005: What do mathematics and physics teachers think that students will 
find difficult? A challenge to accepted practices of teaching. British Colloquium of Mathematics 
Education. Pre-print from http://www.annapoynter.net 
Skemp, R. R., 1971: The Psychology of Learning Mathematics, London: Penguin. 
Skemp, R. R., 1976: ‘Relational understanding and instrumental understanding’, Mathematics 
Teaching, 77, 20–26. 
Skemp, R. R., 1989: Mathematics in the Primary School. London: Routledge. 
Tall, D. O., 2004: ‘Thinking through three worlds of mathematics’, Proceedings of the 28th 
Conference of PME, Bergen, Norway, 158–161. 
Watson A., Spyrou, P., Tall, D. O., 2003: ‘The Relationship between Physical Embodiment and 
Mathematical Symbolism: The Concept of Vector’. The Mediterranean Journal of Mathematics 
Education. 1 2, 73–97. 

Working Group 11

CERME 4 (2005) 1273



CONCEPTUALISATION THROUGH SEMIOTIC TOOLS IN 
TEACHING/LEARNING SITUATIONS 

 
Isabelle Bloch, IUFM d'Aquitaine, France 

 

Abstract: This paper addresses the role of mathematical signs in teaching/learning 
situations. During the heuristic phase of a situation we can observe signs being 
produced, interpreted and used in very unusual ways –from a mathematical point of 
view. Then the notion of ostensive (Bosch & Chevallard 1999) is not sufficient to 
analyse the students' work; the research of Steinbring (2005), or the three dimensions 
introduced by Godino (2004), though very interesting to appreciate interpretation 
within mathematics, do not seem satisfactory to give an account of the way signs are 
produced and (mis)interpreted. We use C.S. Peirce's theory of semiotics to 
understand this phenomenon: signification is not definitely deduced from 
(mathematical) signs because interpretation is a triadic process that requires an 
interpretant; though mathematical signs are always arguments (they involve a rule), 
they can be understood as icons, indices or arguments in the interpretation process. 

Keywords: mathematical signs, interpretation, Peirce's theory of semiotics. 

 
I. The use of semiotic tools in didactical situations 
Mathematics teaching (e.g. about functions) is often organised as follows: First, the 
teacher performs a standard task in the classroom with his/her students, using a 
variety of representatives of the target concept. Next, students are supposed to do a 
similar task, with other emblematic representations of the same concept. Students are 
expected to interpret the signs used in the situation (geometric figures, graphs, tables 
of numbers, formulae …) in the same way as the teacher, that is, as representatives of 
mathematical concepts and of their properties. This presentation is supposed to be 
more “intuitive” than a formal one. In fact, it does not bring out the fundamental 
mathematical knowledge; in doing this work, students indeed cannot learn or imagine 
what are the properties of the objects – functions for instance; what is the use of a 
property in the mathematical organisation, i.e., why it is useful to study functions; 
how it is possible to distinguish a property from other connected properties; what is 
the opposite of a property, i.e. if the property “p” is known, how can the property 
“not p” be formulated? In other words, this way of teaching does not lead to real 
work on mathematical statements: it is a specificity of mathematical statements that 
they allow us to know what properties they determine, what mathematical objects 
satisfy these properties and which ones do not satisfy the properties. Moreover, if we 
know a property we can also know its opposite, which is not possible in an ostensive 
organisation like that. Students are thus going from one representative to another 
without knowing the use of them to solve problems. 
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As Schwarz and Dreyfus (1995) say, in mathematics “learning is reduced to mapping 
between several notation systems signifying the same abstract object”. In the same 
paper, the authors point to the fact that research about learning functions and graphs 
shows persistent difficulties in linking those different notation systems. As students 
have great difficulties in constructing graphs, tables, or formulae by themselves, 
teachers usually make them work on given notational systems in order to avoid tasks 
of construction. These authors insist on the ambiguity of all representatives of 
mathematical objects, and on the fact that teaching often does not explicitly address 
this ambiguity. Only algebraic ambiguities are dealt with because it is in the nature of 
algebraic work to see if two formulae represent the same function. In brief, 
ambiguities are usually treated as if they belonged to the didactical contract. For 
instance, depending on the context –and the level of teaching– it is considered 
obvious (or not obvious) that a table (two numbers and their images) is a 
representative of a linear function, or that a curve is the graph of a quadratic function 
or not. Schwarz & Dreyfus conclude that “ambiguity problems are avoided in 
standard curricula because students do not have the tools to cope with them” 
(Schwarz & Dreyfus 1995, p.263). We think that conceptualisation of an abstract 
concept like functions cannot avoid ambiguity, especially in its representation and the 
use of signs. 

At the same time Duval (1993, 1996) studies the partiality and ambiguity of 
mathematical signs: every sign is partial to what it represents, and partiality leads to 
ambiguity. For instance a graph is the graph of a class of functions and not of a single 
one; on a graph you can see that two points are different but not that they are 
mingled. Graphs may also suggest false properties: 

If you draw the graph of a plain function such that lim
x → ∞ 

f(x) = 0 you can easily 
imagine that lim

x → ∞ 
f '(x) = 0 too, because the curve seems to decrease regularly to 0.  

You have to come back to the algebraic and analytical register to be able to argument 
and decide if the last property is true or not. 

Duval concludes that we must consider the interactions among different 
representatives of a mathematical object as absolutely necessary for constructing a 
concept. We follow Duval in acknowledging this necessity, but two representatives of 
a same object being given, how can one be sure that they signify the same for 
students, or even that they signify anything mathematical for them? 

We can also connect this view with Slavit's analysis (Slavit 1997) whose aim is to 
develop a property-oriented view of concepts: 

"[A] property-oriented view is established through two types of experiences. First, the 
property-oriented view involves an ability to realize the equivalence of procedures that 
are performed in different notational systems. Noting that the processes of symbolically 
solving f(x) = 0 and graphically finding x-intercepts are equivalent (in the sense of 
finding zeroes) demonstrates this awareness. Second, students develop the ability to 
generalize procedures across different classes and types of functions. Here, students can 
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relate procedures across notational systems, but they are also beginning to realize that 
some of these procedures have analogues in other types of functions. For example, one 
can find zeroes of both linear and quadratic polynomials (as well as many other types of 
functions), and this invariance is what makes the property apparent." (Slavit 1997, p. 
266-267). 

This citation stresses that, to realise the invariance of properties, students have to do 
many comparisons between different functions in different notational systems. Not 
every task will help them in achieving this aim. This means that, while the choice of 
pertinent representatives and different classes of functions is necessary to reach this 
aim, it is not sufficient: the situation in which students are immersed is essential to 
produce the target knowledge. By "situation", we mean the type of problems students 
are led to solve. Immersing students in problems makes it possible to obtain a work 
on mathematical signs, mathematical statements and an activity of reasoning. 

This approach is convergent with the one of Brousseau's Theory of Didactical 
Situations (Brousseau 1997). To make mathematical signs 'full of sense' –which 
means that signs have a chance to be related to a conceptual mathematics object– the 
TDS proposes the organisation of situations that would allow the students to engage 
with validation, that is, to work with mathematical formulation and mathematical 
statements. 

As it is now well known, the work with the TDS has permitted to develop very 
interesting situations for almost all the main themes of mathematics at Primary 
school. In each case, the situation organises a 'material' milieu that allows 
experiments for pupils; and the milieu gives feedbacks. The material milieu is made 
of "material things" to act with (when we say "things" we mean that for the students 
they do not necessarily represent mathematical objects). The heuristic milieu includes 
procedures of verification which must lead students to formulate mathematical 
properties. Then the didactical situation allows the teacher to declare the intended 
knowledge. (Brousseau 1997, p.17, p.248; Bloch 2003a, p.12). We cannot say that, at 
this primary level, there are no mathematical signs: but at the first level of milieu at 
least, signs can be embodied in material things. 

There exist not so many 'good' situations for secondary school and high school; at this 
level, the question would be to find collections of problems that allow to explore the 
fundamental meanings of a mathematical concept (for examples of such situations 
about functions, see Bloch 2003a). A main difficulty at this level is that the 'material' 
milieu is already constituted with abstract mathematical signs; but if the teacher sees 
them as mathematics, students sometimes see them only as sorts of conventions that 
the teacher introduces. The success of the learning process is then decided by the 
capacity the situation gets of confronting students with actions, leading them to 
interpret the signs in the milieu and formulate mathematical knowledge with their 
own signs in a first time; the situation provides feedbacks and this process organises 
the students' activity, including the work with/about a mathematical semiosis (Bloch 
1999). 
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This approach of the TDS leads to build a milieu for students' work, a milieu where 
three phases are necessary1: the first stage consists in acting upon the material milieu 
that provides feedbacks; the function of the second stage is to validate the results 
(calculations, writings, arguments…), and the last phase leads to institutionalisation. 

Such situations lead students not only to "correct" mathematical writing that they are 
supposed to copy, but to produce their own formulations during the heuristic phase in 
stage 2. This typical feature of adidactical situations includes a tolerance to 
"approximate" formulation and moreover, the utilisation of such signs during the 
formulation phase; it means that such situations call, not only on certified knowledge 
but also on students' "private knowing". This has been studied by Conne and Bloch 
(Conne 1992; Bloch 1999). 

This private knowing can find its expression in a number of semiotic ways, including 
drawings, words and sentences, graphs, computation, 'false' writings… While looking 
at this process, we can see that the relationship between signs and objects is not yet 
well established. Moreover, the constitution of mathematical objects is not already 
done: it takes place in a dialectical interaction between the situation, the signs and the 
concepts (as Steinbring also says, see below). As in a number of recent researches, 
we recognise then the necessity of studying the part of semiotic dimension in the 
process of conceptualisation. 

II. Theoretical frameworks about semiotics in mathematics 
II.1 Research on semiotics through mathematics epistemology 
Researches on semiosis in mathematics have been widely developed in the last ten 
years. Duval studies representation settings and their congruence in conversions 
(Duval 1996). The term of 'semiotic tools' or 'ostensive' to speak of mathematical 
signs has first been used by Chevallard (Bosch & Chevallard, 1999). Semiotic tools 
are signs that are also tools to do a mathematical work: it is a distinctive feature of 
mathematics that signs can be used as tools and that new actions on these tools 
produce new significations and even sometimes new concepts. This characteristic can 
be illustrated –ad absurdum!– by a classic joke (in French): 

Let us prove that cheval/oiseau = π : cheval/oiseau = cheva l/oiseau= vache l/oiseau 
because 'cheva' is commutative; 'vache' is a "bête à pis": βπ and 'oiseau' is a "bête à 
ailes": β l then vache l/oiseau = βπ l/ β l = π (Cheval = horse; vache = cow; oiseau = 
bird and a cow is an animal with an udder ('pis' in French); a bird is an animal with 
wings ('ailes' in French). 

Anyway let us notice that the semiotic tools that Chevallard introduces are related to 
'correct' denotation of mathematical concepts: for us, this is the fundamental 
limitation of his theory, as of every other framework based on epistemology of 
mathematics only. 

                                                 
1 A complete example about functions and graphs is given in Bloch, 2003a.  
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Radford (2002, 2003, 2004 for instance) relates semiotics and epistemology of 
mathematics. Godino (2002, 2004) works in a similar direction, as well as Steinbring: 
signs take place in the epistemological triangle whose other corner points are 
'reference context' and 'concept'. 

In this model we notice that: 

"none of the corner point of the triangle is given explicitly in such a way that it could 
become a certain point of approach to a definite determination of the triangle; the three 
reference points "mathematical concept", mathematical sign/symbol and 
"object/reference context" form a balanced, reciprocally supported system". (Steinbring 
2005, p.4)  

This author also points out (op. cit. p. 11) the "exchangeability of the positions of 
sign/symbol and reference/context". This is an significant point to be noticed, and we 
agree with that, but we want to go farther and claim that a context is a sign as well: 
linking the TDS and a semiotic approach, we cannot but observe the fact that, for the 
students at work, situations play the role of signs of a certain knowledge, preferably 
the one that is the aim of the situation but in some case it can be different. In 
Steinbring's examples (Steinbring 2005 p. 15-23: a number wall and number 
squares), as the author focuses on verbal interactions and gestures, he also points out 
the way a student makes a circle round a number and crosses other numbers; we 
could add that the given structure itself –the number wall, or the number square– is a 
sign of the embodied knowledge, through the actions in the situation. 

For Davis and McGowen (Davis and McGowen, 2002) mathematical objects are 
clearly embodied in (pre)mathematical signs. They also study the semantic 
dimensions of communication, considering "whether mathematics deals with a level 
of reference beyond the symbolic as it is understood in language". Referring to 
Peirce's semiotic levels as we intend to do, they observe in mathematics classrooms 
the same events that we describe in part III., that is, students considering a complex 
mathematical sign (the binomial theorem) as an index of something – "a conditioned 
response" – instead of an argument ("a richly connective symbolic interpretation"). 

Actually, even in very classical teaching situations we can see students that do not 
attribute the 'correct' signification to mathematical signs, or even any mathematical 
signification. Anyway, we can also be aware that the signification of a mathematical 
sign evolves according to different contexts: the signification of a sign is not (once 
and for all) definite, it depends on the situations students encounter. Signs are tools 
and their meaning is linked with the use of them in various mathematics theories. 
Moreover, for the same symbol it may depend on the level of mathematics: the sign 
of an integral does not mean the same thing in Riemann's integration theory as in 
Lebesgue's (even if there are connections or inclusions). Then the signification of a 
mathematical sign depends on the competence of an interpretant –a social entity that 
receives the responsibility of interpreting the symbol and doing 'something 
mathematical' with it. A student at the first year of University could not interpret an 
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integral sign as a Lebesgue's integral, as well as a 7 years-old pupil could not 
interpret a sign ' = ' as algebraic. 

For these reasons we resort to Pierce's theory of semiotics to try to understand the use 
and the role of signs in mathematics education, especially in adidactical situations.  

II.2 Peirce's semiotics approach as a tool to understand an significant dimension 
of the students' work 
At the end of the 19th century, the American philosopher C.S. Peirce proposed a 
dynamic theory of interpretation of the signs. As he was himself a mathematician, he 
applied his theory to mathematics. The fundamental characteristic of this theory is its 
triadic approach of interpretation: a sign is a triad whose components are, the sign 
(that represents) the object (that is represented) and the interpretant (that is a social 
entity able to interpret). This is a dynamic approach because this triad is a sign again 
and it represents an object to an interpretant, and so on… This dynamic component is 
very important because it provides the means to explain how the signification of 
symbols evolves: 

"A sign, or representamen, is something which stands to somebody for something in 
some respect or capacity. It addresses somebody, that is, creates in the mind of that 
person an equivalent sign or perhaps a more developed sign. That sign which it creates I 
call the interpretant of the first sign. The sign stands for something, its object. It stands 
for that object, not in all respects, but in reference to a sort of idea, which I have 
sometimes called the ground of the representamen. [...]" (Peirce 1897, C.P. 2-228 - 
Division of signs) 

This conception leads to different kinds of signs because the repeated process of 
interpretation leads to very sophisticated signs. Thus Peirce categorises three basic 
kinds of signs: icon, indexes, and arguments (Peirce 1978). An icon is a sign that 
represents a quality of something: for instance, a quality of colour (green) that can be 
perceived in a glance. A index gives an indication or a hint on the object, like an 
image of the Eiffel tower makes you think of the town of Paris, or may be a symbol 
of Paris. An argument is a sign that contains a rule. 

"First, an analysis of the essence of a sign, (stretching that word to its widest limits, as 
anything which, being determined by an object, determines an interpretation to 
determination, through it, by the same object), leads to a proof that every sign is 
determined by its object, either first, by partaking in the characters of the object, when I 
call the sign an Icon; secondly, by being really and in its individual existence connected 
with the individual object, when I call the sign an Index; thirdly, by more or less 
approximate certainty that it will be interpreted as denoting the object, in consequence 
of a habit (which term I use as including a natural disposition), when I call the sign a 
Symbol".(Peirce 1906 - C.P. 4-531 - Apology for pragmaticism). 
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We must see that the category of a sign can never be abstracted from the interpretant: 
a sign is an icon, for instance, in an interpretation process for somebody (at least 
virtual). Therefore a relationship between a sign and its object is never intrinsic2, it 
depends on the quality of the interpretant. This paradigmatic signs organisation leads 
to a hierarchy between different kinds of signs, because the interpretant is distinct 
from the sign (the representamen) and the object. Peirce defines three categories for 
each instance of the sign, namely Representamen, Object and Interpretant. These 
categories came out later (Marty 1990) to a lattice of signs, a lattice with ten 
categories only (and not 33 = 27) because a sign as an Icon, for instance, could never 
give an argument, as an argument can very well be interpreted only as an Icon by 
somebody who would not get the right interpretant3. This feature of Peirce's theory 
we find of course very relevant for mathematical signs interpretation. His theory is 
relevant to analyse the interpretation of mathematical signs, because all mathematical 
signs are arguments, even if of different levels, and because there will be some 
problems of misunderstanding if students do not interpret them in their suitable value. 

Mathematical signs are symbols that give rise to arguments ('in consequence of a 
habit', here a mathematical habit of course) but of different levels: then '3' is the 
representamen of an argument because it always signifies that there are three 
elements somewhere (in a mathematics problem for instance; the relation between '3' 
and the number is a rule); but '123' (one hundred and twenty three) will be a more 
complex argument because the rule must include the decimal numeration, which is 
not the case in '3'. This complexity is what authorizes various interpretation of the 
same symbols, according to the mathematical competence of the interpretant. 

This particularity of semiotic tools in mathematics will be in agreement with the 
relevant elements of the construction of a situation, as we said that in an adidactical 
situation we must foresee the 'wrong' expression of mathematical properties, or the 
misunderstanding of some ostensives. We are here lacking the place to analyse a 
fundamental situation with Peirce's theory: we shall limit our demonstration to some 
examples of various levels in mathematical signs interpretation. 

III. Using the different modelisations to analyse experimental facts 
We give now two examples of an interpretation process of mathematical signs in a 
classroom. In some times and places of the teaching/learning institutions, there exist a 
huge gap between what the teacher proposes and what the student is able to imagine. 
This is especially the case in two very different contexts: education with special 
needs, and scientific courses in the first years of University. These places provide 
therefore good opportunities for studying the misfortunes of signs interpretation. We 
shall see that Peirce's semiotics paradigm allows to go beyond the 'right' academic 
mathematical reading of the way students use the ostensives and to give sense to their 

                                                 
2 Even in mathematics! 
3 For more details, see Marty, 1990, 2003, Muller, 2004.  
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own atypical interpretation. This provides a help to understand the students' 
difficulties, and to be able to modify the situation –the context– they are trying on. 

Example 1: In a class for students with special needs (14/15 years-old) the teacher 
was working on proportionality; students got a numeric table and were required to 
say if the situation was of proportionality or not. Notice that these students have 
heard of proportionality since four years at least; this is not a moment of 'first 
encounter' but a reinvestment. According to Chevallard, such a table is a numerical 
ostensive; as the students do not yet master the table as a computation means, we can 
say that the work takes place as a task, and not a technique or a technology. 

During their work we could see that for some students, the numeric table was really 
an argument as suitable: they were able to say that in such a table, doing some 
computation you could find the rule –the proportionality coefficient– and some 
information about the numbers and their images, and even build images of new 
numbers from the given numbers. 

For some other students, the table was obviously an index, that is, they were aware 
that the table contained indications, and told them something about proportionality; 
but they were not able to find a applicable indication in it. And moreover, some 
others just saw the table as an icon: the thing the teacher draws on the blackboard 
each time she speaks of proportionality. 

We can see that an analysis in terms of reference, or context, could not be sufficient 
here, since some students remain very far of a mathematical interpretation of the 
table. From a classic mathematical analysis of this event, the teacher can do nothing 
but say that these students are unsuccessful in doing the prescribed task, and of 
course try another task –but for these students it has be done a lot of times yet! It 
becomes then a problem in a double perspective: 

1) In this context –students with special needs– the teacher has to do something to 
declare some success in the learning, especially about ancient knowledge such as 
proportionality. If she states a global failure of the didactical project for a major part 
of the class any time she gives them a task to perform, the didactical relation will 
become very difficult. In a more personal point of view, the teacher also has to be 
able to explain herself why and how students fail, in order to envisage how going on. 

2) If we notice that a large part of the students do not understand a proportionality 
table as a mathematical sign, then the situation we organise for such students cannot 
start from this table (even if this is suggested in the curriculum of the academic year) 
since this table does not mean anything in terms of proportionality or even any 
argument for them. Something has to be done before. Here we can use the Godino's 
and Steinbring's model, and say that the reference context must be adjusted –in terms 
of the TDS we will say that a more relevant situation must be organised: within the 
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frame of the TDS, it is the game in a situation that allows formulation and an 
adequate conceptualisation of what the mathematical signs can mean4.  

Example 2: Students in a first year of mathematics University course have to study a 
function:  f(x) = |x| |x|  /x if x ≠ 0, and  f(0) = 0  

The question is to determine whether f is continuous. Students first do not see what 
kind of function it is: they are confused by the signs of square roots and absolute 
values. In Chevallard's terms we could say that they do not have any technique at 
their disposal to deal with this expression. The lack of means to cope with this 
algebraic task involves an impossibility of devolution of the real problem. 

Using our semiotic frame we can say that some students interpret these signs only as 
an index of complexity of the function; none of them interprets the sign as an icon of 
function, since they are advanced students in a calculus course. From their reactions 
we can see nevertheless that for other students, these writings are only icons of 
complexity, since these students are unable to undertake a calculation or a 
transformation of f although they are aware of this writing being an ostensive of a 
function. For the best students, these signs are indexes of the fact that there is 
something to do to obtain a better expression of f. Then students do not see that the 
only question is about the continuity in zero: they say that f is definite in zero so it 
must be continuous in zero (this interpretation obeys the rules of the didactical 
contract of mathematics studies at Upper Secondary School). They interpret the signs 
f(0) = 0 as a whole: it says everything about the function in zero, it is a global 
argument of definition and continuity. Finally, after a long time of misunderstanding 
between teacher and students, the teacher draws a graph to show them that there 
could be a problem in zero (change of setting). This graph can be interpreted by the 
students as an index of the difficulty in zero, so devolution of the problem: 'Is f 
continue in zero?' can take place in the classroom and lead to a formulation with an 
argument of what continuity really is. 

These two examples show the interest of a semiotic analyse of the students' work: it 
helps to identify the difficulties students can encounter while trying to perform a task. 
These observations also provide a major indication that there exists more than one 
stage –linked with the signs' interpretation– in the process of conceptualisation. It is 
then not always sufficient to study the mathematical reference of a sign, since 
students in a first phase do not reach this stage of interpretation. The use of a 
pertinent and dynamic semiotic theory is also necessary to build new situations 
aiming a mathematical concept, since situations are using representatives from 
adequate settings. 

                                                 
4 For situations about proportionality, see Brousseau 1997, p. 177. 
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Conclusion 
We think that this semiotic approach is useful to study the work students can perform 
in their mathematics studies. This analyse can use Peirce's theory, because this theory 
is adequate to explore mathematics representation, even before it concerns academic 
mathematical objects. The use of this theory helps to a pertinent investigation of the 
potential work students can perform in a situation. At any level of mathematics, it is 
essential to have a clear vision of the use students can do of representatives when 
they learn mathematics, and to understand students' level of interpretation. Moreover, 
a semiotic investigation is useful to build alternate routes to reification of 
mathematical concepts, as Slavit said. Our perspective is to lean on the Theory of 
Didactical Situations to elaborate adequate situations, even when complex 
mathematical concepts are at stake. This includes an unavoidable analysis of the signs 
that can be produced, provided and interpreted during the situation process. The 
already done analysis (Bloch 1999, Bloch 2003a, Bloch 2003b) make us confident 
that the stages in an adidactical situation are to a large extent compatible with the 
different levels of interpretation in the production of meaning. 
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CROSSING THE BORDER INTEGRATING DIFFERENT 
PARADIGMS AND PERSPECTIVES 

 

Angelica Bikner-Ahsbahs, Technical University of Braunschweig, Germany 

 

Abstract: Traditional interest theory has started within the paradigm of stability ori-
entation including more and more aspects of change over time while maintaining the 
individual view. This paper presents a research project in which a concept of interest 
supporting situations is constructed. Investigations on these situations lead to an in-
terest theory of mathematics education. The development process of this theory be-
gins within the paradigm of change orientation and reconstructs patterns of change 
from empirical data. It describes how follow-up studies could be used to connect the 
social and the individual perspective and the two paradigms into one interest theory 
of mathematics education. 

Keywords: research paradigm, research perspective, paradigm of change, paradigm 
of stability, interest theory of mathematics education, motivation, social perspective, 
individual perspective. 
 

Researchers often carry out their work within a network of specific assumptions 
which are not usually questioned. This network of assumptions which is taken for 
granted is called a paradigm. Within social research we can distinguish between two 
different paradigms: stability orientation and change orientation (Ulich 1979). Re-
search within the scope of the paradigm of stability orientation investigates features 
which persons, situations, groups already have or bring with them. Whereas research 
within the paradigm of change orientation investigates how specific features emerge, 
change, develop or how they are generated. In the context of fostering students’ inter-
ests it is necessary to know what kinds of interest in mathematics students bring with 
them but also how interest in mathematics comes into being, how it grows, develops 
and further develops. If a teacher starts with the idea that students bring their interests 
with them into the class then fostering interest in mathematics means adapting the 
lesson to their preexisting interests. If, on the other hand, interest is seen as something 
one can initiate and change depending on the situational conditions during the lesson, 
the teacher thinks about aspects of the mathematical area and ways of organizing the 
learning process that might create a process of learning with interest. Thus, for 
mathematics lessons it seems to be important to do the one thing without forgetting 
about the other. This, however, demands an interest theory for mathematics education 
which describes 

• what kinds of interest in mathematics might exist and explains how preexisting in-
terest is respected and allowed and 
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• how interest in mathematics emerges, how it may be caught, held, supported and 
stabilized and how interest development is hindered or blocked. 

Therefore, research within mathematics education needs investigations on stable fea-
tures which mean identifying and structuring them and, at the same time, it is neces-
sary to know how these features are generated, stabilized and destabilized.  

I am now going to present my path of study and ongoing work about interest in 
mathematics (Bikner-Ahsbahs 2001, 2002, 2003a, 2003b, 2004), the role of both 
paradigms and the social and individual perspectives. This paper will show that, the 
more we try to understand the change of a person’s features the more we need to con-
sider situational aspects. At the same time, individuals are never able to perceive a 
whole situation, which has an impact on them. Therefore we have to investigate the 
social situation as a unit, too. However, if we do this we cut off the perspective of the 
individuals. This means we have to investigate the social situation and the participat-
ing individuals separately, the features of the individuals are investigated in the direc-
tion of change and the change of the social situation is investigated in the direction of 
stability. 

1. From stability orientation to change orientation 
Traditional interest research is research which is carried within the paradigm of sta-
bility. The assumption of this research is that a person already has an interest. In this 
tradition interest is either a disposition of a person or an object of preference. In the 
eighties this duality was overcome by defining interest as a motivational relation to-
wards an object. In more detail, interest was now understood as a relational construct 
between a person and an object which is shown through acting epistemically. These 
actions show cognitive, emotional and value aspects (H. Schiefele et. al. 1979, H. 
Schiefele 2000, Schiefele 1996, Krapp 1992, 1998, 2003a, 2003b, 2003c, 2003d). 
After connecting this concept of interest with self determination theory, researchers 
were able to investigate conditions of interest change (Krapp 1992, 2003a). Interest 
was now seen as a stable but changeable feature of an individual’s personality (Deci 
1992, 1993, 1998). Nowadays, psychological research distinguishes between two 
kinds of interest, first, personal interest is a relative stable kind of interest which stu-
dents bring with them into the class and, secondly, situational interest is a more 
changeable kind of interest which is created through situational conditions. 

The pedagogically interesting question remains how interest comes into being, how it 
grows and develops and how it can be supported within classes.  

The question how interest emerges and how it can be supported by the teacher was 
already posed by Deci and Ryan in the eighties. They came to the conclusion that in-
terest development is influenced to great extent by the social context. Based on their 
observations they postulated three basic psychological needs that accompany interest 
support, these are the need to experience competence, autonomy and social related-
ness (Deci 1992, 1998). Meanwhile research on vocational education has confirmed 
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the importance of supporting the experience of competence, autonomy and social re-
latedness in order to foster interest development (Prenzel & Drechsel 1996; Prenzel 
et. al. 1998; Lewalter et. al. 1998). How these basic needs have to be interpreted 
within mathematics education remains an open question. 

In 1993 Mitchell presented an investigation of situational interest occurring within 
mathematics lessons. He distinguished between catch-interest and hold-interest argu-
ing that interest which is caught might not necessarily be held. Interest is caught by 
cognitively or socially stimulating situations such as working with computers or 
group work. Interest that is caught can be held if the students experience themselves 
as being involved in the activity (involvement) and if they experience this as mean-
ingful (meaningfulness) (Mitchell 1993). Interest in mathematics that is caught can 
disappear if the teacher evokes expectations which the tasks cannot fulfil. This occurs 
if the teacher overmotivates the students (Bikner-Ahsbahs 1999). Today, researchers 
believe that personal interest develops through the repeating experience of situational 
interest (Krapp 1998, 2003d). 

Thus, psychological interest research is rooted within the paradigm of stability orien-
tation. It has developed towards the paradigm of change orientation without giving up 
the consideration of stability. During this process of development more and more 
situational aspects have been taken up while maintaining the individual perspective. 

Krapp postulates a conscious and an unconscious level of regulating interest through 
actions. Cognitive aspects are regarded to regulate interest based actions on a con-
scious level. Emotional aspects like the experience of the basic needs are assumed to 
regulate interest based actions on a more unconscious level (Krapp 2003d). 

Therefore, students will not be able to inform the researcher about all the aspects of a 
lesson which have had an impact on their interest. We have to take into account that 
the social environment influences interest development unknown to the individual. 
Especially the aspects on a micro-social level seem to influence the students on a 
more unconscious level. Therefore, interest research in mathematics education has to 
include both, the individual and the social view of interest development. 

Research on interest development from a social point of view means identifying in-
terest supporting situations and investigating how they are arranged. In order to in-
vestigate interest supporting situations we have to know how interest supporting 
situations are arranged anyway, but exactly this is the aim of research on aspects of 
interest supporting situations. If we question interest supporting aspects of lesson ar-
rangements we investigate the change of interest. In order to be able to investigate 
aspects of interest supporting situations, we have to assume that these aspects are sta-
ble characteristics of social situations anyway, which collectively support the interest 
of a group of students. Thus, we would investigate changes of individuals by recon-
structing stable aspects of the social situation. Arrangements of lessons on a micro 
level can be seen as a changing situation. Therefore, investigating the arrangements 
of situations means investigating change. This leads to something more stable, that is, 
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the pattern of interest support but at the same time investigating interest support 
means observing interest change. We quickly see, that there are too many changing 
and stable aspects to observe. All of them are somehow interwoven. How can a re-
searcher escape this network of mutually connected aspects? 

The insight is that research according to these paradigms and the individual and the 
social perspectives has to be carried out separately and can then be brought together. 
The question now is how to reduce complexity?  

Concerning one aspect, psychological interest research has shown how to develop 
theories in the direction of the other paradigm. Personal and situational interest are 
two different interest concepts which tendentiously belong to different paradigms. 
Situational interest is a wider interest concept which is situated in the transition from 
noninterest to personal interest while maintaining the individual perspective. The 
missing point now is, an interest concept, which allows the investigation of interest 
supporting situations the other way round, that is, a concept that allows the identifica-
tion of interest supporting situations and their investigation, which begins with ques-
tions of change and leads towards stability while the social view is maintained. 

