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INTRODUCTION TO THE WORKING GROUP 
“APPLICATIONS AND MODELLING” 

 
Gabriele Kaiser1, University of Hamburg, Germany 

 

The discussions of the working group at CERME 4 were strongly influenced by 
different approaches towards applications and modelling, presented by various 
speakers which created a basis for a constructively critical and argumentative 
discussion. These discussions demonstrated that there does not exist a 
homogeneous understanding of modelling and its epistemological backgrounds 
within the international discussion on applications and modelling. 

However, this is not a new situation at all. Nearly twenty years ago, Kaiser-
Messmer (1986, pp. 83) showed in her analyses that within the applications and 
modelling discussion of that time various perspectives could be distinguished, 
internationally and nationally in Germany or German-speaking countries as well. 
These are the two main perspectives that emerged from the discussion that time: 

• A pragmatic perspective, focussing on utilitarian or pragmatic goals, the 
ability of learners to apply mathematics to solve practical problems. 
Henry Pollak (see for example 1969) can be regarded as a prototype of 
this perspective. 

• A scientific-humanistic perspective which is oriented more towards 
mathematics as a science and humanistic ideals of education with focus 
on the ability of learners to create relations between mathematics and 
reality. The ‘early’ Hans Freudenthal (see for example 1973) might be 
viewed as a prototype of this approach. Freudenthal changed his position 
at the end of his life, as he tended to take pragmatic aims more into 
consideration (see for example 1981). 

Although these were the main streams of the discussion on applications and 
modelling further differentiations become obvious, especially on a national level. 
For a better understanding of the current approaches, the distinctions made by 
the scientific-humanistic perspective are helpful. Hans-Georg Steiner (1968) put 
epistemological goals into the foreground and emphasised the development of 
mathematical theory as an integrated part of the processes of mathematising. 
However, early attempts such as that of the French-speaking André Revuz 
(1971) are also important. He starts out from the triple situation-model-theory 
which means that models are constructed by starting from a situation which then 
leads to the development of a mathematical theory. 

                                                 
1 The author wishes to express her thanks to Werner Blum for valuable contributions and 
discussions in the development of the new classification system.  
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Furthermore, an emancipatory perspective in the discussion can be identified, 
which is developing into socio-cultural attempts of mathematics teaching (for 
current approaches see for example Gellert, Jablonka, Keitel 2001). 

A third stream, named integrative perspective, demands that applications and 
modelling should become subject to different levels of aims, that is to serve 
scientific, mathematical and pragmatic purposes but in a harmonious relation to 
each other. This perspective is not limited to specific aims and gets its strength 
from a wide range of aims and arguments (see for example Blum, Niss 1991). 

The various perspectives of the discussion as reconstructed by Kaiser-Messmer 
vary strongly due to their aims concerning application and modelling. The 
appropriate references suggest various dimensions of aims. Kaiser (1995, p. 69f) 
distinguishes the following goals: 

• Pedagogical goals: imparting abilities that enable students to understand 
central aspects of our world in a better way; 

• Psychological goals: fostering and enhancement of the motivation and 
attitude of learners towards mathematics and mathematics teaching; 

• Subject-related goals: structuring of learning processes, introduction of 
new mathematical concepts and methods including their illustration; 

• Science-related goals: imparting a realistic image of mathematics as 
science, giving insight into the overlapping of mathematical and extra-
mathematical considerations of the historical development of mathematics. 

Comparable dimensions of aims are stated by Blum (1996, p. 21f) although he 
identified and described the nuances differently, and by Maaß (2004) as well. 

Meanwhile, the current discussion on applications and modelling has developed 
further and become more differentiated. New perspectives can be identified 
which, as it became obvious from detailed analyses, emerged from the above 
described traditions or partly can be regarded as their continuations. 

In the following, a classification system for present approaches of applications 
and modelling will be suggested by reverting to the previous differentiations 
summarized above but taking the current developments of the discussion on 
applications and modelling into consideration. This suggestion is based on 
recent analyses using literature mainly generated by ICMI and ICTMA activities 
and additional publications (see for example the reference list in the discussion 
document of the ICMI Study on Applications and modelling in mathematics 
education (Blum et al. 2002, p. 279f)). 

This classification distinguishes various perspectives within the discussion 
according to their central aims in connection with applications and modelling 
and describes in short words the backgrounds these perspectives are based on as 
well as their connection to the initial perspectives. This ensures both a continuity 
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for the present discussion as well as accumulates current perspectives coherently 
into the existing literature  
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emphasising modelling as mental process 
such as abstraction or generalisation 

Epistemological 
or theoretical 
modelling 

Theory-oriented goals, i.e. promotion of 
theory development 

Scientific-
humanistic 
approach of “early” 
Freudenthal 

Roman epistemology 

 
Table 1: Classification of current perspectives on modelling  
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When analysing the papers discussed during the sessions of the working group 
applications and modelling at CERME 4, one finds out that the apparent uniform 
terminology and its usage masks a great variety of approaches. It is remarkable 
that now, after a longer period of time, attempts from Roman language speaking 
countries were brought into the discussion on applications and modelling which 
start out from a more theory-related background. Partly they refer to the 
anthropological theory of didactics and to the approach of mathematical 
praxeologies of Chevallard emerging from anthropological theory, or they refer 
to approaches like that of Brousseau concerning ‚contract didactique’. In 
contrast to the approaches of realistic modelling, approaches such as those 
presented by Garcia Garcia & Ruiz Higueras at CERME 4, give less importance 
to the reality aspect in the examples they deal with. Both, extra-mathematical 
and mathematical topics may be dealt with, while the latter is then described as 
"intra-mathematical modelling". If the approach of praxeology becomes the 
main orientation, this leads to the fact that every mathematical activity is 
identified as modelling activity for which modelling is not limited to 
mathematising of non-mathematics issues. As a consequence these approaches 
show a strong connection to the science-oriented approaches of Steiner and 
Revuz for which mathematising and modelling is taken as part of theory 
development. However, these approaches are also rooted in the tradition of the 
scientific-humanistic perspective mainly shaped by the early Freudenthal. In his 
earlier work, Freudenthal (1973) understands mathematisation as local 
structuring of mathematical and non-mathematical fields by means of 
mathematical tools for which the direction from reality to mathematics is highly 
important. Freudenthal distinguishes local and global mathematisation, and for 
global mathematisation the process of mathematising is regarded as part of the 
development of mathematical theory. These approaches continue with a 
distinction developed by Treffers (1987): horizontal mathematising, meaning the 
way from reality to mathematics, and the vertical mathematising, meaning 
working inside mathematics. Freudenthal (like his successors) consistently uses 
the term mathematising.  According to Freudenthal mathematical models are 
only found at the lowest level of mathematising when a mathematical model is 
constructed for an extra-mathematical situation. 

Likewise, analyses show that the approaches from the pragmatic perspective 
were sharpened further until they became the approach of realistic modelling. 
For these kinds of approaches, authentic examples from industry and science 
play an important role. Modelling processes are carried out as a whole and not 
as partial processes, like applied mathematicians would do in practice. In 
summary, it can be stated that a characteristic of approaches described by 
Haines & Crouch or Kaiser is one in which modelling is understood as activity 
to solve authentic problems and not the development of mathematical theory. 
The described empirical studies even point out that newly learned knowledge 
cannot be applied directly in modelling processes, only with some delay. This 
fact has already been pointed out in earlier reports based on anecdotal 

Working Group 13

1618 CERME 4 (2005)



knowledge (e.g. Burghes & Huntley 1982). In general, the presented empirical 
studies aimed at fostering modelling competencies demonstrate well underlying 
complexities which makes it difficult to achieve progress. 

Besides these quasi polarising approaches, the realistic modelling and the 
epistemological modelling, there exists a continuation of integrative approaches 
within the educational modelling which puts the structuring of learning 
processes and fostering the understanding of concepts into the centre. However, 
the approach of educational modelling may also be interpreted as continuation 
of the scientific-humanistic approaches  in its version formulated by Freudenthal 
in his late years and the continuation done by Treffers (1987) or respectively by 
De Lange (1987) for whom real-world examples and  their interrelations with 
mathematics become a central element for the structuring of teaching and 
learning mathematics. 

Within the discussion on applications and modelling, the approach of cognitive 
modelling, which exams modelling processes under a cognitive perspective, is 
new. Of course, the analysis of thinking processes by means of the approach of 
modelling is not new and is found in many theories of learning or cognitive 
psychology (see for example Skemp 1987). However, the analysis of modelling 
processes with a cognitive focus must be regarded as a new perspective as only 
recently a few studies were carried out, among others the study of Blum & Leiss 
which was presented at CERME 4. 

The approach of solving word problems named contextual modelling, has a long 
tradition, especially in the American realm, but with the model eliciting 
perspective introduced by Sriraman at CERME 4 and referring to studies of 
Lesh & Doerr (2003), an explicitly theory based perspective has been 
established which is clearly going far beyond problem solving at school. 

This perspective traces its lineage to the modern descendents of Piaget and 
Vygotsky, but also to American Pragmatists. The philosophy of this perspective 
(Lesh & Sriraman, 2005a, 2005b) is based on the premise that: 

• conceptual systems are human construct, and that they also are 
fundamentally social in nature (Dewey and Mead); 

• the meanings of these constructs tend to be distributed across a variety of 
representational media (ranging from spoken language, written language, 
to diagrams and graphs, to concrete models, to experience-based 
metaphors (Pierce); 

•  knowledge is organised around experience at least as much as around 
abstractions - and that the ways of thinking which are needed to make 
sense of realistically complex decision making situations nearly always 
must integrate ideas from more than a single discipline, or textbook topic 
area, or grand theory (Dewey); 
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• the "worlds of experience" that humans need to understand and explain 
are not static.  They are, in large part, products of human creativity. So, 
they are continually changing - and so are the knowledge needs of the 
humans who created them (James). 

In the contribution by Sriraman, an abstract task was used to decipher student 
understanding of modelling constructs developed within the models and 
modelling perspective. In particular the researcher was interested in knowing 
whether post graduate students could objectively apply the definition of a model 
eliciting activity to a problem that blatantly violated the design principles for 
model eliciting activities. Interestingly enough, Sriraman reports that the 
subjective experience of solving the problem caused considerable conflict for 
several students and prevented them from objectively applying the definition. 

The papers discussed in the working group which two of them are not contained 
in the proceedings and therefore put into brackets, are classified according to the 
perspectives described in table 1. 

 
 
Approach Classification of the papers and – if mentioned 

– referred theoretical protagonist  
Realistic or applied 
modelling 

Haines/Crouch 
[Kaiser (Pollak)] 
 
 

Contextual modelling 
 

Sriraman (Lesh & Doerr) 

Educational modelling; 
differentiated in  
a) didactical modelling and  
b) conceptual modelling 
 

Vos (Freudenthal) 
Lingefjärd 
Henning/Keune (Niss) 
[Blomhoj (Niss)] 

Cognitive modelling 
 

Blum/Leiss 

Epistemological or 
theoretical modelling 

Garcia/Ruiz (Chevallard) 
Dorier (Brousseau) 
 

Table 2: Classification of the papers presented at CERME 4 
 
The classification of a paper to one category does not mean that the overall 
position of the researcher belongs to this category. It is possible and in a few 
cases even known that the overall approach of a person emphasises different 
aspects of modelling. Among others, Blum emphasises educational as well as 
cognitive modelling approaches in his recent publications. Furthermore it has to 
be pointed out that these classifications are not based on objectifiable and 
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operational criteria but on the analyses of texts by means of a more hermeneutic 
understanding of text.  

To summarise, these analyses demonstrate on the one hand that currently 
significant further developments are taking place within the discussion on 
applications and modelling, while on the other hand it became clear that these 
new approaches still go along with existing traditions and that they have 
developed further earlier approaches or fall back on them. However, the 
frequent usage of concepts from the modelling discussion should not be 
mistaken about the fact that the underlying assumptions and positions of the 
various modelling approaches differ widely. A precise clarification of concepts 
is necessary in order to sharpen the discussion and to contribute for a better 
mutual understanding. Thus, this suggestion for a description of the current 
discussion on applications and modelling is meant to be a first step into this 
direction. 
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“FILLING UP“ – THE PROBLEM OF INDEPENDENCE-
PRESERVING TEACHER INTERVENTIONS IN LESSONS WITH 

DEMANDING MODELLING TASKS 
 

Werner Blum University of Kasse, Germany 
Dominik Leiß, University of Kasse, German) 

 
Abstract: In section 1, we will describe the starting point and the context of our re-
search, the projects SINUS and DISUM. In section 2, we will present and analyse a 
typical example of a demanding mathematical modelling task, and report on how this 
task was used in the DISUM project. In section 3, the core part of thispaper, we will 
concentrate on some selected aspects of how teachers have dealt with this modelling 
task. Finally, in section 4, we will reflect upon these lessons and draw some conclu-
sions. 

Keywords: Modelling, teacher intervention, empirical research. 

 

���� THE PROJECTS SINUS AND DISUM 
Soon after the release of the unsatisfactory TIMSS results in 1997, the German gov-
ernment established a reform project that aimed at improving the quality of mathe-
matics (and science) teaching: “Steigerung der Effizienz des mathematisch-naturwis-
senschaftlichen Unterrichts” (“Increasing the efficiency of math and science teach-
ing”, abbreviation: SINUS; see Prenzel/Baptist 2001). It ran from 1998 to 2003. The 
participants were schools, 180 altogether, organised into 30 so-called “model pro-
jects” with 6 schools each, distributed all over Germany. The grades involved were 5-
10 (that is, 10-16-year-olds). One of these 30 “model projects” was directed by us 
(Blum et al. 2000). The SINUS programme was, globally speaking, successful and 
was therefore considerably extended. The goal is to involve 2000 schools by 2007. 
The central aim of SINUS was, and still is, to teach mathematics so as to fulfil certain 
criteria for “quality teaching”. These criteria – both theoretically well-founded and 
empirically well-supported – are in short (Blum 2001, Helmke 2003): 

I. Demanding orchestration of the teaching of mathematical subject matter 

1 Aiming at competencies and providing manifold opportunities for learners to ac-
quire competencies (opportunities for modelling, arguing, etc.; see Niss 2003). 

2 Creating manifold connections, vertical ones (within mathematics) and horizontal 
ones (with the real world outside mathematics). 
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II. Cognitive activation of learners 

3 Stimulating permanently cognitive activities of students, including meta-cognitive 
activities (that is a conscious use of strategies and reflections upon one’s own ac-
tivities; see, e. g., Schoenfeld 1992). 

4 Fostering students’ self-regulation and independence as much as possible, and re-
acting to individual students adaptively, based on a firm diagnosis. 

In addition to these more subject-related criteria, there are criteria concerning general 
“classroom management”: 

III. Effective and learner-oriented classroom management 

5 Varying teaching methods flexibly, and fostering communication and cooperation 
among students. 

6 Fostering a learner-friendly classroom environment where learning and assessing 
are recognisably separated and mistakes are seen as good learning opportunities. 

7 Structuring lessons clearly and using time effectively, among other things by pre-
venting disturbances. 

8 Using media (such as calculators and computers) appropriately. 

In all aspects, the teacher has a crucial role to play. We can speak, in the words of 
Weinert (1997), of “learner-centred and teacher-directed” teaching. 

In order to achieve this central aim of SINUS, two guiding principles were followed: 

� The “new culture of tasks”: Changing mathematics teaching requires the selection 
of appropriate tasks and their implementation in the classroom according to the 
quality criteria. 

� The “new culture of cooperation”: Changing mathematics teaching must be 
brought forward by the whole mathematics staff of a school, and more generally, 
all institutions (schools, universities) have to collaborate. 

SINUS was, and still is, an ambitious programme. Quality teaching is not easy to ac-
complish, and classroom observations showed numerous shortcomings.  Some of 
these shortcomings are definitely not due to a lack of practical realisation of existing 
knowledge by the SINUS teachers, but rather to 

� a lack of knowledge of the actual procedures and difficulties of students when 
solving cognitively demanding tasks both in individual work and in pair or group 
work, 

� a lack of knowledge of possible and appropriate ways for teachers to act when di-
agnosing students’ solution processes and when intervening in case of students’ 
difficulties, or in other critical situations. 

“Appropriate” means “oriented towards the quality criteria”, for example finding a 
proper balance between maintaining students’ independence and self-regulation as 
much as possible and helping students to progress – an absolutely non-trivial problem 
for theory and practice! 
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These research questions were the starting point for the DISUM project (in 2002), an 
interdisciplinary project between mathematics education and pedagogy at the Univer-
sity of Kassel. DISUM means “Didaktische Interventionsformen für einen 
selbständigkeitsorientierten aufgabengesteuerten Unterricht am Beispiel Mathe-
matik“ („Didactical intervention modes for mathematics teaching oriented towards 
self-regulation and directed by tasks“; see Blum/Leiß 2003 and Leiß/Blum/Messner 
2005). The subject of DISUM are modelling problems, mainly in grade 9. The project 
aims at dealing with these questions in a more systematic and carefully directed way 
than would have been possible in SINUS (that was established – and funded – as a 
practice-oriented classroom reform project). Accordingly, the components of DISUM 
are: 

1. Detailed cognitive and subject matter analyses of modelling tasks (constructing 
the “task space” according to Newell/Simon 1972). 

2. A detailed study and theory-guided description of actual problem solving proc-
esses of students in laboratory situations (pairs of students, sometimes with, some-
times without a teacher; method: videography and individual stimulated recall). 

3. A detailed study and theory-guided description of actual diagnoses and interven-
tions from teachers in these laboratory situations. 

4. A detailed study of regular lessons with such modelling tasks, taught by experi-
enced SINUS teachers, and a theory-guided description of these lessons, espe-
cially by means of our quality criteria. 

For a considerable number of modelling tasks, these investigations have already been 
carried out. What will be done during the next two years is, in addition: 

5. The construction of manageable and promising tools for 
a) the training of students in strategies for solving modelling problems, 
b) the training of teachers in “well-aimed coaching” of modelling problems. 

6. A detailed study into the influence of 
a) students’ use of strategies 
b) teachers’ well-aimed coaching on mathematical achievement, in particular on 

modelling competencies of learners. 
7. The implementation of the results into teacher education. 

���� THE “FILLING UP” TASK 
One of the modelling tasks used in the DISUM project is the following: 

 

Filling up����
Mister Stone lives in Trier which is close to the border of Luxemburg. 
To fill up his VW Golf he drives to Luxemburg where immediately 
behind the border, 20 km away from Trier, there is a petrol station. 
There you have to pay 0.85 Euro for one litre of petrol whereas in Trier 
you have to pay 1.1 Euro. 
Is it worthwhile for Mister Stone to drive to Luxemburg? 
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A global cognitive analysis yields the following ideal-typical solution, oriented to 
wards the well-known modelling cycle (fig.1): 

Fig. 1 

 

First, the problem situation has to be understood by the problem solver, that is a 
situation model has to be constructed. Then the situation has to be simplified, struc-
tured and made more precise, leading to a real model of the situation. In particular, 
the problem solver has to define what “worthwhile” should mean. In the standard 
model, this means only “minimising the direct costs of filling up and driving”. 
Mathematisation transforms the real model into a mathematical model. Working 
mathematically (calculating, solving equations, etc.) yields mathematical results, 
which are interpreted in the real world as real results, ending in a recommendation 
for Mr. Stone what to do. A validation of these results may show that it is necessary 
to go round the loop a second time, for instance in order to take into account more 
factors such as time or pollution. Dependent on which factors have been taken, the 
recommendations for Mister Stone might be quite different. 

We have used the “Filling Up” task in lab sessions and in regular lessons as well as in 
various tests (in the SINUS project). Fig. 2 shows two typical solutions from stu-
dents:  

 

mathematical 
model 

mathematical 
results 

real
results

real
model

situation 
model 

real
situation

rest of 
the world mathematics 

1 

2 

3 

4 

5 

6 

1 Understanding 
2 Simplifying/Structuring 
3 Mathematising 
4 Working mathematically
5 Interpreting 
6 Validating 
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Standard model: comparing (only) the 
costs of driving and filling up  

Traditional “solution”: extract all 
numbers from the text and calculate 
these somehow, no matter what it may 
mean  

Fig. 2 
 

��������TEACHING “FILLING UP” 
Our investigations have yielded a lot of interesting insights into students’ problem 
solving processes and teachers’ actions. Among the results, especially on the teach-
ers’ side, are the following: 

� re-newed empirical evidence of the indispensableness of the well-known model-
ling cycle (see above), both as a metacognitive tool for students, and as an instru-
ment for the teacher for diagnosis and well-aimed intervention 

� a classification of various kinds of teacher interventions: related to content, to or-
ganisation and interaction, to motivation, and meta-level 

� a distinction between working independently, with support from the teacher, on 
the one hand, and working totally on one’s own, on the other hand; lack of support 
very often causes motivational, social, or cognitive problems and leads to failure 

� a further development of existing learning strategy models (see, e.g., Kramarsky/ 
Mevarech/Arami 2002); our model is comprised of five components: goals, voli-
tion, organisation, strategy, evaluation, and is actually doable by teachers 

� insight into the importance of the teacher’s broad knowledge of the task space as a 
solid basis for diagnosis, including the prediction of cognitive barriers, and for in-
tervention. To put it less positively: the big influence of the teacher’s idiosyncratic 
interpretation of the task space on his or her actions and, as a result, on the solu-
tion processes of the students. 

For the rest of section 3, we will concentrate on the last-mentioned problem, in order 
to make just one aspect in the complex field of learning and teaching with modelling 
tasks a bit more concrete. 

Several experienced SINUS teachers (in all kinds of schools and strands) have dealt 
with the “Filling up” task in their classrooms. In most classes, the lesson followed the 
same pattern: 
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1. Presentation and short discussion of the task 
2. Dealing with the task individually 
3. Solving the task in small groups 
4. Presentation of the students’ solutions 
5. Reflection on the solutions 

This pattern is different from the usual lesson script in Germany. However, this is 
still only a description of the surface structure of these lessons. Now, we will look a 
bit deeper. 

All teachers had to solve the “Filling Up” task in advance by themselves. Let us take 
two teachers as an example. Teacher 1, Mrs. K., used the standard model which takes 
into account only the direct costs of filling up and driving. Teacher 2, Mr. R., consid-
ered more variables, such as time, and emphasised how important it is not to restrict 
oneself to the mere costs of filling up and driving. 

Let us look at two excerpts from a 9th grade lesson taught by Mrs. K. 