2. Characterization of interest-dense situations and its sensitizing background 
Distinguishing between personal and situational interest, psychological interest re-
search has taken a step from the paradigm of stability to change orientation. In my 
project “interest in mathematics between subject and situation” I adopted a pragmatic 
research stance and separated the social from the individual perspective (Bikner-
Ahsbahs, 2003b). Results of psychological interest research about situations that do 
and do not foster interest, practice of mathematics education and the analyses of data 
served as a sensitizing background for the construction of a new interest concept: 
This interest concept characterizes situations with a potential for interest support, so 
called interest-dense situations. In this section I describe this process and stress the 
connection to the two paradigms and the two perspectives. 

Psychological interest research states that contest situations are experienced as con-
trolled and, therefore, these situations do not foster interest development (Deci 1992, 
1998). Why is this so? 

Microanalyses of situations in the mathematics classes of my project show that dur-
ing contest situations students expect the teacher to act as a referee. As a fair referee 
the teacher has to strictly follow the rules. Therefore, he has to treat all the students in 
the class in exactly the same manner. During learning situations the opposite is the 
case. A good teacher has to treat the students individually according to their ability 
and the level of the individual learning process. This type of teacher behaviour causes 
conflicts in contest situations. In the project class the teacher interpreted the rules for 
students with special needs differently from the way he interpreted the rules for other 
students. This led to conflicting situations. The students demanded the teacher to be 
fair. Thus, fairness was a global requirement that controlled the contest situations col-
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lectively and so none of the students experienced competence, autonomy and social 
relatedness. Thus, interest supporting situations cannot be controlled. They support 
the experience of social belonging on the one hand and the individual learning proc-
esses on the other in order to allow the experience of competence and autonomy. 
Thus, interest supporting situations foster interest growth, hence the change of inter-
est. 

What has to be extracted in order to build up a collective interest concept which char-
acterizes interest supporting situations? 

Let us have a look at everyday mathematics lessons in more detail. A teacher calls a 
class "interested in mathematics" if the students advance the process of constructing 
mathematical meanings, if the students become involved in the activity as a group 
and if this involvement is shown by contributions of one student after the other. The 
students need not be interested individually, but together they act as if they were in-
terested. Although they get involved individually the process may be regarded as a 
process of social interaction: The students’ utterances are reactions to the contribu-
tions before and, at the same time, they initiate the next utterance. Triggered by this 
flow of interactions the students act and react individually but appropriate to the so-
cial situation. 

How could a collective interest concept be characterized? 

 

 
Fig. 1 Concept construction and its sensitizing background 

The basic feature of interest is the orientation towards the growth of knowledge. 
Thus, interest supporting situations are epistemic situations. In these situations one 
student after the other gets involved, but not in a controlled way like in contest situa-
tions. The students use the opportunity to get involved according to their individual 
thought processes and preferences regarded as reactions to the contributions before 
and their initiations of the next utterances (collective involvement). Experiencing 
competence means, that one student after the other constructs further and farther 
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reaching mathematical meanings. This can be seen as a flow of social interactions 
(dynamic of the epistemic process). Finally, in these situations students are concerned 
with mathematics and not with pleasing the teacher, getting good marks or winning a 
contest (mathematical valence). These three features describe a collective kind of in-
terest which I call situated collective interest. Situations in which situated collective 
interest emerge are now called interest-dense (Bikner-Ahsbahs 2000). These interest-
dense situations have a potential to support the experience of competence, autonomy 
and social belonging, hence, individual interest development. 

The concept of interest-dense situations is a new kind of interest concept which is not 
derived from known concepts, rather its construction is based on teaching practice, on 
theories and results of psychological interest research and on microanalyses of col-
lected data of situations that do not foster interest (fig. 1). It is a social interest con-
cept created to observe the emergence and the support of individual interest. The 
question now is not whether every single student is interested. The question is how 
this flow of social interactions within interest-dense situations is generated, stabilized 
or hindered. 

3. Development of an interactionist interest theory 
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We still do not know whether interest-dense situations support interest development. 
From the perspective of individual interest theories they should, but this has yet to be 
proved empirically. However, the concept of situated collective interest enables us to 
identify situations with a potential of interest support. The question is now how these 
situations are arranged. This means how they are generated, how they are stabilized 
and how they are hindered. This cannot be answered from the individual perspective. 
The method of interaction analysis is used to reconstruct individual interpretations, 
which are regarded as reactions to the previous utterances and as roots for the next 
ones, hence, as the result of a process of social interactions. Focussing on the social 
interactions, psychological theories are cut off as far as possible within data analyses. 
This way a theory of interest-dense situations is developed. It regards interest from a 
social point of view. The empirical data consists of video data on fraction lessons of a 
sixth grade class taken over half a school year. 

Interest-dense situations are characterized from the perspective of social interactions, 
epistemic processes and constructing value assignments in a collective way. All in-
terest-dense situations and a set of non-interest-dense comparison situations are ana-
lyzed from these three perspectives. The results are integrated into one theory. This 
theory distinguishes between ideal types of situations with different kinds of poten-
tials of interest support. Finally, psychological interest theories are used to evaluate 
this theory of interest-dense situations (fig. 2). 

4. Integrating the individual perspective 
The theory of interest-dense situations is at this point in time still an interactionist 
theory about situations with a well grounded potential to foster interest in mathemat-
ics. This raises the questions about how interest development relates to students’ par-
ticipation within interest-dense situations and whether interest-dense situations can 
indeed be regarded as interest supportive. This task could be carried out in follow-up 
studies. 

What can be researched in the future? 

First, the theory about interest-dense situations has to be broadened in order to in-
clude individual aspects and, then, linked with psychological interest theories. This 
could be carried out by analyses of individual data which were collected together 
with the video data of the investigated sixth grade class. Apart from personal data 
these individual data consist of 

• data about the preferences for mathematics lessons in comparison with the other 
school subjects,  

• data about a correspondence between the pupils in the class and the students of a 
university seminar on teaching fractions and 

• video data of interviews with the students of the class about their preferences for 
arrangement aspects of mathematics lessons. 
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Interest-dense situations are mildly directed by the teacher. Therefore, we can expect 
that the participating students’ preferences will become obvious during these situa-
tions. These preferences develop alongside the experiences during mathematics les-
sons. They relate to the overall preference for mathematics as a school subject. Ac-
tion preferences could be worked out in a follow-up study through comparison analy-
ses. In this comparison analysis, students’ actions within interest-dense and non-
interest-dense situations would have to be compared. The previous collected video 
data would provide an empirical basis for the analyses. 

The correspondence between the university students and the pupils has documented 
how the pupils have experienced the lessons. This is the background information for 
the interviews where relationships between pupils and aspects of mathematics lessons 
are to be reconstructed. These relationships are to be taken as crystallizations of ex-
periences during mathematics lessons, either the observed lessons or the ones before. 
Action preferences and the reconstructed relationships to aspects of the lessons could 
lead to the construction of a typology of interest in mathematics lesson. This typology 
could link the theory about interest-dense situations and psychological interest theo-
ries (fig.2). 

5. Reflections 
Without a doubt, change orientation and stability orientation cannot be investigated at 
the same time but both paradigms lead to complementary results. 

Therefore, one starts with one paradigm and, over time, becomes more open towards 
the other. 

Without a doubt, the social and the individual perspectives cannot be investigated at 
the same time but both perspectives lead to complementary results. 

Therefore, one separates the research perspectives at the beginning and combines 
them in the end. 

However, the question how far both paradigms and both perspectives can be inte-
grated within one theory remains. 
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CONCEPTUALIZATION OF THE LIMIT BY MEANS OF  
THE DISCRETE CONTINUOUS INTERPLAY: 
DIFFERENT THEORETICAL APPROACHES 

 
        Ivy Kidron, Jerusalem College of Technology 

 
Abstract: We investigate the contributions of three theoretical frameworks to a given 
research process and the complementary role played by each. First, we briefly 
describe the essence of each theory and then follow the analysis of their specific 
influence on the research process. The research process is on the conceptualization 
of the notion of limit by means of the discrete continuous interplay. 
 
1 The theoretical frameworks 
1.1 The process-object model  
This model deals with the dynamic process view and the static object view in relation 
to mathematical concepts. The dual character of mathematical concepts that have 
both a procedural and a structural aspect was dealt with many researchers. Sfard 
(1991) observed that abstract notions could be conceived operationally as processes 
and structurally as objects. Dubinsky (1991) postulated a theory of how concepts 
start as processes that are encapsulated as mental objects that are then available for 
higher-level abstract thought.  
Gray and Tall (1994) introduced the notion of procept, referring to the manner in 
which we cope with symbols representing both mathematical processes and 
mathematical concepts. Their theory focuses on the relationship between 
mathematical processes, objects and symbols that dually evoke both. 
Sfard (1991) talks about the transition from processes to abstract objects in enhancing 
our sense of understanding mathematics. She defined reification as a sudden ability 
to see something familiar in a totally new light, an instantaneous change in which a 
process solidifies into an object, into a static structure. Sfard added that the new entity 
is detached from the process which produced it and begins to draw its meaning from 
the fact of its being a member of a new category. 
 
1.2 The instrumentation theory  
Researchers have reflected on issues of ‘instrumentation’ and the dialectics between 
conceptual and technical work in Mathematics. See for example Artigue (2002), Guin 
and Trouche (1999), Lagrange (2000).  
The instrumental approach is a specific approach built upon the instrumentation 
theory developed by Verillon and Rabardel (1995) in cognitive ergonomics and the 
anthropological theory developed by Chevallard (1992). The term ‘instrumentation’ 
is explained in Artigue (2002): The “instrument” is differentiated from the object, 
material or symbolic, on which it is based and for which the term “artifact” is used. 
An instrument is a mixed entity, in part an artifact, and in part cognitive schemes 
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which make it an instrument. For a given individual, the artifact becomes an 
instrument through a process, called instrumental genesis. This process leads to the 
development or appropriation of schemes of instrumented action that progressively 
take shape as techniques that permit an effective response to given tasks.  
Artigue adds that it is necessary to identify the new potentials offered by 
instrumented work, but she also stresses the importance of identifying the constraints 
induced by the instrument. The instrumentation theory focuses on the mathematical 
needs for instrumentation, on the status of instrumented techniques as well as on the 
unexpected complexity of instrumental genesis. 
 
1.3 The theory of abstraction and consolidation  
Hershkowitz, Schwarz and Dreyfus (2001) have proposed a model of dynamically 
nested epistemic actions for processes of abstraction in context. The new abstraction 
is the product of three epistemic actions: Recognizing, Building-with and 
Constructing. The authors of the theory explain that Constructing is the main step of 
abstraction. It consists of assembling knowledge artifacts to produce a new mental 
structure with which students become acquainted. Recognizing a familiar 
mathematical structure occurs when a student realizes that the structure is inherent in 
a given mathematical situation. Building-with consists of combining existing artifacts 
in order to meet a goal such as solving a problem or justifying a statement. 
In Hershkowitz, Schwarz and Dreyfus (2001) we read that the genesis of an 
abstraction passes through three stages: (a) the need for a new structure; (b) the 
construction of a new abstract entity and (c) the consolidation of the abstract entity 
through repeated recognition of the new structure and building-with it in further 
activities. Hershkowitz (2004) pointed out that knowledge might be constructed that 
remains available only for a short while. In a later stage the student may not 
recognize it as an already existing structure - no consolidation of this short-term 
construction has occurred. Thus the constructing stage of abstraction does not imply 
consolidation and a mental structure that has not been consolidated is likely to be 
fragile. Dreyfus and Tsamir (2004), Hershkowitz (2004), Monaghan and Ozmantar 
(2004) consider the process of consolidation with respect to the theory of abstraction. 
Dreyfus and Tsamir (2004) identify three modes of thinking that take place in the 
course of consolidation: building-with, reflecting on the building–with, and 
reflecting. Monaghan and Ozmantar (2004) note that using and reflecting on the new 
abstractions help the learner to establish interconnections between his established 
mathematical knowledge and the new abstractions. 
 
2 The theoretical approaches and their influence on the research study  
A description of the research study can be found in Kidron (2003). In this paper the 
research study will be described only through the demonstration of the role played by 
each theoretical framework and its influence on the research process. 
2.1 The process- object model and its influence on the research study 
Previous researches that used the process-object theoretical framework describe the 
cognitive difficulties that accompany the limit concept. See for example Cornu 
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(1991), Tall (1992). These researches, and others that are described in this section, 
which highlight students' dynamic process view in relation to concepts such as limit 
and infinite sums, were influential in defining the aim of the present research study. 
Tall (2000) theorized that the concept of limit is accompanied by cognitive 
difficulties because it conflicts with students’ previous experience of symbols as 
procepts. In arithmetic, symbols have built-in computational processes to ‘give an 
answer’. In school algebra, the symbols are algebraic expressions that are potential 
procepts. The operation (of evaluation) can only be carried out when the variables are 
given numerical values. Tall stressed that in the Calculus, the situation changes with 
limit processes that are potentially infinite and so give rise to a limit concept 
approached by an infinite process which usually has no finite procedure of 
computation. 
Tall (1992) emphasized that the ideas of limits and infinity, which are often 
considered together, relate to different and conflicting paradigms.  He illustrated this 
argument in analyzing the students’ answer that 1+1/2+1/4+1/8+.. is ∞− /12            
‘because there is no end to the sum of segments’ (Fischbein, Tirosh, and Hess ,1979).  
Tall explained that here it is the potential infinity of the limiting process that leads to 
the belief that any property common to all terms of a sequence also holds of the limit. 
In this case, the suggested limit is typical of all the terms: just less than 2. 
In previous studies concerning the way students conceive rational and irrational 
numbers the infinite decimals were viewed as potentially infinite processes rather 
than as number concepts. In Sfard’s words, the new entity was not detached from the 
process which produced it.  
Monaghan (1986) observed that students’ mental images of both repeating and non-
repeating decimals often represent “improper numbers which go on for ever”. 
Kidron & Vinner (1983) observed that the infinite decimal is conceived as one of its 
finite approximations (“three digits after the decimal point are sufficient, otherwise it 
is not practical”), or as a dynamic creature which is in an unending (a potentially 
infinite) process: in each next stage we improve the precision with one more digit 
after the decimal point. Let us summarize what we learnt from the previous 
researches with the process object theoretical framework: a. the students viewed the 
limit concept as a potential infinite process b. the students expressed their belief that 
any property common to all terms of a sequence also holds of the limit. This natural 
way in which the limit concept is viewed might be an obstacle to the conceptual 
understanding of the limit notion in the definition of the derivative function (x)'f  as 

0lim →h  (f(x+h)-f(x)) / h . The derivative might be viewed as a potentially infinite 
process of  (f(x+h)-f(x)) / h approaching (x)'f for decreasing h. As a result of the 
belief that any property common to all terms of a sequence also holds of the limit, the 
limit might be viewed as an element of the potentially infinite process. In other 
words, xyx ∆∆→∆ /lim 0  might be conceived as xy ∆∆ /  for a small x∆ . How small? If 
we choose x∆ =0.016 instead of 0.017, what will be the difference? There is a belief 
that gradual causes have gradual effects and that small changes in a cause should 
produce small changes in its effect (Stewart, 2001). This intuition might explain the 
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misconception that a change of, say, 0.001 in x∆ will not produce a big change in its 
effect.  
The cognitive difficulties relating to the understanding of the definition of the 
derivative as a limit are reflected in the historical evolution of the concept. Kleiner 
(2001) suggested that before introducing rigorous definitions we have to demonstrate 
the need for higher standards of rigor. This could be done by introducing 
counterexamples to plausible and widely held notions. I was interested in a 
counterexample that will demonstrate that one cannot replace the limit                 
“ xyx ∆∆→∆ /lim 0 ” by xy ∆∆ /  for x∆  very small and that omitting the limit will 
change significantly the nature of the concept. The counterexample was found in the 
field of dynamical systems. A dynamical system is any process that evolves in time. 
The mathematical model is a differential equation dy/dt = y’ = f(t,y) and we 
encounter again the derivative ∆y/∆tlim'y 0∆t→= . In a dynamical process that changes 
with time, time is a continuous variable. Using a numerical method to solve the 
differential equation, there is a discretization of the variable ”time”. Our aim is that 
the students will realize that in some differential equations the passage to a discrete 
time model might totally change the nature of the solution. We also aim to help 
students realize that gradual causes do not necessarily have gradual effects, and that a 
difference of 0.001 in ∆t might produce a significant effect.  
In the following counterexample (the logistic equation), the analytical solution 
obtained by means of continuous calculus is totally different from the numerical 
solution obtained by means of discrete numerical methods. Moreover, using the 
analytical solution, the students use the concept of the derivative xyx ∆∆→∆ /lim 0 . 
Using the discrete approximation by means of the numerical method the students use 

xy ∆∆ /  for small x∆ . We will see that the two solutions, the analytical and the 
numerical, are totally different. The aim of the research study is to analyze the effect 
of this specific discrete-continuous interplay on the students’ conceptual 
understanding of the limit in the definition of the derivative. Due to previous process 
object related researches I was conscious of the cognitive difficulties concerning the 
limit. This comes to light in the specific discrete-continuous interplay that motivated 
the design of the learning experiment.   
2.1.1 The design of the learning experiment: Do gradual causes have gradual 
effects?   
First year college students in a differential equations’ course (N=33) were the 
participants in the research. The exercise sessions were held in PC laboratories 
equipped with MatLab software. The Mathematica software was also used during the 
lectures for demonstrations.  
The students were given the following task: a point )y,(t 00   and the derivative of the 
function dy/dt=f(t,y) are given. Plot the function y(t). The students were asked to find 
the next point )y,(t 11  by means of )y,f(t)t)/(ty(y 000101 =−− . As t increases by the 
small constant step ∆ttt 01 =− , the students realized that they are moving along the 
tangent line in the direction of the slope )y,f(t 00 . The students generalized and wrote 
the algorithm: ),f(t∆t y nn1n nyy +=+ for Euler’s method. They were asked how to 
better approach the solution. They proposed to choose a smaller step ∆t .     
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The logistic equation dy/dt = r y(t) (1-y(t)), y(0) = 0y was introduced as a model for 
the dynamics of the growth of a population. An analytical solution exists for all 
values of the parameter r. The numerical solution is totally different for different 
values of ∆t  as we can see in the graphical representations of the Euler’s numerical 
solution of the logistic equation with r = 18 and y(0) =1.3 . In the first plot, the 

solution tends to 1 and looks like the 
analytical solution. In the second, third and 
fourth plot, the process becomes a periodic 
oscillation between two, four and eight 
levels. In the fourth plot, we did not join the 
points, in order that this period doubling 
will be clearer. In the fifth and sixth plot, 
the logistic mapping becomes chaotic. We 
slightly decrease ∆t in the seventh plot. For 

the first 40 iterations, the logistic map appears chaotic. Then, period 3 appears. As we 
increase ∆t very gradually we get, in the eight plot, period 6 and, in the ninth plot 
period 12 and the belief that gradual causes have gradual effects is false!  
Students’ reactions were observed by means of questionnaires. 
Some reactions will be described in detail in relation to the influence of the two other 
theories on the analysis of the students’ answers. 
2.2 The instrumentation theory and its influence on the research study 
Analyzing the influence of the process-object theory the emphasis is laid upon the 
cognitive difficulties that accompany the conceptualization of the limit. Analyzing 
the influence of the instrumentation theory the emphasis is on the way we take 
advantage of the discrete continuous interplay. It is obvious that in our research 
studies on the conceptualization of the limit in the years 1983, 1986 we did not have 
the same technological means. But numerical methods are not new. The founders of 
the mathematical theory developed numerical discrete algorithms to solve problems 
that relate to dynamical continuous processes. The old masters pointed out the 
importance of analyzing the error that arises from applying numerical processes. 
With the help of the CAS, we were able to apply Euler’s algorithm to the logistic 
equation and to invite the students to analyze the accuracy of the discrete method. I 
wanted to examine the students’ reactions when they realize that the approximate 
solution to the logistic equation by means of discrete numerical methods is so 
different from the analytical solution. My aim was that the students would realize that 
the source of the error resides in the fact that in the numerical methods the derivative 
is considered as xy ∆∆ /  for x∆  very small, contrary to the analytical method in 
which the derivative is considered as xyx ∆∆→∆ /lim 0 . Thus, the “instrument” plays a 
very important role. It enables us to “see” the significant difference between the 
discrete and the continuous methods. We can make advantage from the new 
potentials offered by the instrumented work, for example, by means of the 
discretisation processes. But, Artigue (2002) warns us that the learner needs more 
specific knowledge about the way the artifact implements these discretisation 
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processes. Thus, it is important to be aware of the complexity of the instrumentation 
process when we come to analyze the students’ reactions in the research study. 
By means of error analysis, I planned to help the students to better understand the 
continuous methods and the concept of limit. But, working with a CAS, there are 
other unexpected effects that are directly linked with the “instrument” and the way it 
influences the students’ thinking. In addition to the error due to the discretization 
process, to the fact that an algorithm that belongs to a numerical method was used to 
solve the logistic equation in place of the analytical method, there are other sources 
of error that are directly related to the “tool”. For example, an error could be a result 
of a round off in the computations that becomes more pronounced because of the       
"cumulative effect" of the iterative numerical method. The students’ attention might 
be distracted by the round-off error especially if in previous experience with the 
computer they encountered such kind of round off error. This happened to a student, 
Hadas, which attributed the error to the round-off effect: 

      Hadas I remember from an exercise in the calculus course that the solution 
with Matlab was 0 but the solution using the symbolic form was 0.5. 
When we tried to understand why this happened we realized that 
MatLab computes only 15 digits after the decimal point.   

 Hadas referred to an episode in the calculus course in which the students were given 
the function 126 ))/xcos(x-1 (f(x) =  and they had to explain why some graphs of f 
might give false information about f(x)lim 0x→ . The limit is ½ but both Mathematica 
and MatLab give the answer 0 when we evaluate the function for x = 0.01. Working 
the exercise in the PC lab, the students understood that the computer with its limited 
precision gives the incorrect result that )cos(x-1 6 is 0 for even moderately small 
values of x. We have here a system of “double reference” (Lagrange, Artigue): 
mathematical meanings and meanings specific to the instrument. Therefore, there is a 
need to analyze the different sources of errors, and to help students differentiate 
between the error due to mathematical meanings, like the fact that the limit was 
omitted in Euler’s algorithm, and the error due to the characteristics of the tool.  
2.3 The abstraction and consolidation theory and its influence on the research 
study 
Only a small percentage (30%) of the students wrote in their answers to the 
questionnaires that the source of the error resides in the fact that in the numerical 
method xyx ∆∆→∆ /lim 0  is replaced by xy ∆∆ /  for x∆  very small. The students 
looked at Euler’s algorithm and even those who previously defined correctly the 
derivative as a limit, did not succeed to identify the source of error in the algorithm.  
Thus, for most students it might not be sufficient simply to introduce 
counterexamples to widely held notions. Taking also into account the complexity of 
the instrumentation process, I understood that I had to be more cautious in analyzing 
the students’ answers to the questionnaire.  Thus, it was decided to use new lenses to 
analyze the results in the present study and to analyze the knowledge construction by 
the individual. I decided to focus on process aspects of construction of the structure 
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knowledge rather than on outcomes (Hershkowitz, 2004). By analyzing each student’ 
answers to the different questionnaires I aimed to examine the evolution of the 
student’s thinking before and after being confronted with the counterexample. 
In the following, I will analyze the answers of a student named Nurit to the 
questionnaires in terms of the theory of abstraction and consolidation. We will follow 
Nurit’s construction of Euler’s numerical method within which occurs the 
consolidation of the derivative concept as a limit. To the first question:                 
“In Euler’s method, if we attribute a very small value to the step ∆t , for example - 
0.02, can we be sure that we have a good approximation to the solution?”             
Nurit answered that the smaller ∆t , the better is the approximation. In this first stage 
Nurit identified the limit as a process and that a small ∆t may be not small enough. 
Nurit was also asked to express her opinion about the following statement:" If in 
Euler’s method, using a step size ∆t = 0.017 we get a solution very far from the real 
solution, then a step size ∆t = 0.016 will not produce a big improvement, maybe 
some digits after the decimal point and no more”. This question was presented to the 
student before the introduction of the logistic equation. Nurit’s first reaction was   

                      It seems to me that if with ∆t = 0.017 we didn’t get a good solution, 
then ∆t = 0.016 will not produce a big improvement.  

Then she changed her mind: 
                      That was my first impression but a second look at the expression for 

1ky + in Euler’s algorithm led me to the conclusion that the method is 
iterative, that is, on ky we apply the algorithm in order to find 1ky +  etc. 
etc. and after many iterations even a slightly smaller step size will 
produce a big improvement.  

In this second stage, Nurit overcame the intuition that gradual causes have gradual 
effects by reflecting on the accumulating effect in the numerical solution. After being 
introduced to the logistic equation with the two different solutions, the analytical and 
the numerical, Nurit was asked to characterize the source of the error in Euler’s 
method. At that point, she remembered an exercise on the sensitivity of some 
differential equations and realized that in the continuous approach too, small changes 
in a cause can produce large changes in its effect: 

                      We have seen in an exercise that a change in the initial condition of a 
differential equation might cause a large change in the solution. 

In this third stage, Nurit realized that small changes in a cause can produce large 
changes in its effect also without the accumulating effect and not only in iterative 
processes. But at that stage, the reason for the small change in the cause in the case of 
the numerical solution to the logistic equation was not clear to Nurit. Trying to 
identify the source of the error Nurit‘s first reaction was that the error is due to the 
round - off effect and the fact that the error accumulates. Then she changed her mind:  

                     The source of the error in Euler’s method is the way the derivative is 
defined )y,f(tt)/y(y kkk1k =∆−+ and by means of this definition we find 

1ky +  in Euler’s algorithm. But we know that this definition is not 
precise. We have to add the condition that 0∆t →  so we will know that 
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we are not dealing with the secant to the graph of the function but with 
the slope of the tangent. Because of the numerical method ∆t was 
chosen as a small number ∆t =0.1; ∆t = 0.12… but not small enough 
and in fact the derivative is defined for 0∆t → . 

 Nurit reconstructed her knowledge about the definition of the derivative by means of 
interconnections with existing knowledge (the sensitivity of some differential 
equations) and intuitive ideas (gradual causes have gradual effects). Her process of 
construction led her to differentiate between the error due to mathematical meanings, 
namely, the fact that the limit was omitted in Euler’s algorithm and the error due to 
meanings specific to the tool like the round off error. 
Nurit consolidated her conceptual understanding of the limit concept in the definition 
of the derivative. She did it within her constructing of the error analysis in applying 
Euler’s method to solve the logistic equation. Analyzing her lengthy process of error 
analysis we distinguish different phases. In the later phases her attention is no longer 
distracted by the accumulating effect of the numerical method, nor by the round off 
effect induced by the tool. She is ready to seek ‘the reason for a small change in a 
cause’ not only in error due to meanings specific to the instrument. This led her to 
seek for an error due to mathematical meanings. At the end of the consolidation 
process, Nurit is confident with her reconstruction of the limit concept and is also 
resistant to challenges  

                      Now, it could be that there is also a round off error in the numerical 
method but a round off error by itself could not have a so big influence 
on the graph of the solution so that we will have a periodic oscillation 
between two levels instead of a solution that tends to 1. The error is 
due to the way the derivative is defined in the numerical method. 

We recall that confidence is one of the psychological constructs that Dreyfus and 
Tsamir (2004) associated with the progressive consolidation of an abstraction. 
Other students in their process of construction of Euler’s method did not consolidate 
the conceptual understanding of the derivative. For example:  

          Sarit    In Euler’s algorithm each step depends on the previous step; if we make an 
error in a certain step the error accumulates and is more pronounced in the 
next steps. I cannot say what is exactly the error but the accumulating 
effect is the problem. 

 Later Sarit related the error to the round - off error. 
We should not see in Sarit answer the manifestation of some kind of cognitive 
inability. She and other students have to be faced with the necessity of developing 
schemes that will help them to differentiate between error due to mathematical 
meanings and error due to meanings specific to the instrument (Artigue, 2002). 
 
3. The complementary role of the three theories 
Due to the procept theory I was aware of the cognitive difficulties that accompany the 
limit concept. This helped me to clearly define the knowledge construct in the 
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research and to prepare the design of the learning experiment. The process object 
model was used in analyzing some students' reactions. Students’ expressions like the 
following "the smaller ∆t , the better is the approximation" reflect the way the limit 
is conceptualized as a potentially infinite process. We can observe the 
complementary role of the theories in the analysis of the students' reactions. The new 
lenses offered by the Abstraction and Consolidation theory enabled me to analyze the 
knowledge construction by the individual. It facilitated my understanding that it is 
within the process of construction of Euler’s method, that the consolidation of the 
definition of the derivative as a limit took place. But I had to analyze the way 
students achieved this process of construction in the light of the instrumentation 
theory: The roles of the abstraction & consolidation theory and the instrumentation 
theory intertwined. 
I will conclude with the question:  
What is specific to the subject of the research study that demands the contribution of 
more than one theoretical approach on the research process? 
Trying to answer this question we observe the dual character of the limit as a process 
and as a concept (the procept theory) but we may also consider the discrete 
continuous interplay that is the basis of the definition of the derivative as it is 
expressed in Berlinski (1995):  “In making possible the definition of the derivative, 
the concept of a limit unifies in a fragile and unlikely synthesis two diverse aspects of 
experience, the discrete and the continuous”.  
In the research study we used the discrete – continuous interplay to help students 
conceptualize the notion of limit. To achieve this goal, the students were asked to 
compare continuous and approximate discrete methods in solving the same problem.  
The investigation of this specific usage of the discrete – continuous interplay in the 
research process demands the contribution of the instrumentation theory. 
The students learned the notions of limit and derivative in the calculus course. In the 
research study with its specific usage of the discrete – continuous interplay, the 
students had to reconstruct the limit concept by recognizing it in the different context 
of a course in differential equations. This kind of reconstruction is the consolidation 
phase in the abstraction and consolidation theory.  
This specific research study demands the contribution of more than one theoretical 
approach to the research process. The question whether one can take advantage of the 
combination of different theories in other research processes in mathematics 
education is an issue open for further investigation. 
 
References 
Artigue, M. (2002). Learning Mathematics in a CAS environment: The genesis of a reflection about  

instrumentation and the dialectics between technical and conceptual work, International 
Journal of Computers for Mathematical Learning 7, 245-274.  

Berlinski, D. (1995). A tour of the Calculus (p.168). Vintage Books. New York. 
Chevallard, Y. (1992). Concepts fondamentaux de la didactique: Perspectives apportées par une 

approche anthropologique. Recherches en Didactique des Mathématiques 12(1), 77-111. 
Cornu, B. (1991). Limits. In D.  Tall, (Ed.) Advanced Mathematical Thinking (pp.153-166), 

Working Group 11

CERME 4 (2005) 1303



 10

Dordrecht: Kluwer Academic Publishers. 
Dreyfus, T. & Tsamir, P. (2004). Ben’s Consolidation of Knowledge Structures About Infinite Sets. 

Journal of Mathematical Behavior 23 (3), 271-300. 
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D.  Tall, (Ed.) 

Advanced Mathematical Thinking (pp.95-123), Dordrecht: Kluwer Academic Publishers. 
Fischbein, E., Tirosh, D. & Hess, P. (1979). The intuition of infinity, Educational Studies in 

Mathematics, 10, 3-40. 

Gray, E.M. & Tall, D.O. (1994). Duality, ambiguity and flexibility: a proceptual view of simple 
arithmetic, Journal for Research in Mathematics Education, 25, 116-140. 

Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical 
instruments: The case of calculators, International Journal of Computers for Mathematical 
Learning 3(3), 195-227. 

Hershkowitz, R., Schwarz, B. B. & Dreyfus, T.  (2001).  Abstraction in context: Epistemic 
actions.  Journal for Research in Mathematics Education 32, 195-222. 

Hershkowitz, R. (2004). From diversity to inclusion and back: Lenses on learning (plenary 
lecture). In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th International 
Conference for the Psychology of Mathematics Education, Vol. 1 (pp. 55-68). Bergen, 
Norway: Bergen University College. 

Kidron, I. & Vinner, S. (1983).  Rational numbers and decimals at the senior high level- 
Density and Comparison,   Proceedings of the 7th International Conference for the 
Psychology of Mathematical Education, (pp. 301-306). Israel. 