Excerpt 1: 

S1: What does “worthwhile” mean? 
T: “Worthwile” means whether it financially makes sense for him to drive across the border to 

fill up. Yes? Is the question okay? 
S1: Is it cheaper after all? 
T: Exactly. Whether it is profitable for him to drive cross the border or whether he should fill 

up in Trier instead. Exactly. 

The student (a French exchange student) asks right in the beginning of the lesson 
what “being worthwhile” means. The teacher responds “whether it financially makes 
sense” and “whether it is cheaper”, thus leading the students to the standard model. 
Later on in that lesson: 

Excerpt 2: 

S2: You could also ask if maybe his workplace is past the gas station in Luxemburg because 
then he’d have to go that way, anyway. 

T: Yeah, okay, we still have to be realistic. If we take too many assumptions into account it’ll 
get too tricky. 

The student’s question might easily lead to the consideration of time as an important 
factor. However, the teacher discourages the approach by speaking of “too many as-
sumptions”. 

Let us now observe two excerpts from a 10th grade lesson taught by Mr. R. 
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Excerpt 3: 

T: So, what aspect have you incorporated into the 10 Euros? 
S1: The same as up here except with … 
S2: How much gas he gets. 
T: Just the fill up? Have you considered what driving costs apart from that? Or, yeah, he has to 

drive there and back. You have to estimate something. 
S3: How are we supposed to calculate that? 
S1: Yeah, mileage too and stuff. 
T: Yes, and time? 
S1: Looses value after all, and stuff. 
T: Exactly. 

The teacher, in many respects a “non-invasive” type (in the sense of Barth et al., 
2001), forces the students, rather early in their solution process, to take into account 
time and loss of value of the car as well. 

Excerpt 4: 

T: Well, have you taken into account, if a car has 20000 km more on it it is worth less, after all, 
and … 

S1: Yeah, cause I had that … 
T: For that, he has to buy more tires and more oil and more of all kinds of things. Did you in-

clude that, too? 
S2: For how many kilometers do you necessarily need … 
S1: No. Whether he drives around 40 km in the city the whole time or goes there to fill up and 

comes back. 
S2: I even think it’s almost better if you don’t drive in the city but just drive straight through 

without stopping. 
S1: Yeah, cause in the city there’s a lot of stop and go, there you have to, yeah, there it con-

sumes more. 
T: It is certainly less than if he drives around in the city, but he doesn’t drive around just for 

fun! He drives, after all, only if he has to drive. He is certainly not a fun driver, and if he’s 
not driving around in the city he just drives to Luxemburg. 

S1: So if he, for example … 
T: Well, otherwise he would not drive these 2000 km, or in 10 years 20000 km. 
S1: Well, that balances out … 
T: Yeah, well, you have to … 
S1: Even if he drives around in the city? He drives there, but then he drives less in the city, they 

balance each other out a little. 
T: You have to consider that as well. That’s what I’m aiming at, that you consider that as well. 

The students argue that it might even be financially advantageous to drive out of 
town, but the teacher obviously cannot accept – probably caused by his ecological 
attitude – that Mister Stone is a fun driver, and emphasises that the loss of value 
caused by the additional mileage on the car is an important variable. 
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These examples show how strongly the teacher’s own conceptualisation of the task – 
resulting, among other things, from the teacher’s preknowledge and beliefs – influ-
ences his or her type of intervention. All SINUS teachers are familiar with the criteria 
for quality teaching, and their everyday lessons stand out very positively from typical 
German lessons. The intention of all participating teachers was, according to criterion 
4, to foster students’ self-regulation and independence as much as possible, in the 
sense of Montessori’s “Help me to do it by myself”, and to intervene in a minimal 
manner. In the end, however, it was even possible to assign students from various 
classes to their special class just by looking at the kind of solution they had accom-
plished. 

We close this discussion with another excerpt from Mr. R.’s lesson which, in our 
view, shows a balance between preserving students’ independence and supporting 
them actively. 

Excerpt 5: 

S1: We don’t know a lot of the data for the Golf, that’s why we can’t come up with an answer. 
L: What are you missing? 
S2: What it consumes and stuff. 
L: Consumes – your parents have a car? 
S2: Yeah. 
S3: A Clio. 
L: What does it consume? 
S3: Not much. 
L: What does “not much” mean? 
S3: So and so many litres per 100 km, but I don’t know how many. 
S4: I think around 8 or 10, or? Could that be, roughly? 
L: That very well might be, yes. And what do your parents have? 
S2: Yeah, I have no idea how much. 
S4: We have an Escort, it’s pretty much like a Golf, isn’t it? 
L: That’s definitely a good idea. So we’ll take the consumption of an Escort. 
S4: Okay. Let’s estimate, I don’t know exactly, 9? 
S3: 9. 
L: That’s sounds pretty good, yes. 
S4: 9 litres, okay. 

The problem is – unavoidable in the solution of « Filling up » - that the students have 
to make assumptions about the gas consumption of the car. With the question as to 
how much their parents’ car consumes, the teacher expresses two things: first, that the 
students are on the right track, and second, that the missing data have to be estimated, 
preferably by using everyday  knowledge, not merely at random. At first glance, this 
intervention might appear rather common. However, it may be regarded as a minimal, 
independency-preserving intervention, as an effective compromise between saying 
nothing (leaving the students alone) and simply providing them with the missing data. 
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Of course, it might be argued that this could have been done in less time, for instance 
by only asking about parents’ cars and not intervening any further. 

��������EVALUATION 
In section 3, we concentrated on only one aspect. There are many other aspects to be 
observed in these lessons. Looking at these lessons with “quality glasses” reveals that 
in all cases – in contrast to the large majority of everyday lessons in our country –: 

� the teaching was oriented towards competencies, and the students had opportuni-
ties to model, to argue, to communicate, 

� mental activities were stimulated, 
� for the most part, the students could work independently, 
� the atmosphere was tolerant towards mistakes and free of assessment. 

However, some problems were also visible, in particular 

� the difficulty of finding a proper balance between the students’ independence and 
the teachers’ intervention, influenced by his or her preknowledge and beliefs (as 
discussed in section 3), 

� the lack of validation and of substantial reflection on the solution processes. There 
were indeed multiple solutions, and these were compared with each other (this 
alone shows that the observed lessons were far above average), but there were no 
discussion on the question of which initial data influenced the results, and in what 
way, and how accurate a result can actually be taking into account the rough as-
sumptions made about tank volume and gas consumption of the car. 

Only such functional analyses would yield a real understanding and would contribute 
to – in the words of Reußer (1998) – “the extraction of relevant conceptual-schematic 
and processual-strategic characteristics of a problem solution in an abstracting way”. 
We refer to the discussion of that problem in Blum (2005). 

So, there is certainly a potential for improvement even in the lessons of these experi-
enced “best-practice teachers”. More generally, the criteria for quality mathematics 
teaching have to be a central part of pre-service and in-service teacher education. The 
video documents produced in DISUM can certainly be used for the purpose of 
teacher education. This is already being done and will be done more extensively in 
the future (We refer again to Blum 2005 for a description of the teacher education 
programme COSINUS which, up to now, has already reached more than 70 % of all 
mathematics or science teachers in the state of Hessen, on a voluntary basis). We 
shall devote the final phase of DISUM, 2007 – 08, exclusively to an implementation 
of our materials and results into teacher education. 
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AN INTRODUCTION TO MATHEMATICAL MODELLING 
AN EXPERIMENT WITH STUDENTS IN ECONOMICS 

 
Jean-Luc Dorier, IUFM de LYON & Equipe DDM-Grenoble, France 

 

Abstract: The research presented here took place in the first year of French 
university with students graduating in economics and management. Our 
investigations show that these students do not greatly dislike mathematics, even if 
they often admit that they have difficulties. Moreover, they generally do not have any 
opinion about the utility of mathematics for economics. We have experimented with a 
teaching device, designed to change students’ relation to mathematics and show them 
how to use mathematics in order to solve a problem in which mathematics does not 
appear at first. This situation is used as a paradigm for mathematical modelling. 
After a description of the context, we present this sequence with a brief analysis. 
Finally, we describe a didactical analysis using Brousseau’s schema (completed by 
Margolinas) of the vertical structure of the ‘milieu’. 
Key words: modelling, mathematics applied to economics, proportionality, algebra, 
milieu. 

INTRODUCTION 
As teachers in charge of the mathematical instruction for students majoring in 
economical science and management in their first year of French university, my 
colleague and I have been concerned with the application of mathematics and the use 
of mathematical modelling in these fields. 

Our teaching (Dorier and Duc-Jacquet 1996) includes several applications (mostly of 
calculus, series and linear algebra) to economics and management. In reference to the 
classification made by Blum and Niss (1991, 60-61), of the different approaches of 
teaching mathematics, including applications and modelling, our approach could be 
characterised as a ‘mixing approach’, in which “elements of applications and 
modelling are invoked to assist the introduction of mathematical concepts” (see 
Dorier to appear, for examples in English). 
Blum and Niss (ibid., 53-54) have listed some of the obstacles to the integration of 
applications and modelling in mathematical teaching. They divide these obstacles in 
three categories, depending whether they refer to instruction, the learner or the 
teacher. In our teaching, we had the liberty to restrict the amount of mathematical 
concepts to be taught over the year, in order to have sufficient time to work on 
applications and modelling; this is a way of overcoming the obstacle from the point 
of view of instruction. To overcome the obstacle from the teacher’s point of view, we 
worked with economists in order to investigate the economical contexts to which we 
could apply mathematics. The main obstacle came from the learner’s point of view. 
Indeed, according to Blum and Niss:  
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“Problem solving, modelling and applications to other disciplines make the mathematics 
lessons unquestionably more demanding and less predictable for learners than 
traditional mathematics lessons. Mathematical routine tasks such as calculations are 
more popular with many students because they are much easier to grasp and can often 
be solved merely by following certain recipes, which makes it easier for students to 
obtain good marks in tests and examinations.”(ibid; 54). 

At first, we thought that our students had a negative opinion about mathematics (due 
to their experience at secondary school) and would be glad to approach mathematics 
through applications and modelling in reference to their main subject, i.e. economics. 
However, we distributed a questionnaire to first-year students, about their perception 
of mathematics. We collected the answers to this questionnaire over five years. The 
main results show that our students are not simply weak students who dislike abstract 
mathematics and who are starved of practical application. On the contrary, they may 
like mathematics, even if it is complicated and even if they are not very successful, 
and last but not least, they do not care much about applications. What they like about 
mathematics is a certain form of security. For the vast majority, doing mathematics 
means finding the right recipe to guess the answer. If they see themselves as weak in 
mathematics, they often complain that they cannot find the right key to a problem, 
that they are not gifted. In a way, mathematics does appear to be a mystical subject, 
reserved to a circle of gifted people, who can magically find the right way to the 
solution. 

Such representations are an obstacle to the use of applications and modelling in 
mathematics. Blum and Niss (1991) list five specific arguments for inclusion of 
applications and modelling in the instruction of mathematics. In relation to the state 
of our students’ perceptions, two of them seem essential for our project, namely the 
‘picture of mathematics’ argument and the ‘critical competence’ argument. 