Kidron, I. (2003). Is small small enough? Conceptualisation of the continuous by means of the 
discrete. Proceedings of the 5th International Mathematica Symposium,  (pp.145-152). 
Imperial College Press, London, England. 

Kleiner, I.  (2001).  Infinitely small and large in Calculus.  Educational Studies in Mathematics 
48, 2-3 (Ed.Tall,D. and Tirosh, D.), Kluwer publishers. 

Lagrange, J.B. (2000). L’integration des instruments informatiques dans l’enseignement:Une 
approche par les techniques. Educational Studies in Mathematics 43, (1), 1-30.  

Monaghan, J. (1986). Adolescent’s understanding of limits and infinity. Unpublished Ph. D. thesis, 
Warwick University, U.K. 

Monaghan, J. & Ozmantar, M.F. (2004). Abstraction and consolidation. In M. J. Høines & A. 
B. Fuglestad (Eds.), Proceedings of the 28th International Conference for the Psychology 
of Mathematics Education, Vol. 3 (pp. 353-360). Bergen, Norway: Bergen University 
College. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and 
objects as different sides of the same coin, Educational Studies in Mathematics 22, 1-36. 

Stewart, I. (2001). What shape is a snowflake (p.148). W.H. Freeman. 
Tall, D. (1992). The transition to advanced mathematical thinking: functions, limits, infinity and 

proof. In Grouws D.A(Ed.) Handbook of Research on Mathematics Teaching and Learning 
495-511, New York: Macmillan. 

Tall, D. (2000). Cognitive development in advanced mathematics using technology, Mathematics 
Education Research Journal, 12(3), 210-230.  

Verillon, P.& Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in 
relation to instrumented activity. European Journal of Psychology of Education10(1),77- 101.        

Working Group 11

1304 CERME 4 (2005)



THEORIES AND EMPIRICAL RESEARCHES: 
TOWARDS A COMMON FRAMEWORK 

 
Ferdinando Arzarello, Università di Torino, Italia 

Federica Olivero, University of Bristol, United Kingdom 
 
Abstract: Some examples of relationships between empirical and theoretical researches 
are introduced. A new frame is defined, which is based on the notion of second order 
variables and on that of space of action, production and communication (APC space). 
This allows a unifying approach to some didactical phenomena. The APC space is 
illustrated through a concrete example. The frame is then compared with the 
anthropological approach of Y. Chevallard and used to discuss the notion of 
ostensive/non ostensive objects. 
 

Introduction 
The paper gives some examples of how empirical studies may contribute to the 
development and evolution of theories and, conversely how specific research paradigms 
may influence empirical research. The global result of such interactions consists in a 
deeper understanding of the didactical phenomena within an enriched and unifying 
theoretical frame. Specifically, we shall consider the following problem, which concerns 
the gap between theory and practice in Math Education: 

Data from empirical research very often are difficult to discuss and interpret 
within a single theoretical frame. They appear contradictory and only 
partially in accord with theories.  

In the literature the problem has been discussed by many people, e.g. by Steiner (1985) 
and Arzarello & Bartolini Bussi (1998). Steiner has elaborated the notion of 
complementarity of theories to interpret empirical data, which do not fit into a single 
frame. Arzarello & Bartolini Bussi have introduced so-called second order variables to 
elaborate further the notion of  complementarity. In this study we will enlarge the notion 
of second order variable and will introduce the construct of a space of action, production 
and communication (APC-space in short). The APC-space requires specific and 
different, complementary, magnifying lenses of observation to interpret didactical 
phenomena, according to the complementary approach of Steiner. However it represents 
a concrete unifying frame at the cognitive level, that is at a level where the empirical 
research and the theoretical frames fit together. We will show how our approach fits and 
possibly enlarge also theoretical frames elaborated according to different philosophies, 
e.g. the anthropological approach by Y. Chevallard (Chevallard, 1992). 
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The paper is divided in 4 parts. In §1 we will summarize the notion of second order 
variable and illustrate it with an important example, the didactical times. In §2 we shall 
introduce the APC-space and illustrate sketchily one of its components, namely 
gestures. In §3 we shall sketch the dialectic ostensive/non ostensive objects, recalling 
how it is discussed within the frame of the anthropological approach and shall show how 
it can be interpreted within our frame. A short Conclusion ends the paper. 

1. Second order variables 
Didactical phenomena concern complex systems. We use the distinction between first 
and second order variables to discuss them. This is a typical theoretical construct that 
must be investigated through suitable observation tools. The terminology is borrowed 
from logic: first order variables are theoretical constructs which, within a certain 
context, are considered as simple enough to be irreducible to simpler ones, while second 
order variables are more complex relationships between two (or more) first order ones. 
We have argued elsewhere (Arzarello & Bartolini Bussi, 1998) that a relevant research 
study for innovation in mathematics classroom must deal with second order variables. It 
is important to say that a second order analysis does not simply combine the first order 
components like in a jigsaw, but these variables are related to one another within a 
system. The idea comes from Vygotsky (1992): he advocates for the necessity of 
studying single components of a phenomenon, which still have the same characteristics 
of the global phenomena, without reducing the phenomena to too fine components 
which have lost the global features. In the same way, in research in Mathematical 
Education it is worth studying conceptual hierarchies for mathematics and for social 
interaction within a context in which they interact. 

Examples of first order variables are gestures, speech, writing, signs, and so forth, in 
relation to students’ and teacher’s activities in the classroom. Within a certain grain of 
analysis they constitute important atomic components in learning processes. But it is 
only considering the mutual interactions among them that we have a more realistic 
picture and a deeper analysis of such activities. Namely a second order analysis is 
necessary. An example of such an analysis for those component has been developed by 
L. Radford, who has introduced a second order construct to give count of the 
relationships among the first order variables above, namely the semiotic means of 
objectification: 

This led us to envisage a broader context large enough to conceive of tools, things, 
gestures, speech, writing, signs, and so forth, in relation to the individuals’ activities 
and their intentional goals. In this broader context, we called semiotic means of 
objectification the whole arsenal of intentional resources that individuals mobilize in 
the pursuit of their activities and emphasized their social nature: The semiotic means 
of objectification appear embedded in socio–psycho–semiotic meaning-making 
processes framed by cultural modes of knowing that encourage and legitimize 
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particular forms of sign and tool use whereas discarding others. (Radford, 2003, 
p.44). 

Other examples of first order variables are the ostensive and non-ostensive objects 
introduced by Bosch & Chevallard (1999). They will be discussed in § 3. 

Further examples of first order variables are the different didactical times existing in the 
classroom phenomena, typically the inner time and the physical time. Let us discuss 
these two and the reason why only a second order analysis can deepen their meaning in 
learning processes: for more details see Arzarello et al. (2002) and also Lemke (2000). 
Time reveals as a very complex second order variable that must be analysed through 
different tools. In fact, the temporal development of didactical phenomena in the 
classroom takes place with different velocities and some particular phenomena may be 
fully understood only if what happens in the micro-time is connected to what happens in 
the macro-time. The temporal development of didactical phenomena can be grasped 
only through an analysis, which involves both first and second order variables. They 
need to be studied according to both a fine and a global analysis: so they require the use 
of a number of different research methods, always complementary, sometimes 
contradictory. On the one hand there are long-term processes, typically connected to 
innovative “problematiques”, based on the analysis of the evolution of students’ 
processes, of teachers’ beliefs, etc. in macro-situations. On the other hand, there are 
short-term processes, based on the fine analysis of micro-situations. Moreover in the 
class there is the physical time, i.e. the linear sequence of moments measured by the 
clock, as described by Varela (1999). Yet, Varela himself calls our attention to the 
existence of an ‘inner time’, that gives rise to human temporality, centred on the present 
and manifesting itself as a threefold unity of the just-past and the about-to-occur. This 
inner time is mostly individual and unconscious. However its features may be inferred 
from external traces (linguistic expressions, metaphors, gestures, glances). 

In Arzarello et al. (2002) it is shown that: (a) Both kinds of time (i.e. physical and inner 
time) are relevant in the research in Mathematics Education, when focus is on the 
processes of teaching and learning mathematics. (b) A further finer specification of both 
is needed, that requires the introduction of several theoretical constructs related to 
human temporality and that puts forward a lot of methodological problems concerning 
the relationships between them. (c) Last but not least, the system of time variables shows 
deep connections with mathematical and linguistic components. 

Despite their importance, as far as we know, little attention has been given in the 
literature on mathematics education to the variables concerning time, maybe diverted by 
the belief that time is not so important, because the final, accepted product of 
mathematical activity has usually a de-timed structure. On the contrary, when one speaks 
of time in the classroom he/she is using a word which refers to a typical second order 
variable. 
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2. The APC-space 
In the previous paragaph we have argued why didactical phenomena can be described 
suitably only looking (also) at second order variables. The cognitive space of action, 
production and communication (APC space in short), introduced in Arzarello (in press), 
is the space where such second order phenomena concretely live.  

As we recalled above, Vygotsky (1992) warned about the hope of classical psychology 
of getting a knowledge of something by studying only the components separately and 
suggested an useful metaphor: it makes no sense to study separately hydrogen and 
oxygen in order to study water since they do not have the properties of water. APC space 
is a concrete realisation of this metaphor for math education. In fact, only considering its 
components in interaction one can get a realistic picture of what happens in the class of 
mathematics. This construct is the result of both theoretical and empirical research. It is 
an environment for cognition, which may be built up, developed and shared in the 
classroom. It is a typical second order construct, namely an integrated and dynamic set, 
which acts as a whole. Its main components are: the body, the physical world, the 
cultural environment. When students learn mathematics all these components (and 
possibly others, e.g. emotional ones) are active and interact. The APC-space is built up 
in the classroom through the interactions among pupils, the mediation of the teacher and 
possibly through interactions with artefacts. A finer analysis of its three components 
allows to define its ingredients, namely culture, sensory-motor experiences, embodied 
templates, languages, signs, representations, and so on. The three letters A, P, C 
illustrate its dynamic features, namely the fact that in learning mathematics there are 
three main components: students’ acting and interacting (in the situation, with mates, 
with the teacher, with oneself, with tools), their productions (e.g. the answer to a 
question, other questions, and so on), the communication aspect (e.g. when the 
discovered solution is communicated to a mate, to the teacher, using suitable 
representations). These aspects of the didactical phenomena have been pointed out for 
many years by many people, e.g. by G. Brousseau (1997). The APC space contains as an 
integrated whole its components, which all are essential and always active in all forms of 
learning, even the most abstract ones. As such, the APC-space allows to study properly 
the perceptuo-motor features in processes of knowing. In fact any such a process 
involves action and perception: learning is often based on doing, touching, moving and 
seeing. Such features do not only characterise the first phase of cognitive development, 
but are also involved in the most advanced learning processes. 

This shifting in the approach to learning has been pointed out by many studies in the 
field of neurosciences in these last years (see Lawson, 2003, and the quotation at the end 
of this paper) and is summarized by R. Nemirovsky (2003, p. 1-108) as follows:  

a) Mathematical abstractions grow to a large extent out of bodily activities having 
the potential to refer to things and events as well as to be self-referential. 
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b) While modulated by shifts of attention, awareness, and emotional states, 
understanding and thinking are perceptuo-motor activities; furthermore, these 
activities are bodily distributed across different areas of perception and motor 
action based on how we have learned and used the subject itself. [Moreover,] that 
of which we think emerges from and in these activities themselves. 

c) [As a consequence,] the understanding of a mathematical concept rather than 
having a definitional essence, spans diverse perceptuo-motor activities, which 
become more or less active depending of the context. 

This approach challenges the traditional one mainly based on the transmission of 
contents through formal language. This point is discussed widely in Antinucci (2000), 
who contrasts this approach to what he calls the symbolic-reconstructive one. The first 
approach, which is present from the beginning of the cognitive development of the child, 
works on symbols (linguistic, mathematical, logical) and reconstructs “objects”, their 
meanings and mental representations, in the mind. It is a sophisticated way of knowing 
and requires awareness of the procedures and the appropriation of the symbols used and 
their meanings. In this regard, we note that "traditional" teaching in mathematics, which 
is usually characterised as “transmissive”, is based, almost exclusively, on a symbolic-
reconstructive approach. According to the “transmissive” model, the teacher tries to put 
the student in contact with mathematical objects by means of the use of techniques 
which require high competencies in order to reconstruct, in the student’s mind, the 
properties which characterise them. We observe, moreover, that this type of approach, 
disconnected from the construction of a rich experiential base, can create obstacles to 
learning. For example, interpreting or explaining a mathematical concept, without 
having created proper experiential conditions, generally produces resistance and 
confusion in learners. The three components of the APC-space allow to consider both 
the symbolic-reconstructive and the perceptuo-motor way of learning within an unifying 
environment where all such processes develop. It is a second order space, in the sense 
that such components do interact in a systemic and intrinsic way. An example taken 
from a case study developed by the research team of  R. Nemirovsky (Nemirovsky, R. et 
al., 1998) will illustrate this (other examples are in Arzarello & Robutti, 2004, and in 
Arzarello, in press). In the study a young girl, Eleanor, makes experiences with a motion 
sensor that allows to measure her distance from a fixed place. Distances Vs/ time are 
recorded in a Cartesian graphic which appears in real time on the screen of a computer. 
Eleanor can see the screen and move the device as she likes. Doing that, she enters into 
some of the many different meanings of a function. Of course only the video can show 
completely what is happening, insofar not only Eleanor’s words but also her gesture and 
body motions are important for understanding the multivariate way in which she is able 
to build some of the meanings of a function. Namely to grasp what is happening you 
need a second order approach. In Arzarello (in press) it is shown that Eleanor’s learning 
can be described properly using the APC-space: its components and ingredients are all 
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active and interacting while Eleanor is learning. Considering only one or the other 
means to make it impossible to see the concrete learning process while it is happening. 
To have an idea of this one can look at the following excerpt from that protocol (E = 
Eleanor; T = Teacher): 

12.  E:  Let’s see…I wonder if you could get it to go straight up? [she follows the 
graph very fast with her forefinger] 

13.  E:  Not like diagonal. Probably you couldn’t because if it would go straight up it 
would have to just be the same time, because it’s moving along [she makes 
with her hand an horizontal movement on the screen across the graph] 

  no matter what you do 
14.  T:  Right, it’s…moving along in  time? 
15.  E:  Yeah. So you’d have to kind of stop the time and go like that. 

[with her taut arm, E points the forefinger to the screen and produces the 
form of the graph on the screen] 

  And go like this. [E moves back and hints the movement she had done 
previously] 

  Because, because it’s moving along that way or this way the same time. 
16.  E:  It’s going that way. So it kind of goes like, instead of just going like this... 
   [she makes a vertical movement on the screen with her forefinger] 
  ... it kind of goes like that probably this. [she makes a slow oblique 

movement on the screen with her forefinger] 
17.  T:  Do you think you can make a steeper line than this? Maybe you can’t make it 

go straight up but maybe you can make it a little bit ... 
18.  E:  May be, maybe if you do it faster”  
19. T:      OK, shall we try that? 

 
The excerpt illustrates how Eleanor can experience the concept of function as a model of 
her motion: interacting with the device through her motion and discussing with her 
teacher she has realized the relationships between the geometric properties of the graph 
and the properties of her motion. For example the inclination of the line as an index of 
her speed (#18, #20). The discussion shows that she is able to enter into concepts in a 
deep way. See for example the discussion from #12 to #16, where Eleanor elaborates 
essentially the idea of slope as speed and as distance over time; she can do it because she 
is pushed to interpret the vertical lines in the diagram by the questions asked by the 
teacher. See also the lines #18 up to #20, where she tests her conjectures about the 

20. E:  No, I’m not going to worry 
about like... 
[first E runs twice back and forth, 
then she stops and continues moving 
only the arm back and forth twice...] 

...and if you just go slowly 
[then she runs again but very 
slowly...see figure] 
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relationship between slope and speed, disregarding the inessential variable of the form 
of the graph and concentrating only on its slope. What we wish to stress is that Eleanor 
has been able to enter into some of the various representational facets of a function in a 
multivariate way, with her body, through cultural and physical tools. All this may seem 
very far from the usual definition of function that we find in the books of mathematics. 
But it is exactly this experience to allow Eleanore to enter into (some of ) the 
mathematical aspects of function’s concept. The APC space gives reason of the complex 
way according to which this can happen, namely puts forward all the components 
through which learning develops. Eleanor’s learning may happen since all these 
components are active as a whole. In other words, learning processes are second order 
processes and APC-space models them. 

The APC-space requires complex and different tools of analysis, in order to isolate the 
second order components which constitute it: for example the analysis of the structure of 
pupils oral and written productions or the fine analysis of the different didactical times 
within which the didactical phenomena develop, as sketched in §1. Another example is 
given by the analysis of gestures in students who solve mathematical problems. Our 
team in Turin has collected many examples of this kind: see Arzarello & Robutti (2004), 
Arzarello (2004), Ferrara (2004), Sabena (2004). Gestures are a typical ingredient of the 
APC-space: as the analysis of Goldin-Meadow (2003) shows, gestures are typically 
intermingled with speech and, together with language, help constitute thought. This 
happens for all scientific learning, as it is shown by the work of  Wolff-Michael Roth, 
who analyses gestures in students who learn science: see Roth (in press) and the quoted 
literature. As such, they enter into a second order variable, that all people, especially 
students and teachers, do ‘hear’, possibly in an unconscious way. More specifically, 
gestures may be a thinking tool; may have explorative, anticipative and organising 
functions; moreover they may have social features.They belong to the peripersonal space 
of people who are interacting and may contribute to the dialectic of the social 
construction of knowledge, provided the teacher encourages gesturing in the class. 
Students’ gestures may surrogate or integrate the role of instruments in the 
conceptualisation process. In fact they can produce virtual objects in students’ 
peripersonal space, which they ‘manipulate’ and with which they carry out mental 
experiments. Generally, gesture is not considered as an essential part of the 
mathematical activity. But it is not so: this has been pointed out also by Bosch & 
Chevallard (1999) within another frame (i.e. that of the so called anthropological 
approach), as we shall see in the next paragraph. 

3. The ostensive objects enter the APC-space 
A typical didactical problem faced by theoretical and empirical research consists in the 
dramatic loss of meaning that mathematical formulas present in many students, who 
conceive them in a purely syntactic way. This problem has been afforded by Bosch and 
Chevallard (1999, B&C in short), who introduce the dialectic between “ostensifs” and 
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“non ostensifs”. According to our terminology, which of course is not that of the 
authors, their study is a typical second order approach. It contrasts the objects that can 
be perceived and manipulated, like sounds, graphemes, gestures with those that have an 
abstract status, like ideas, intuitions, concepts. B&C underline that the mathematical 
activities can develop only through a plurality of “registres ostensifs”: 

“...[le] registre de l’oralité, registre de la trace (qui inclut graphismes et écritures), 
registre de la gestualité, enfin registre de ce que nous nommerons, faute de mieux, la 
matérialité quelconque, où prendront place ces objets ostensifs qui ne relèvent 
d’aucun des registres précédemment énumérés. ” (p. 96) (1). 

Such registers are intertwined: B&C underline the multiplicity of relationships between 
written ostensive and oral objects. They point out the “individual micro genesis of 
techniques for solving specific problems” (p. 104), that is a process that starting from 
ostensive objects (in discursive, gesture, graphic, written form) ends with stable 
techniques. B&C call such a reduction “chirographique” (from the Greek χειρ, hand): it 
consists in the “transfer of gesture and material objects to the oral and graphic registers” 
(p. 105). For example they analyse gesture and speech, which accompany the 
accomplishment of matrix product. In the end, these ostensive objects are integrated in 
new mathematical objects, represented through the algebraic formalism, where each 
trace of gesture and oral activity is eliminated. This is at the root of a paradox. On one 
hand the genuine mathematical job seems to consist in “pure computation and pure 
syntax”, namely in typical first order variables (according to our frame) that live in the 
timeless world of pure mathematics. The other ostensive aspects, which are embedded in 
the stream of time and involve second order relationships, do not seem to acquire a clear 
mathematical status. On the other hand, it is exactly this private, second order 
component of the mathematical activity (e.g. gesture, speech, and so on) that seems able 
to give meaning to the official mathematical formalism. B&C thus describe “a model of 
mathematical activity that integrates the ostensive objects as basic components of the 
mathematical knowledge” (p. 119). Within our frame, this approach is a typical 
theoretical second order analysis, where the ostensive, non/ostensive components are the 
first order variables, while their relationships are the second order ones. B&C say 
explicitly that it is necessary to consider both components. In our language they are 
typical ingredients of an APC-space; namely, they are perceptuo-motor, second order 
ingredients, which are necessary to give sense to mathematical ideas and signs (B&C 
call this “de-mathematisation of the activity”, p. 107). Such ingredients do live together 
in the genesis of algebraic signs, as described in Radford (2003, p. 64) with great care: 

“For as long as a sign system, S1, is still heavily dependent on other sign systems, 
S01,S02,…, from which S1 arises, iconizing, pointing or other indexical devices 

                                                 
1 “...the oral register, the trace register  (which includes all graphic stuff and writing products), the gesture register, and 
lastly the register of what we can call the generic materiality, missing a better word, namely the register where live those 
ostensive objects that do not belong to any of the registers above”      
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play a fundamental role in ensuring the connection between the emergent system S1 
and the source systems S01, S02, and so on. The aforementioned semiotic 
connection between the emergent and the source sign systems, I suggest, is what 
happened during the sprouting of algebraic language in the classroom. The link 
relating the algebraic letter symbols to the students’ actions serves as the semiotic 
means of objectification underpinning the students’ production of signs. This link 
makes indexes meaningful. Delete the action and the sign will lose its semiotic 
power and become an unrecognisable hieroglyphic-like mark.”  

APC space allows to consider the indexical components in the processes of 
productions/use of signs and meanings, i.e. in the productions/use of ostensifs and non-
ostensifs in the language of B&C. In fact such indexical features are typical second order 
components that are the base for the integration of the ostensifs within mathematical 
knowing processes. Such an approach underlines further the necessity of considering all 
the components (body, physical world, culture) of such an integration as an environment 
where the processes of conceptualisation and generalisation happen. As such it enlarges 
the frame of B&C.: it allows to consider physical and cultural objects in a wide sense, 
e.g. the interactions with the instruments, as discussed in Arzarello (in press). 
Conclusion 
In this paper we have sketched a common theoretical frame, the APC-space. It 
provides a framework within which the complex relationships among the variables that 
feature the didactical phenomena can be efficiently described. It is based on the notion 
of second order variables and contains many cognitive aspects, like gesture, glances 
and so on, which generally do not enter into the official list of mathematical objects. 
On the contrary, the meaning of the mathematical concepts in the classroom is 
especially rooted on these perceptuo-motor aspects. The results discussed here 
illustrates the reciprocal influences between empirical research, theoretical paradigms 
and back. It has been the possibility of analysing carefully the videos of what happens 
in the classroom through the new technologies that has allowed us to see phenomena 
that happen on the spot and that a video looked at in the usual format could not show 
(e.g. gestures which last less than one second, or the synchronization of the order of a 
few hundredths of second among gestures, speech and glances). The idea of APC-
space has sprouted out from the necessity of giving reason of phenomena which need a 
different grain of observation but must be considered together. On the other hand, the 
elaboration of a theoretical construct has pushed our empirical research towards the 
designing of teaching situations where the different components of APC-space could 
be accessible to the students, e.g. the approach to functions through models of moving 
objects and devices (see Arzarello & Robutti, 2004). As we have underlined above, 
this approach represents a deep shift in the definition of the meaning of concepts, 
which in these years comes from neurosciences. Hence I conclude with the following 
quotation from a neuroscientist, which can be seen as a comment about this 
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shift“Representational content, and thus –a fortiori– conceptual content, cannot be fully 
explained without considering it as the result of the ongoing modelling process of an 
organism as currently integrated with the object to be represented, by intending it. This 
integration process between the representing organism and the represented object is 
articulated in a multiple fashion, for example, by intending to explore it by moving the eyes, 
intending to hold it in the focus of attention, by intending to grasp it, and ultimately by 
thinking about it.” (Gallese, 2003, p.1236) 
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Abstract: The aim of the research described in this submission was to compare 
different theoretical frameworks among the most used in France, in order to analyse 
the students’ mathematical activity. For this research, we have chosen to consider 
two different situations: the first one has been elaborated with a researcher in the 
framework of an engineering design relying on a precise didactic theory; a pre-
service teacher has built the second one. This study shows the potentialities of the 
didactic tools, at our disposal today, to analyse research situations or ordinary 
situations. Furthermore, our research poses the question of the connection between 
theoretical frames and of their complementarities. 

Keywords: Comparison of theoretical frameworks, students' mathematical activity, 
teacher practice. 

 

I- Introduction 
We present here a research project (Artigue, Lenfant, Roditi, 2003) whose aim was to 
question the potentialities of three different theoretical frameworks among the most 
used in France: the tool-object dialectic and interplay between settings1 (Douady, 
1986), the theory of didactic situations2 (Brousseau, 1997), the ergonomic and 
didactic approach3 (Robert, Rogalski, 2002), in order to answer the following 
questions set up in the frame of a national project: when does a student do 
mathematics? How do mathematical or didactic organisations influence the student's 
mathematical work? How do they favour it or, on the contrary, thwart it? 

                                                           
1 R.Douady emphasised the difference between the status of "tool" of a mathematical notion (when it's used to solve a 
problem) and its status of "object" (when it's presented in a general way). Mathematical notions appear generally in 
their dimension of tool before becoming an object. The framework developed by R.Douady takes this characteristic into 
account. The tool-object dialectic is made up of five phases which structure the development of new concepts from 
former knowledge. She defines a "setting" as a set of objects of a mathematical field, of the relationships between these 
objects and of their different formulations. The interplays between settings have an important role in the implementation 
of the tool-object dialectic because the interpretation of a problem in an other setting can allow to advance the solution. 
Thus they appear as privileged levers to cause the elaboration of new knowledge. 
2 The theory of didactic situations has two objectives: on the one hand the study of the consistency of the objects and 
their properties necessary for the elaboration of didactic situations, on the other hand the scientific confrontation 
between the adaptation of these models and their characteristics with the contingency. 
3  This framework relies on researches emerging from the ergonomic psychology and the didactics of mathematics. Its 
objective is to analyse and to understand teachers' practices. 
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Indeed each theoretical framework influences the ways in which the "reality" is 
questioned and studied, and therefore the knowledge about teaching and learning 
mathematics which can be developed. Each theoretical framework also conditions 
actions which can be considered in order to try to improve teaching and learning, on 
the basis of this knowledge. So it seems fundamental to understand how these 
theoretical frameworks shape the didactic work and to examine if the different 
viewpoints they offer can be seen as complementary perspectives which can be at 
least partially linked together, or have to be considered as perspectives which are 
mutually exclusive. 

In this article, we present the main choices made in this research project and we 
synthesise the results that we consider the most interesting ones within the 
perspective expressed above. 

II– Our choices 
For this research, we have chosen to consider videotaped classroom observations. We 
began to work on two videos filmed in the classrooms of experienced teachers. The 
two videos dealt with the same mathematical topic: the study of the sign of 
polynomial functions with grade-10-students. The objective of the videotaped 
sessions was to introduce a precise object of the French curriculum: the table of sign4, 
and to establish this table as a particularly efficient way to condense information 
about the sign of a polynomial function and to make it visually accessible. These 
sessions had been developed in a precise theoretical framework: the tool-object 
dialectic. So it was particularly interesting to confront the analysis made during the 
conception of the sessions and analyses carried out in other theoretical frameworks. 
In our research work, we thus develop a new analysis relying on the theory of 
didactic situations, and compared its results with those provided by the initial one. 

The mathematical and didactic organisations of these sessions didn't correspond to an 
ordinary classroom session: there was first a one-hour work in small groups, and then 
a collective synthesis having about the same duration. So, in a second phase of our 
research project, we decided to integrate a new set of data to this corpus: a video 
filmed in the classroom of a pre-service teacher. This time, the focus of the session 
was the first meeting with the general notion of function, in the context of a problem 
of variations posed in a geometrical context. The didactic organisation was absolutely 
different from that of the first sessions. In order to understand this organisation, its 
coherence, in order to understand the students' mathematical work in its relation with 
the teacher's work, we were interested in introducing another theoretical framework. 
                                                           
4 It's a table used to determine the sign of a polynomial function, like in the following example : 
Study of the sign of the function f(x)  =  – x(x + 1)(3 – x) 

x  – 1  0  3  
– x +  + 0 –  – 

x + 1 – 0 +  +  + 
3 – x +  +  + 0 – 
f(x) – 0 + 0 – 0 + 
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Two theoretical frames were thus used for this second corpus: the theory of didactic 
situations and the ergonomic and didactic approach. 

III– The first situation 
III.1– Presentation 

This situation is the first in an engineering design for grade-10 students developed by 
R. Douady, included in a research project about the learning of polynomial functions. 
This engineering design uses the interplay between different settings: the numeric, 
algebraic and functional settings (with the meaning given to this term by R. Douady 
(Douady, 1986)), as a lever for the development of mathematical knowledge. The 
objectives of the first part of the engineering design are: 
- to study the relationships between the sign of a polynomial function P(x) 

according to the values of x and the number, values and multiplicities of the real 
zeros of this polynomial, 

- to establish that the table of sign is an efficient way to condense information about 
the sign of the function P and to make it visually and quickly accessible. 

In the first session, different factorised expressions5 are proposed to students working 
in groups. Each group has to answer the same questions. Two phases are planned: 

- Phase 1: (example) "For different values of x, calculate numeric values of the 
following expression: f(x) = (x – 2)(2x – 3)(x + 5)(4x + 1)(1 – x). Are the results 
always positive? Are they always negative? Are they sometimes positive, 
sometimes negative? Calculate!" 

- Phase 2: "Find a way, which allows you to determine quickly and surely the sign 
of an expression when your teacher gives you a numerical value for x". 

The aim of the first phase is to make students note that the sign of the different 
expressions is not constant, and thus give meaning to the problem set in the second 
phase. In this second phase, as already expressed, the table of sign is expected to 
appear as an efficient way to solve the task at stake, and take thus the status of an 
"implicit tool". 

III.2– A first analysis relying on the tool-object dialectic 

For this a priori analysis, we have used the tools provided by the tool-object dialectic 
and the interplay between settings. This framework led us to investigate the strategies 
that a grade-10 student could develop to solve the problem, and to question the 
respective efficiency of these strategies. It also led us to discuss the hypothesis 
articulated just above about the table of sign. We focus here on the second phase of 
the session. For this phase, three settings can be considered: a numerical setting, an 
algebraic setting and a functional setting. Let us specify the main possible strategies 
in each of these: 

                                                           
5 In order to choose these expressions, different didactic variables have been considered: the number of factors or the 
values of the roots (sign, nature), for example. 
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- In the numerical setting, students can determine the sign for different values of x 
and try to notice regularities. This strategy is in continuity with the work of the 
first phase, but it does not allow to solve the problem. Indeed, we can hypothesize 
that students will only take simple values for x, and especially small integer 
values. This can only lead to partial or erroneous results as all the polynomials 
proposed have zeros which escape this category. 

- In the algebraic framework, students can determine the sign of each factor of the 
expression by solving the corresponding inequality and then use the rule of signs 
for a product to conclude. This strategy is underlying the table of sign, but this 
does not ensure that the students will build such a table. It is more likely that they 
use representations on the number line (the favoured representation used in junior 
high school in France to summarise the information about the solutions of 
inequalities). Students can also notice that the sign of their expression only 
changes when one goes through a zero of the expression, look for the zeros by 
solving the equations associated to the different factors, and then either simply 
alternate the signs from one interval to the next one, or calculate the value of the 
expression for a given x in each interval. 