Indeed, the authors claimed that it is “an important task of mathematical education to 
establish with students a rich and comprehensive picture of mathematics in all its 
facets, as a science, as a field of activity in society and culture.” They are also in 
favour of developing a “critical competence [which] aim is to enable students to ‘see 
and judge’ independently, to recognize, understand, analyse and assess representative 
examples of actual uses of mathematics, including (suggested) solutions to socially 
significant problems” (ibid., 43). 

These two arguments seem essential for students who are in their last years of 
mathematical training and will have to use mathematics in an extra-mathematical 
professional context. 

We have tried to apply these goals to the whole of our teaching. However, 
considering the main characteristics of our students, it seemed essential to initiate 
right from the first lecture a radical change in their perceptions of mathematics. 
Indeed, entering university is an important change in a student’s life. Students expect 
some changes and it is an opportunity for the teacher to establish a new relationship 
with them. This is why we have decided to experiment with a teaching situation 

Working Group 13

CERME 4 (2005) 1635



during the first one or two lecture of the year, in order to initiate a radical change in 
the students’ expectations of mathematics, proper to make the use of applications and 
modelling more efficient in the rest of the year. 

This project is an attempt to address issue 2 raised by Blum et al. (2001) in the 
discussion document of ICMI Study on applications and modelling in mathematical 
education: “What does research have to tell us about the significance of authenticity 
to students’ acquisition and development of modelling competences” (op. cit., 160).  

The aim of this paper is to present this situation and its experimentation with some 
theoretical elements for its analysis. 

PRESENTATION OF THE SITUATION 
This situation must have the following characteristics: 

- The mathematics at stake must be elementary 

- The initial problem must be easy to understand and posed in a totally extra-
mathematical context. 

- The answer should not be guessed to easily and yet be reachable with 
elementary mathematical competence. 

- Different mathematical as well as not strictly mathematical models can be 
applied, giving partial or global, right or wrong answers. 

- The situation must raise some issues concerning hypotheses to be made in 
order to make a real model of the initial real problem situation (Blum and Niss 
1991, 38) 

We chose the following problem, which is quite well known and has been 
experimented on in different situations: 
Wine and water problem: 
Two identical glasses are filled with the same quantity of wine and water respectively. 
With a spoon, one takes some wine from the first glass and pours it into the glass of water and 
mixes it with the spoon. 
Then, with the same spoon, one takes exactly the same quantity as before from the glass containing 
the mixture of wine and water and pours it into the glass of wine, then mixes it. 
Which has the most? The wine in the glass of water or the water in the glass of wine? 
The situation was experimented on for five years by two different teachers, during the 
first lectures of the year with students entering university (between 3 and 4 hours, in 
two class slots). Four of these ten experiments have been tape-recorded. Apart from 
the teacher, one or two researchers were present and noted their observations1. The 
tapes have been transcribed and the students’ written answers have been collected. 

The mathematical lecture is given, in a lecture room with 150-250 students. In the 
experiment we used Legrand’s (1988 and 2001) theoretical framework of scientific 
debate in mathematics courses. The scenario follows the following general schema: 
                                           
1 We would like to thank Annie Bessot for her participation in this research. 
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The teacher gives the text of the problem to the students, without extra comments. 

First stage: give your opinion (10 min. of research) Students are asked to reflect on it 
individually or in small groups for about 10 minutes, to formulate a first opinion. The 
teacher is silent and does not circulate in the amphitheatre. 

First vote: The teacher asks for a vote and writes the results on the blackboard 
according to four types of answer: “more wine” / “more water” / “other” / “?”.  

The “other” and “?” answers are important, even if they may cover different types of 
arguments, they do not need to be discussed at this stage. 

Students are asked to note the result of the vote and their own answer. The different 
kinds of answers are not discussed yet. 

Second stage: convince the others (about 20-30 min. of research) 

Now students are asked to write a letter to a friend far away in order to convince 
her/him of their opinion. The task is different, it is not only necessary to have an idea 
but they also have to find written arguments in order to convince someone else.  

During this phase of research, the teacher circulates among the students, but should 
not say much and lets the students work on their own. 

Second vote: Again students are asked to give their answer through a vote and the 
teacher marks the results on the blackboard. 

The debate: This is the longest and most essential part of the situation. It may last 
over two hours. The task of the teacher is not easy, s/he distributes the round of 
speech. At several stages, s/he has to decide which type of answer s/he wants to put 
forward. For instance, right at the beginning of the debate, s/he will have to decide if 
s/he asks someone who thinks that there is ‘more wine’, or ‘more water’ or having 
vote for “?” or “other” to talk first. This will influence the rest of the debate. At first, 
for instance, it is better to ask someone who thinks that there is ‘more wine’ to talk 
first, in order to discuss the qualitative approach (see below). Throughout the debate, 
the teacher also has to make sure that everybody hears and follows, s/he writes the 
most important arguments on the blackboard using the exact terms of the students, 
summarises when necessary and institutionalises results when s/he judges that the 
discussion has come to a general agreement. 

ISSUES ON MODELLING 
We will now present a brief analysis of the problem before we come in the next 
section to a deeper didactic analysis of the sequence, especially regarding the 
question of mathematical modelling. 

At first, one may not see the necessity of mathematics to solve the problem. Indeed, 
the problem does not raise any mathematical question. In this sense, the formulation 
used in the statement of the problem is (deliberately) deprived of any mathematical 
annotation (like, glass A and glass B, or such). Therefore, the problem can be 
approached on a purely qualitative basis. In this case, the most common first answer 
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is something like: “There is more wine in the water than water in the wine, because 
the first spoon is full of wine, while the second spoon is not filled with pure water”. 
Of course, this argument can be rejected by the fact that some wine is brought back 
with the second spoon. In all the experiments, this type of argument appeared in the 
first stage of the debate (this is why it is essential that the teacher asks those who 
have voted for ‘more wine’ to talk first). Students may have some quite animated 
discussions, but they always realise that this type of argument come to a ‘dead end’ 
and that the qualitative treatment has to be overcome. 

In response to this impossibility to solve the question on a purely qualitative basis, 
students may propose different types of answers, which come from different models 
of the problem. We give a list here, which is quite exhaustive. All these may not have 
appeared in all the experiments during the debate and appeared in a different 
order/different orders, but most of them can be found in all experiments in the 
students’ papers. 

• Numerical models. These are specific cases in which the quantities of liquid in the 
glass and in the spoon are specified by numerical values. They lead to calculations, in 
which the main mathematical tool is the notion of proportion. Note that these models 
can be more or less general, for instance the quantity of liquid in the spoon can be 
expressed either numerically or as a proportion (or percentage) of the quantity of 
liquid in the glass. These examples, if correctly computed, lead to the correct answer, 
i.e. both quantities, of water in the wine and wine in the water, are equal. 
Nevertheless, the difficulties inherent to calculations in this context may lead to a 
wrong answer. In this sense, some choices of quantities can be more troublesome 
than others. For instance, the choice of 1000ml for the glass and 10ml for the spoon 
can easily lead to the idea that the second spoon contains 9ml of water and 1ml of 
wine (this is a typical mistake with proportion). Moreover, students convinced that 
there is more wine than water can unconsciously distort their calculations in order to 
prove what they are convinced of. 

• Extreme cases. One can imagine that the spoon is as big as the glass (i.e. the first 
spoon empties the glass of wine). It is then easy to see that, at the end, each glass 
contains half water and half wine. On the other hand, one can imagine that the spoon 
is empty, in which case, the contents of the glasses remain identical. These two 
extreme cases are unrealistic and lead to the right conclusion without much 
calculation. A student offering such an argument is very likely to have a good 
understanding of the power of modelling for the situation. 

• Graphical models. One can draw glasses and represent the liquids in it at the 
different stages, by cutting the content in the glass in different proportions. This leads 
to a more or less sophisticated graphical proof. A formal version of a graphical model 
appeared in several of our experimentations. The students had replaced the liquid by 
balls of two different colours in such a way, that calculations were easy to make. 
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• Models using letters. These can be mixed with numerical models, or even 
graphical models. Using letters to designate objects is often seen as a mathematical 
ability. Here, the use of letters is efficient, if it is applied to the unknown initial 
quantities of liquid in the glasses and in the spoon (the parameters of the situation), 
the second can be expressed either independently or as a proportion of the first. 
Below, we give a succinct proof, using Q as the quantity of water and wine in the 
glasses at the beginning and q as the quantity of liquid transferred with the spoon. 
The following table shows the quantity of each liquid in each glass at the three stages 
of the situation: 

 Water in glass A Wine in glass A Water in glass B Wine in glass B 
Stage 0 0 Q Q 0 
Stage 1 0 Q-q Q q 
Stage 2 Qq/(Q+q) Q2/(Q+q) Q2/(Q+q) Qq/(Q+q) 

The most complicated calculations occur in the second stage, when one has to find 
the quantities of water and wine in the second spoon. It is an interesting use of 
algebra and proportion, but we will not focus on this, in this text. 

Besides answers of this type, with all the mistakes that can interfere, there are some 
possible models using letters, which are not pertinent. For instance, a student 
remaining in the qualitative approach can propose a solution, in which s/he decides to 
call x the wine and y the water, the rest of her/his argument being totally qualitative. 
There are also some mixed models in which the letters are used with both qualitative 
and quantitative value. Here is an example of what we have seen during one of our 
experiments, and is quite representative of a type of argument appearing in all 
experiments at some stage of the debate: 

“x is the water and y is the wine… so we have situation 1, where we have � equal, … the 
spoon, the level of the spoon, well a supplement. Then, we have a situation 1, where we 
pour the spoon of wine into the water. So it makes x plus �y… Then we have a second 
situation, where we take a spoon of this mixture that we pour into the wine. It makes �, 
open a bracket, x plus �y,…, plus y. then we develop…what is inside the brackets, it 
makes �x plus � second y, … � square y… plus y. Then we see that we have the same 
quantity �… in the second situation, in the second glass, than the first situation, since 
there is �y, a spoon of y, of wine, and �x in the second situation, which is a spoon of… of 
water. Therefore, the supplement of wine in the water and the supplement of water in the 
wine, it is the same thing.” 

These different models proposed by the students have to be discussed during the 
debate, regarding the accuracy, the validity of the mathematical treatment and their 
degree of generality. These are all essential questions regarding modelling. 

There is also another type of discussion, which usually only appears at a certain point 
in the discussion, at least after the purely qualitative approach has been rejected. This 
concerns questions regarding the hypotheses to be made about the real problem 
situation in order to make a real model, such as: “How can we be sure that there is 
exactly the same quantity of liquid in the two glasses?, “And in the two spoons?”, 
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“Are wine and water totally mixable?”, “Since there is water in wine, how do we 
measure the quantity of water and wine in a mixture?”. 

We see that, besides the question of the use of algebra to solve the problem, we have 
there an enriching situation, proper to making important questions about 
mathematical modelling appear at an elementary level. In this sense, not only is this 
situation proper to initiate the change in students’ perceptions (what the students 
think of) of mathematics, but it can also be used during the year, as a reference for 
several questions about modelling. The framework of the scientific debate is proper 
to generate a sufficiently rich discussion in order to make most different types of 
models and questions appear in the discussion. The teacher leads the debate in the 
sense that s/he is responsible for the validation and institutionalisation of the main 
results appearing during the debate. 