- In the functional framework, several strategies mobilising the graphic register can 
be considered: representation of straight lines associated with each factor of the 
expression and interpretation on the one hand, construction point by point of a 
graphic representation of the function on the other hand. The first strategy can be 
expected because, in grade 9, students have solved systems of two linear 
inequations with graphic techniques. But this strategy will not necessarily succeed 
because the expressions have a lot of factors, which makes the interpretation of 
the resulting graphic representation very complex. The second seems less probable 
because the observed students are not experienced with the work on functions, 
beyond the linear case, and are not allowed to use graphic calculators during this 
session. 

In conclusion an algebraic resolution should be a source of winning strategy and it 
should allow the necessary transition between the initial pointwise vision and the 
global vision by intervals. Then the table of sign could be introduced by the teacher 
as a convenient way of representation to summarise at the same time the phases of the 
algebraic procedure and its result. But one cannot ensure that all groups of students 
will leave spontaneously the numerical setting, even if unsuccessful. Indeed a lot of 
researches have shown that students do not easily change the setting in which they 
initially approach a problem. 

The theoretical framework of the tool-object dialectic also led us to investigate which 
knowledge could be built in the interaction with this problem. The first phase should 
lead the students to the conviction that the sign of the expressions is not constant. We 
can also hope they will note that the expressions keep a constant sign on some 
intervals. More elaborate knowledge can appear if the students work in the algebraic 
setting or in the functional one: relationships between the boundaries of these 
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intervals and the zeros of the expression, for example. But, as we said before, this is 
not sure. 

III.3– The effective realisation 

We give below some elements of the effective realisation in one of the two 
classrooms. The first point we would like to point out is that the three settings 
mentioned above spontaneously appeared, as evidenced by the presentations made 
during the collective synthesis: 

- A first group, working on the expression x(2x – 3)(1 – x)(x + 1), stayed in a 
numerical setting. This allowed these students to get a very partial conclusion: for 
x > 1.5, the expression is negative. 

- A second group, working on the expression x(7 – 3x)(5x – 3), developed a 
strategy in the algebraic setting based on the resolution of the equations. First they 
presented their results like that :  

x < 0 → + x = 0 → 0 
3/5 > x > 0 → – x = 3/5 → 0 
3/5 < x < 7/3 → + x = 7/3 → 0 … 

Then, using the graphic semiotic register, they put the found values on the real 
number line and coded the sign of the expression on the intervals associated to 
these values. An analysis of their production shows that they worked in a 
pragmatic way, taking several values to check but without reasoning algebraically 
on the sign of the different factors. 

- A third group, working on the expression (4x + 1)(3x – 6)(7 – 3x), worked in the 
functional setting. They tried to represent graphically the associated function. For 
that, they first chose four numbers randomly. They thus obtained three points 
above the x-axis and one below and joined these points with a regular curve. This 
drew their attention to the zeros of the function and they calculated these by 
solving the equations associated to the three factors. In fact their graphic was not 
correct and their work stopped here without leading to a clear conclusion. 

More globally, the data collected show the pertinence of the a priori analysis carried 
out with the tools of the tool-object dialectic and the efficiency of these tools to 
anticipate the possible mathematical work of students faced with this problem. 

In a second phase, we explored the possible connections with an analysis refering to 
the theory of didactic situations (TDS in the following). 

III.4– The connection with the theory of didactic situations 

We exploited this theory in order to study the potential work of students in the phase 
of research on the one hand and in order to analyse the role of the teacher on the other 
hand. 

As regards the first point, using this framework led us to evaluate the capacity of the 
situation to reveal the table of sign as an optimal answer to the problem in an a-
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didactic functioning. If we use the language of the theory of didactic situations, the 
first phase of the situation has a function of devolution: thanks to it, the determination 
of the sign of the polynomial function becomes a mathematical problem for the 
student. This phase can also be used to check that the knowledge necessary to a 
productive interaction with the ‘milieu’ is available. In the second phase, the 
pointwise strategy mobilised in the first phase acts as a ‘basic strategy’. But, as 
already pointed out, this cannot ensure complete success. In this particular situation, 
we see that the teacher plays an active role in the ‘medium’ thanks to the possibility 
she has of choosing the numbers which serve to check the results obtained by the 
students. Except for this fact, we are in the classical case for the TDS. There is a 
basic strategy; this is not appropriate and a new strategy has to be developed. Does 
the interaction with the ‘milieu’ allow it? This is a fundamental question in the TDS. 
The analysis to carry out for answering this question is very close to the first analysis 
we have presented above: identification of possible strategies, evaluation of their cost 
and their efficiency in the perspective of an a-didactic functioning. And it leads to the 
same conclusion. 

The teacher plays thus a crucial role in this situation for linking what can be achieved 
by the students in the research phase to the official knowledge aimed at. What is 
offered by the two theoretical frames we have used for approaching this dimension of 
the observed session? We have to confess that we did not find explicit and specific 
tools in the tool-object dialectic. As regard the TDS, we found some help in more 
recent developments of the theory than those evoked so far, and especially the 
vertical structuration of the ‘medium’ (Brousseau, 1997), (Margolinas, 1998, 2002). 
This is not easy to explain in a few words. In it, a situation appears as a complex of 
imbricated structures, each situation becoming the ‘milieu’ for the upper one, in a 
kind of reflective process. At the bottom of the structure, there is the ‘objective-
situation’ (named ‘S minus 3’ and noted S-3), in which the ‘material-milieu’ takes 
place. In our case for instance, it contains the expression at stake and the numerical 
results obtained in the first phase of the session. In the next step of the structure, the 
reference situation (S-2), the student (E-2) interact with S-3 in order to try to solve the 
problem. The ‘milieu’ of S-2 become enriched with new objects. This situation is 
itself included in the ‘learning situation’ (S-1) whose ‘milieu’ contains the results 
obtained in S-2. The student E-1 is modelled there in a reflective position, emitting 
conjectures and seeking to validate them. Finally the didactic situation situates at the 
level S0. At this level, the knowledge worked out in the groups, takes a public status 
and is connected to the official knowledge. In our particular session, S0 can be 
associated with the phase of collective synthesis6. 

We used this framework in order to study the work of the teachers during the research 
phase of the session and the collective synthesis. It allowed us to identify and 
describe some interesting phenomena and regularities. For instance, this analysis 
revealed the following regularity in the practice of one teacher during the collective 

                                                           
6 The structure goes on with positive levels S1 and S2. For limiting the complexity, we do not evoke these here. 
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synthesis. When a group was asked to present their work, the teacher systematically 
put it at the S-2 level, and then tried to exploit the milieu M-1 resulting from this 
situation in order to make the group go a little further than in the research phase. She 
ended every such episode with a short institutionalisation phase at the S0 level. For 
example, she helped the first group, which had used a pointwise numeric strategy, to 
move from this vision to a more global vision bringing into play intervals. Especially 
adapted to each group, this strategy allowed the progressive and coherent 
construction of a collective knowledge in the classroom. 

This first experience of comparison between different theoretical frames had very 
positive results. Connecting the two approaches, seeing their respective strengths was 
rather easy. Both were well adapted to the analysis of the corpus we dealt with, and 
they gave coherent visions of it. Both had evident potential for understanding the 
mathematical potential and limits of the problem at stake, for identifying its key 
didactic variables. Moreover, the TDS had helped us to give account for the 
collective phase in a rather accurate way, to understand better the complexity of the 
teacher work in this phase, and the ways the expertise of our experienced teachers is 
expressed in it. 

IV– The second situation 
IV.1–Presentation 

This situation was built by a pre-service teacher for grade-10 students. It was 
presented to the students as an activity introducing the notion of function (a definition 
of this notion had been briefly introduced at the end of the previous session, and no 
more). The activity relates to right-angle triangles ABC whose hypotenuse AB is 
fixed and is 6 cm long. These triangles are called "glenatris". The lengths of the two 
sides CA and CB are respectively designated by x cm and y cm. Three phases are 
planned: 
- in the first phase, the students have to study the possible places for C and examine 

the particular case of an isosceles triangle, 

- the second phase is about the study of the function f which expresses how y varies 
according to x. In this part, the students have to determine this function, to build 
point by point its graphic representation and to study graphically its variations. 

- in the third phase, the students meet another function g which expresses how the 
triangle area varies according to x. They have to find graphically the maximum of 
this new function, then relate it to the particular case studied in phase 1, in order to 
develop a geometrical proof. 

This situation was not built in reference to a precise theoretical framework. But we 
tried to exploit the theoretical frameworks already used with the first corpus in order 
to analyse a priori its mathematical potential. 

IV.2– The first analysis 
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The mathematical potential of this situation can be explored in different ways, 
according to the freedom one takes with the teacher project. Initially, we considered 
the global context of this work: the glenatri object and the question of the variation of 
its area. It quickly appeared that, within this perspective, the functional modelling  
proposed by the teacher had little interest. Indeed, taking as variable one side of the 
right angle breaks the geometrical symmetry of the problem and complicates 
unnecessarily the resolution. This led us, quite naturally, to reject the project of the 
pre-service teacher or, at least, to consider that it required major changes. 

In a second phase, respecting more the choices of the teacher, we decided to fix 
another context: the glenatri object and the functional relationships which it makes 
likely to consider when the independent variable is one of the sides of the right angle. 
We were thus interested by the potential offered by this particular context in order to 
make the notion of functional relationship emerge as an optimal tool in an a-didactic 
functioning. This new study showed that the context was a priori well appropriate, 
thanks to the possible interplay it offered between the geometric, numerical and 
algebraic settings. But the scenarios we elaborated in order to support these analyses 
were very distant from the one built by the pre-service teacher. They did not respect 
the logic of her construction and were not helpful for understanding the mathematical 
activity of her students during the session. 

In a third phase, we decided to use the TDS to analyse the situation built by the pre-
service teacher while respecting both its mathematical and didactic organisations. 
Such an analysis is, of course, possible and the didactic literature has offered us some 
very interesting examples in the last years (see for instance, Dorier & al., 2002). This 
approach led us to model this session by a succession of situations, nearly one per 
question asked to the students. For each situation, we had to identify a ‘milieu’ and to 
specify what cold be produced by the interactions with this ‘milieu’. This kind of 
analysis is not easy at all because the situations are not independent but overlapping. 
For this session, our attempts resulted in an extremely complex construction, 
certainly interesting from a theoretical point of view but not really convincing as 
regards its practical interest. And, once more, our construction tended to move us 
away from the coherence that seemed to underlie the functioning of the pre-service 
teacher. It made, above all, visible the weaknesses of her construction. Nevertheless, 
in the video, we could see a class which was working and doing mathematics, a class 
in which there were stakes of knowledge. In order to account for these characteristics, 
we decided thus to exploit a complementary approach: the ergonomic and didactic 
approach. 

IV.3– Another  analysis 

In the ergonomic and didactic approach, the teacher is seen as a coherent professional 
submitted to constraints of different nature but having nevertheless a space of 
freedom he or she invests according to his or her specific characteristics (Robert, 
Rogalski, 2002). Teachers' practices are thus analysed according to three dimensions: 
the study of the contents worked in class and of the respective allocation of 
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mathematical work between students and the teacher, the study of the forms of work 
of the students, and the study of the interactions between teacher and students. This 
analysis is complemented by a study of the institutional and social constraints 
influencing teachers' practices and by a study of the personal characteristics of the 
teacher. In the following, we synthesise the results of the analysis carried out within 
this framework. 

This analysis of the pre-service teacher’s preparation shows that she wants to 
organise a real space of mathematical work for her students, within a succession of 
phases of personal research and of collective synthesis. The study of the effective 
realisation highlights that the times of research are indeed important especially during 
the first two parts of the situation. In the third one, they are shorter, and this is 
certainly due to an increasing pressure of time. 

Furthermore the analysis of some episodes of the session shows that this teacher tries 
to take her students into account, to make them take part, to give them a real place 
during the different moments of the problem solving process (individual research, 
formulation of answers, justification). But, when the students are in difficulty, she has 
also a tendency to take their task under her responsibility, while using strategies 
which allow her to associate them. In fact, time constraints do not allow teachers to 
start again continually the debate in the class and the teacher must progress in his 
project. The strategies of this pre-service teacher contribute to this progression, but 
their installation often contributes to make much easier the students’ task. 

This tendency to make easier students’ tasks appears more particularly during the 
geometrical questions of the first part of the situation and during the treatment of new 
specific tasks about functions. As regards the geometrical questions, the study of the 
mathematical field shows that the knowledge at stake is not clearly related to the 
objectives of the situation. Making the task easier thus allows the teacher to progress 
in her project, even if some prior geometrical knowledge is not mobilizable by the 
majority of the students. As regards the more specific questions about functions, it 
proves that this pre-service teacher has not built tools to deal with possible difficulties 
of her students faced with these new tasks. In fact, in her meticulous work of 
preparation, she anticipates very precisely some algebraic difficulties she has met 
before and for which she has built ways to anticipate, and tools to deal with. On the 
other hand, even if she knows that some more specific questions about functions can 
be difficult for the students, she does not have equivalent knowledge to anticipate the 
difficulties which can appear here (about the notion of variable or functional 
dependence for example) and to deal with them. By taking some precautions during 
the session, she visibly tries to limit the complexity of the questions. 

V– Conclusion 
In this research project, we have questioned the potentialities and limits of different 
theoretical frameworks to analyse the mathematical activity of students; we have also 
questioned their possible complementarities. We have worked with two different 
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situations. In fact their stakes are different: in the first case, a technique is aimed; in 
the second case, the teacher wants to organise the entry into the functional world. The 
contexts for the conception of these two situations are also distinct: the first one has 
been elaborated with a researcher in the framework of an engineering design relying 
on a precise didactic theory; a pre-service teacher has built the second one. Finally 
the teachers are different: experienced teachers on the one hand and a beginner on the 
other hand.  

It seems to us that this study shows the potentialities of the didactic tools, at our 
disposal today, to analyse research situations or ordinary situations. It also confirms 
our first conviction: the complex reality we study cannot not be exhausted in only one 
of the theoretical frameworks existing now. Each of these opens some rationalities 
while masking us others. Our research also poses the question of the connection 
between theoretical frames and of their complementarities. Connections were easy for 
the first corpus, less evident for the second one. 

The question of relationships between theoretical frameworks is, in our opinion, a 
crucial one, with important consequences at the level of action on didactic systems. 
Our corpus clearly shows that the theoretical choices we make influence the vision 
we have of the situations we observe and study, and of the idea we develop about 
their possible improvment. Some frames tended in our case to suggest at least a 
global reconstruction of the situation, others seemed more compatible with local 
changes. In addition, the choices carried out a priori to develop a scenario of 
teaching, only partially condition the students' activity: in class, the diverse forms of 
mediation and interactions decided on the spot strongly influence the nature of this 
activity. Moreover current research tends to show that teachers cannot adopt any kind 
of scenario. So, within the context of an initial or continuous training, balances have 
to be found between global reconstructions, not always possible, and local 
reconstructions, not always sufficient, if we want to promote a mathematical activity 
of greater quality among the students. 
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INTUITIVE VS. ANALYTICAL THINKING:  
FOUR THEORETICAL FRAMEWORKS 

 

Uri Leron, Israel Institute of Technology, Israel 
 

Abstract: Research in mathematics education often consists of interpreting students’ 
performance on mathematical tasks, in particular their misconceptions, or non-
normative responses. In such situations it is natural to compare students’ intuitive vs. 
analytical ways of thinking, bearing in mind that these terms need to be specified 
more precisely. In this paper, data on one such task is used to compare four 
theoretical frameworks for interpreting the same data, all dealing in some way with 
the intuitive/analytical distinction. The first two frameworks come from research in 
mathematics education, the third from cognitive psychology, and the fourth from 
evolutionary psychology. The insights gained by the various frameworks are not 
meant to be seen as conflicting; rather, they illuminate the same phenomenon from 
different perspectives, and they look for explanatory mechanisms on different levels. 

Keywords: intuitive vs. analytical thinking, dual-process theory, evolutionary 
psychology, Wason card selection task, group theory, Lagrange’s theorem. 

 

A. The Task and the Data 
Background. The data is drawn from the performance of university students on a 
group theory task, but no previous knowledge of group theory will be assumed in this 
discussion. I thus start by presenting the task to the readers in a completely self-
contained way. This is achieved by explaining the relevant group theoretical terms 
only in the context of this particular example rather than in their full generality. A 
few generalizations and subtleties are mentioned in the footnotes and can be safely 
ignored. 

The entire task takes place within the group Z6, consisting of the set {0,1,2,3,4,5} and 
the operation of addition modulo 6, denoted by +6. For example, 2 +6 3 = 5, 3 +6 3 = 
0, 3 +6 4 = 1, and, in general, a +6 b is defined as the remainder of the usual sum a + b 
on division by 6. 

Z6 is a group in the sense that it contains 0 and is closed under addition mod 6: if a 
and b are in Z6, then so is a +6 b.1 Similarly, we define Z3 to be the group consisting 
of the set {0,1,2} and the operation +3 of addition modulo 3. A subgroup of Z6 is a 
subset of {0,1,2,3,4,5} which is in itself a group under the operation defined in Z6. 

                                                 
1 In the general definition of a group there are more requirements, namely associativity and the existence of 
inverses. However, we do not need to worry about them here because, in general, associativity for addition 
mod n can be shown to be inherited from the associativity of the usual addition of integers; and the existence 
of inverses can be shown, in the finite case, to follow automatically from the other properties. 
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For example, it can be checked that the subset {0,2,4} is a subgroup of Z6, since it 
contains 0 and is closed under +6.  

All the groups in this discussion are finite, in the sense that they have a finite number 
of elements; this number is called the order of the group. Thus the order of Z6 is 6 
and the order of Z3 is 3. Finally, an important theorem of group theory, called 
Lagrange’s theorem, states that if H is a subgroup of Z6 , then the order H divides 6. 
Thus, for example, the order of H cannot be 4 or 5 but 3 is possible, and indeed, we 
have seen above an example of a subgroup of Z6 with 3 elements2. For what follows, 
it is relevant to mention that the converse of Lagrange’s theorem is not true in 
general: It is possible to give an example of a group G of order 12 which does not 
contain a subgroup of order 6 (cf. e.g., Gallian, 1990, Example 13, p. 151).  

The task and data. (Hazzan & Leron, 1996) 

The following task was given to 113 computer science majors in a top-notch Israeli 
university, who had previously completed courses in calculus and in linear algebra 
(an abstract approach), and were now in the midst of an abstract algebra course:  

A student wrote in an exam, "Z3 is a subgroup of Z6".  
In your opinion, is this statement true, partially true, or false?  
Please explain your answer.  

An incorrect answer was given by 73 students, 20 of whom invoked Lagrange's 
theorem, in essentially the following manner: 

Z3 is a subgroup of Z6 by Lagrange's theorem, because 3 divides 6. 

Mathematical remark 1. The correct answer is that Z3 is not a subgroup of Z6. The 
reason is that Z3 is not closed under the operation +6 (for example, 2 +6 2 = 4, and 4 
is not in Z3). The question is tricky because Z3 is a subset of Z6 and is a group 
(relative to +3), but it is not a subgroup (since it is not a group relative to +6). There is 
a sophisticated sense in which the statement "Z3 is a subgroup of Z6" is partially true, 
namely, that Z3 is isomorphic to the subgroup {0, 2, 4} of Z6 . We would of course be 
thrilled to receive this answer, but none of our 113 subjects had chosen to so thrill us. 

Mathematical remark 2. As can be seen from the previous remark, our solution 
does not use Lagrange’s theorem. It is relevant to mention that in spite of superficial 
resemblance, there is no way Lagrange’s theorem could even help on this task, since 
“H is a subgroup” is the hypothesis of that theorem, not its conclusion. What the 
students seem to be using is an incorrect version of an incorrect theorem (namely, the 
converse of Lagrange’s theorem).3  

 

 
                                                 
2 More generally, Lagrange’s theorem applies to any two finite groups H and G: If H is a subgroup of G, 
then the order of H divides the order of G. 
3 Hazzan & Leron (1996) discuss the data on two more tasks, which shows that this misuse of Lagrange’s 
theorem is deeper and more persistent than might appear merely from the data presented here. 
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B. Four Theoretical Frameworks for Interpreting the Data 
I will now present four theoretical frameworks for interpreting the particular 
response: Z3 is a subgroup of Z6 by Lagrange's theorem, because 3 divides 6. The 
frameworks are: identifying ‘bugs’ in students’ mathematics, ‘coping’ perspective, 
dual-process theory from cognitive psychology, and evolutionary psychology. Due to 
space limitations, all the theoretical frameworks are presented in outline only, but 
contain references to fuller expositions. 

Framework 1: Analyzing students’ errors by identifying “bugs” in their subject 
matter knowledge or in their logical reasoning (Hazzan & Leron, 1996). 

“Examining this amazing answer seriously, turns out to yield some interesting 
observations on students' ways of using theorems in problem-solving situations. 
[…]. Specifically, students tend to: 

• use theorems as "slogans", as a way of answering test questions while 
avoiding the need for understanding or for making other kinds of excessive 
mental effort; 

• in particular, use Lagrange's theorem or some version of its converse in 
situations where such use is quite irrelevant to the problem at hand; 

• use a theorem and its converse indistinguishably.” (p. 23) 

Framework 2: Analyzing students’ errors from a “coping perspective” (Hazzan 
& Leron, 1996; Leron & Hazzan, 1997, pp. 284ff; Vinner, 1997, 2000). 

This framework introduces two innovations relative to the first framework. First, it 
attributes the above response partly to “pre-logical” factors in the student, such as 
loss of meaning, utter confusion, “groping in the dark”, and the constant pressure to 
supply some answer –any answer!– while trying to meet the expectations of the 
authority figure involved in the interaction (teacher or researcher). We propose that 
these forces operate in the student’s world even before starting to apply mathematical 
knowledge and logical thinking. Secondly, in order to give a vivid description of our 
view of the student’s mind under such pressures, we have introduced the tool of 
virtual monologue (or virtual interview), using the student’s own voice in the first 
person. We feel that the narrative mode (Bruner, 1985) better enables us to give as it 
were an “inside view” of the student’s mind. Hazzan & Leron (1996) and Leron & 
Hazzan (1997) give detailed analyses of the Lagrange’s theorem data, both from a 
cognitive perspective, and –using a virtual monologue and a virtual interview– from a 
coping perspective. The analysis itself it too long to bring here; suffice it to say at this 
stage that it already contains precursors of dual-process theory (our third framework 
below), which we would import from cognitive psychology seven years later. Here is 
one relevant quotation, with some dual-process terms –to be explained below– 
inserted: 

“It is possible that these phenomena occur mainly with a certain type of 
theorem: perhaps one which has a name, or one which is particularly 
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memorable for other reasons, e.g., especially simple formulation involving 
natural numbers. If, as in the case of Lagrange's theorem, the theorem can be 
memorized as a "slogan", then it can easily be retrieved from memory 
[accessibility] under the hypnotic effect of a magic incantation. However, 
using a theorem as a magic incantation may increase the tendency to use it 
carelessly [System 1 thinking], with no regard to the situation or to the details 
of its applicability [System 2 thinking].” (Hazzan & Leron, 1996, p 26). 

Vinner (1997) uses the terms “pseudo-conceptual and pseudo-analytical thought 
processes” to present a similar analysis of other mathematical tasks. He also presents 
a related analysis of the use of proofs as rituals (Vinner, 2000). A fine-grained 
comparison of his and our analyses would be interesting, but is beyond the scope of 
this abstract (cf. Leron & Hazzan, in print). 

Framework 3: Dual-process theory and the Heuristics-and-biases research 
program in cognitive psychology (led by Kahneman and Tversky over the last 30 
years; cf. e.g., Gilovich, Griffin, & Kahneman, 2002; Kahneman, 2002; Stanovich & 
West, 2000; Stanovich & West, 2003. For a brief overview, cf. Leron & Hazzan, in 
print). 

Dual-process theory. The ancient distinction between intuitive and analytical modes 
of thinking has achieved a new level of specifity and rigor in what cognitive 
psychologists call dual-process theory. In fact there are several such theories but 
since the differences are not significant for our context, we will ignore the nuances 
and will adopt the generic framework presented in Gilovich, Griffin, & Kahneman, 
2002 and in Kahneman, 2002. To the best of my knowledge, the first application of 
this theory to mathematics education research has been Leron & Hazzan (in print); 
the present exposition and analysis is an abridged version of the one given in that 
paper. 

According to dual-process theory, our cognition and behavior operate in parallel in 
two quite different modes, called System 1 (S1) and System 2 (S2), roughly 
corresponding to our commonsense notions of intuitive and analytical (or reasoning) 
modes of thinking. These modes operate in different ways, are activated by different 
parts of the brain, and have different evolutionary origins (S2 being evolutionarily 
more recent and, in fact, largely reflecting cultural evolution). The distinction 
between perception and cognition is ancient and well known, but the introduction of 
S1, which sits halfway between perception and (analytical) cognition is relatively 
new, and has important consequences for how empirical findings in cognitive 
psychology are interpreted, including the wide ranging rationality debate and the 
application to mathematics education research. 

Like perception, S1 processes are characterized as being fast, automatic, effortless, 
unconscious and inflexible (hard to change or overcome); unlike perceptions, S1 
processes can be language-mediated and relate to events not in the here-and-now (i.e., 
events in far-away locations and in the past or future). S2 processes are slow, 
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conscious, effortful, computationally expensive, and relatively flexible. The two 
systems differ mainly on the dimension of accessibility: how fast and how easily 
things come to mind. In most situations, S1 and S2 work in concert to produce 
adaptive responses, but in some cases (such as the ones concocted in the Heuristics-
and-biases research), S1 generates quick automatic non-normative responses, while 
S2 may or may not intervene in its role as monitor and critic to correct or override 
S1’s response. The precise relation of this framework to the concepts of intuition, 
cognition and meta-cognition as used in the mathematics education research literature 
is elaborated in Leron & Hazzan (in print). 
Many of the non-normative answers people give in psychological experiments –and 
in mathematics education tasks, for that matter– can be explained by the quick and 
automatic responses of S1, and the frequent failure of S2 to intervene in its role as 
critic of S1. 

Here is a striking example (Kahneman, 2002) for the tendency of the fast-reacting S1 
to “hijack” the subject’s attention and lead to a non-normative answer. 

“A baseball bat and ball cost together one dollar and 10 cents. The bat costs 
one dollar more than the ball. How much does the ball cost? 

Almost everyone reports an initial tendency to answer ‘10 cents’ because the 
sum $1.10 separates naturally into $1 and 10 cents, and 10 cents is about the 
right magnitude. Frederick found that many intelligent people yield to this 
immediate impulse: 50% (47/93) of Princeton students, and 56% (164/293) of 
students at the University of Michigan gave the wrong answer.” (p. 451) 

According to dual process theory, this situation is analogous to that of the famous 
optical illusions known from cognitive psychology. The salient features of the 
problem cause S1 to jump immediately with the answer of 10 cents, since the 
numbers one dollar and 10 cents are salient, and since the orders of magnitude are 
roughly appropriate. Many people accept S1’s conclusions uncritically, thus in a 
sense “behave irrationally”. For others, S1 also immediately jumped with this answer, 
but in the next stage, their S2 interfered critically and made the necessary adjustments 
to give the correct answer (5 cents). Significantly, the way S1 worked here, namely 
coming up with a very quick decision based on salient features of the problem and of 
rough sense of what’s appropriate in the given situation, usually gives good results 
under natural conditions, such as searching for food or avoiding predators. Hence the 
insistence of Gigerenzer (e.g., Gigerenzer & Todd, 1999) that this is a case of 
ecological rationality being fooled by a tricky task, rather than a case of irrationality. 
The various debates arising from different interpretations of the Heuristics-and-biases 
research program form a fascinating topic which is, however, beyond the scope of 
this paper. 

It is important to note that skills can migrate between the two systems. When a 
person becomes an expert in some skill, perhaps after a prolonged training, this skill 
may become S1 for this person. For example, driving is an effortful S2 behavior for 
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beginners, requiring deep concentration and full attention; for experienced drivers, in 
contrast, driving becomes an S1 skill which they can perform automatically while 
engaged in a deep intellectual or emotional conversation. Conversely, many S1 skills 
(such as walking straight or talking in a familiar but non-native language), with 
advancing age, or when just being tired or drunk, suddenly require conscious effort to 
perform successfully. 

Dual-process analysis of students’ misuse of Lagrange’s theorem. Applying a 
dual-process perspective, Leron & Hazzan (in print) proposed that students' misuse of 
Lagrange’s theorem reflects a combined S1-S2 failure4. The analysis closely 
resembles Kahneman’s analysis of the bat-and-ball data, except for the somewhat 
surprising demonstration that S1 can hijack cognitive behavior even in advanced 
mathematical settings, where the name of the game is explicitly reasoning and 
analytical thinking (i.e., S2 mode). 

As usual, the S1 response is invoked by what is most immediately accessible to the 
students in the situation, which also looks roughly appropriate to the task at hand. 
Specifically, the students know that using a theorem in such situations is expected; 
they also know more-or-less immediately and effortlessly that Lagrange’s theorem 
says something about subgroups and divisibility of their orders (it is the details and 
logic of what the theorem says that requires the effortful and pedantic intervention of 
S2); finally, the appearance of the two numbers 3 and 6 as orders of the groups Z3 
and Z6 and the fact that 3 divides 6, immediately and automatically cues Lagrange’s 
theorem, yielding the answer, "Z3 is a subgroup of Z6 by Lagrange's theorem, because 
3 divides 6". This is a striking example for an answer that is entirely appropriate by 
the “logic” of S1, but is extremely inappropriate by the logic of S2.  

In addition to S1’s inappropriate reaction, S2 too fails in its role as critic of S1, since 
there is nothing in the task situation to alert the monitoring function of S2. The 
missing judgment –mainly that Lagrange’s theorem cannot be used to establish the 
existence of a subgroup but only its absence– clearly require S2 processes. It is 
important to note that some of the students may well have the knowledge required to 
produce the right answer, had they only stopped to think more (that is, invoke S2). 
The problem is, rather, that they have no reason to suspect that the answer is wrong, 
thus the “permissive System 2” (Kahneman, 2002) remains dormant: 

“[An] evaluation of the heuristic attribute comes immediately to mind, and 
[…] its associative relationship with the target attribute is sufficiently close to 
pass the monitoring of a permissive System 2.” (p. 469) 

Just as in the bat-and-ball situation, the final (erroneous) response is a combination 
of S1’s quick and effortless reaction, together with S2’s failure to take a corrective 
action in its role as critic and monitor of S1. Since the operation of S1 is so easy and 
that of S2 so hard, students will not make the extra effort unless something in the 
situation alerts them to such a need. It is a feasible (and eminently researchable) 
                                                 
4 In that paper, the well-known students-and-professors phenomenon is also analyzed in a similar spirit.  
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hypothesis, that at least for some of the students, a small cue (about the situation or 
about their answer, not even about the mathematics) would be enough to set them on 
the path for a correct answer. They may already have all the necessary (S2) 
knowledge to solve this problem correctly, but a cue is needed to mobilize this 
knowledge. This shows, incidentally, that the dual system framework leads not only 
to new explanations, but also (like all good theories) to interesting new research 
questions. 

Framework 4: Evolutionary psychology (Cosmides & Tooby, 1992,1997; Pinker, 
1997,2002; Plotkin, 2004) 
Evolutionary psychology. This framework is the hardest to introduce in the small 
space available, since it harbors many subtleties and it runs against deep-rooted 
biases and emotional obstacles. I will only bring here a brief summary adapted from 
Leron (submitted). 

I take from the young discipline of Evolutionary Psychology (EP) the scientific view 
of human nature as a collection of universal, reliably-developing, cognitive and 
behavioral abilities –such as walking on two feet, face recognition, and the use of 
language– that are spontaneously acquired and effortlessly used by all people under 
normal development (Cosmides & Tooby, 1992, 1997; Pinker, 1997, 2002, Ridley, 
2003). I also take from EP the evolutionary origins of human nature, hence the 
frequent mismatch between the ancient ecology to which it is adapted and the 
demands of modern civilization. To the extent that we do manage to learn many 
modern skills (such as writing or driving, or some math), this is because of our 
mind’s ability to “co-opt” ancient cognitive mechanisms for new purposes (Bjorklund 
& Pellegrini, 2002; Geary, 2002). But this is easier for some skills than for others, 
and nowhere are these differences manifest more than in the learning of mathematics. 
The ease of learning in such cases is determined by the accessibility of the co-opted 
cognitive mechanisms. 

I emphasize that what is part of human nature need not be innate: we are not born 
walking or talking. What seems to be innate is the motivation and the ability to 
engage the species-typical physical and social environment in such a way that the 
required skill will develop (Geary, 2002). This is the ubiquitous mechanism that 
Ridley (2003) has called “Nature via Nurture”. I also emphasize that what is not part 
of human nature, or even what goes against human nature, need not be unlearnable. 
Individuals in all cultures have always accomplished prodigious feats such a s 
juggling 10 balls while riding a bicycle, playing a Beethoven piano sonata, or proving 
an abstract mathematical theorem (such as Lagrange’s) in a formal language. 
However, research on people’s reasoning, and on mathematical thinking in particular, 
usually deals with what most people are able to accomplish under normal conditions. 
Under such conditions, many people will produce non-normative answers if the task 
requires reasoning that goes against human nature. In terms of mathematical 
education, this means that learning such skills will require a particularly high 
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motivation and perseverance – conditions that are hard to achieve for a long time and 
for many people in the standard classroom.  

Finally, it is in order to note here that EP is a hotly debated discipline. Much of the 
criticism leveled at EP is ideologically or emotionally motivated, but see, e.g., Over 
(2003) or Fodor (2000) for a sample of scientifically respectable alternative views. 

A word about the relation of human nature to dual-process theory (Framework 3 
above): Human nature consists by definition of a more-or-less fixed collection of 
traits and behaviors that all human beings in all cultures acquire spontaneously and 
automatically under normal developmental conditions. System 1, in my view, 
contains all the traits and behaviors that comprise human nature but, on top of that, 
also all the traits and behaviors that became S1 for a particular culture or a particular 
person because of specific (non-universal) developmental conditions. For example, 
speaking English is not part of human nature but is an S1 skill for whole cultures; and 
reasoning (correctly) with Lagrange’s theorem may be an S1 skill for group-theory 
specialists. 

Students’ misuse of Lagrange’s theorem: an EP perspective. Cosmides and Tooby 
(1992, 1997) have used the Wason card selection task (Wason, 1966; Wason & 
Johnson-Laird, 1972) to uncover what they refer to as people’s evolved reasoning 
“algorithms”. In a typical example of the Wason task, subjects are shown four cards, 
say A 6 T 3, and are told that each card has a letter on one side and a number on the 
other. The subjects are then presented with the rule, “if a card has a vowel on one 
side, then it has an even number on the other side”, and are asked the following 
question: What card(s) do you need to turn over to see if any of them violate this 
rule? The notorious result is that about 90% of the subjects, including science majors 
in college, give an incorrect answer. Many similar experiments have been carried out, 
using rules of the same logical form “if P then Q”, but varying the content of P and 
Q. The error rate has varied somewhat depending on the particular context, but 
mostly remained high (over 50%). 

The motivation behind the original Wason experiment was partly to see if people will 
naturally behave in accordance with the Popperian paradigm that science advances 
through refutation of held beliefs (rather than their confirmation). The normative 
response to the Wason task depends on the question: What will refute the given rule? 
The answer is that the rule is violated if and only if a card has a vowel on one side but 
an odd number on the other. Thus, according to mathematical logic, the cards you 
need to turn are A (to see if it has an odd number on the other side) and 3 (to see if it 
has a vowel on the other side)5. 

Cosmides and Tooby (1992, 1997) have presented their subjects with many versions 
of the task, all having the usual logical form “if P then Q”, but varying widely in the 
contents of P and Q and in the background story. While the classical results of the 
Wason task show that most people perform very poorly on it, Cosmides and Tooby 
                                                 
5 Most subjects choose the A card and sometimes also 6, but rarely 3.  
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demonstrated that their subjects performed significantly better on tasks involving 
conditions of social exchange. In social exchange situations, the individual receives 
some benefit and is expected to pay some cost. On theoretical grounds, and from 
what is known about the evolution of cooperation, certain kinds of social skills are 
expected to have conferred evolutionary advantages on those who excelled in them, 
and thus would be naturally selected during evolutionary history. In the Wason task, 
social exchange situations are represented by statements of the form “if you get the 
benefit, then you pay the cost” (e.g., if you give me your watch, then I give you $20). 
A cheater is someone who takes the benefit but do not pay the cost. Cosmides and 
Tooby explain that when the Wason task concerns social exchange, a correct answer 
amounts to detecting a cheater. Since subjects performed correctly and effortlessly in 
such situations, and since evolutionary theory clearly shows that cooperation cannot 
evolve in a community if cheaters are not detected and punished, Cosmides and 
Tooby have concluded that our mind contains evolved “cheater detection 
algorithms”.  

Significantly for the Lagrange’s theorem task discussed here, Cosmides and Tooby 
also tested their subjects on the “switched social contract” (mathematically, the 
converse statement “if Q then P”), in which the correct answer by the logic of social 
exchange is different from that of mathematical logic (Cosmides and Tooby, 1992, 
pp. 187-193; Leron, submitted). As predicted, their subjects overwhelmingly chose 
the former over the latter: When conflict arises, the logic of social exchange overrides 
mathematical logic.  

I note that there are many competing theories to explain the content effects of the 
Wason task, and the Cosmides and Tooby theory is used here mainly as illustration. 
For our purposes, we can summarize their approach as follows. In non-social-
exchange situations, people mostly find it hard to relate to the Wason task in any 
meaningful way. In a social exchange situation, in contrast, people find the situation 
meaningful, but will mostly interpret this statement in a symmetrical way, rather than 
a directional way as required by mathematical logic, as if it were an “if and only if” 
statement. 

This theory adds a new level of support, prediction and explanation to the many 
findings that students are prone to confusing between mathematical propositions and 
their converse, in particular, to our Lagrange’s theorem data presented above. 
Importantly, in the EP view, people fail not because of a weakness in our cognitive 
apparatus, but because of its strength: our impressive skill in negotiating social 
exchange situations. Unfortunately for mathematics education, this otherwise 
adaptive skill, may sometime clash with the requirements of modern mathematical 
thinking. It is a fascinating theoretical and empirical research issue, to map out the 
topics and skills where human nature helps the learning of mathematics and where it 
may get in the way. (Some first steps in this direction have been taken in Leron, 
submitted). 
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C. Conclusion 
As in the old Buddhist fable about the six blind men trying to “see” an elephant, 
complex phenomena can often be described from several perspectives, which in turn 
lead to several different explanations. Notable examples are the global vs. the local 
(or molecular) theories of heat in physics, or proximal vs. ultimate explanations in 
psychology (Cosmides & Tooby, 1997). The different perspectives and the 
corresponding different explanations usually answer different questions and are 
useful under different circumstances. The more perspectives and the more 
explanations, the deeper the understanding of the phenomenon under study. It is my 
hope, therefore, that the four complementary perspectives offered here, will help us 
gain deeper understanding of students’ performance on advanced mathematical tasks. 
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Abstract: Quite often a mathematical object may be introduced by a set of equivalent 
definitions. One fundamental question consists of determining the “didactic 
effectiveness” of the techniques associated with these definitions for solving one kind 
of problem; this effectiveness is evaluated by taking into account the epistemic, 
cognitive and instructional dimensions of the study processes. So as to provide an 
example of this process, in this article we study the didactic effectiveness of 
techniques associated with different definitions of the absolute value notion (AVN). 
The teaching and learning of the AVN are problematic; this is proved by the amount 
and heterogeneity of the research papers that have been published. We propose a 
“global” study from an ontological and semiotic point of view (Godino, 2002; 
Wilhelmi, Godino and Lacasta, 2004). 

1. Mathematical equivalence vs. Didactic equivalence of definitions 
One of the goals for the teaching of mathematics should be to channel everyday 
thinking habits towards a more technical-scientific form of thinking at an earlier 
stage, as a means for overcoming the conflicts between the (formal) structure of 
mathematics and the cognitive progress. The process of definition of mathematical 
objects represents “more than anything else the conflict between the structure of 
mathematics, as conceived by professional mathematicians, and the cognitive 
processes of concept acquisition” (Vinner, 1991, p.65). This fact justifies the great 
number of papers in the didactics of mathematics for which the subject matter is 
mathematical definition (Linchevsky, Vinner & Karsenty, 1992; Mariotti & 
Fischbein, 1997; De Villiers, 1998; Winicki-Landman & Leikin, 2000; etc.). We are 
interested in justifying the fact that the mathematical equivalence of two definitions 
of the same object does not imply their epistemic, cognitive or instructional 
equivalence, that is to say, the didactic equivalence. 

From the viewpoint of the didactics of mathematics, one fundamental question 
consists of determining the didactic effectiveness of problem-solving techniques 
associated with a mathematical definition; this effectiveness is assessed by taking into 
account the epistemic (field of applicability of the techniques and mathematical 
objects involved), cognitive (effectiveness and cost in the use of the techniques by the 
individuals) and instructional (amount of material resources and time required for its 
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teaching) dimensions. Hence, with the expression didactic effectiveness we refer to 
the articulation of these partial types of effectiveness in an educational project. 

In relation to a mathematical notion it is necessary to: 1) determine mathematically 
equivalent definitions of the said notion; 2) describe the relations that are established 
between these definitions; 3) construct an explicit reference for the notion defined 
that envisages the complexity of objects and meanings that constitute the equivalent 
definitions associated with that notion in the different contexts of use; and 4) assess 
the didactic effectiveness of the techniques associated with the different mathematical 
definitions. A study of this kind may be performed for any kind of mathematical 
notion; however, the specific didactic decisions are consubstantial to each 
mathematical notion. In this article we aim to identify mathematically equivalent 
definitions of the notion of absolute value and discuss its equivalence or its diversity 
from a cognitive and instructional viewpoint. To do so, we answer the following 
questions: 

� Is there a technique that minimises the cognitive and instructional cost of use 
of resources, that maximises the effectiveness of the individuals in the specific 
field of problems and that facilitates adaptation to new problems? 

� Is it possible to classify the techniques according to their scope or generality 
(field of applicability), their mutual implication (one technique may be 
obtained deductively from another one) or their role within the institutional 
practices (social, cultural, conventional)? 

So as to answer these questions it is necessary, in the first place, to determine the 
nature of the notion of absolute value and accept the complexity of objects and 
meanings that explicitly refer to it. In section 2, a set of research problems are 
described, the purpose of which is the understanding of the difficulties for the 
teaching and the learning of the AVN. From these investigations we deduce the 
ontological and semiotic complexity of the AVN, but none of them deals with the 
problem that arises when trying to integrate the meanings attributed to this notion in 
the different contexts of use. In section 4, we clarify a way to structure the models 
and meanings associated with the AVN and we describe its “overall” meaning. 
Beforehand, in section 3, we introduce the different definitions of the AVN and, 
backed by the calculation of the solutions of a linear equation with an absolute value, 
we indicate how these definitions condition mathematical practices.  

2. Nature of the notion of absolute value 
The teaching and learning of the AVN are problematic. This is proved by the amount 
and heterogeneity of the research papers that have been published. Gagatsis and 
Thomaidis (1994), after showing a succinct anthropology of the knowledge about 
“absolute value”, determine the processes for adapting that knowledge in Greek 
schools and interpret the students’ errors in terms of epistemological obstacles 
(linked to the historical study) and didactic obstacles (related with the processes of 
transposition). More recently, Gagatsis (2003, p.61) reasons from empirical data that 
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the “obstacles encountered in the historical development of the concept of absolute 
value are evident in the development of students’ conceptions”. 

From a professional point of view, Arcidiacono (1983) justifies a instruction of the 
AVN based on the graphic analysis on the Cartesian plane of piece-wise linear 
functions and Horak (1994) establishes that graphic calculators represent a more 
effective instrument than pencil and paper for performing this teaching. On the other 
hand, Chiarugi, Fracassina & Furinghetti (1990) carried out a study on the cognitive 
dimension of different groups of students faced with solving problems that involve 
the AVN. The study determines the need for research that will allow the errors and 
misconceptions to be overcome. On her part, Perrin-Glorian (1995) establishes 
certain guidelines for the institutionalisation of knowledge about the AVN in 
arithmetical and algebraic contexts; so she argues that the central function of the 
teacher’s didactic decisions in the construction of the AVN, that must take into 
account the students’ cognitive restrictions and must highlight the instrumental role 
of the AVN. 

All these research papers implicitly consider that the nature of the AVN is 
transparent. From an ontological and semiotic point of view of mathematical 
cognition and instruction (Godino, 2002; Godino, Batanero and Roa, in print) it is 
necessary to theorise the notion of meaning in didactics. This theorising is done using 
the notion of semiotic function and an associated mathematical ontology. They start 
off with the elements of the technological discourse (notions, propositions, etc.) and it 
is concluded that its nature is inseparable from the pertinent systems of practices and 
contexts of use. 

Godino (2002) identifies the “system of practices” with the contents that an 
institution assigns to a mathematical object. The description of the meaning of 
reference for an object is presented as a list of objects classified into six categories: 
problems, actions, language, notions, properties and arguments. Wilhelmi, Godino 
and Lacasta (2004) argue in what way this description of the system of practices is 
insufficient for the description of the institutional meanings of reference and, in order 
to overcome those deficiencies, the theoretical notions of model and of holistic 
meaning of a mathematical notion are introduced. These notions will allow us to 
structure the different definitions of the AVN and the description of the meaning of 
the AVN as a “whole”, in a coherent complex whilst drawing some conclusions of a 
macro and micro didactic nature.  

3. Definitions for the notion of absolute value 

In this section, we introduce some definitions of the AVN associated with different 
contexts of use and we briefly indicate how these definitions, as objects emerging 
from the different subsystems of practices, condition the operational and discursive 
rules. In the arithmetical context, the AVN represents a rule that “leaves the positive 
numbers unchanged and turns the negative numbers into positive ones”. 

 “The absolute value of x, denoted by |x|, is defined as follows: 
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|x| = x if  x > 0; |x| = –x   if  x < 0;  |0| = 0 

Thus, the absolute value of a positive number or zero is equal to the number itself. The 
absolute value of a negative number is the corresponding positive number, since the negative 
of a negative number is positive.” (Leithold, 1968, p.10). 

The absolute value provides the set of real numbers with a metric; the distance of a 
real number x to the origin 0 is defined by the relation: d(x; 0)=|x|.  

“Intuitively, the absolute value of a represents the distance between 0 and a, but in fact we 
will define the idea of ‘distance’ in terms of the ‘absolute value’, which in turn was defined 
in terms of the ordering.” (Ross, 1980, p.16). 

In the geometrical context, the NVA may be understood in terms of vectors as the 
module for a one-dimensional vector. What is more, this fact may be generalised as a 
property that is derived from the “ordered” and “complete” nature of R (Aliprantis & 
Burkinshaw, 1998, p.66–67). 

The classic definition of absolute value, as a basic notion for the foundations of 
mathematical analysis, is sometimes reformulated in terms of the maximum function: 
|x| = max{x; –x}. In this same context, the AVN is often introduced using a piece-
wise function in Q and, by extension, in R. 

“For any rational number q: 
�
�
�
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0si
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qq

qq
q  […] We extend the definition of ‘absolute 

value’ from Q to R […] |x| equal x if x ≥ 0, and –x if x < 0.” (Truss, 1997, pp.70–102). 

Finally, it is easy to demonstrate that: 2|| xx +=  (Mollin, 1998, p.47). 

The aforementioned definitions are mathematically equivalent, but their use 
conditions mathematical activity: they do not involve the same mathematical objects 
in the resolution of a same problem. For example, let it be the linear equation with 
absolute value |x – 2| = 1, its solution in an arithmetical context involves a reasoning 
of the kind: “the absolute value of a number is 1, then this number is 1 or –1; What 
number, when subtracting 2 from it, gives 1?, What number, when subtracting 2 from 
it, gives –1?”. The formalisation of this method may be done in the following way: 

�
�
�

=�−=−
=�=−

�=−
112

312
1|2|

xx

xx
x  

However, the analytical demonstration, according to the compound function 
definition, is performed in the following way: 
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Next, in section 4.1, we shall show the onto-semiotic complexity of the AVN, that is 
deduced from the diversity of contexts of use, from the definitions associated with 
them and the operational and discursive practices that these definitions condition and, 
in section 4.2, backed by the theoretical notion of holistic meaning (Wilhelmi, 
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Godino and Lacasta, 2004), we shall organise the models of absolute value, whilst 
showing the relations that are established between them.  

4. Onto-semiotic complexity of the absolute value 
4.1. Structure of definitions, models and meanings associated with the notion of 
absolute value 
The professional mathematician identifies the same formal structure in the variety of 
objects and (operational and discursive) practices; a structure that he/she considers to 
be “the mathematical object”. This formal structure represents the implicit reference 
in the resolution of types of problems associated with the variety of systems of 
practices and objects emerging in the different contexts of use. Figure 1 shows 
schematically the diversity of objects associated with the AVN. 

 
Figure 1. Structure for the models and meanings associated with the absolute value. 

Each definition represents an object emerging from a system of practices in a given 
context of use. No definition may be privileged a priori. Each “emergent object - 
system of practices” binomial determines a model of the AVN. The model is then a 
coherent form for structuring the different contexts of use, the mathematical practices 
relating to them and the objects emerging from such practices; so forming a network 
or local epistemic configuration (associated with a specific context of use). 

4.2. Holistic meaning of the notion of absolute value 
From the strictly formal and official viewpoint (Brown, 1998), it is accepted that the 
definition of a mathematical object constitutes its meaning. The description of the 
system of models and meanings associated with a notion is obtained from the 
statement and demonstration of a theorem for characterisation: privilege of one of the 
definitions and justification of the equivalence of the rest of the definitions. 

The empirical data provided by Leikin & Winicki-Landman (2000) allow to state that 
the equivalence of mathematical definitions cannot be assessed just from the 
epistemological viewpoint, it is necessary take into account the cognitive (What 
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strategies for action generate each one of the definitions?), instructional (What 
definition is the most suitable within a given project for teaching?) and didactic 
(What relationship is established between the personal meaning learnt and the 
institutional meaning intended?) dimensions. The holistic meaning (Wilhelmi, 
Godino & Lacasta, 2004) comes from the coordination of the meaning attributed to 
the models associated with the notion of equality and the tensions, filiations and 
contradictions that are established between them. 

5. Cognitive effectiveness of the arithmetic models and “piece-wise function” of 
the absolute value 

As we mentioned earlier, from the viewpoint of the didactics of mathematics, a 
fundamental question consists of determining the didactic effectiveness of a 
mathematical process for problem-solving. In this section we aim to analyse the 
cognitive dimension (effectiveness and cost in the use of the techniques by 
individuals) of the problem-solving techniques associated with the “arithmetical” 
definitions and “piece-wise function”. To do so, we use an experimental study with a 
group of 55 students (trainee teachers) solving a set of elemental exercises that 
require the AVN (Table 1). 

1. Complete, if you can, the following equalities: 
|–2| =   |2| =  |0| =  | 2− | = 
| 2 | =  |– 2 | = |2 – 2 | = | 2 – 2| = 

2. State, if you can, the numbers that would have to be inserted to replace the dots so the 
following expressions will be correct: 

|… – 2| = 1;  |… + 2| = 1; |… – 2| = 0; |(…)2 – 4| = 0;  
 |(…)2 + 4| = 0;  |(…)2 – 1| = 1;  |(…)2 – 3| = 1   

3. Represent in a graphic way the function f(x) = |x+1|. 
4. Let a be a real number. Complete, if you can, the following equalities: 

|–a| =   |a| =  |a – 2| = 
                                   |–a – 2| = |2 – a| = |a + 2| =  

Table 1. Questionnaire. 

5.1. Predominant model and effectiveness in problem-solving 
Generically, we affirm that a person understands the AVN if he/she is capable of 
distinguishing its different associated models, structuring the said models in a 
complex and coherent group and meeting the operative and discursive needs in 
relation to the AVN in the different contexts of use. 

Formally, a definition may be reduced to axioms; however, in a process of study, the 
definition represents a formalization of a pertinent notion (it allows a consistent 
interpretation of a problem) or operative (it conditions a useful action). The only 
means for distinguishing the meaning attributed by an individual to an object is by 
means of a situation or a set of problems that may be solved by using different 
models capable of generating pertinent and useful actions, that, however, comply 
with different “economic” laws.  
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The experimental work performed has allowed us to classify the students according 
to the model of absolute value associated with the operative and discursive practices 
in relation to the problems proposed (that determines a certain level of effectiveness). 
So as to be able to classify the students, it is necessary to interrelate a collection of 
tasks and determine (with a level of approximation) the tasks that allow the 
performance of other tasks to be assured.  

5.2. Analysis of a questionnaire 
The main purpose of the experimentation is to empirically support the thesis 
according to which the models “arithmetical” and “piece-wise function” associated 
with the AVN are extremely similar (see Section 4.2). The analysis of the 
institutional meanings determines selection criteria of the variables for the implicative 
study (Gras, 1996). The system of variables is shown in Table 2. 

Variable Description No. of answers 
v1 2|2| =±  (without numerical approximation) 47 

v2 41,1|2| ≈± (with numerical approximation) 20 

v3 =− |2| no ∃ (does not make sense in R) 16 

v4 59,0|22| ≈− (with numerical approximation) 30 

v5 22|22| −=− (without numerical approximation) 17 

v6 59,022|22| ≈−=− (with or without numerical approx.) 30 

v7 Two solutions in |… – 2| = 1 or in |… +2| = 1 21 
v8 Determination of the two solutions of |(…)2 – 4| = 0 26 
v9 |(…)2 +4| = 0 has no solution 24 

v10 Solution of |(…)2 – 1| = 1: 0 29 
v11 Solution of |(…)2 – 1| = 1: 0 and 2 , 2−  or 2±  9 
v12 At least two solutions for |(…)2 – 3| = 1 25 
v13 They construct the graph and give the formula correctly 28 
v14 They construct the graph and give the formula incorrectly 15 
v15 At least 4 correct sections from exercise 4 14 
v16 Mean in the course ≥ 14 (out of 20) 17 

Table 2. Small set of variables. 

The aim is to find whether, in the sample, the fact of having answered a question 
correctly statistically implies the response to another question. In particular, it is 
admissible to expect that any individual who is capable of performing a task that is 
more complex than another (and that generalises it in a certain way), then he/she will 
also be capable of performing the second one. However, this is not always so; in 
many circumstances it is necessary to compare certain hypotheses for implementing a 
hierarchy for performing tasks. Below, we comment on some of these implications: 

� Implication at 99%. A group of students is stable in solving the equations: they 
perform the search for roots in an equation (linear and quadratic) with absolute 
value in a routine manner. 

� Implication at 95%.  
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• v2 → v4: Mostly, the students who have given an approximation for | 2 |, also 
establish that 59,0|22| ≈− . One possible interpretation: the arithmetical model 
of absolute value is understood as a rule that operates on the “numbers”, that is 
to say, numbers “in decimal format”.  

• v3 → v9: The didactic contract assumed by the vast majority of the students 
establishes the existence of a solution for any problem; their function is find it 
(the sentence “when you can” is skipped by these students). Hence, the relation 
“v3 → v9” distinguishes a group of students that separates action and meaning. 

• v16 → v6 and v16 → v13. The students who have a “good” behaviour in the 
course mostly operate the absolute value ( 22|22| −=− ) “symbolically” and 
understand the f(x) = |x + 1| function analytically and graphically. 

A wider question that may be posed is whether the fact of having answered a set of 
questions correctly implies (in a preferential manner) the right answer in another set 
of questions. The hierarchical analysis (Gras, 1996) allows the implicative 
relationships between the kinds of questions to be described in a more “dynamic” 
way and, therefore, constitutes a response to the question posed. Based on the 
experimental data, it is established that the most significant classes are: v7 → v12 → 
v8 → v6 and v15 → v16 → v13. What individuals contribute to the formation of 
each one of the classes? The students who most contribute to both classes are those 
who perform the tasks symbolically and are capable of applying the model piece-wise 
function systematically and effectively. 

6. Macro and micro didactic implications 

The cognitive difficulties (Chiarugi, Fracassina & Furinghetti, 1990) and the 
incapacity of the educational institution to draw up a pertinent curriculum for the 
introduction and development of the AVN (Perrin-Glorian, 1995; Gagatsis and 
Thomaidis, 1994) has led to merely technical teaching based on the arithmetical 
model (as a rule that “removes the minus sign”). The arithmetical model of the AVN 
proves to be a didactic obstacle that restricts, in many cases, the personal meaning to 
a mere game of symbols. This obstacle is shown in different ways; for example: |a| = 
a and |–a| = a, for any a ∈ R; 22|22| +=− , etc. 

Macrodidactic implications  

The introduction of the absolute value in the arithmetical context represents an 
unfortunate decision in modern-day school institutions: it means the inclusion in the 
curriculum of the notion “absolute value” for merely cultural reasons. However, the 
curricular structure is not ready at the present to properly cope with the study of the 
notion in an exclusively arithmetical context. It would be advisable to “temporarily” 
remove the notion. This would be temporary, either until a pertinent didactic 
transposition, or until the students start to study the theory of functions, central in 
relation to the notion of absolute value (Arcidiacono, 1983; Horak, 1994). 

This “drastic” didactic decision means, on the one hand, the acceptance by the 
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educational institution of the existence of a didactic that is not pertinent in relation to 
the notion of absolute value and, on the other hand, its incapacity to produce a viable 
(admissible cost of material and time resources), reproducible (institutional stability 
in relation to the availability of resources) and reliable (the personal meanings learnt 
are representative of the institutional meanings intended) “de-transposition” (Antibi 
and Brousseau, 2000). Gagatsis (2003, p.61) gets a similar conclusion: “There are 
also a number of obstacles with didactic origin relating to the ‘strange’ didactic 
transposition or the restrictions of the educational system […] There is a problem of 
legitimization of the content to be taught.” 

Microdidactic implications 

From the point of view of learning, the models associated with mathematical notion 
are ordered according to their hierarchy. The structuring of the models is carried out 
in terms of the “field” of the latter in the curriculum. The dominant model must 
clearly and specifically participate in the first encounter with the notion. For the 
AVN, the model “piece-wise function”, using the graphic representation of the 
function in the Cartesian plane and using the discursive practices pertaining to the 
theory of functions. 

Hence, it is necessary to establish a didactic engineering for developing the “absolute 
value” object (understood as a system). This engineering will have to articulate the 
epistemological analysis with the methodological and time restrictions within each 
specific institution. In relation to the AVN, the objective consists of establishing a 
system of practices that will make the explicit interaction of the arithmetical model 
with the rest of the models possible and, most particularly, with the analytical model. 

7. Synthesis and conclusions 

The notion of holistic meaning of a mathematical notion makes it possible to describe 
the latter as an epistemic configuration that takes into consideration both the praxis 
and discursive elements of mathematical activity. Furthermore, it provides an 
instrument for controlling and assessing the systems of practices implemented and an 
observable response (and, in a certain way, quantifiable) for the analysis of personal 
meanings. More precisely speaking: 

� The notion of holistic meaning (network of models) represents the structuring 
of the knowledge targeted and may be used to determine the degree of 
representation of a system of practices implemented in relation to the 
institutional meaning intended.  

� The notions of model and holistic meaning provide a response to the questions: 
What is a mathematical notion? What is understanding this notion?; in 
particular, What is the AVN? What does understanding the AVN mean? 
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Abstract: This paper presents and explores the use of a developmental research 
paradigm and its necessity to the growth of knowledge about improving mathematics 
learning and teaching. It reports on a project whose chief aim is to create and study 
inquiry communities between mathematics teachers and didacticians. Its principal 
focus is the roles of didacticians as they interact with teachers to develop working 
notions of inquiry and community for developments in practice. Its analytical stance 
is dialogical, tracing meanings and ideas through the words of individuals in 
meetings to plan the work of the project. We show that meanings develop as 
individual perspectives are presented, considered and modified, enabling community 
understandings to grow and facilitating individual interpretation in practice. 

Keywords: Community of inquiry, developmental research paradigm, dialogic 
inquiry, role of didacticians. 

 

Introduction: research focus 
A research project, Learning Communities in Mathematics, is underway in Norway1 
to explore the development of inquiry communities in mathematics learning, 
teaching and teaching development. The project is designed to enhance mathematics 
learning in classrooms through development of teaching. The project creates and 
studies learning communities between teachers and didacticians as partners in 
development and research to design and explore classroom activity in mathematics 
involving an inquiry approach. 

Research here both studies developmental processes and is a part of the processes 
studied. We agree with Chaiklin who writes: 

                                                 
1 We are supported by the Research Council of Norway (Norges Forskningsråd):  Project number 
157949/S20 
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Social science research has the potential to illuminate and clarify the practices we 
are studying as well as the possibility to be incorporated into the very practices 
being investigated. (Chaiklin, 1996, p. 394. Our emphasis) 

We therefore regard our research as developmental, and consider ourselves to be 
working within a developmental paradigm whose “dialect” contrasts with dialects of 
confirmation or description, which have, respectively, “grammars” of randomized 
testing or ethnographic description (Kelly, 2003, p. 3). 

The operative grammar, which draws upon models from design and engineering, 
is generative and transformative. It is directed primarily at understanding learning 
and teaching processes when the researcher is active as an educator. (Kelly, 2003, 
p. 3)2 

In this paper we focus on a major issue that has arisen in early stages of the project. 
This concerns the roles of didacticians in working with teachers to develop an 
inquiry approach according to theoretical principles in the project. In the early stages 
of interactivity, didacticians have to find ways of drawing teachers into 
understandings of inquiry and inquiry approaches so that teachers can explore 
possibilities related to their own school practices. Interaction has to respect and build 
on teachers’ professional autonomy in their work with pupils. As research questions, 
we ask, what is the nature of the didacticians’ role(s)? How are such roles 
conceptualised, and what issues do conceptualisation and subsequently 
implementation raise for didacticians and for the project? We are also interested in 
issues raised for teachers, but data to address this question will be gathered at a later 
stage. Here we draw on data from meetings in which prospective issues are 
discussed, and from very early interactions with teachers. 

Theoretical Perspectives 
Our focus on teaching development through building and studying communities of 
inquiry draws on Wells (1999) perspective of dialogic inquiry as “a willingness to 
wonder, to ask questions, and to seek to understand by collaborating with others in 
the attempt to make answers to them” (p. 122). A community of inquiry can be 
regarded as a context for teaching practice, for research practice and for a transition 
from the research to the teaching practice. Theory is implemented and developed, 
from the didacticians’ background concepts of inquiry, by a discourse about inquiry 
within an inquiry community of didacticians and teachers. We see “inquiry” as a 
unifying factor between research and the learning and teaching development on 
which research has focused. We develop inquiry approaches to our practice and 
together use inquiry approaches to develop practice. Thus, we see inquiry in three 
mutually embedded forms or layers: 

                                                 
2 Here, Kelly is talking about a “Design Research” paradigm (DR), but we believe DR to be part of 
a broader paradigm which we regard as Developmental (Jaworski, 2004b). 

Working Group 11

CERME 4 (2005) 1349



• Inquiry in mathematics: Pupils in schools learning mathematics through 
exploration in tasks and problems in classrooms; 

• Inquiry in teaching mathematics: Teachers using inquiry to explore their design 
and implementation of tasks, problems and activity in relation to pupils’ 
learning in classrooms; 

• Inquiry in research which results in developing the teaching of mathematics: 
Teachers and didacticians researching the processes of using inquiry in 
mathematics and in the teaching and learning of mathematics. 

In each of these layers we have people as individuals and people as groups inquiring 
into mathematics, mathematics teaching or into the contribution of research to 
teaching development. We are all deeply embedded in social and cultural worlds 
(including political, economic, religious and systemic factors). Knowing can be seen 
both as situated in the context, community and practices in which we engage and as 
distributed within a community of practice (Cole & Engeström, 1993). Wenger 
(1998) has emphasized learning as a “process of becoming” in a community of 
practice (p. 218). We see inquiry as an important element of agency within a process 
of becoming, and prefer to talk of a community of inquiry in which both teachers and 
didacticians engage in inquiry. A feature of a community of inquiry that 
distinguishes it from a community of practice, according to Wells (1999) is 

the importance attached to meta-knowing through reflecting on what is being or 
has been constructed and on the tools and practices involved in the process’ (page 
124, our emphasis). 