Before we come to a more didactic analysis, we have to say that there is a very 
elegant and short solution of the ‘wine-water problem’ that does not necessitate 
calculation and use of proportion (as shown above). Moreover, this solution works 
even if there is not the same quantity of the two liquids at the beginning, and even if 
the two liquids are not, like wine and water, perfectly mixable. In other words, the 
same result holds if one starts with a glass containing any quantity of water and a 
glass containing any quantity of a liquid like oil for instance. Indeed, in the second 
spoon, both liquids can be present, so there is less water, but the small amount of 
water (let us call this quantity q’) is exactly the same quantity of wine (or oil) brought 
back into the glass of wine (or oil), which means that in the glass of wine (or oil) 
there is q-q’ of water and in the glass of water there is also q-q’ of wine (or oil)!  

This solution can arise among the students, but only at the end of the sequence. 
However, it can be explained to the students by the teacher (only at the end), if it has 
not arisen before. 

DIDACTIC ANALYSIS IN TERMS OF ‘MILIEU’ 
As we have seen, there is no mathematics visible in this situation at the beginning. 
However, students are in a mathematics lecture, therefore they know that they have to 
use mathematics to answer the question. The context of debate among students 
prevents any introduction of mathematics by the teacher. Thus students have the 
entire responsibility for building their mathematical strategy. In their individual 
research, they have to put forward their ideas regarding the situation and, during the 
debate, challenge their colleague’s arguments. This is typical of a situation in which 
the learner is confronted with an ‘antagonistic milieu’ with which he interacts and has 
to acknowledge feedback from it. This is the basis for a didactic situation, in the 
sense developed by Brousseau (1986, 1997). Brousseau (1990) proposes a theoretical 
framework in order to analyse the different roles of the learners and the teacher in 
relation to the different levels of knowledge involved in a situation. In his theory of 
‘situations didactiques’, teaching situations are described and classified according to 
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the exchanges between students, the teacher and the milieu2. In this model, a learner 
solving a problem holds various positions, so does the teacher. Each different 
position corresponds to a different situation, with a different milieu, different 
knowledge and different postures for the learner and eventually the teacher. For each 
position, the triplet learner-teacher-milieu constitutes a type of situation, which is a 
certain level of analysis of the teaching situation in question. These different levels 
are theoretical models of the interactions between the students, the teacher and the 
knowledge in a certain milieu. Moreover, in the model, the different levels of 
situation and milieu fit into each other, like Russian dolls. Indeed, the milieu of level 
n+1 is constituted by the situation of level n. This is called the vertical structure of 
the milieu. 

Originally Brousseau used this model in order to analyse the learner’s work and 
created only four levels now known as the sub-didactic levels. While she was 
interested in interpreting not only the work of the learner but also the role of the 
teacher, Margolinas (1995 and to appear) introduced four new levels known as the 
over-didactic levels, which offer a kind of symmetrical analysis for the teacher. In the 
lower three sub-didactic levels, the learner: discovers the problem, makes real or 
mental experiments, searches in her/his previous mathematical knowledge what can 
help her/him, interacts with her/his friends, etc. These types of actions are ‘below’ 
what the learner does intentionally, in order to respond to the didactic injunction 
given to her/him in the didactic situation. In the three upper over-didactic levels, the 
teacher: thinks about her/his teaching in a general approach, in accordance with 
official guidelines, but also her/his representation of teaching and learning, s/he 
designs her/his teaching project, etc., before s/he implements it into the class. The 
lower over –didactic level (obtained by a descending analysis) and the upper sub-
didactic level (obtained by an ascending analysis) define the didactic situation and 
must coincide for the situation to function correctly. Margolinas’ analyses have 
pointed out some interesting didactic phenomenon due to the non-coincidence of the 
two didactic situations. 

It is important to understand that, in this model, there is no notion of chronology. The 
student enters the situation by actions, but s/he may be in a position of acting on 
material while s/he tries already to answer the didactic injunction. All these levels are 
susceptible of interplays at any time during the teaching sequence. The model 
describes postures that overlap during that time, and are impossible to isolate in 
reality. It does not give account of chronological actions, since a student can be in 
two or more different postures at the same time and interact with different levels of 
the milieu, therefore being in different situations. 

We will now give a brief description only of the four sub-didactical levels regarding 
our wine-water problem. We will give for each level, a description of the milieu (M), 
                                           
2 The term of milieu is generic in Brousseau’s theory, it not only refers to something materialistic, it 
can include elements of knowledge, but also other students. It is essential to understand that a 
milieu is a theoretical object built by the researcher in order to analyse teaching situations. 
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the positions of the student and the teacher (St and T), the knowledge in question (K) 
and the situation (S). Note that in the sub-didactical levels, the teacher only appears 
in the two upper levels. 

Ascending description of the sub-didactic levels 
In bold characters are the names of the different elements in Brousseau’s model 
Level –3 (Objective situation) 
M-3 (material): glasses, spoon, quantities of liquids, mixtures, transfer of liquids. 
St-3 (objective): (imagines) actions of transferring parts of a liquid, pure or mixed. 
K-3: knowledge about mixtures of wine and water. Additivity of quantities on a 
qualitative basis (“if one adds, it raises”, “if one takes away, it diminishes”, “in a 
mixture, there is less of each liquid than the whole”, etc.) 
S-3: (imaginary) manipulations of liquids’ transfer. 
Level –2 (Situation of action) 
M-2 (objective)= S-3 
St-2 (acting): quantifies and/or designs one or several models. 
K-2: identification of the parameters of the situation: initial quantities in each glass, 
volume of liquid transferred by the spoon. Exploration of a model and its (implicit or 
explicit) hypotheses: equality of the quantities transferred at each step, perfect 
miscibility of wine and water, equality of the proportions of each liquid in the glass 
and in the spoon, etc. Elaboration of arithmetical or algebraic relations, congruent to 
the operations of transfer: what do we need to determine at each step? 
S-2: designing of models (numerical, graphical, extreme cases, with letters, mixed). 
Level –1 (Learning situation) 
M-1 (action) = S-2 
St-1 (learner): quantifies the decanting operations. 
T-1: (observer) Observes students’ capacity in using their mathematical knowledge 
in order to quantify (arithmetical and algebraic tools). 
K-1: calculations, arithmetical and algebraic rules, proportion, percentage, meaning 
of the hypotheses in the model, etc. 
S-1: solving the problem in the model(s). 
Level 0 (Didactic situation) 
M0 (learning) = S-1 
St0 (student): writes her/his solution. 
T0 (teacher): gives the problem to the students. 
K0: use of models: results in a model give ideas on the initial question, pertinence of 
quantitative models. 
S0: debate on the results of the different models. 
Here we cannot develop in detail how to use this model to analyse the situation, but 
we will now give the most important results of this analysis. Note that this type of 
description is also important in order to help a teacher who would like to lead such a 
debate in her/his class. 
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Passing from the objective situation to the situation of action (levels –3 and –2) is 
essential regarding modelling, since it necessitates the recognition of the 
ineffectiveness of the qualitative approach. In their individual research, some students 
may not be able to overcome this stage. Here, the debate is crucial in order to make 
all students go beyond this stage, with minimal didactic injunction. The diversity of 
opinions in the class and the discussion of arguments among pairs is an essential part 
of the debate. 

Level –1 presents some mathematical difficulties. Since this situation is not 
specifically designed in order to work on arithmetics or algebra, if the debate among 
students is not sufficient, the teacher may have to intervene in a more didactic way on 
this matter. 

The teacher wishes to institutionalise not only the results on the wine-water problem, 
but also a more general result that can be qualified as a meta-level) about the use of 
mathematics in such a problem. In the over didactical level 1 (the situation of 
project in Margolinas’ model) the teacher is in a posture (P1) of designer of a project 
(here introducing modelling) and the student (St1) is in a reflexive position about 
what he is learning. In other words, P1’s project is to make students access explicitly 
to the level of St1, which normally remains unconscious in a situation (it belongs to 
the over-didactic levels). This will necessitate a negotiation from the teacher in the 
last phase of the institutionalisation. This is also the key in order to use this situation 
as a paradigm for all modelling situations to be studied in the future by students in 
mathematics lectures. The facts that the mathematics at stake in this situation are 
quite elementary and that the problem is easy to solve, make this meta-level 
accessible. The teacher must give an explicit discourse at the end of the situation, but 
also needs to refer regularly to this situation during the year. In our experiments, 
students had very positive reactions to this situation. The discussions were enriching 
and consistent. Parts of the debates were regularly evoked during the year on 
different occasions involving modelling. Students showed a significant change in 
their perceptions of mathematics. 
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Abstract: We present part of a research developed in the framework of 
Anthropological Theory of didactics (ATD) on the study of “proportional 
relationship” and “functional relationships” in Secondary education in Spain. 
Firstly, and after dealing with some researches about mathematical education on 
“modelling and applications”, we reformulate these problems on ATD.  Secondly, 
and based on a curriculum and textbooks analysis, we describe the scope of 
“proportional relationship” and “functional relationships” in the Spanish Secondary 
education. Finally, and as a conclusion we suggest a possible educational process 
based on increasing complexity mathematical praxeologies, that, we think, will allow 
rebuilding “functional relationships” from their own raisons d’être: the study of 
variability. 
Keywords: Epistemological approach, modelling, praxeology, proportionality 

1. INTRODUCING ANTHROPOLOGICAL THEORY OF DIDACTICS 
In the works of Chevallard (1999), Chevallard, Bosch and Gascón (1997), Gascón 
(1998), Espinoza (1998), Bosch and Gascón (2004), it is shown the way that 
researches in Didactics in Mathematics have evolved in recent years and how the 
Anthropological Theory of didactics (from now on, ATD) has emerged, considering 
the incapacity of other theories to explain some aspects of educational phenomena. 
This new modelling also allows the emergence of new educational problems, which 
could not be set out in other theoretical frameworks. 

1.1. The mathematical activity: mathematical praxeologies 
One of the ATD basic axioms is that “toute activité humaine régulièrement accomplie 
peut être résume sous un modèle unique, qui résume ici le mot de praxéologie”. 
(Chevallard, 1999, 223). Two levels can be distinguished: 

− The level of praxis or “know how”, which includes some kind of problems which 
are studied as well as the required techniques to solve them. 

− The level of logos or “knowledge”, of the “discourses” that describe, explain and 
justify the used techniques. This is called technology and the formal argument, 
which justifies such technology, is theory. 

Mathematics, as a human activity, can be modelled in terms of praxeologies, called 
mathematical praxeologies or mathematical organizations (from now on, MO). In 
order to have the most precise tools to analyze the institutional didactical processes, 
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Chevallard (1999, p. 226) classifies mathematical praxeologies as: punctual, local, 
regional and global. 

In a simplified way, we can say that what is learn and taught in a educational 
institution are mathematical praxeologies. 

1.2. The process of study: didactic praxeologies 
Mathematical praxeologies do not emerge suddenly. They do not have a definite 
form. Otherwise, they are the result of a complex and ongoing activity, where there 
exist some invariable relationships in its operative dynamics, which can be modelled. 
There appear two aspects very close to the mathematical activity:  

− The process of mathematical construction; the process of study and,  

− The result of this construction; the mathematical praxeology.  

Chevallard (1999, p. 237) places this process of study in a determinate space 
characterised by six educational stages1: (1) first encounter,  (2) exploration of the 
type of tasks,  (3) construction of the technological-theoretical environment, (4) work 
on technique, (5) institutionalization and (6) evaluation.  

Once again, this process of study, as a human activity, can be modelled in terms of 
praxeologies, which are now called didactical praxeologies (Chevallard, 1999, p. 
244). As every praxeology, didactical praxeologies include a set of problematic 
educational tasks, educational techniques (to tackle these tasks) and educational 
technologies and theories (to describe and explain these techniques). 

There appears a new conception of didactics of mathematics, where didactics 
identifies everything which can be related to study and aid to study: “Didactics of 
mathematics is the science of study and aid to study mathematics. Its aim is to 
describe and characterize the study processes (or didactic processes) in order to 
provide explanations and solid responses to the difficulties which people (students, 
teachers, parents, professionals, etc) studying or helping others to study mathematics 
face” (Chevallard, Bosch y Gascón, 1997, p. 60). 

2. MODELLING AS A MATHEMATICAL ACTIVITY 
Researchers of didactics in mathematics have a growing interest since the middle 
eighties, on the role that modelling processes can play in teaching and learning 
mathematics in all levels of the educational system.  

When formulating educational problems, modelling related problems are often linked 
to mathematical application problems and solving application problems (both 
integrated in more general problems of Problem Solving). Two different research 
trends can be distinguished in this framework. Obviously there are relations between 
them. 
                                                 
1 The idea educational stage is defined not in a chronological or linear sense, but in the sense of 
dimension of the mathematical activity. 
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One trend is centred in the research of the role that modelling and applications can 
play as a learning tool. For instance, survey works carried out in the frame of 
Realistic Mathematic Education (Gravemeijer, 1994; Gravemeijer and Doorman, 
1999). 

The other trend is based on mathematical competencies and skills which all students 
should acquire (modelling and applications among them). Consequently, the 
underlying educational problems are focused on the study of the features of teaching 
and learning processes of modelling and applications, as well as on its way of 
integration in the curriculum of mathematics. (Blum, 1991; Niss y Jensen, 2002). 

The main feature of most researches is that the sense given to the ideas of modelling 
and modelling processes is very close to the sense assigned in the mathematical 
institution. So, modelling educational problems is often linked to the mathematical 
applications problems to reality, or to other subjects, in accordance with the 
mathematical interpretation of the term modelling.  

We want to remark the fact that, in the epistemological model of mathematics 
underlying in this research domain, the idea of modelling is not a problem, as it is not 
a problem, for instance, in the research of biology or economics. The built “patterns” 
of the modelling processes are very close to those suggested by mathematics itself. 
They are seldom modified or extended from the considered experimental facts. 

3. THE MATHEMATICAL ACTIVITY AS A MODELLING ACTIVITY 
One of the main axioms of ATD is that “most of the mathematical activity can be 
identified (…) with a mathematical modelling activity” (Chevallard, Bosch and 
Gascón, 1997, p. 51). This does not mean that modelling is just one more aspect of 
mathematics, but mathematical activity is in itself a modelling activity.  

First, this statement is meaningful if the idea of modelling is not limited only to 
“mathematization” of non-mathematical issues. Second, this axiom will only be 
meaningful if a precise meaning is given to the modelling activity subject from the 
own ATD.  

ATD proposes that the mathematical activity can be identified as an integrated and 
articulated process of successive extensions of MOs, which makes up a modelling 
process. This new view acquires full sense when considering intra-mathematical 
modelling as an essential and inseparable aspect of mathematics. If so, the 
researcher’s interest is not focused in the relationship between mathematics and “real 
world”, or other subjects, nor in the way could students establish this relationship. 
The interest is focused in the analysis and description of conditions and restrictions 
which allow the development of study processes. These processes start from relevant 
problems of the raison d’être of the knowledge which are preferred to promote and 
can create a mathematical activity characterized by the construction MOs of 
increasing complexity in a learning environment. 
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4. THE PROPORTIONALITY RELATIONSHIP IN SECONDARY 
EDUCATION 

In Spanish Secondary Education, the proportionality relationship between 
magnitudes is a paradigmatic case of ‘thematic confinement’ (Chevallard, 2001). The 
influence of upper levels of didactic codetermination on school mathematics causes 
its atomization and fragmentation in different areas and sectors.  

The “classical problems” of proportionality (direct and inverse) are integrated in the 
“Numbers and algebra” area and the “Magnitudes” sector. However, the study of 
proportional functional dependencies is considered to belong to the “Functions and 
graphs” area. 

From the analysis of the curriculum and different textbooks, we notice an inadequate 
articulation between both sectors, causing, among others, such educational 
phenomena as the isolation of the proportionality relationship in the possible 
relationships between magnitudes.  

Students rebuild, at least, two isolated MOs about proportionality:  

− The first, whose raison d’être is solving classical arithmetic problems on 
proportionality. 

− The second is a more general problem in functional relationships between 
magnitudes. 

In the first case, the proportionality relationship is essentially static: given three 
specific measurements (two of the same magnitude and the third one being different) 
the problem lies in calculating the missing measurement. In the second case, the 
proportionality relationship is essentially dynamic. School tasks focus on 
representing linear functions and studying their properties (intersections with 
coordinate axis, slope of a straight line). 

5. MODELLING VARIATION SYSTEMS: A PROCESS OF REBUILDING 
MATHEMATICAL PRAXEOLOGIES OF INCREASING COMPLEXITY 
IN SECONDARY EDUCATION 

As a conclusion, we suggest a didactic praxeology which allows rebuilding relatively 
complete local MOs (Fonseca, 2004) on the study of situations where two magnitudes 
vary depending one on the other univocally (functional dependency) in the third and 
fourth year of secondary education (14-16). 

5.1. MOs’ raisons d’être. General issues 
When the origin of any domain of mathematics is analyzed, one of the essential 
issues to consider is the raisons d’être which caused its creation and development and 
its presence in educational systems. The identification of these raisons d’être will 
allow the formulation of main issues to create a relatively complete didactic process. 
This could be described as a study process characterized by rebuilding a set of 
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increasing complexity MOs and will involve the development and performance of a 
mathematical modelling activity. 

In relation with “functions”, where it is not possible to formulate a unique issue 
precisely, the origin of the possible formulation lies on the study of variations; in the 
study of situations where two or more magnitudes vary, depending ones on the 
others, and situations where relative questions arise such as the way of classifying 
that variation.  

In the Spanish Secondary Education, “functions” are created, first, as a means to 
represent and describe situations of variation, that pretend to have a “real” nature, 
whose existence and type of variation are given in advance. This way, the Spanish 
curriculum (Royal Decree 3473/2000) establishes, for the second academic year, the 
following criteria of evaluation: 

12. Representing and interpreting Cartesian graphs and points of simple functional relationships, 
which are based on a direct proportionality and are given by value charts, and exchanging information 
between charts and graphs. 

13. Obtaining practical information from simple graphs (continuous stroke) for the resolution of 
problems related to natural phenomena and everyday life. 

Afterwards, these functions become independent of their role as models of specific 
situations (exogenous problems), and focus on the study of the characteristics of their 
graphical representation and their algebraic expression (endogenous problems). Also, 
the Spanish curriculum establishes the following evaluation criteria for the forth 
academic year: 

9. Interpreting and representing in a graphical way all constant, linear, similar or quadratic functions 
from their characteristic elements (slope of the line, points of intersection with the axis, vertex and 
axis of symmetry of the parabola). As well as interpreting and representing the simple exponential 
functions and simple functions of inverse proportionality, using significant charts of values, where 
they can be also assisted by a scientific calculator. 

When approaching the study of “functions” at schools, there is no focus on the 
specific type of variation. The type of variation that describes a function is studied in 
High Schools, when introducing the idea of derivative function and the idea of 
derivative of a function at a point. 

We propose to include the study of the nature of the variation that is described by 
each functional relationship. This way, we will be able to construct a local MO that is 
relatively complete for the Secondary Education, and that will allow us its 
amplification to a regional MO, based on the study of systems of variation amongst 
magnitudes. In general, these issues will be similar to the following one: 

Qvar: How can we describe the type of variation between two or more magnitudes? 
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This issue is restricted to the case of functional dependencies, i.e. situations in which 
the quantities included in one or more magnitudes depend one-to-one on the 
quantities of another magnitude (independent variable). 

5.2. An educational process: a “savings plan” 

Let us consider, at least theoretically, a hypothetic situation in which we can 
distinguish between two or more magnitudes, among which a relationship is induced 
or justified by a technological component.  

This situation, which is very general, can be placed in an economic and commercial 
environment: the planning of a "savings plan". This will be carried out by using a 
technological “discourse” chosen for didactic purposes. This basis will determine a 
first construction of the system we want to model, which must be unknown to the 
student. The election of this basis will be the first variable specification and 
limitation, and will set the relationship between variables: The magnitudes included 
will be time (V1) and money (V2). 

The complete construction of the system will be done according to the following 
restrictions: V1 and V2 have a one-to-one relationship, and the set of quantities of V1 is 
a discrete one, with its elements evenly separated.  

The issue of the proposed environment may be generally formulated, in the following 
way: 

SQ : How can a specific "savings plan” be planned (SPli)? 

This question is critical in several ways: 

− The fact that SQ  is very general forces us to take new decisions about the possible 
type of variation between V1 and V2 (second stage of system construction). 

− It can lead to a mathematical activity using basic technical elements, like those of 
arithmetic.  

− The construction of different solutions, i.e. different savings plans (punctual 
praxeologies SPli). These will act as models of the original systems, and will be 
the source of new issues. 

The system will not be constructed, and it will be the student’s responsibility to 
create it. For this, he/she will have to: 

1. Chose a first stage Ci, that will be provisional (situation parameter). 

2. Decide how the following stages will be generated, i.e. the type of variation 
defining the system. There is not a single way of undertaking this task, but 
decisions must be taken regarding the two system variables. We will focus on 
decisions about the type of variation, expressed as a recurrence of first order: if I 
deliver a Cn quantity in a “n” payment, in the "n+1” payment I will render a 1+nC  
quantity, that will be related to Cn in the same way as Cn was related to 1−nC . 
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+ (2C+C)    . . . . . . . . . . . . + C + (C+C)  

1
Cτ  

3. The student will also have to simulate the system, by means of constructing a set 
of stages that is comprehensive enough to study the evolution of the system. 

In this context, the SQ  question will be specified in the following task: 

Π: We intend to plan a journey with enough time, as an end-of-year trip. For this, we must 
decide a savings plan that allows us to raise enough money. Though we do not know the 
specific amount of money needed, we can estimate it, as well as decide deadlines, amounts to 
pay, and so on. Obviously, the issue is not deciding now how much money must be rendered 
and how will it be done, but rather to start working on it, intending to foresee the end of the 
academic year and the needs by that time. 

In general, the types of variation may be sorted out in three main categories: 
“equitable” (the same quantity is given in each payment), “cumulative with an 
increasing fee” (the fee is greater in each payment than in the previous one) and 
“cumulative with a decreasing fee” (the fee is smaller in each payment than in the 
previous one). 

The different types of variation will be specified in each category. The following 
could be an example of a “cumulative with an increasing fee” type of variation: In the 
first payment, a C amount is delivered and, in the following payments, the same 
amount given in the last payment plus the original C is supplied. This way, in 
payment 1 we would give C; in payment 2 we would give CC + and in payment 3 we 
would give CC +2 , and so on. This is an equitable condition of the “variation of the 
variation”. 