Inquiry can be conceptualized as both a tool and a way of being (Jaworski, 2004a). 
The project aims to use inquiry as a tool to develop inquiry as a way of being in 
developing teaching and studying related classroom activity and learning of pupils. 
Inquiry (as a tool) can be seen to stimulate accommodation of meanings central to 
individual growth and is also a way of acting together (a way of being) that is 
inclusive of the distributed ways of knowing in a community. As part of a 
community of inquiry, individuals are encouraged to look critically at their own 
practices and to modify these through their own learning-in-practice. It is within this 
theoretical frame that teachers and didacticians collaborate for mutual learning. 

Potter and Wetherall (1987) suggest that there is always a tension between individual 
self expression and social determinism. We see the concept of ‘role’ as a means of 
reconciliation between the two. The ways in which individuals develop their role 
with respect to notions of inquiry and community is central to the project. Our 
didactician team has built (common) understandings of inquiry processes and their 
(theoretical) interpretation in establishing the project. We wish to develop inquiry in 
mathematical activity in classrooms, and in exploring the teaching approaches to 
develop classroom activity. So far, these theoretical principles are ‘owned’ by the 
didacticians. A key issue for didacticians is how collaborating teachers will start to 
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think in inquiry terms and to use inquiry in classroom work. What roles can 
didacticians take in drawing teachers towards a community of inquiry? 

While the nature of role for any individual is important, we are here focusing on 
roles from a perspective of social interactions (Mead, 1935, Giddens, 1993) with 
analysis that focuses on discursive practices (Fairclough 1992; Chouliaraki & 
Fairclough, 1999). In our study, roles emerge in the discussion taking place during 
project meetings. Such meetings have the purpose to plan the activity of the project. 
In doing so, they contribute to knowledge and awareness of didacticians in the 
project and to an inquiry community of didacticians. The recorded meeting is data 
for analysis, and analysis of this data leads again to enhanced awarenesses of 
individuals and growth of knowledge in the community. Thus the developmental 
research paradigm is fundamental to both empirical research and development within 
the project. 

We see our contribution to the work of Group 11 at CERME4 focusing on a 
developmental paradigm: its nature in revealing relationships between theory and 
practice, and its power both in offering a critique of the predictive role of theory for 
practice and in enabling the development of theory for deeper relations with practice. 

Data Collection and Analysis 
Analysis reported in this paper is of qualitative data from early project meetings of 
didacticians preparing for mainstream project activity: (a) for workshops between 
didacticians and teachers; (b) for school groups, where teachers will design activity 
for the classroom with didactician support. Inquiry in workshops and school activity 
is intended to lead to inquiry in classroom innovation and experimentation using 
designed materials. The early data takes the form of meeting notes, audio and video 
recordings of meetings and personal reflections from didactician/researchers. 

We have maintained an events calendar in which we have recorded meetings and 
other activity, together with details of people involved and related sources of data. A 
search of this events calendar revealed 15 meetings that could illuminate our 
research questions for this paper. We made a short factual summary of the content of 
each of these meetings. From this summary we found 5 meetings that contained 
elements explicitly related to the topic of ‘role’, and divided them into episodes 
through a factual data reduction exercise which showed the topics discussed in each 
episode. There were 2 meetings where roles were treated explicitly and in some 
depth; we transcribed those episodes which related directly to our research questions. 

In order to investigate how understandings of didacticians’ roles are constituted in 
the flow of the conversation occurring during selected meetings, we have taken a 
dialogical approach to communication. We focus on what is made known and 
reciprocally made understood by what is said by participants in the meeting context 
(Rommetveit, in Linell, 1998). Some dialogical properties included in the present 
analysis are, following Linell (1998), (a) sequential organisation, (b) joint, social-
interactional construction and (c) interdependence between acts (local unities) and 
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activities (global units and abstract types). The first, (a), refers to the way we 
approach the empirical material, focusing on how “utterances are both informed by a 
prior utterance and are consequential for next utterances” (op. cit p. 179). This 
sequential flow of discourse shows, in a pragmatic way, the social interaction among 
participants and, at the same time, their joint sense-making (b). In this way, the 
interdependency, between the local unities of participation and the general activities 
produced in the conversation, is established (c). 

In our analyses, we try to identify ways in which the discussion about roles led to 
emergent understandings during project meetings. We first present a descriptive 
account of the flow of discussion revealing perspectives of some participants, 
exemplified by key quotations from the discussion. We follow this with a rationale 
taking up the main issues and looking at these through our first experiences of 
interaction in practice. Finally, we look critically at how the developmental paradigm 
is manifested in both activity and analysis. Here, the people concerned are all 
didacticians. For simple anonymity we label them D1, D2 etc in order of 
contribution, keeping the same label consistently for each person. 

Descriptive account of a flow of ideas developing concepts of “role” 

In this section we present analysis from conversations occurring during two project 
meetings between didacticians that focused on our proposed activity in workshops 
with teachers and forthcoming work with schools. We are interested in  

i. The flow of ideas in the dialogue – tracing how one perspective leads to 
another; 

ii. Styles of (potential) interaction (between didacticians and teachers) that emerge 
from discussion (e.g. facilitation, holding back, asking questions). 

iii. Development of concepts for individuals as related to community development. 

We have extracted text that relates to the role of didacticians as they consider their 
(future) interactions with teachers in workshops and school settings. We try to 
identify the didacticians’ contributions to the understanding of these roles through 
the content of the conversations. We see clearly here a variety of different individual 
views, but also the ways in which through the flow of discussion, common 
understandings emerge. From such discussion and concept development, itself of an 
inquiry nature, understandings of modes of interaction develop both in community 
and for individuals acting. We see here key elements of the emergence of an inquiry 
community. 

Focusing on workshops 
In the first of the two meetings (WP040603) the Project Director (PD) launched a 
discussion with the words: “We need to think carefully about our own role in this 
activity” … “be aware of drawing teachers into this activity and doing all we can to 
enable them to be full members”. She used phrases such as “insuring inclusivity”, 
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“should not patronize”, “involvement has to be sensitively judged”, and, “these 
things are easy to say aren’t they, but what does it look like when we’re actually 
there”? The transcript shows colleagues responding differentially. D1: “we have a 
project … we will work together, so we have at least one thing in common … but be 
clear that we are all different”. D2: “a big thing here is to get everyone to trust each 
other … could it be an idea to make a letter, or a note, or workshop 1 goals, and give 
them to the teacher beforehand”? 

D2 suggested that if the letter was sent in advance, teachers might not find the 
workshop so frightening. There was laughter as others said it might be more 
frightening. D3 felt the letter might be less frightening if it focused on “the process 
when a [small] group works with a [mathematical] problem: what can happen, what 
opportunities, what different ways to work… [emphasizing] that we are not trying to 
test their individual knowledge”. D4 suggested that, in producing a letter, “we are 
going to this meta level too quickly”. It is better to “be brave and get to work … then 
afterwards think about what we did”. The word “’trust’ kept coming up. D5 said,  “I 
agree that it is very important here to build confidence and trust ... also linked to the 
way we want to develop” and “that’s a big goal as I see it here, really to trust your 
own thinking”. Several remarks referred to a teacher who had joined us in one 
planning meeting, and how she had seemed to gain confidence from the way her 
group had worked. PD suggested this had been encouraged by D5’s contribution in 
this group. Perhaps D5 had performed a coordination role. Thus, PD suggested 
“presumably we need a group coordinator” and that the coordination job would 
involve “taking responsibility for inclusiveness”. 

D3 suggested that inviting a teacher to relate a problem to children in the classroom 
would draw overtly on the teacher’s expertise, “here I am, I know something and can 
share with the group and it is important”. PD responded with “the coordinator has 
this orchestrating role”. D2 said “I have to, don’t push the mathematician in me so 
hard, try to be more like a didactician in the group, but I don’t think we need a 
coordinator … I think that role should be divided by all group members”. This 
comment led to a discussion of giving explicit roles to each person in a group, D5 
felt that “this would be too technical in the beginning”. He also was “not happy with 
the coordinator either” … seeing his name at the head of a group (in a list of groups) 
made him ask “am I the boss here”? 
These remarks on coordination led to a discussion on how to get a group started, 
avoid individuals “telling the answer”, “we should try to engage”, “what about the 
way it is important to hold back a bit … so you don’t do all the work”. “I was just 
thinking of the word facilitator … more that kind of role”. The word facilitator was 
not rejected as coordinator had been.  PD used the term “gentle facilitator”. This 
seemed perhaps to capture the nature of the role that was emerging in the discussion. 

Many things could be said about this extraction from the data. Principally we have 
offered it to demonstrate a flow of ideas, participation of all the eight colleagues 
present, and to contribute to a perspective of a growth of community knowledge or 
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awareness in which individuals developed their own perspectives. For example, the 
word “facilitator” became an agreed word for describing the role of a didactician 
working in a small group with teachers. D2, who had suggested the letter to teachers, 
acknowledged his own shift in perspective across this and subsequent meetings. 

Focusing on work in schools 

In the second of the two meetings (Me040819), the discussion starts with PD 
summarizing the theoretical perspective, of inquiry, and relating to practice in the 
project. Her words suggest that inquiry is an agreed perspective. However, belief that 
“inquiry is a process that can be extremely useful for developing mathematical 
thinking and understanding” (predictive theory) does not ensure practical outcome:  

…how we are going to achieve that on the way is part of what we are looking at 
so we are looking at the process in which this works and we are looking at the 
outcomes there and the outcomes in a sense are going to give us some evidence to 
go back to the theories that we started off with… 

We see here three strands relating to ongoing thinking: (i) there are theoretical 
notions, such as that of inquiry, which are well rehearsed in the language of the 
project. (ii) there is the hypothesis that creation of an inquiry community will be 
beneficial for students’ learning. (iii) the key element here: how are we going to 
achieve, in practice, what we have set up in theory? The outcomes that we document 
should take us back to our theories for questioning or strengthening. 

D6, introduced a hypothetical situation of a teacher asking him for suggestions to use 
in the classroom. He expressed his concern about the nature of this relationship. 

[D6] …I think they have an expectation that we will come with something and … 
when they plan a lesson they would say er “do you have a good suggestion for er 
for er probability?” and then you can say okay this is one kind of inquiry from the 
teacher… 

This seems to ask: what if teachers ask us directly for ideas for the classroom, on 
mathematical content for example? Should we provide something they can take and 
use directly (uncritically perhaps), or deal with the request in some other way that is 
more inquiry focused? D6 continued 

[D6] …I am seeing kind of er different sort of inquiry, and do we, how do we 
facilitate the teachers to have real inquiries for themselves? What they really 
inquire into, and I think that’s a question dealing with our roles… 

Implied here is that a teacher asking for ideas for the classroom is not engaging in 
“real” inquiry. It highlights that didacticians have a certain (agreed?) sense of what 
inquiry is, or what it is not. 

[D6] …I think that the tension me and [D2] had a briefly ((laughter)) over the er, 
in the morning it’s kind of an important issue because that’s the same thing that 
the teacher will confront when they are er working with their students… 
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D6 and D2 had been talking about such issues. Could they act in a way that would be 
a model for the teachers in working with their students? The issue here is how the 
role is made explicit and how it addresses fundamental aspects of project theory. PD 
asked what we might mean by “real inquiry”, relating to theoretical concepts of 
“inquiry as a tool” and “inquiry as a way of being” in interaction with teachers. She 
exemplified these concepts in practical terms related to teaching activity. 

Another didactician, D4, expressed her concern about the need to inform the teachers 
about concrete materials which are essential for the learning of ICT. 

[D4] Well on the other hand er there, it might be some teaching ideas, some tasks 
and things that could be useful for the teachers to know, and that they don’t know 
from before and also perhaps a computer software that, give some, good 
opportunities to, to look closer at the concept, so, should we not give away 
anything? 

Here we see a flow of ideas that questions an emergent perspective that didacticians 
should not offer ideas to teachers: that sometimes offering such an idea might be a 
helpful act. D2 responded to this as follows: 

[D2] Yes, but maybe we should wait for the teacher have er asked some more 
questions than just how do I, how can I teach probability…how do you think the 
pupils will learn best by, doing task or by, finding questions themselves… 

He points to the pupils’ inquiry, indicating a difference between doing tasks and 
finding questions. 

PD then summarized the earlier contributions of different participants with reference 
to the general theoretical framework of the project. She called attention to processes 
of establishing an environment where it would be suitable to offer some sort of 
material, tasks or ideas. The focus is about when to share ideas, where these ideas 
come from, and the implications of them coming from didacticians. Following this 
D2 emphasized the importance of sharing expertise in order to establish dialogue. He 
emphasised how the contribution of the teachers is important in order to establish the 
inquiry model. 

[D2]…Er and of course in the dialog with the teacher er, they will have to 
understand as I know that I don’t have, any, any best sequence or best, er tools for 
learning statistics er or any other subject and, they have to share with me their 
expertise on their students and, and they have to, er give me insights in their 
classroom… 

PD responded as devil’s advocate, challenging D2 and others to address potential 
negative response from teachers: 

[PD]…what about the teacher who says oh this is pointless you aren’t being of 
any help to me? All you are doing is, asking me questions about you know you’re 
not you’re not helping me to develop these things that I want to develop 
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D2 reacted to this challenge by stressing the importance of knowledge that teachers 
bring from the classroom, an idea that can be traced back to the previous meeting 
(see discussion above): “I don’t know er how good an eight, a boy in eighth grade 
are in probability or anything so, so, he [the teacher] will have to, he will have to 
share his experience, expertise er before or er while I’m sharing mine”. 

It seems important here to remark that all the above data was collected in preparation 
for the events with respect to which “role” is discussed. Thus, discussion is 
speculative and reflects potential reality rather than actuality. We have little data yet 
about the actuality. However, the anecdote below shows early evidence of the nature 
of development for one individual. 

Development of concepts for individuals 

In an addendum to analysis of meeting data, we present a short anecdote involving 
one didactician (D2 in above data) who has acknowledged his own development of 
ideas as meetings have shifted into early work with teachers in workshops and 
schools. His reflection after a meeting in one of the project schools shows how he is 
relating what happened to the issues discussed in earlier meetings. His interpretation 
of “gentle facilitator” role was significant in his account of the incident. This school 
(with students in grades 1 to 10) had used, with students, two of the mathematical 
problems presented at the workshop and one teacher described the outcomes. To 
facilitate the discussion the didactician asked how they saw the relationship between 
the problems and their curriculum. Trying to be ‘gentle’ he reported how other 
teachers in an upper secondary school (grades 11-13) were worried about curriculum 
issues related to the project. He described the response from teachers as “an uneasy 
silence”. He writes in reflection on this event: 

This is related to earlier discussion on explicitness. Shall we share as much as 
possible of our concern as researchers? And this relates to the question of when 
to share. According to previous shared understandings to questions related to 
teachers asking for teaching materials, should I share these reflections from the 
meetings with the teachers? Will these reflections interfere with my work with 
the teachers e.g. will they be afraid or too aware of what to say?  My answer, for 
the moment, is: we expect teachers to ask questions and we will share teaching 
ideas within some sort of inquiry environment, these meta-reflections and 
research issues will also be shared when or if teachers ask questions about it and 
they too can be provided within some sort of inquiry environment. 

D2 acknowledges his own development of ideas from the meetings and into current 
work with teachers. There is abundant evidence in our data of such development 
occurring widely for individuals–currently didacticians, but we shall be seeking 
evidence of teachers’ development also. We need to track such development and 
show how interpretation of theory through such activity leads to clearer 
understandings of theory-practice relationships. We are exploring the use of an 
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activity theory framework to explore such questions, and discuss this in another 
paper (submitted to PME 2005). 

Discussion 

Reflecting on the focus of this (CERME4) paper, D6 wrote as follows: 
I see this paper as dealing with issues before we meet teachers, inquiring into 
what these meetings could look like and what sort of interactions would emerge, 
building on our past experiences as teachers and working with teachers. This 
brings us into issues of educational development that often takes up a model of 
those-who-know doing something to those-who-don’t (top-down model). This 
would not happen within an inquiry community model. A top-down model has 
been shown not to be successful and is partly responsible for research ending up 
as being not of value for educational practices. So when the traditional borderline 
between researchers and teachers is reconsidered, we have also to reconsider the 
different roles of didacticians working together with teachers. 

We want to study the development of inquiry communities within the project. What 
we see above is a tracing of ideas, questions and issues across project meetings in the 
community of didacticians. We have tried to capture flow of ideas, suggested styles 
of interaction with teachers, and development as it might be seen for individuals. 
From the first meeting, we see a flow in the discussion towards the “gentle 
facilitator” role. Important is not so much this end point, but the growth of 
understanding of role through terms like coordinator or facilitator. PD reflected that 
she did not see any difference between concepts of coordinator and facilitator, but it 
was clear that her colleagues did, and it was important to elaborate understandings of 
these terms. In the second meeting, we see a flow of ideas from offering teachers a 
sheet of goals, towards ways of encouraging teachers’ development of inquiry as a 
way of being. Discussion on theoretical and practical relationships was lengthy here, 
and we have been unable to include illustrative evidence. 

In the developmental paradigm, it is impossible to plan in a clear and systematic way 
what will be done and how (except at organisational levels). Although theory 
suggests ways in which inquiry will enhance practice, there are many stages between 
a theoretical exposition and the outcomes of practice. Human interaction, and 
interpretation through interaction, are fundamental to fleshing out theoretical 
manifestation and growth through practice. In our theoretical perspectives, notions of 
inquiry and community are fundamental to our project. The literature provides many 
insights to theoretical concepts and issues. It cannot, however, tell us how to act. As 
we act and interact, a study of the activity involved reveals essential issues from 
practice that theory in its present form cannot predict. We seek ways to enhance 
theory through our analyses, feeding back subtleties and nuances of meanings and 
interpretations, to provide a richer theoretical base. Thus, we see the developmental 
paradigm, linking theory, research and practice, as central to any growth of 
knowledge that relates to improving practices of learning and teaching. 
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Abstract: In this paper we present a case study from an activity at secondary school 
level in which students have to perform motions (walking in front of a sensor), in order 
to obtain a space-time graph (on a calculator), as close as possible to a given graph. 
The aim is to analyse empirical data on the students’ approach to the two graphs 
through different theoretical lenses (transparency, fusion and semiotic node), with 
reference to recent literature. The integration of these lenses provides us with a multi-
faceted frame to suitably analyse the activity of our students, thus going beyond a 
consideration of the mere cognitive processes and embracing the whole learning context 
in its complexity. 

 
Introduction 
Students’ difficulty in constructing graphs using paper and pencil is well documented in 
the literature. The introduction of new technologies at school made available a lot of 
graphical settings, allowing for a widespread use of computer-based graphs in math 
curricula everywhere. Graphs are then now more accessible for the students. But the 
issue of the construction of their meaning is still an open research problem. 

Our study aims at analysing the activity of 9th grade (14 years old) students engaged in 
reproducing a given graph, by moving in front of a sensor, which is the artefact in use 
together with a symbolic-graphic calculator. We have previously (Ferrara et al., in press) 
considered two ways an artefact can get involved in an activity: as a black box or a 
transparent box. Here we want to extend this view, taking into account different 
theoretical lenses recently provided in educational research on graphing, and analysing 
differences to integrate them in a multi-faceted frame. Graphing is meant in the sense of 
Ainley (2000): “to encompass a number of related activities: drawing graphs, reading 
graphs, selecting and customising graphs for particular purposes, and interpreting and 
using graphs as tools” (Ainley, ibid.; p. 365). 
Theoretical framework 
The first theoretical lens we consider is the notion of transparency. As a general notion, 
it may refer to broader categories, e.g. artefact and sign, of which the graph can be 
considered a particular case. Lave & Wenger (1991) defined transparency using the 
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metaphor of a window, which is invisible as we look at the view beyond it, and highly 
visible in contrast to the wall that contains it. Similarly, a graph may be invisible in 
giving access to features of the phenomenon it represents, and visible to inspection for 
extracting detailed information. The graph is considered transparent when it has both the 
features: visibility for itself and invisibility when the student sees beyond it the 
description of a phenomenon, as a tool or an artefact[1]. Meira (1998) adopts this 
viewpoint when he speaks of transparency as an index of access to knowledge: 
“artefacts become efficient, relevant, and transparent through their use in specific 
activities and in relation to the transformations that they undergo in the hands of users”. 
To him, transparency is not an inherent (objective) feature of the tool, but it emerges 
through the very use of the tool itself. Roth (2003) characterises the notion of 
transparency within the same perspective, “not as a property of a tool (object) but as a 
type of relation between user and tool” (Roth, ibid., p. 162). The consciousness and the 
cultural experience of the individual become relevant, since a graph exists just “in a 
metonymic relation to the entire research situation and the process that has led to the 
construction of the graph” (Roth, ibid., p. 164). This is the same assumption of Cobb 
(2002), who says that graphs do not exist only in terms of the things that they represent 
(their referent), but also in terms of the work processes that they resulted from. 

We want to highlight something essential that remains in the background in the given 
analysis, namely the fact that graphs appear with a dual nature: as tools and as symbols 
(or signs[2]). In this respect, the theoretical frame needs to be enriched with other lenses. 
Here we consider the notion of fusion, and that of semiotic node. Fusion means “talking, 
gesturing, and envisioning in ways that do not distinguish between symbols and 
referents” (Nemirovsky et al., 1998, p. 141). The correlation between transparency and 
fusion has already been suggested by Ainley (2000), as “identifying fusion within 
discussion about a graph offers a clear indication that the graph is being used 
transparently” (p. 366). Following Nemirovsky, in our case the notion of fusion can be 
applied when students become able to go back and forth between the graph as a shape 
and the graph as a response to actions, namely their body motions in front of a sensor. 
The notion of semiotic node has been developed by Radford to describe those “pieces of 
the students’ semiotic activity where action, gesture and word work together to achieve 
knowledge objectification” (Radford et al., 2003, p. 56). “Objectification of knowledge” 
is meant as the semiotic process that allows the students to successfully construct 
(mathematical) concepts, starting from their perceptions and interacting with cultural 
artefacts. This notion is developed by taking into account the integration of different 
semiotic systems (Radford et al., 2004): body actions, artefacts, graphs and speech. 

Based on a specific case study, our analysis is aimed at integrating these three 
theoretical lenses, in order to analyse the students’ process of construction of meaning in 
graphical settings. 
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Methodology 
The activity we describe in this paper lasted three hours and is part of a long-term 
teaching experiment carried out in a classroom of 25 students attending a scientifically 
oriented high school (9th grade) in Italy. The students worked in small groups (of three-
four people), using two technological tools: the CBR (a motion sensor that collects 
space-time data in real time) and the symbolic-graphic calculator TI92. 

The main activities of the teaching experiment were: 

1. students’ motions in front of the sensor and interpretation of space-time graphs 
obtained on the calculator (details in Ferrara & Robutti, 2002); 

2. students’ analysis of graphs (given on paper; in the remaining of the article these 
graphs will be called paper graphs) and of motions to be performed, in order to 
obtain the same graphs on the calculator (computer-based graphs), through the 
movement in front of the sensor. 

The aim was the construction of mathematical and physical concepts as function, slope, 
velocity, acceleration and their change. The second kind of activities (point 2 above) 
worked at once as a feedback for teachers and researchers with respect to the first one, 
and as an occasion for students to create a motion in relation to a graph they had de-
codified. The teaching experiment was part of a National Project funded by the Italian 
Ministry of Education, called SeT (Science & Technology), where two of the authors 
were involved[3]. 

Besides the students, four people were present in the classroom: the Mathematics and 
the Physics teacher, and two of the authors as observers. A camera video-recorded the 
activities. The data analysis was carried out by looking at the videos and writing the 
transcripts, together with field notes taken by observers and teachers. 

Each activity of the project was divided in two or more sequences of group work and 
collective discussion. The group work engaged the students around tasks given by the 
teacher and described on a paper sheet. The collective discussion was guided by a 
teacher or an observer, with the aim of sharing ideas, comparing processes and results of 
the groups and guiding the students to the conceptual knots of the activity. 

We focused our observation on a small group of three boys: Filippo, Gabriele, and 
Fabio. They are all average achievers, but with different natures: Filippo was reserved, 
studious and thoughtful; Gabriele was an inconstant student, going on with a personal 
rhythm; Fabio was a bright and intuitive boy. 
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The activity  
Consider the following graph. 

 

 

 

 

 

1) Describe the graph reproduced here, in terms of motion detected by the CBR. 

2) Perform a motion so that the CBR detects space and time data, providing a 
graph as close as possible to the given one. 

3) Compare the graph resulting on the calculator with the given graph; if 
necessary, repeat the motion, describing what you have modified. 

Integrating different lenses 
The three theoretical lenses of transparency, fusion and semiotic node, defined above, 
need to be integrated to suitably analyse the activity of our students. In fact, the analysis 
of each sort of activity entails not simply attention to students as individuals, but even 
interest on both the nature of the involved object (in this case, the computer-based 
graph), and the manner the students make sense of it in light of motion, and quantities as 
distance, time, velocity, and their changes. All together, the different lenses give us an 
overall insight on how the situation evolves. The three lenses give us the chance of 
merging perspectives, going beyond the simple attention to the cognitive processes, and 
embracing the whole learning context. In order to consider the connections that can be 
established between the lenses, we provide a description on their use in our context. The 
notion of semiotic node is framed in a semiotic/cultural approach to students’ cognitive 
processes. It let us see those moments when students introduce new pieces of knowledge 
objectification. The lens of transparency is more centred on the mediation role of 
computer-based graphs in the whole activity, taking into account both subjects and 
context. Visibility and invisibility are features of a graph, in relation to how one looks at 
it. When the subject is able to ‘read’ in the graph the phenomenon it represents, then 
he/she is using the graph transparently. The notion of fusion, being more local, can be 
seen as a bridge between semiotic node and transparency, since through it the 
interpretation of cognitive processes is possible in light of the graph they are using. On 
the one side, it does not distinguish between symbols and their referents, so that 
(following Nemirovsky) the qualities of the computer-based graphs are merged with the 
qualities of the represented events. On the other side, it considers this merging looking at 
students’ words, gestures, and glances. The basic idea, which links the two sides, is that 
of making present in the graph the absent. For example, speaking of a motion-graph as it 
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were the physical motion (through reading in it the various phases of motion) is an 
example of a fusion experience, in which the phenomenon is made present in the shape 
of the graph. Conversely, the shape of the graph mirrors the particular kind of motion 
performed. Enlarging Ainley’s idea, we could then stress that: fusion experiences within a 
discussion about a graph are clear clues that the graph is being (or is going to be) used 
transparently, but also that a process of knowledge objectification for the graph is 
occurring (or is going to occur), as the presence of a semiotic node can reveal. The 
analysis of the activity bearing in mind this idea can shed light on the integrated use of 
the three lenses. 

Protocol analysis 
In the first phase of the activity, the group analysed the paper graph in terms of the 
motion to be performed in front of the sensor. The students discussed on the shape of the 
given graph, and also on the kind of motion they had to perform, in order to obtain the 
required graph on the screen of the calculator. Afterwards, one of them (Fabio) walked 
in front of the CBR, according to the planned features of motion. As a result, they 
obtained the computer-based graph represented in Figure 1.  

 

 
 
 
 

Figure 1 

The two axes represent time and space variables with measurement units seconds and 
meters (horizontally and vertically respectively, as usual). Data gathering last 15 
seconds. In the following, the students are comparing the paper graph and the computer-
based graph, in relation to Fabio’s motion. 
52. Filippo: “The motion is similar [his finger is running on the first part of the computer-based 

graph], it is only here [in the final part of the graph, box E[4]: Figure 2] that he [Fabio] didn’t 
stop, otherwise…” 

53. Fabio: “But, I don’t understand why before, before…” 

54. Gabriele: “And there [he is pointing to the initial peak, box A] it is when he starts [his finger is 
running on the ascent] and then he goes” [his finger is running on the descent] 

55. Filippo: “Don’t care about this” [his finger is running on the initial peak, box A] 

56. Fabio: “But, why does the curve go up and then down?” 

57. Gabriele: “It is this part, here [his finger is running on the peak] that goes up and then down, 
rather than just going up [he is drawing a small ascent in the air with his pen]… obviously you 
moved in front of, of…” 
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58. Filippo: “Did you come back?” 

59. Gabriele: “CBR” 

60. Fabio: “No, here [he is pointing to the final horizontal part] it is when I am …”  

61. Filippo: “Of a step?” 

62. Fabio: “Here it is when I am motionless” 

63. Filippo: “Yeah”  

64. Gabriele: “There” 

65. Fabio: “Here [his finger is running on the part in box D] it is when I accelerate”  

 

 

 

 

 
Figure 2 

66. Gabriele: “There [he is pointing to the first horizontal part, in box C] it is again the other point 
when you are motionless there [his finger is running that part, from left to right]” 

67. Fabio: “Then here it is this, here [he is pointing to the part, in box D] it is when I accelerate, 
here [his finger is running on the final horizontal part, in box E] when I stay motionless and 
then here it should be a straight line, more or less and…” 

The students are endeavouring to read the computer-based graph in terms of motion 
(#54), but they have a difficulty in interpreting the first peak (#55, #56; box A), which 
has nothing to do with Fabio’s motion (probably, this peak is due to an external 
interference). This difficulty comes from students’ expectations when they compare the 
computer-based graph and the paper graph. In fact they do not expect to see the first 
peak on the computer-based graph. Gabriele’s attempt to overcome such an obstacle is 
well expressed in his words and gestures (#57). Fabio makes a step forward to connect 
his motion to the graph (#62): he recognises the part of the graph that refers to the 
absence of motion (Here it is when I am motionless). This step is also immediately 
shared by his group mates (#63, #64). Then Fabio proceeds in making sense of the other 
parts of the computer-based graph, namely those corresponding to the motion (#65, 
#67). Hence, Fabio comes back to the final part of the computer-based graph which 
refers to an absence of motion (#67: when I stay motionless) and he stresses that he 
expected it to be horizontal (#67: here it should be a straight line, more or less).  

Interpretation with the three theoretical lenses. Up to here, the students do not yet use 
the computer-based graph in a really transparent way, although they are progressively 
constructing a meaning for it. In fact, they are trying to see the features of Fabio’s 
motion in it, but they are not yet able to see (or at least to express) them clearly. They 

A 
  

  
B 

C 
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are progressively approaching a meaning for the graph, which is not yet transparent. 
However, they are already able to link some parts of the graph with the corresponding 
pieces of motion, as marked by gestures and words (#54, #62, #65-#67). The 
coordinated use of gestures and words allows students to see graph and motion in an 
indistinguishable way, and for this reason, it constitutes a first example of fusion. On the 
one hand, locative words (e.g.: here, there) indicate precise positions on the graph, as 
outlined by the pointing gestures; on the other hand, the adverb ‘when’ refers to the 
starting points of specific pieces of Fabio’s motion. The students reproduce the parts of 
the graph referring to these pieces of motion through iconic gestures (for analyses on 
gestures in Mathematics Education, see: Edwards, 2003; Arzarello & Robutti, 2004). 
Particularly, the use of ‘when’ allows them to shift between the graph and its referent 
(motion). The use of the personal pronouns as ‘he’ (#54), ‘you’ (#66) and ‘I’ (#62, #65, 
#67), all indicating the subject of motion, is significant. It shows how the different parts 
of the graph are interpreted in terms of Fabio’s motion, by making motion present in 
their shape. The symbolic nature of some parts of the graph is re-constructed through the 
memory of the corresponding physical actions performed (by Fabio) or seen (by the 
group mates). 