In these cases, the system simulation requires the selection of particular values for the 
original parameters (the first fee C0 and the C amount), as well as the generation of 
stages by means of basic arithmetic combinations. In the previous example:  

 

 
 

A punctual MO is constructed for each type of variation, and the MO is defined by an 
arithmetic method that allows the generation of system stages, the resolution of 
comparisons between different “savings plan” and the advance of the total amount 
that will have been raised by an n payment. 

In order to progress in the study process, it is necessary to analyse the reach and 
legitimacy of these arithmetic methods. The student will need to develop new 
methods when facing a set of tasks for which the previous methods are inadequate, as 
they are too difficult or seem not to be applicable in this context. 

x (months) 0 1 2 3 4 5  

y (euros) 
0C  

1y  
2y  

3y  
4y  

5y   
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There are at least two types of task that cause this development: 

− Control and anticipation tasks: They will require the determination of the 
parameters that define the system, in order to obtain the desired final savings. 

− Comparison tasks: These are related to the previous ones, as it is necessary to 
define certain original parameter values of two or more “savings plans”, in order to 
make one of them equal or exceed the other. 

For instance, a “cumulative with an increasing fee” type of variation will require the 
following sort of control tasks:  

controlT : Each group must create a savings plan of the “cumulative with an increasing fee” type 
that would generate each of the following final amounts ( 3

,
21  , ,

�fff CCC ). For this, C0, C and 
the number of fees must be previously selected in a proper way. 

There are three parameters (C0, C and the number of fees). Every time two of them are 
assigned a value, the calculation of the third one is a problem task, called control task: 

− I
controlT : Once Cf, , C0 and C are fixed, how many payments would be necessary? 

− II
controlT : Once Cf, , C0 and a n̂  number of payments have been fixed, what is the value of C? 

− III
controlT : Once Cf, C and a n̂  number of payments have been fixed, what is the value of the 

original fee, , C0? 

The limitations of the arithmetic methods of stage simulations are stated by the 
savings plans tasks of comparison and of control and anticipation. This is done by 
creating the need of calculating the fee delivered in each payment, whether they have 
the same type of variation or not. This way, a new problem arises: 

T : How can we obtain an algebraic expression that allows us to calculate at any moment the 
amount saved, according to the original parameters? 

The resolution of this task can be very complicated. But in the restricted case of 
recursive “savings plans” that is being considered, the work developed on this 
recurrence leads to a general method: 

recτ : Once different stages of a system are created, the method consists of developing a 
recursive process, in which each term is written in accordance with the previous one, until we 
return to the original parameters. 

This is not a repetitive method, and depends on the type of variation under 
consideration. For the prior case of cumulative with an increasing fee plan: 

recτ :   00 Cy =  ; CCy += 01  ; CCCCyy 22 012 ++=+=  ; … ; �
=

− ⋅+=+=
n

k
nn CkCnCyy

1
01  
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Given the fact that �
=
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n

k

nn
k

1 2
)1( , we can assume that 
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)1(

Cn
C

n
C

C
nn

Cyn ++=++= . 

This algebraic expression supposes an extension of the arithmetic method of stage 
simulation 1

Cτ  and will lead to the development of the preceding punctual praxeology. 
This development will be demonstrated when resolving the previous tasks, and will 
lead to new problems. 

For example, now it is possible to create new methods to solve II
controlT : 

   lgaτ   :    
( )

nn

CiC
CCin

C
n

C
C f

f ˆˆ

2
    

22 2
2

+
−

=→++=  

Due to the obvious limitations of the space given, we have only been able to outline 
an educational process that will help to build “functional relationships” through a 
study process at the secondary schools. This way, students will be able to construct 
mathematical praxeologies of increasing complexity. This process has already been 
implemented with students of the 4º year of the Spanish compulsory secondary 
education (15-16 years) and is currently being experimented with students of the 
same level in High Schools (17 years) and of the first stage of tertiary education 
(teachers training). 
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GETTING TO GRIPS WITH REAL WORLD CONTEXTS: 
DEVELOPING RESEARCH IN MATHEMATICAL MODELLING 

 
Christopher Haines, City University London, United Kingdom 

Rosalind Crouch, University of Hertfordshire, Hatfield, United Kingdom 
 

Abstract: We are concerned with applying mathematics in real situations and 
understanding real world- mathematical world transitions. We report on modelling 
and applications using exemplar models with conclusions on novice-expert 
behaviour. 
Key Words: Mathematical Modelling; novice-expert behaviours. 
 
1. RECOGNISING MODELLING SKILLS 
Society’s view that mathematics is useful is reflected in the presence of applications 
and modelling in the mathematics curriculum in schools, colleges and universities. 
Our research has been concerned with how pupils’ and students’ achievement in 
applications and modelling can be recognised and understanding how students 
develop into good mathematical modellers. Mathematical modelling usually operates 
under teaching and learning paradigms that embrace either holistic or dissected 
approaches. Concentrating on the latter we developed multiple-choice questions 
(MCQs), providing readily understandable contexts for the student, that focus on 
stages within a modelling cycle (Haines & Crouch, 2001) with a view to charting 
students’ progress per se and to provide a snapshot of the development of their 
understanding of mathematical modelling processes. These early MCQs were 
constructed in six analogue pairs for use as research tools in pre-and post-test format 
as a measure of student achievement; they were later extended to provide indications 
of the success of the curriculum and its delivery (Izard et al., 2003). We also began 
work on developing a rating scale for mathematical modelling with wide 
applicability. Further insights into mathematical modelling behaviour were obtained 
by students answering various MCQs, and then completing a reflective questionnaire 
on how they arrived at their preferred answers, followed by an in-depth interview 
with a tutor. We were then able to classify processes involved in problem solving and 
to report on difficulties faced by students in moving freely between the real world 
and the mathematical world (Crouch & Haines, 2004). Our classification is broad but 
effective, the three categories being a: where the relationship between the 
mathematical world and the real world input to the model is taken into account; b: 
where there is limited evidence of this being so and c: where there is no evidence at 
all or where the problem has been simply looked at in real world terms taking no 
account of either the model or the mathematics. Our results, from differing 
perspectives, provide strong evidence that student learning in the transition from the 
real world to the mathematical model, is hampered by lack of knowledge and 
experience of abstraction. This behaviour is not so marked when moving from the 
mathematical model to the real world, indeed in this case the higher process level a is 
more likely to be used. 
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2. USING EXEMPLAR MODELS: A MODEL OF A KIDNEY MACHINE 
Presenting exemplar models is a classical approach to teaching applications of 
mathematics within mathematics and in other disciplines. It is usually teacher led in 
contrast to the holistic and dissected approaches mentioned above. It often involves 
the presentation, discussion and analysis of several applications in particular fields 
addressing a basic applied mathematics problem, which is to model a physical system 
mathematically so that it sheds light on the mechanical working of the system in the 
real world. For example, recent modelling courses at City University have included 
models: kidney machine; aggregation of amoebae; road traffic flows; dimensional 
analysis of physical phenomena; n-stage rockets. In this approach students acquire a 
strong understanding of particular models and learn to compare and contrast 
developments in complex models. More than other approaches, this needs a strong 
focus on aspects of modelling from the teacher because modelling itself is not the 
driver, though there are firmer opportunities to link knowledge due to the prospect of 
strong engagement and motivation. To fix ideas and to provide context for this 
discussion we describe a simple model for kidney dialysis. 

Some health problems are readily understood by students, and kidney failure, leading 
to kidney transplants and kidney dialysis, is one example. If we concentrate on 
dialysis either as a long-term treatment or as an interim procedure prior to transplant, 
then the kidney machine is a fruitful bioengineering problem. It is well suited to a 
modelling curriculum where exemplar models are presented. The model outlined 
here, reported by Burley (1975), is used extensively with university students. 
Contextual information provided for students includes knowledge that the kidney is a 
body organ that filters out waste material such as urea, creatinine, excess salts etc. 
from the blood. Waste products in the blood pass through the porous walls to the 
insides of the active units in the kidney. If this process malfunctions, waste products 
build up in the blood to toxic levels resulting in kidney failure and, without 
intervention, death. Following kidney failure, waste products may be removed 
artificially through a dialyser or kidney machine. In the 50 years these machines have 
been in use, their design has improved efficiency and reduced costs. 

A two-compartment model (Fig.1) has blood from the body and the cleaning fluid, 
the dialysate, in adjacent compartments. They are separated by a thin membrane, 
which allows waste products in the blood to permeate through to the dialysate. The 
flow through the membrane is by diffusion from high concentrations of waste 
products (in the blood) to low concentrations, the diffusive effects are improved by 
making the blood and the dialysate flow in opposite directions on either side of the 
membrane. The dialysate is constructed to suit the needs of the patient. 

The rate of removal of waste products depends primarily on four parameters: the flow 
rate of the blood, the flow rate of the dialysate, the size of the dialyser and the 
permeability of the membrane. Amongst the assumptions are: that all properties 
depend only upon x, the distance along the dialyser; all properties are independent of 
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time, a quasi-static assumption and the amount of material passing through the 
membrane is proportional to the concentration difference, a quantitative assumption 
about the permeability of the membrane. 

 
 

waste products 
blood out 

dialysate in 

x 

blood 

dialysate 

0 
membrane 

dialysate out 

blood in 

 

Figure 1. Schematic representation of a kidney machine 
 

This leads to a model described by two coupled ordinary differential equations: 

u) - k(v
dx
du

q B = and v) - k(u
dx
dv

q - D = in which qB and qD are the flow 

rates of the blood and of the dialysate respectively, u(x) and v(x) are the 
concentrations of the waste products in the blood and the dialysate respectively and k 
is the permeability of the membrane. These equations may be solved by various 
methods and under different boundary conditions, simple ones being u(0)=u0 and 
v(L)=0 referring to a base level u0 for the concentration of waste products in the 
blood and clean dialysate. The clearance Cl of waste products is a measure of the 
efficiency of the machine, defined as a ratio of the difference in concentrations u on 
entry and exit to the machine to the concentration u on entry. The model of clearance, 
a function of key parameters, and its interpretation proves interesting. 