Step by step, a transition begins, from first perceptions of the students to mathematical 
ideas on the shape of the graph. Words and gestures are coordinated in the semiotic 
activity of the students, recalling kinaesthetic actions performed both with the sensor 
(body motion) and on the graph (pointing and iconic gestures), which begins to become 
transparent. From this coordination (#67) that can be interpreted as index of a semiotic 
node, the understanding the horizontality of the final part of the graph arises. The 
discovery that the final part should be a straight line allows students to objectify 
knowledge about the absence of motion. The use of the word ‘then’ is relevant in 
expressing the causal relation between the motionless state and the horizontality and 
straightness of the line. Once this relation is made apparent, even the difficulty of 
understanding that the first peak has nothing to do with motion is overcome. Thus, the 
initial fusion restricted to single parts of the graph related to specific moments of 
motion, creates room for the later making sense of the horizontal line, which starts to be 
seen transparently. From this point on, the graph will turn to be more and more 
transparent, as the remaining of the analysis will show. 

The group continues working, as follows (the teacher arrives to listen to the discussion): 
75. Fabio: “So, we consider starting from this point here” [he is pointing to the lowest point of the 

computer-based graph]  

76. Gabriele: “Yeah, we have to consider starting from that point there”  

77. Teacher: “Where do you consider from?” 

78. Filippo: “From this point” [he is pointing to the computer-based graph] 

79. Fabio: “From, from this point here” [he is pointing with his pen to the same point of Filippo] 
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80. Teacher: “Which corresponds to, on paper?” [on the paper sheet] 

81. Gabriele: “To this point here [he is pointing to the origin of the paper graph with his pen]… 
that is when, at the start, when we were motionless in front of the CBR” 

82. Fabio: “Yeah, then we have this point here [he is pointing to the final point of the first 
ascending slanting part with his pen] which is when I stopped, the first time [he is pointing, with 
the same hand, to the corresponding point on the paper graph], when I stopped the first time, 
then here [his finger is running on the subsequent horizontal part] when I stopped for four 
seconds and I didn’t move, from here [he is pointing to the final point of the horizontal part], I 
start, they are six seconds and I accelerate [his finger is running on the curved part of the paper 
graph], here I’m accelerating” [he is pointing to the corresponding curved part on the 
computer-based graph, box D] 

83. Gabriele: “And after having accelerated [his finger is running on the curved part] you, at the 
end you stopped [his finger is running on the final horizontal part, box E]… but then you moved 
and there are interferences along…” 

84. Fabio: “Hence, here [his finger is running on the slanting part, box B] two seconds passed, 
here [his finger is running on the first horizontal part, box C] six seconds passed”   […] 

89. Fabio: “Here eight and then [his finger is running on the final horizontal part, box E] they [the 
seconds] go on” 

The students choose the part of the computer-based graph to be looked at, i.e. that on the 
right of the first peak (#75, #76; boxes B, C, D and E). The teacher’s input (#80) inserts 
at this moment and is relevant to the process of construction of meaning for the 
computer-based graph. In fact, in students’ immediate answer (#81), they disregard the 
first peak, and they do this considering the paper graph, which gives them a reference 
for the starting point of the motion. In the next excerpts (#82-#84), Fabio and Gabriele 
do correctly interpret the computer-based graph, not only blending words and gestures, 
but even going back and forth from one graph to the other, and simultaneously from the 
graph as a shape to the graph as a response to an action. In interpreting the computer-
based graph, the students call time intervals with their measurements, expressed in 
seconds (#82, #84, #89) and in this activity they are aware of the corresponding pieces 
of motion. 

Interpretation with the three theoretical lenses. Students now are using both the 
computer-based graph and the paper graph transparently. In fact, it is interesting to note 
how they focus (pointing with fingers, gestures that clarify the referent of the deictic 
words this, here, there) on certain positions on the former useful to locate the beginning 
of a new action performed during the motion, through the use of ‘when’. At the same 
time, they are able to see beyond the graph the different kinds of actions, introducing a 
temporal dimension (they planned the parts of Fabio’s motion using this graph; ‘the first 
time’, ‘six second and I accelerate’). We can identify in this dimension a rhythm given 
to motion, through which the paper graph is interpreted. Deictic and iconic gestures on 
the computer-based graph, and the corresponding gestures on the paper graph are 
coordinated with locative words, in a semiotic activity we can simultaneously interpret 
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in terms of fusion and semiotic node. Graph and motion are merged together, their 
rhythm being beaten by the measures given on the paper-graph. One after the other, the 
gestures condense the shape of the graph, accompanied by words referring to actions of 
the motion experiment. The piece of objectified knowledge comes from the introduction 
of the variable time to beat the rhythm of Fabio’s actions, which are made present in the 
corresponding pieces of the graph (#82-#89). After the symbolic nature of the whole 
graph is re-constructed through the memory of Fabio’s actions (#82, #83; look at the use 
of the subjects ‘I’ and ‘you’), at the end (#84, #89) attention is uniquely posed on time. 
It is as if the one important thing is time dimension, since the shape of the graph is clear 
as a response to particular actions. We can say that the graph is transparent. Fusion 
experiences and semiotic nodes are both present , to relate the two variables of space and 
time by means of the horizontal straight line. In fact, at this point students understand 
the precise meaning (in terms of the relation between variables) of the horizontal straight 
line (box E): time passes (‘they go on’, #89), even in absence of motion (whereas space 
remains the same!). The whole graph is finally transparent for the students with respect 
to both the past phenomenon of motion (being motionless, and the other actions) and the 
relation between variables. 

There is also a social element we want to highlight. In fact, even if only Fabio did 
actually experience the motion in front of the sensor, all the students refer to it and to the 
resulting graph as if they had shared the same experience in a very inner way. As a 
consequence, the entire group adopts the same linguistic structure, the same vocabulary, 
and performs the same kind of gestures. Lines #54, #62, #81 and #82 are particularly 
relevant in these terms: at the end, the students describe the motion using the pronoun 
‘we’, thus revealing that they share both the motion experience and the interpretation of 
the graph. 

Final remarks 
Analysing data coming from teaching experiments in a technologically rich context as 
that described above, requires to draw attention to several different aspects: the students’ 
cognitive processes, the nature of the objects involved, and the manner in which the 
students make sense of them through the artefacts in use. 

In an initial study in which we had studied the role of the calculator in a pre-calculus 
learning context (Ferrara et al., in press), we had used the notion of transparency as 
simply referred to a feature of a technological artefact. Here we wanted to enlarge such a 
point of view by taking more deeply into account the role of the activity and the user. 
This attempt arose from the awareness of the complexity of the learning context. To that 
aim, other two interpretative lenses have been chosen: the fusion and the semiotic node. 

Some connections between the three lenses have also been suggested, pointing out that 
the notion of fusion, being more local, can be seen as a bridge between those of semiotic 
node and transparency. The integration of the lenses provided us with a multi-faceted 
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frame through which we could interpret our data through an in-depth analysis. Such an 
integrated approach is appeared more suitable than the initial one to deal with the 
complexity of the learning context.  

NOTES 
[1] Tool and artefact are used as synonymous throughout the paper. 

[2] We prefer not to distinguish between signs and symbols in this context. 

[3] The products of this project are teacher-training materials published on-line at the addresses:  
http://www5.indire.it:8080/set/comunicazione/comunicazione.htm;  
http://www5.indire.it:8080/learning_risorse/Castelletto/set/Project2/Unit1/Cycle2/Cluster62/enr
_med2.htm. 

[4] The boxes in Figure 2 have been inserted by the authors, in order to let the protocols and their 
analysis be clear. 
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Abstract: What is the link between memories and learning? We are interested in 
asking memories from the students. Our theoretical background includes Ricœur’s 
work on time and narratives and the studies of the French didactical school on 
memory and time. Narratives from eleven years old students are examined from 
several aspects, the triple present, the rearrangement of the experience and the 
attitude of vigilance. This work is an opportunity to question the relationships 
between theory and practice and to give an example of the way one can influence the 
other. 
Key words: Memories, narratives, time, experience, theory and practice. 
 

This paper presents some research about the problem of time and temporality in both 
the teaching and learning of mathematics. The question we ask roots our work in this 
working group of CERME 4: what does this work tell us about the relationships 
between research and practice, between theory and reality? Our answers will be 
contextualized and we do not claim that our observations can be immediately 
generalised. 

There are various ways of using and linking different theories and there are also 
various ways to imagine the relationships between theory and didactical reality. A 
theory can be a tool to produce teaching devices. It can also be a tool to analyse the 
teaching activity in ordinary classes. On the other way round, the observation of 
teaching leads to questions, which will open new research developments. 

Our research is based on “theoretical interbreeding”. This means that we use several 
theories to imagine, develop and analyse teaching devices. In this work, we will 
examine how we use some theoretical works (those by Ricœur) that are not in the 
field of the didactics of mathematics, to present the problem of time in the classroom. 
This external point of view allows us to reconsider both the didactical theory and the 
teaching activity. From that aspect, the links between research and teaching are very 
strong in our work. This interweaving leads to the creation of a prototype of teaching 
that we will present later on and which we call “multiple device”. 

At the beginning of our questioning, we find a teaching question: how can one take 
into account the past mathematical activity of the student? How can the teacher be 
sure that the student has learned what s/he was supposed to learn before? How can 
the teacher know about the way the student copes with old mathematical objects? For 
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some time we used to ask students, in school or at the university, to write about 
mathematical memories in order to know what was remaining, on the mathematical 
point of view, after the teaching was over. These memories were very poor, almost 
void of any mathematical content. We questioned ourselves, as teachers and as 
researchers, about this poverty. Our first explanation took into account several factors 
strongly interwoven: it could be that the students had not experienced any 
mathematical event, or that they did not remember those events, or/and that they did 
not feel allowed to talk about them in a mathematical classroom. We wanted to go 
beyond these first explanations. 

Theoretical Background: Time, Memory and Narratives 
Every learning, seen as a process, has a temporal aspect and the knowledge that emerges 
from it is the result of a story, however “poor” or short this story might seem to be. 

The existence of different kinds of time in a classroom has been noticed and studied 
by several researchers in didactics. There is first the objective time, the time of the 
institution, which organises and makes public the time of the teaching system: this 
time is the “didactical time”. Chevallard & Mercier (1987) and Leutenegger (2000) 
showed how the didactical time is important in textualising knowledge and regulating 
the didactical contract. Brousseau & Centeno (1991), and Matheron (2001) studied 
the importance of didactical memory to remember past events when pupils are 
learning something new. Apart from this didactical time, the teachers and the students 
are engaged in a private and subjective time, which is, quite often, silent and implicit, 
which we call “the students’ temporality”. Following Varela’s works (1993), 
Arzarello & al. (2002) also distinguished two times: the “physical time” or clock 
time, and the “inner time”, which emphasises actors' time, especially pupils’ learning 
time. Pupils’ learning time was also studied by means of didactic biographies by 
Mercier (1995), or through other ways such as the “fractions diary” (Sensevy 1996). 
More recently, Amit & Fried (2004) were interested in the different treatments of 
time in different school cultures and Assude (2005) studied teachers’ time 
management strategies. 

Our theoretical hypothesis are the following: 

• The students’ personal temporality plays an important role in the learning process and 
therefore it is worth studying it, even if the constraints of the didactical time may 
appear prominent. This temporality is a tool in the student’s structuring of the 
mathematical knowledge, in particular in the paradoxical relationship with the features 
of necessity and permanence of mathematical truth. The difficulty is that it is not easy 
for a student to express her/his personal subjective time in the classroom, because of 
the weight of the didactical time.  

• The learning temporality is not going straight forward: one has to go back and one also 
has to be able to anticipate. The difficulty is that the temporality of the student’s 
activity is organised by the temporality of the various activities in the classroom that 
are all dependant on the didactical time. The fact that the didactical time is always 
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going forward induces an absence of chronology in the memories of the students: there 
is no before, no now, and no after. 

Our phenomenological approach of the teaching situation, more in the sense of 
Brown (1994) than of Freudenthal (1983), taking into account what happens to the 
subject and the way s/he may be conscious of it, follows Ricœur’s works on time and 
memory. 

Ricœur (1983) points two aspects: 

- the tension between the three components of what he calls the triple present, in 
other words the coexistence of three intentions: memory of the past, attention to the 
present, expectation of the future. One must differentiate the time of remembering 
and the time of the action. 

- the undertaking of this tension in the narrative act. Asking for memories can induce, 
for the student, the dynamic of the triple present: to pay attention to some past event 
in order to write about it, places the student between the past and the future. 

In the didactical context, these analyses led us to work on the subject’s consciousness 
of the temporality of mathematical knowledge, using the production of narratives. 

Through their memories, students can pay attention to what is going on in the present, 
in order to prepare what will happen in the future. For us, to be conscious of the time 
of learning is not only to remember the past, it is also to pay attention to what 
remains of this past in order to anticipate the future. Asking for narratives is one part 
of our device that tries to create, for our students, an attitude of vigilance for their 
learning. This kind of attitude can be illustrated by a sentence such as: “here, I would 
have made a mistake, if…”. 

Ricœur’s work permit us to consider that the narratives can have three main 
functions: 

- to express and to bring to the subject’s consciousness the personal time in the act 
of learning, as well as its power on the construction of knowledge, 

- to rearrange the personal experience through stories that can be references for the 
future, 

- to produce a shared time, which takes into account the subjective aspects of 
knowledge and brings together the personal times to build a collective time as well 
as a common story for the whole class. 

The Didactical Device 
We have been working on devices that allow the emergence of narratives, which 
could satisfy the three functions devoted to this “work of remembering”. To obtain 
such narratives (rich, diverse, with a strong mathematical content), one has to modify, 
more or less explicitly, the didactical contract (Brousseau, 1998). It is certainly, a 
teaching device. Nevertheless, because of the theoretical elaboration from which it is 
issued and because of the hypothesis it is supposed to verify, it is also an 
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experimental device that gives us material to work on. We called it the “multiple 
device”. It is “multiple” because it integrates many elements co-ordonated by the 
teacher. We won’t describe this device in many details; one can find in Assude & 
Paquelier (2005) an analysis of each element, of its purpose in relation with the 
theory and, when necessary, the changes that occured following the different 
experimentations. The teacher first started five years ago and improved the device 
little by little. Its different elements are the following: 

- A questionnaire at the beginning of the school year, 

- Weekly chronicles, 

- The personal note book, 

- True/false questions, 

- The narrative of class discussions, 

- “Two or three things I remember” (since…, about…),  

- The questionnaire at the beginning of the following year. 

We’ll give some details about one element of the device, the weekly chronicles. The 
students volunteer, in turn, one for each week, to be the “chronicler of the 
mathematical week”. At the beginning of the following week, the chronicler produces 
a text, one or two pages long, which recalls what s/he thinks has been the most 
remarkable events of the week, from the mathematical point of view. The command 
(and the help that is given by the teacher during the first weeks) insists on the fact 
that the purpose is not to copy the lesson as it was given by the teacher. One has to 
point at some facts that can help to understand “what is going on in the classroom”. 
Mathematical events are looked for: a common error driven out during a discussion, 
an idea that started a research in the class, a drawing that helped to understand,…. 

The teacher read these texts to correct some mathematical errors, but the style of the 
writing is respected as well as, of course, the choice of the related events. It happens 
that these chronicles are discussed in the class either to correct them or to add some 
more details. They are collected in a book that the students can consult anytime. They 
install a “memory of the mathematical class” that can be used if necessary. The 
teacher keeps a copy of the chronicles. 

This element of the device has two effects: in parallel and in addition to the official 
text of knowledge, there is the constitution of a “text of the class”, which puts the 
students in a situation of creating mathematics. The second effect is more in relation 
with our theoretical background: the chronicles tend to put one particular student in 
the position of “the one who will have to tell”, in order that s/he be conscious of the 
fact that the attention (now) doesn’t depend only of the knowledge one has (past) but 
also of what is expected (future). By making the student responsible for the narrative 
of some part of the temporality of the classroom, the teacher invites her/him to pay 
attention to the perception of this temporality. 

Working Group 11

CERME 4 (2005) 1373



The creation of this device is, in itself, an empirical result of our work. It permits us 
to show how a theory can be used to produce something one can use in the classroom. 
Empirical data 

We will now be interested by the consequences of the use of this device by a teacher. 
We haven’t yet any global answer to this question. We will examine some data 
related to the triple present that, for us, give evidence of the effect of the device in the 
direction we  expect. 

The work has been conducted in a class of 24 students of 6th form (age 11) from the 
French Lycée (Secondary School) of Madrid. This is the first year of secondary 
school and it is expected that the students revisit some notions learned in primary 
school, such as decimal numbers. In November, the students had to write two 
narratives, but as some only wrote one, we have 41 narratives to analyse. 

In this study, we are not interested in spontaneous souvenirs, but rather in memories 
that emerge when a student looks for them to produce a narrative. These narratives 
can have various forms. We will focus here on narratives with very precise rules of 
production. The structure of these narratives is induced by the device. Our aim is to 
make the student able to point at the moment when something (an event) occurred, 
bringing to evidence the triple present we talked about in the theoretical part. The 
memory that is aimed at, is the memory of some passed experience of the student. 
The structure of the narrative is given by the three initial words “before – one day – 
now”. Each student gets a sheet of paper on which these three moments are clearly 
identified by these words. S/he has to write her/his narrative on that paper. 

We will study the following four points: the objects of souvenir, the presence of the 
triple present, the rearrangement of the experience and the shared time emerging from 
the personal times that the students recall. 

What are the Souvenirs about? 
Thirty eight narratives talked about mathematics; twelve were about numbers in 
general, twenty four about decimal numbers and two about geometry. Decimal 
numbers appeared in a majority of narratives. The reason for it could be that this 
subject has been studied just before the teacher asked for the narratives. It could also 
be that the event the students relate was really important for them, as a break in their 
former knowledge. 

We will focus on the narratives about decimal numbers, thus being able to look at one 
topic from different points of view. These are the precise contents: 

• definition of a decimal number (13) 

• density of decimal numbers (7) 

• an integer is a decimal number (3) 

• transformation from a decimal writing into a fraction (1) 

• product by 0.5 (1) 
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• rounding off a decimal number (1) 

The Rearrangement of the Experience 
The purpose here is to see how a student tells about her/his personal experience of 
what happened in the class room. In particular, do students identify the element that 
has activated the event and is this element the same for all of them? We’ll study the 
narratives about the definition of a decimal number.  

First of all we’ll cite Chloé: 

Before 
Before, I thought that a  

decimal number was a  

number with a comma1. 

One day 
One day, we explained  

that the comma in a  

decimal was only the 

writing and not the “idea” 

 one has in the head. 

Now 
Now, I know that if I am  

asked what is a  

decimal number, I must 

 not answer: “it is a number 

with a comma” but “a  

decimal is the quotient  

of an integer by a power of 

 ten”. 

In most narratives, the “before” is the same: “I thought that a decimal number was a 
number with a comma”. Only two students write: “I did not know that an integer was 
a decimal number”. 

The “now” is mainly: “I know that a decimal number is the quotient of a integer by a 
power of ten”. Two students write: “I know it is an integer”. Some are very vague: “I 
know exactly what it is”. 

The “one day” is different: it can be vague: “I understood what it was” or “there were 
proposals in the classroom”. It can be precise like in Chloé’s, it can also be wrong: 
“We said that all numbers were decimal numbers”. 

The mathematical event is initiated by a debate around a question from the teacher: 
“what is a decimal number?”. After the debate, the students write the result that the 
class came to in their note books.  

The ways the students relate to this are very diverse. Some only evoke the debate and 
the writing in the note book. There is no mathematics present in what they write. 
When mathematics is present, we can identify two different elements initiating the 
event: for some students it is the fact that an integer is a decimal number. Others, like 
Chloé learned to dissociate a number and the way it is written. All these students had 
then to rearrange their knowledge to take the new information into account. The 
rearrangement can also lead to errors (“a decimal number is an integer”).  

                                                 
1 In French writing of numbers, we don’t use the point for decimal numbers. 
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The Presence of the Triple Present and the Attitude of Vigilance 
As we said before, one purpose of this work with narratives is to lead the students to 
a new attitude in their learning of mathematics: they should use their souvenirs of the 
past to pay attention to the present in order to create an expectation for the future. 

Lets start by the precise narrative of Omar: 

Before 
I thought that a decimal  

number was a number  

with a comma 

BUT 

One day 
I understood that an integer 

 was a decimal number 

AND 

Now 
I know the definition  

of a decimal for all the  

days in my life: a  

decimal number is the  

quotient of an integer  

by a power of ten. 

THE END 

Omar anticipates the future: “all the days in my life”. 

We found the same anticipation in narratives on other subjects. We’ll read what 
Claude has written: “the teacher had given us … the calculation of the sum of the 
integers from one to one hundred. At home I thought: if I do 10*10 it makes 100. So, 
if I do 10*(1+2+3+4…+10), it will be the sum of the first hundred numbers. I had 
done this work on Saturday for the next Monday. On Sunday, to finish my work, I 
draw some sort of diagram in order to explain it to the whole class. I then realised 
that I had forgotten a lot of numbers. I had to do my work again. After that, I never 
made the mistake again, and I hope I won’t forget it and so never do it again.” 

The attitude of vigilance has two components: first understand something new by 
rearranging one past experience, as we have seen above, second, become conscious 
of an error in order to avoid it later as Claude tells. 

The Shared Time Emerging from the Personal Time 
The narratives tell personal stories but they also tell collective stories. We have seen, 
in the case of Claude, that the project of explaining his result to others made him find 
a mistake in his work. The presence of the other students was a motivation be more 
precise in his work.  

In all cases, the narratives recall events that had happened in the classroom or, at least 
have been initiated there. In that way, for each particular student, her/his personal 
story takes place in the story of the class. By writing about it, the student is no longer 
in a passive relation to the didactical time. Her/his personal time is linked to it, at 
least at certain particular moments, the moments when the student has learned 
something s/he did not know before. 
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Conclusion 
In 6th form, the mathematical curriculum tends mainly to work on former knowledge 
(from elementary school): numbers, objects in geometry. It is meant to change the 
relation the students have to these objects of knowledge and to change her/his 
learning of mathematics. 

We think that this work on narratives in the classroom, helps the students to be 
conscious of the transitions that are organised by the didactical system. 
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THE DIDACTICAL TRANSPOSITION OF DIDACTICAL IDEAS: 
THE CASE OF THE VIRTUAL MONOLOGUE 

 

Lisser Rye Ejersbo, Learning Lab Denmark, Denmark 
Uri Leron, Israel Institute of Technology, Israel 

 

Abstract: This paper is a variation on the theme of didactical transposition, here 
transposing of a theoretical idea –the virtual monologue– into a reflective tool for 
practitioners in an in-service teachers workshop. The transposition is effected 
through what has elsewhere been called aesthetical learning process. The researcher, 
the teacher educator, and the teachers in the workshop may have different agendas 
and different practices, but they all work towards their separate goals by reflecting 
on their practices – they are all reflective practitioners. The virtual monologue, which 
can be used as a reflection tool at any level, serves to bring out those commonalities. 

Keywords: reflective practitioner, didactical transposition, virtual monologue, in-
service teacher education 

 

A. Introduction 

This paper is a reflection on the relationships between theory and practice in 
mathematics education, specifically, the practice of in-service education of teachers. 
We are looking for ways in which synergy can be created between the practitioner 
and the theoretician (or researcher) by combining the specific expertise of both. The 
paper itself is a case in point: though both authors are involved in both teacher 
education and research, the primary expertise of the first author has been in teacher 
education and that of the second author in research. However, both see themselves 
primarily as reflective practitioners (Schön, 1983), as will be elaborated below. The 
paper is essentially a case study in the didactical transposition (Brousseau, 1997) of a 
theoretical idea in mathematics education from the community of researchers to the 
community of practitioners; the transposition, however, is applied here not to 
mathematics itself but to mathematical didactics. The general approach is exemplified 
by studying the case of the virtual monologue (Leron & Hazzan, 1997) as a tool for 
expanding the “scope of reflection” of both communities. The virtual monologue 
(VM) had initially been introduced by the second author (jointly with Hazzan) as a 
reflection tool for researchers, but has been adopted and adapted by the first author as 
a tool for reflection in the professional development of teachers (Ejersbo, 2003).  

B. Didactical transposition of didactical ideas 

The difficulties of using theory in practice have often been discussed in the research 
literature (Strauss, 2001; Skott, 2004; Rasmussen, 2004). Why is it so hard, and how 
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can we better build bridges between theory and practice so that practitioners would be 
able, so to speak, to ‘walk the talk’? One of the bridges between theory and practice 
is the didactical transposition, which Brousseau (1997, p.�35) describes as follow: 

To teach it, then, a teacher must reorganize knowledge so that it fits this 
description, this “epistemology”. This is the beginning of the process of 
modification of knowledge that changes its organization, its relative 
importance, its presentation and its genesis, following the needs of the 
didactical contract. We called this transformation didactical transposition. 

Brousseau was referring to the transposition of mathematical knowledge to suit the 
audience of mathematics students. We propose to extend his idea to the didactical 
transposition of didactical knowledge itself –the theory– to suit the audience of 
mathematics teachers. Often the theory presented to teachers continues to be for them 
‘just theory’ and is not being implemented in their practice. But when a theory is 
transposed into a workshop and is experienced as an emotional event, as will be 
demonstrated below, the participants can then reflect on the event, analyze it, and 
eventually use it in their practice. 

C. We are all reflective practitioners 

Schön (1983) talks about various professionals (such as architects, artists and 
baseball players) when he introduces the concepts knowing-in-practice, reflecting-in-
practice, and reflecting-on-practice. We find his ideas very relevant to students, 
teachers, teacher educators and researchers in mathematics education. Of particular 
relevance is his distinction between reflection-in-action (e.g., by a teacher during an 
intensive classroom activity) and reflection-on-action (e.g., the same teacher 
reflecting on her classroom activity after school hours). 

Our case study takes place in an in-service course and the theme for the transposition 
is reflection. The basis for this choice is the above notion of the reflective practitioner 
(Schön, 1983) which for us unites all level of practice and theory in mathematics 
education. We see teaching and learning processes as crucially involving reflection in 
and on practice (ibid), though the specific practices may vary according to the kind of 
learner: The pupil is a reflective practitioner when she learns mathematical ideas 
through reflection in and on her mathematical problem-solving or investigations; the 
teacher is a reflective practitioner when he consolidates his mathematical and 
didactical knowledge through reflection in and on his teaching practices; the teacher 
educator learns by reflecting in and on her practice in designing and conducting 
workshops for teachers; and the math education researcher gains his insights by 
reflecting in and on all the above practices. 

There are several tools to aid the reflective practitioner, and in this paper we will 
focus on one such tool: the virtual monologue. Leron & Hazzan (1997) introduce the 
virtual monologue (VM) tool, where an experienced teacher or researcher uses the 
narrative mode (Bruner, 1985; Bruner & Haste, 1987), to vividly convey his or her 
view of the student’s mental processes. Thus the VM is one tool that helps the 
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reflective practitioner move from practice to theory through reflection. Our 
experience has been that the VM can be a powerful tool for reflection, but like all 
such tools it should be used with care and with awareness for its limitations and 
shortcomings. One obvious limitation is the subjective and ambiguous nature of any 
particular VM created in a particular situation by a particular person. As will be seen 
later, this particular limitation can sometimes be turned into an advantage by building 
on the variety of VMs produced in a group. A second and perhaps more serious 
weakness is the fact that we are using a verbal medium for describing an essentially 
non-verbal phenomenon – the student’s mental state. A more thorough discussion of 
the tool’s strengths and weaknesses can be found in Leron & Hazzan (1997). 

In her workshops with Danish teachers, the first author has created a novel use for the 
VM and has used it extensively in her practice as teacher educator. In fact, she has 
effected a didactical transposition of the theoretical idea into the practice of a 
workshop, where the teachers experienced an emotional event that was then used for 
analyzing the theory and for reflecting on their own practice. Adopting terminology 
from art education (Horh and Pedersen, 1996), we call this procedure aesthetical 
learning process (ALP). We will explain ALP a bit more below; for now we only 
mention that the word ‘aesthetic’ is not meant here to carry connotations of beauty. 
Rather it is used in its ancient Greek sense of ‘aisthesis’, meaning ‘knowledge which 
comes through the senses’. 

Reflection on practice is clearly a vital task for teachers, but nonetheless, one that 
many find difficult. For a teacher educator designing an in-service course, this 
requires creating teaching situations that will help teachers reflect on their actions, 
beliefs and norms.  

D. The practitioner in action 
D1. Background. In Denmark, teachers are certified to teach four subjects in grades 
1-10. The situation described here takes place at an in-service course for certified 
teachers, who in addition are specializing to become mathematics teachers. The goal 
of the course is to develop both mathematical and mathematical-didactical skills. The 
total course consists of two separate parts of 108 and 120 hours, spread out over a day 
a week, six hours a day. The following scene occurs half-way through the first part of 
the course. There are 24 teachers enrolled in the course. This course, and many like it, 
have been designed and carried out by the first author, who in addition kept a diary 
containing what she considers her reflections-on-action. The narrative below, written 
in her first-person voice, is an abridged and edited version of parts of that diary. 

D2. Enter VM. I am an experienced teacher through many years both as a math 
teacher in lower secondary school and as an in-service teacher educator. Therefore 
one of my main habits is to look for ideas from people and from the research 
literature, that can be transformed into my teaching. Reading The world according to 
Johnny: A coping perspective in mathematics education (Leron & Hazzan, 1997, 
henceforth abbreviated L&H), especially their use of VM to interpret the interview 
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with Dina (p. 269; details below), affected me in different ways. For example, it 
moved me to write new virtual monologues “in Dina’s voice”, and it gave me ideas 
on how to design a reflection workshop for teachers in my in-service courses. My 
own feelings about the interpretation of how Dina might think inspired me to arrange 
the same situation for the teachers. I wanted to draw their attention to the possible 
interpretations, both from the student’s and the teacher’s (or the researcher’s in L&H) 
perspective. I hoped to discuss how they interpret the need to make sense (p. 274) and 
the need to meet expectations (p. 275) from the perspective of both the student and 
the teacher in the interview. 

I was excited to adopt a coping perspective, taking an empathic attitude. I assumed 
that the teachers’ values would be visible through the way they expressed their 
empathy. Furthermore it would highlight individual differences in how they view the 
student’s mental processes during the solution process. And as a new direction not 
taken in the original article, we would try to imagine what kind of mental processes 
took place in the teacher’s (or researcher’s) head. It is easy to criticize the teacher 
while empathizing with the students, but here was a challenge in my course to focus 
on both the student’s and the teacher’s inner voice. In the design of the actual 
teaching, I wanted to work with various kinds of reflections; to select the article on 
VM was the first step. 

D3. Workshop diary (part I): cognitive perspective. Here, then, is how the 
theoretical ideas in L&H were transposed into my practice. 

I translated to Danish the main part of Section 2.2 of L&H: The task on linear 
equations with a parameter, the researcher’s expectations, the interview with the 
student (Dina) and its original interpretation, and finally, the authors’ interpretation, 
as seen through their virtual monologue. I reproduce for the reader three parts of that 
material, which are needed to understand my story. The task, the “expectations”, and 
the Dina interview are taken from Sfard & Linchevsky, 1994, pp. 218-220 
(henceforth abbreviated S&L). For the complete discussion, including the VM 
analysis of the Dina interview, cf. L&H, Section 2.2. 

  The task (S&L): Is it true that the following system of linear equations 
                             k – y = 2  
                             x + y = k 
   has a solution for every value of  k?   

The expectations of the researcher (S&L): In a problem like the present one, the 
objects that the students are supposed to consider are not just numbers – they are 
functions. To understand the question, one must realize that each of the equations, 
[...] represent a whole family of linear functions [...]. 

The interview with Dina (S&L): 
(Dina is a tenth-grade student, working on the above task) 
D: [reads the question silently] “... has a solution...” 

Working Group 11

1382 CERME 4 (2005)



I: What does it mean ‘has a solution’? 
D: That we can put a number instead of k and it will come out true. 
I: When we say that the system has a solution for every value of k, what is the 
meaning of the word ‘solution’? Is it a number or what? 
D: Yes, it’s a number. 
I: One number? 
D: Yes, it’s the number that when you put instead of k, then the system is true. 
[...] 
I: This word ‘solution’ here, to what does it refer? Solution of what? 
D: Of the equations, k - y = 2 and x + y = k. 
I: What is a solution of these equations? 
D: When we substitute numbers... 
I: Instead of what? 
D: ... instead of x, y, and k, and it comes out true. 
I: So, once more, what are the solutions we are talking about in the question [points 
to the words ‘has a solution’]? 
D: I think ... I think that I need three numbers: x, y, and k. 

I presented the translated materials to the participants on OHP transparencies, 
together with L&H’s first interpretation (the cognitive perspective; not included here 
for space limitations). The teachers saw the task on the OHP, at this stage without any 
discussion, but with enough time to read and think about how to solve it. I assumed 
that some of them would have difficulties with understanding the task just like Dina 
had; it was a part of my expectations. After a dramatization of the communication we 
looked at the interpretation about Dina’s helplessness and confusion and then I 
started a discussion with the following question: What is your opinion on the 
interview and its interpretation? 

Some reacted quickly and said: 

- Dina’s answers seem relatively rational and the interviewer seemed to stress 
her in a way that made it difficult for her to think.  

- The interviewer plays the usual teacher’s game ‘Guess what the teacher is 
thinking’.  

They clearly expressed understanding and sympathy for Dina. 

After a while I asked them: 
Could we guess what was going on in Dina’s head during the interview? 

One of the teachers said to me with an angry voice: 

- It irritates me that you ask that question ‘what goes on in her head’. I am not 
able to know what is going on in the head of my 24 students.  

I was a little surprised but before I could answer her, one of the other teachers said to 
her: 
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- Why does it irritate you? Don’t we all guess when we communicate with the 
students? How do you listen to them?  

After a little discussion about communication and listening, I ended with a quotation 
from Covey (1989): “Try to understand before you want to be understood.”  

D4. Workshop diary (part 2): VM and coping perspective.  Now I presented the 
teachers OHP transparencies with the translation of Dina’s virtual monologue from 
L&H (pp. 271-2; The italicized phrases are taken from the actual interview with 
Dina, as quoted above from S&L):  

What do I have here? A system of equations... Oh, well, I know how to do 
that. You just have to solve it. It does look a bit different, but I can just do 
the usual solution. [reads the question silently] “... has a solution... for 
every value of k...” I don’t understand this phrase. Why don’t they just say 
‘solve’ as they always do? I don’t think we had this question before. So 
how can I solve it? What am I going to do? I really feel I am groping in the 
dark here. What does it mean ‘has a solution’? I am not sure, but usually 
solution means that we can put a number instead of k and it will come out 
true. 
I: When we say that the system has a solution for every value of k, what is 
the meaning of the word ‘solution’? Is it a number or what? 
I really don’t know. I don’t even understand the question. What was the 
question? “Is it a number?” well, what else could it be? I don’t know. Oh, 
well... [performing a leap of faith] Yes, it’s a number. 
I: One number? 
Of course, what else? I wish I knew where these questions are leading, I am 
getting more and more confused. But at least it seems from the question 
that I was right – it is a number. Yes, it’s the number that when you put 
instead of k, then the system is true. 
[...] 
I: This word ‘solution’ here, to what does it refer? Solution of what? 
What do you mean ‘solution of what’? When we do equations in class we 
never have such questions. We just need to know how to solve them. What 
was the question? Solution of what? Of the equations, k - y = 2 and x + y = 
k, what else could it be? 
I: What is a solution of these equations? 
When we substitute numbers... 
I: Instead of what? 
What are the letters here? ... instead of x, y, and k, and it comes out true. 
I: So, once more, what are the solutions we are talking about in the 
question [points to the words ‘has a solution’]? 
I think ... I think that I need three numbers: x, y, and k.  
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I then asked: 

What are your comments? And why?  Where is the pain threshold in this version? 

The responses again came immediately: 

- No, it is not what she thinks, she thinks… 

Different suggestions now filled the air: 

- I have three unknown here but only two equations, strange. 

- What does the k do here? 

- The k must be a letter like x and y – then I just have to find the value. 

- Why does she ask that way? I am sure she wants me to say something 
special. What could it be?  

It seemed like their own difficulties made them identify with Dina.  

The plenary discussion focused on what might have been going through Dina’s head. 
After a while I turned to ask how the task could have been thought out originally, 
why the interviewer asked the way she did, and how they would have asked, if they 
were the interviewer. Now they faced some difficulties. It was easy for them to 
identify with Dina, the student, but much harder to identify with the teacher (here the 
interviewer), even though it should have been natural for them to think like a teacher. 
It was easier to criticize the teacher than to understand her. Maybe they felt resistance 
to the interviewer because they themselves had difficulties in solving the problem. 
Eventually we of course took the time to solve the problem for ourselves. 

D5. Workshop diary (part 3): A VM of their own. The whole group was very 
engaged, even though some were initially negative. It was easy for everybody to join 
the discussion. For the next part I chose another transcript. My choice here was a 
discussion between a teacher and two students at a Danish oral examination 
concerning percents – an area they all felt safe with. It is a dialogue where it is easy 
to laugh a little at the teacher. 

The participants were split in four smaller groups: Two groups would create a VM 
for the student and the other two for the teacher. They were given 20 minutes to do 
this task. Then the ‘teacher-groups’ and the ‘student-groups’ presented their VMs at 
the plenary meeting, followed by lively questions and discussion. It gave some new 
insights to all of us. Instead of only judging how the teacher asked and how he 
confused the students, they tried to understand and identify with him. The questions 
they now asked were:  

- How was he caught in that trap? 

- How could he come out of it without confusing the student? 

- What kind of questions or comments could he make instead? 

- Furthermore they started to reflect on their own way of asking, like 
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- How do I ask questions myself and what kind of answers do I expect?  

- Why are my questions like they are? 

One of the ‘students-groups’ gave the interpretation that the students had a clever 
strategy for asking the teacher questions without answering anything themselves, a 
strategy they haven’t noticed before, but in retrospect could now recognize in their 
own communication with their students. Working with VM in this way gave them the 
time and possibility to become aware of many more details. They were guided by 
their own emotional involvement and by the communication in the group. The 
discussion became different from what went on before: it was more balanced and 
contained more understanding and less criticism of the teacher.  

The conclusion of my reflection on that lesson was that we all got a new experience 
in reflection because the situation was authentic for all of us. A few weeks later when 
we talked about how the course affected their teaching, I asked specifically about the 
influence of the VM workshop. Some teachers answered that it influenced their way 
of listening to themselves; they were more aware of how they asked and listened to 
the students; they paid more attention to the communication in the classroom; things 
they didn’t notice before became clearer to them. But at the same time, they also 
became more uncertain. What they had been doing automatically before, now all of a 
sudden seemed questionable, and they didn’t yet develop an alternative behaviour. 
Even though this has not been an easy process, I value it as a first step in learning 
how to reflect on communication in action. 

D6. Workshop diary (part 4): concluding reflections on the practice. The way the 
teachers experienced the idea of VM has created for them an emotional event. The 
teachers became involved with their feelings, both positive and negative, and they 
experienced it before we did any analyzing or theorizing. In reflecting on the 
workshop and what it has achieved, I was aided by the Aesthetical Learning 
Processes (ALP) theoretical framework, mentioned above. In this framework, Horh 
and Pedersen (1996) have developed a way to express what cannot easily be 
communicated verbally. The method tries to shape a room for expressing experiences 
that are still not completely formed or completely conscious for the person involved. 
The idea is to create an emotional experience from the beginning, and from that 
platform let the event be a personal experience, a need, before doing any analyzing.  

ALP can be seen as a tripartite model for the process of experiencing a new 
conception: 

    
Feelings

Experience

Analysis
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The conception arises at the moment the feelings find a conscious form, and becomes 
later on an experience that can be analyzed. The ALP was used in this situation to 
create a safe environment for the teachers to express their reflections. The VM idea 
was the content, the ALP the form. In this process, the teachers became familiar with 
research ideas and gained ownership and practise in using them. 

The task of creating a VM, or trying to express what Dina was thinking and feeling, 
is an open problem that does not have a single solution, nor even a best one. It has 
brought up in the teachers many feelings and ideas, and has given them the 
opportunity to discuss what has come up. It was easy for them to express what they 
thought she might have been thinking, rather than having to learn an abstract and 
detached theory. It has started from their knowledge, from their understanding, from 
what they knew best and felt safe with. They could use experiences from their daily 
school life. They have acquired a tool for reflection in and on their practice. 
Developing knowledge in action would come if and when they are ready to use it. 

This part was more or less as I planned: I wanted them to be emotionally involved 
and to reflect in action, and through that let their beliefs come into view. What I 
couldn’t foresee was what kind of discussion would emerge. This is where I myself 
had to be the reflective practitioner and intensively reflect in action. Working in this 
way, the workshop facilitator may sense loss of control, having to deal with so many 
voices that come up from the participants, and being the one that needs to decide 
what kind of feedback to give, what kind of summary to make, what will be the next 
step, and what take-home problems to give the participants. The energy comes from 
all the participants, but the facilitator has to give the direction. No wonder by the end 
of the 6 hours I felt quite exhausted. 

E. Conclusion  
The gap between the communities of researchers and practitioners has often been 
noted and deplored. It has been our repeated experience that theoretical ideas and 
research papers can be powerful tools in the professional development of teachers, 
but only after a substantial didactical transposition. At the heart of this paper was a 
case study of one such didactical transposition – of the virtual monologue from a 
reflection tool for researchers to a reflection tool by teachers in an in-service course 
(and eventually, hopefully, in their own classes). The goal of the workshop was to 
help the teachers reflect on their own communication in the classroom. Nowadays it 
is demanded that teachers make many more decisions in the classroom related to the 
individual student, and it is furthermore expected that they be able to explain and 
justify their decisions. It puts them in a situation of forced autonomy (Skott, 2004) 
together with a demand for a transparent decision process. Therefore it is necessary 
for teachers to develop a repertoire of ways to reflect in and on their teaching, and be 
aware of their decisions and actions. The teachers know this; they have talked about it 
and about how to achieve it. But still many of them are inexperienced in those skills, 
hence they may resort to their old habits when stressed by the classroom situation. 
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The VM workshop allowed them under safe conditions to practice reflection on their 
own practice. Moreover, it gave them the possibility to work at the same time on the 
reflection process and on the mathematics involved. It turned the abstract theory into 
a piece of knowledge they could own and use in their practice. It is our hope that 
many more such transposition efforts can be successful in making theoretical ideas of 
the research community more accessible and useful for practitioners. 
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Abstract: This paper concerns a research work developed in an European project. 
The aim of this work was to produce a document integrating the different theoretical 
frameworks employed by the project teams. The theoretical constructs of didactical 
functionalities, and experimental educational cycle, associated to an ICT tool, 
allowed us to analyse the roles played by technology in the considered set of 
theoretical frameworks. With this respect, we present examples concerning the theory 
of didactic situation, the activity theory and the theory of instruments of semiotic 
mediation. 
 
Introduction 
The project we are reporting on, is being developed in the framework of the 
Kaleidoscope Network of Excellence1 which brings together European teams in 
technology-enhanced learning. Within the activities of the Network we are involved 
in the TELMA (Technology Enhanced Learning in Mathematics) project, which 
refers to the use of ICT (Information and Communication Technology) to improve 
mathematical education at school level. 
The research teams involved in TELMA2 aim at sharing their studies by discussing 
the following key themes: research area and goals, theoretical frameworks of 
reference, tools developed and/or used, contexts of use, work methodologies. A 
specific aim is to build, by means of a horizontal analysis, a document (IPTA) which 
represents an integrated in depth presentation of teams’ approaches.  
In this context, our specific work focuses on the theoretical frameworks of reference, 
and aims at integrating the different theoretical frameworks employed by the TELMA 
teams. Our working methodology is that of collecting and analysing ad hoc designed 
material: each team was required to write a presentation of its theoretical frameworks, 
and to present some selected papers. Because of the variety of the employed 
frameworks, an integrated vision was possible only through the definition of a 
perspective allowing us to analyse each framework pointing out common aspects and 
differences. In this paper we present such perspective giving examples of how it can 

                                                 
1 “Kaleidoscope’s goal is to integrate 76 research units from around Europe, covering a large range of expertise from 
technology to education, from academic to private research.” (http://www-kaleidoscope.imag.fr/). 
2 Telma teams are the following: MeTAH and Leibniz – IMAG, Grenoble; DIDIREM University Paris 7 Denis Diderot; 
Istituto per le Tecnologie Didattiche (ITD) – C.N.R. of Genova; University of London (UNILON) - Institute of 
Education; Educational Tech Lab – NKUA University Athens. 
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be employed as a tool for analyzing different theoretical frameworks concerning the 
use of ICT in mathematics education. 

1 Technology and mathematics educations 
A first analysis of the collected material revealed that, the variety of theoretical 
frameworks depends on the involved ICT tools, and on the educational objectives 
addressed by each single research.  
Two main kinds of ICT are involved in TELMA team’s researches: those (e.g. 
Aplusix, l’Algebrista, ARI-LAB-2) which have been realized for explicit educational 
purposes (which we may call educational ICT), and those (e.g. CAS and Spreadsheet) 
that have been realized for professional purposes (professional ICT).  
The researches involving educational ICT, in some cases, focus only on the use of 
ICT in educational practices, in other cases they consider the whole lifecycle of the 
tools, from the design to the actual use in educational practices and evaluation. In the 
case of professional ICT, TELMA teams have been focusing only on the educational 
use of the software, but not in their development. 
Moreover it turns out that the teams address specific educational goals (for instance 
introducing pupils to symbolic manipulation, to geometry, to algebra, to proofs, etc.), 
referring to different theoretical frameworks and employing different ICT tools. In 
particular, we observed that a theoretical framework influences how a given ICT tool 
is employed in order to achieve a given educational goal, or in other cases it 
influences how an ICT tool is designed and developed to be used to achieve a given 
educational goal. This suggested us to consider the following primitives for our work: 
ICT tools, specific educational goals, how the ICT tools can be employed in order to 
achieve the given educational goals. We present a perspective, based on the concept 
of didactical functionalities, where we can define the relationships among such 
primitives.  

2 Didactical functionalities of ICT tools 
Given an ICT tool, and an educational goal, it is possible to identify its didactical 
functionalities:  

With didactical functionalities we mean those properties (or 
characteristics) of a given ICT, and/or its (or their) modalities of 
employment, which may favor or enhance teaching/learning processes 
according to a specific educational goal. 

The three key elements of the definition of the didactical functionalities of an ICT 
tool are: 

1. a set of features/characteristics of the tool; 
2. a specific educational goal; 
3. a set of modalities of employing the tool in a teaching/learning process referred 

to the chosen educational goal. 
For what concerns the features and characteristics of ICT tools, we focus on the 
distinction between professional and educational ICT.  
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An educational ICT tool provides, because of its nature, a set of such functionalities. 
In fact we assume that the producers of the tool, not only design it with respect to a 
set of specific educational goals, but we assume that they also consider the possible 
modalities of employment of the tools in order to achieve such goals. In other words 
educational ICT tools are designed together with a set of didactical functionalities. 
On the other hand professional ICT tools are not designed considering a possible 
educational goal and related modalities of employment: they are designed without a 
set of didactical functionalities. Nevertheless professional ICT tools may provide 
features that can be interpreted in terms of didactical functionalities, that is, we can 
identify modalities of employment of such tools aiming at the achievement of a given 
educational goal. 
In general, the didactical functionalities can be defined/individuated either at the level 
of the design phase, or at the educational use phase. Thus in the case of professional 
ICT, the definition of didactical functionalities occurs only in the utilization phase, 
whilst in the case of educational ICT, they surely occur in the design phase, but may 
occur also in the educational use phase. 
In the perspective we are proposing, in order to exploit a given ICT tool as a mean for 
achieving a given educational goal, it is needed to define the modalities of 
employment of the tool, which depend on the chosen theoretical framework of 
reference. In fact, in the researches of TELMA teams not only we found different 
theoretical frameworks, but we found also that ICT tools are employed in different 
phases of teaching/learning processes, and with different aims. For this reason we 
built a model allowing us to characterize such phases in which an ICT tool can be 
employed. The model is to be intended as a tool for classifying the modalities of 
employment defined by TELMA teams. 

3 A model to classify the modality of employment of ICT tools 
With respect to the definition of didactical functionalities, we shall observe that, 
given an ICT tool, the definition involves at least the tool itself, one learner and an 
interaction among them oriented toward a specific educational goal. However in the 
considered teaching/learning process other factors may play crucial roles. For 
instance, among the factors allowing an effective exploitation of the didactical 
functionalities of an ICT, we may consider: the context (is it on line, in class, or in a 
laboratory and so on), the proposed educational activities, the teacher and his/her 
strategies, national curricula etc. 
TELMA teams employ ICT tools according to quite different modalities of 
employment. For this reason we developed a model, named Educational Experiment 
Cycle (EEC), to help us to classify such modalities (See Fig. 1).  
 
 
 
 
 
 

Planning Put in practice 

Diagnostic 

Fig. 1: Educational Experiment Cycle 
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The model attempts to describe the basic phases of a teaching/learning activity 
individuating three phases: the planning of the teaching/learning activity; the put in 
practice of the teaching/learning activity; the diagnostic phase. 
Given an educational goal, the planning phase consists of the design and setting up of 
an activity (or sequence of activities) aiming at reaching the educational goal. The put 
in practice phase consists of the actual implementation of the planned activity (or 
sequence). The diagnostic phase consists of some evaluation of the actors involved in 
the cycle, could they be learners or teachers, with respect to the assumed educational 
goal. 

4 Influence of theoretical frameworks on ICT tools didactical functionalities 
and on the Educational Experiment Cycle 

In our perspective, the specific theoretical frameworks can be interpreted as 
instruments for defining the relationships among the primitives that characterise the 
concept of didactical functionalities. In this section we exemplify how the choice of a 
given theoretical framework can influence the definition of the didactical 
functionalities of ICT tools, either in terms of the design of the tools, or in terms of 
design of the modalities of employment. Moreover we show where the considered 
theoretical frameworks have been employed in different phases of the EEC. 
The choice of the tools, and of the modalities of employment depend on the chosen 
framework of reference. Here we will consider (among the set of frameworks of 
TELMA teams) the theory of didactic situations (TDS) (Brousseau, 1986), the 
Activity theory (AT) (Nardi, 1996), and the theory of instruments of semiotic 
mediation (TISM) (Mariotti, 2002; Cerulli, 2004; Cerulli & Mariotti, 2003), and we 
will consider the example of symbolic manipulators employed to introduce pupils to 
symbolic manipulation. A comprehensive description of the three theories is beyond 
the scope of this paper, thus we limit ourselves to point out some key ideas and show 
how they can influence the definition of the didactical functionalities of ICT tools, 
and of symbolic manipulators in particular.  

4.1 Defining didactical functionalities of an ICT according to the theory of 
didactic situations, in order to introduce pupils to symbolic manipulation 
According to the TDS, learning happens by means of a continuous interaction 
between subject and milieu: each action of the subject in the milieu, is followed by a 
retro-action of the milieu itself, and learning happens through a spontaneous 
adaptation of the subject to the milieu, which is considered to be “milieu antagoniste” 
(Brousseau, 1986). One way of applying this key idea to the domain of educational 
ICT, is that of considering an ICT tool as an element of the milieu, and as such, its 
retroactions become a source for learning (by means of interaction with the ICT tool) 
in terms of the subject’s adaptation to the milieu. 
Within this perspective, if we are given an ICT tool, a first modality of employment of 
the tool to achieve a given educational goal, is that of setting up a situation in which 
learners interact with the tool receiving a relevant feedback. In this case, the tool 
could be employed either during the planning phase or during the put in practice 
phase of the EEC. 
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For instance, suppose that a teacher wants to set up a situation, involving a symbolic 
manipulator, where the student is required to transform an algebraic expression into 
another one, producing a chain of transformations. Following the TDS, the teacher 
may a-priori analyze the possible actions performed by the learner and the 
consequent retroactions of the symbolic manipulator. In this planning phase, of the 
EEC, the he/she may employ the ICT tool in order to investigate its retroactions. The 
teacher may thus individuate those retroactions that can be particularly 
relevant/effective for his/her specific educational goal, and, in the put in practice 
phase, he/she may submit to pupils a task that involves such particular retroactions.  
For instance, if the focus is on the role of the brackets in algebraic expressions, and if 
the considered symbolic manipulator gives a particular feedback when the user tries 
to remove brackets from an expression, then the teacher may set up a task that 
involves removing of brackets in order to exploit the feedback provided by the 
software. 
In summary, the TDS can be used in order to individuate didactical functionalities of 
an ICT tool with respect of a given educational goal, by defining its the modalities of 
employment in terms of setting up an ad hoc designed situation that exploit users’ 
interaction with the ICT tool and the provided feedback.  
If we want to design an educational ICT tool to be employed according to this 
perspective, special attention has to be paid to interaction issues and to the feedback 
offered. In the example that we discussed, the feedback could be very trivial or more 
complex; it could just inform the user if removing a couple of brackets is correct or 
incorrect, or it could also explain why the removal of a couple of brackets is correct 
or incorrect; it could allow incorrect removing of brackets signaling the error (or 
signaling nothing!), or it could simply not allow incorrect removing. Each of these 
different kinds of feedback could be exploited by setting up different kinds of 
situations. Actually among the researches of TELMA teams we find examples in 
which symbolic manipulators are developed within the perspective of the theory of 
didactic situations, and particular attention is paid to the feedback offered by the 
developed symbolic manipulators (Nicaud, 1994). In particular we find the example 
of Aplusix, developed within the framework of didactic situations by the IMAG 
team, which, in the case of incorrect removal of brackets, signals the error by means 
of a visual feedback (See Fig. 2). 

 
Fig. 2: Feedback in Aplusix in the case of incorrect removal of brackets a red cross appears 

between the old and the new expression. 
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4.2 Defining didactical functionalities of an ICT according to Activity Theory 
(AT), in order to introduce pupils to symbolic manipulation 
The key concept of AT is the notion of activity, which is interpreted as a form of 
doing directed to an object. This theory provides a model to describe the structure of 
any human activity together with the transformations it undergoes during its 
evolution. The model, proposed by Engestrom and Cole (Nardi, 1996), concerns 
human activities in general, but can be used also to describe the system of 
relationships characterizing a teaching/learning activity. This model assigns a crucial 
mediation role to the instruments, the rules, and the division of labour in the three 
relationships characterizing any human activity, that is the relationships between 
subject and object, between subject and community, between community and object. 
According to this theory an activity can evolve, during its development, when 
contradictions or breakdowns occur, forcing a change of focus in the activity, thus 
forcing a transformation of its structure. In other words, during the development of an 
activity, pupil’s actions, teacher’s actions, or other events can cause a change of the 
object or of the relationships characterising the activity itself; in this sense the 
teacher, which is a co-actor of the activity, can administrate/control/cause such 
changes, thus guiding the development of the activity according to his/her 
educational goal or to the exigencies of the class. 
In this perspective, an ICT tool is not considered as antagonist to the subjects (as in 
the case of the mileu antagoniste of the TDS), on the contrary, it is considered to be a 
cooperative environment. When a learner uses an instrument for achieving an 
objective within an activity, the learning outcomes are considered to be structured by 
the nature of the activity itself and by roles played by all its components. 
Consequently, given an educational goal, the AT can be used to define the modalities 
of employment of a given ICT tool in terms of setting up an activity, involving the 
tool, and based on the cooperation of all participants. In other words, the didactical 
functionalities of the tool are defined in terms of how it can structure activities, rather 
than in terms of the retroactions given to the user as in the case of TDS; of course 
also such retroactions are to be considered, because they influence the relation 
between learner and tool, but they are not the main focus.  
If we want to design an educational ICT tool to be employed according to the AT 
perspective, special attention has to paid to the tool’s potentialities of interaction, 
communication and visualization. 
Among the researches of TELMA teams we find examples in which symbolic 
manipulators are developed within the perspective of AT. Here we refer to the system 
of ARI-LAB-2, a software for the arithmetic problem solving, developed by the ITD 
(Istituto per le Tecnologie Didattiche - CNR Genova) team.  
In this case the ICT tool is used by the team in the planning and put in practice phase. 
ARI-LAB-2 consists of a set of microworlds and two modes of interaction, the teacher 
mode, and the pupil mode. In the pupils mode it is possible to interact with the software 
solving tasks within one, or more, of the available microworlds. Not all the developed 
microworlds are always available to the pupils, in fact in the teacher mode it is possible 
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to set up tasks to be submitted to pupils, and for each task it is possible to choose which 
specific microworlds shall be accessible to the pupil in order to solve the task. In other 
words the modalities of employment of the ITC tool involve both, the planning and the 
put in practice phase. 

In particular, in the planning phase the ARI-LAB-2 can be used by the teacher to set 
up an activity (aimed at developing certain arithmetical competencies) in terms of 
defining the characteristics of the microworlds available to the user (See Fig. 3).  
In the put in practice phase, learning is assumed to be an outcome of the planned 
activity which involves among other elements, the pupils and the ICT tool. As a 
consequence, configuring the tool, is a way, for the teacher, to define specific 
didactical functionalities as means for achieving her specific educational goals. In 
other words, the didactical functionalities are individuated in terms of the activities 
that can be set up and managed by the teacher.  
For instance in order to introduce rules for adding fractions, the teacher can direct the 
focus back and forth between the fraction microworld, where the rules are explored 
dynamically and geometrically, and the symbolic manipulator microworld, where the 
rules are proven using a given set of axioms (See Fig. 3).  

Fig. 3: In the teacher mode (on the left) the fraction microworld (top right) and the symbolic 
manipulator microworld (bottom left) are selected and are available for pupils’ problem solving. 

a problem 
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4.3 Defining didactical functionalities of an ICT according to the theory of 
instruments of semiotic mediation, in order to introduce pupils to symbolic 
manipulation 
A different perspective is that of the theory of the instruments of semiotic mediation 
(TISM), which, like the AT, is derived from the theories of Vigotskij. The key 
hypothesis of this theory is that meanings are rooted in the phenomenological 
experience, but they can evolve, under the guidance of the teacher, by means of 
special communication strategies (Mariotti, 2002), such as for instance that of the 
mathematical class discussions (Bartolini Bussi, 1996). Without going deeply in 
detail in the description of this theory, we observe that it assumes that a part of the 
teaching/learning process happens at the semiotic level, and that it depends strictly on 
the signs that can be derived from the considered ICT tool, and can be employed by 
the teacher as means for orchestrating relevant mathematical class discussions. In 
other words the modalities of employing an ICT tool within this perspective consist 
on the one hand of setting up ad hoc designed activities involving the tool, and on the 
other hand of orchestrating mathematical discussions using signs derived from the 
ICT tool. Consequently for this theory, it is particularly important to study what kinds 
of signs (words, formulas, gestures, etc.) can be derived from a given ICT tool in 
order to orchestrate a mathematical discussion relevant for the chosen educational 
goal. For instance, if we take the example we discussed previously in the case of 
TDS, we considered the issue of removing brackets in algebraic expressions. Such an 
issue has been addressed by the ITD team of TELMA when they developed the 
symbolic manipulator L’Algebrista (Cerulli 2004), and the chosen strategy was that 
of providing the software with a button to be used to remove brackets; such a button 
does not check if the operation is correct or not, it just executes it, thus it may 
produce incorrect transformations of algebraic expressions, giving no feedback. 
However the interface of the software associates a formula to the button  
(“(a+b) � a+b”), together with a peculiar name “risky button” which is used by the 
teacher in the put in practice phase, during mathematical discussions, as a means for 
focusing pupils attention on the “risks” of removing brackets from algebraic 
expressions. In this case the provided feedback is not the most important element 
contributing to the achievement of the educational goal. In fact the most important 
element is the communication strategy that can be developed by the teacher with 
reference to the ICT tool. 

4.4 Employing ICT tools in the diagnostic phase of the EEC 
ICT tools can be employed for educational purposes at any stage of an EEC, 
exploiting their educational functionalities as means for reaching a given educational 
goal. The examples we presented concern the planning and the put in practice phase 
of the EEC, however, among TELMA researches we find also examples concerning 
the diagnostic phase. 
For instance in the Lingot project (http://pepite.univ-lemans.fr/), the DIDIREM team 
research aims at developing diagnostic and remedial tools in elementary algebra, 
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testing them with students and also studying how teachers appropriate the use of such 
tools. The hypothesis is that there exists some coherence in student’s behavior. Thus 
understanding this coherence and how it can evolve is a necessity for developing 
effective diagnostic and didactic strategies based on this diagnostic. Then, the TDS is 
used for supporting the conception of tasks linked to the diagnostic. In this case, the 
definition of the modalities of employment, of the used ICT tool, is based on the idea 
that the teacher submits to pupils a diagnostic activity based on the tool, and the 
feedback received by the teacher is used as a basis for planning (according to the 
TDS) the tasks to be submitted to pupils in the put in practice activity. In other words 
the ICT tools is employed in the diagnostic phase of the EEC, and the provided 
feedback contributes to the setting up (planning phase) of the situations to be 
submitted to pupils, in order to achieve the given educational goal in the put in 
practice phase. The peculiarity of this perspective is that the ICT tools are employed 
by the teacher as sources of information rather then as mediators directly fostering 
pupils learning: the didactic (or adidactic) situations, planned for fostering learning 
may even not include an ICT tool at all, even if they have been planned with the aid 
of a diagnostic ICT tool.  

4.5 Some remarks and conclusions 
We observe that the designer of an educational ICT tool, provides it with a certain set 
of didactical functionalities according to a given theoretical framework of reference. 
However it may happen that someone else decides to employ the same tool to achieve 
the same educational goal, but taking the perspective of another framework of 
reference. If that is the case, the individuated didactical functionalities will be 
different from those implemented by the designer. An example is the research 
brought forward by the University of Siena team where the Cabri-Geometry software 
for introducing pupils to geometrical constructions, designed within the framework of 
TDS, is used by the team according to the TISM (Mariotti 2002). In this case the 
didactical functionalities defined by the developer of the software are different from 
the didactical functionalities defined by the TELMA team because even if 
educational goal and ICT tool coincide, the modalities of employment are different.  
It is interesting to observe that in this example, like in the other examples we 
presented, ICT tools are provided with very different didactical functionalities, 
depending on the different theoretical frameworks that assign very different roles to 
the tool itself, to the learners, and to the teacher.  
We considered the case of TDS that is based on Piaget’s theories, according to which, 
the cognitive development of each individual follows biological stages driving the 
movement from one stage to the next. In this context, in order to teach a 
mathematical concept, it is important that the teacher, in the planning phase, sets up a 
fundamental situation (adidactic situation) which will be the point of departure to 
create an antagonist system for pupils, the milieu, which includes the ICT tool. The 
role of the teacher is to construct the condition under which the responsibility of the 
solution of the task is entirely submitted to the student in the put in practice phase; in 
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this phase the interaction between student and tool (included in the milieu) is the 
main source of learning. 
On the other hand AT and the TISM, are both based Vigotskij’s socio-historical 
theory. In this theory the student’s cognitive development has to be understood as 
taking place in the interaction with other members of the society, in particular with 
the teacher and other members of the class. In this perspective, the teacher assumes a 
key role in the put in practice phase, for instance in the TISM, the teacher plays the 
central role of orchestrating mathematical discussions arising from students 
interaction with the ICT tool.  
In all these cases, the learning outcomes depend strongly on the tools used, but in the 
case of Vigotskijan theories we find a strong dependence on cultural settings which 
may not be so relevant in the case of Piagetian theories such as TDS. A direct 
implication is that when defining the didactical functionalities of a tool, a different 
attention is put on the social context according to the theoretical framework used. 
In conclusion, we showed how the constructs of didactical functionalities and the 
EEC, allowed us to analyse the roles played by technology in some examples. We 
hypothesize that the introduced constructs can be used to extend the analysis and 
comparison of researches, including also researches outside the TELMA project but 
concerning educational use of ICT tools.  
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