3. MULTIPLE CHOICE QUESTIONS: KIDNEY MACHINE MODEL 
We have constructed MCQs, focusing on stages of modelling, for use where 
mathematics and applications is taught through exemplar models. We now give each 
of the five MCQs, we comment on its structure and its associated partial credit 
assessment for each distractor. The MCQs were given to 51 final year mathematics 
undergraduate students in 2004. They were told that in each case they should indicate 
their preferred answer of the given options A, B, C, D and E and that credit is 
attached to more than one of these. Student responses show that in most cases the 
preferred answer was in fact that which gained most credit; for the reader, credit is 
indicated beside each option. However, the students were also asked to write a brief 
statement justifying their preferred answer. This statement, attracting credit as part of 
the coursework, gives insights into modelling processes and understanding. 
Question 1 In a simple model of a kidney machine, the boundary conditions are 
 u(0)=u0 and v(L)=½ u0  . Which of the following statements are true? 
A. The dialysate is clean on entry to the kidney machine [0] 
B. The waste products in the blood are at twice the level of those in the dialysate 

on entry to the kidney machine [2] 
C. The blood is clear of waste products [1] 
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D. The waste products in the dialysate are at twice the level of those in the blood 
on entry to the kidney machine [0] 

E. The waste products in the blood remain at the level u0 [1] 
Commentary: In order to understand this question, the mathematical expressions 
u(0)=u0 and v(L)=½ u0  must be interpreted. In the modelling cycle, the activity falls 
within interpreting mathematics and concerns the transition from a model to a real 
world context. The distractors themselves are therefore phrased in real world terms. 
Option B, gives the correct mathematical interpretation of the boundary conditions 
and therefore attracts 2 marks. C could be true in the special case u0 =0 and for E this 
would be so if no waste products permeate through the membrane so in each case 1 
mark might be awarded depending upon the justifying statement. Options A and D 
are untrue and attract zero credit. 
Some justifying student responses: 
Student M1: In his justifying his answer (A), M1 writes ‘All the waste products in the 
blood can diffuse through the membrane from the blood and pass on into the 
dialysate, the dialysate has to be clean on entry to the kidney machine’. M1 has not 
connected with the model and the given boundary conditions. He has answered the 
question from the real world context only, for it is clear to him that for any kidney 
machine to be efficient it must use clean dialysate, never mind the given model.   
Student M2: M2 relates ‘I think B is the answer because I think at the beginning, 
there is no waste products in the machine. After the procedure, only half of the waste 
product from the blood flow to the dialyst. In the normal situation it must be u0 

=v(L)’. By choosing the correct answer B, M2 has interpreted the boundary 
conditions but in justifying his choice he focusses on the real world itself rather than 
the impact on the real world of the given boundary conditions. He has also not 
understood the steady state requirements of the model. He lacks understanding of the 
real world situation and how this is reflected in the given model. He suggests that the 
concentration of waste products in the dialysate is usually the same as that of the 
blood on entry to the machine. If this were so then the clearance would be zero. 
Student M3: This student chooses A justifying that choice by ‘The dialysate should 
be clean on entry to the kidney machine’. He makes no connection with the model. 
Question 2: In a simple model of a kidney machine which of the following pairs of 
parameters would usually be adjusted to increase its efficiency (clearance). 
A. The flow rate of the blood; the size of the dialyser [0] 
B. The permeability of the membrane; the flow rate of the blood [1] 
C. The flow rate of the dialysate; the flow rate of the blood [2] 
D. The permeability of the membrane; the size of the dialyser [0] 
E. The size of the dialyser; the flow rate of the dialysate [0] 
Commentary: This question requires a practical understanding of the basis on which 
the model is constructed and how the parameters may be changed in the real world. 
In modelling terms, this question is on the boundary between the real world and the 
mathematical model either at the beginning of the cycle or at the end. The distractors 
are all focussed on the practicalities of these connections. Once the kidney machine 
has been constructed (made), it is very difficult to change the size (length) of the 
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dialyser therefore options A, D and E do not attract credit. Option C is the preferred 
answer attracting 2 marks, since the flow rates of the blood and of the dialysate are 
easy to adjust. The permeability of the membrane is also difficult to alter, but it could 
be done by changing the membrane itself, therefore option B attracts 1 mark. 
Some justifying student responses: 
Student M2: In choosing option B, M2 says ‘ The flow rate of the blood is quite 
important but the permeability is more important. It is because if there is good 
permeability, the waste product can diffuse to dialyst faster. With suitable speed of 
flowing and the good permeability, the efficiency will be the best’. This is a good 
answer, but in focussing on permeability he has not understood that the flow rates are 
much easier to adjust in practical terms. He does make strong links between the real 
world and the model. 
Student F1: She chooses the correct answer but supports it by quoting 

‘We know that 
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Cl  where only qB and qD can be changed’. F1 does 

not recognise that � is a function of the permeability and of the flow rates of the 
blood and of the dialysate. She does not discuss the length L, she restricts her 
attention to the model and does not link with practical aspects to change parameters. 
Question 3: Suppose that the permeability of the membrane is given by 
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)(  Which of these statements best describe this situation? 

A. More waste products are removed from the blood at each end of the dialyser 
than at intermediate points [0] 

B. Waste products are removed from the blood at a constant rate throughout the 
dialyser [0] 

C. The removal of waste products from the blood increases towards the centre of 
the dialyser [2] 

D. The removal of waste products from the blood varies through the length of the 
dialyser [1] 

E. The removal of waste products from the blood increases as x tends to L [0] 
Commentary: The permeability of the membrane, k(x), is a key parameter for the 
removal of waste products from the blood. This question introduces into the model a 
membrane for which the permeability varies along the length L of the dialyser. 
Understanding of the problem is increased if a graph of k(x) is included in the 
solution and the resulting graph is then interpreted in the practical situation. Although 
the question is firmly located in the mathematical world it requires continual 
referencing back from a sub-model to the real world situation. Since the permeability 
varies along the length L of the dialyser, option B attracts no credit. Options A and E 
indicate that k(x) is greater at x=0 and/or x=L than at intermediate points which is the 
opposite of the case so these two do not attract credit. Option D makes a general 
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statement on variability through the length L of the dialyser. This is consistent with 
the given model and so attracts one mark. C is the preferred option gaining full credit. 
Some justifying student responses: 
Student F2: F2 chooses the correct option C, but in supporting it, she makes no 
reference to the given model of permeability, preferring (wrongly) to rely on 
arguments based on her own interpretation of how the dialyser works. She writes: 
‘…because since we are dealing with permeability of the membrane, at the start there 
is 0 permeability and towards the middle it increases, thus the removal of waste 
products from the blood increases as the blood flows towards the centre of the 
dialyser’. F2 focusses on her real world view, not linking it with the given model. 
Student M5: Having chosen the correct option C, he justifies it thus: 

‘
��
�
�

�

�

<<−

≤≤
=

LxLxL

Lxx
xk

2
1

2
1

0
)(   Fick’s Law states that the amount of material passing 

through the membrane is proportional to the concentration difference. Towards the 
centre the membrane is more permeable so more waste products are removed. 
(Diffusion through the membrane is from high to low concentrations)’. It is difficult 
to see whether M5 has interpreted the model of permeability correctly, without a 
sketch graph of k(x). The links between k(x), his own statements and the physical 
situation are far from clear. Stating Fick’s Law is not relevant for this problem. 
Question 4: A model of a kidney machine is described by the differential equations: 

u) - k(v
dx
du

q B = , u) -k(v 
dx
dv

q D = with u(0)=u0 and v(L)=½ u0  

Which of the following statements best describes how they may be solved? 
A. They can always be solved using a matrix method involving eigenvalues 
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B. They cannot be solved by substituting w = u – v, when the permeability k is 
either constant or linearly dependant on x [0] 

C. They can be solved using a matrix method, when k is constant, involving 

eigenvalues ��
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k 0,  [2] 

D. They can usually be solved by substituting w = u – v, if the permeability k 
varies with x [1] 

E. They can always be solved using a matrix method involving eigenvalues 
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k 0,  [0] 

Commentary: Firmly in the mathematical world, this question requires a good 
understanding of the conditions under which a substitution method and/or a matrix 
method can be used and checks the accuracy of its application. The matrix method is 
an elegant and efficient method but it depends upon the transition matrix being 
independent of x, thus the preferred option C gains 2 marks. The equations cannot 
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always be solved by a matrix method, option A attracts partial credit noting its 
veracity if e.g. k is a constant. Substitution works in easy cases where e.g. if k is 
either constant or linearly dependent upon x; so option D attracts partial credit but 
option B gains no credit. Option E has eigenvalues that are wrong, so gains no credit. 
Some justifying student responses: 
Student M6: Gaining partial credit with option A, M6 has concentrated on a learned 
method without understanding its implications. He writes: ‘ The matrix method can 
be used for any k, no matter k is constant or depend on x. It can be done by using 
eigenvalues but when we do the substitution method, we assume k is constant, not 
depend on x. Then we integrate with respect to x, [treating k is constant], so, 
substitution method we must use w=v-u’. He has not understood restrictions of the 
matrix method nor mastered the conceptual requirements of the substitution method. 
Student M7: M7 uses a process of elimination to arrive at his preferred answer A. He 
says: ‘A,C can solve the differential equation. E is wrong eigenvalues whereas in C, k 
is constant i.e. k can be. Therefore by process of elimination A is the true answer’. He 
has not realised that for option A to be true it requires k constant. He has not 
discussed option D and so his elimination is incomplete. The mathematical solution is 
important in modelling and this student has not mastered a key element. 
Question 5: In a simple model of a kidney machine, in which the permeability of the 
membrane is not constant, the Clearance Cl, of the waste products from the blood is 

given by
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Cl  in which q is the speed of the blood in the machine and L 

is the length of the machine. Which one of the following statements is true? 
A. There is a finite optimum length for the kidney machine that ensures maximum 

clearance Cl [1] 
B. For a very small kidney machine, the clearance Cl corresponds exactly with 

the expected behaviour [2] 
C. The maximum clearance, Cl, achievable by this machine is 3q/2 [0] 

D.   
L
C

∂
∂ �

� 0 , for q constant, always [0] 

E. the kidney machine should be of length 6q L = [0] 
Commentary: The transition from a mathematical model to the real world problem is 
difficult for students. This question is at that interface, requiring an understanding of 
the main dependent variable, the clearance Cl. In the models considered, the Cl is a 
monotonic increasing function of the length L and the blood and dialysate flow rates. 
Option D is therefore untrue and attracts zero credit. There is no optimum length L 
for maximum Cl, but the machine should be as long as possible. Option A would 
therefore attract zero credit but might obtain partial credit if justified in practical 
terms. Option B is the preferred answer, corresponding exactly with reality for, if the 
machine has no length then the clearance would be zero. Options C and E arise from 
false algebraic manipulations of the given formula and do not attract credit. 
Some justifying student responses: 
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Student M3: M3 is guided by the real world situation to the detriment of the question 
and the model embedded in it. In choosing option A he says: ‘The kidney machine is 
built to ensure maximum clearance Cl, by using an optimum X length which varies 
person to person. The bigger person the bigger kidney machine required’. 
Student F4: F4 wrongly determines that option D is correct by an incomplete 
statement saying: ‘x is monotonic increasing because gradient is not negative 

therefore 0>
dL
dC ,…’, oblivious to the fact that option D has the opposite inequality. 

She remains in a mathematical world in coming to her conclusion. 

4. REAL WORLD - MATHEMATICAL WORLD TRANSITIONS: SOME 
PRELIMINARY RESULTS 

Our previous research has considered students’ mathematical modelling skills in 
terms of the expert-novice continuum (Crouch & Haines 2003, 2004). Novice first-
year students have difficulty keeping the demands of the real-world and the model in 
mind at once. Novices tend to spend less time analyzing the problem statement 
(Schoenfeld, 1987), have difficulty distinguishing relevant aspects from the 
irrelevant, and think they have understood the problem sufficiently when they have 
not. Novices immediately tend to start generating equations without recognizing 
particular underlying abstract problem-types or being able to access relevant concepts 
and procedures (Glaser & Chi 1988). 

In terms of the expert-novice continuum, we could argue that these final year 
students’ modelling skills could be expected to fall into the ‘intermediate’ or 
‘subexpert’ range, being no longer novices but not yet fully-fledged experts. Simon 
(1980) suggests that for complex tasks, it usually takes 10 years or more to become 
an expert. Patel & Ramoni (1997, pp87-93) classify final-year medical students as in 
the intermediate or subexpert range of expertise for the skill of medical diagnosis. 
Experts’ store in memory of problem categories is extensively cross-referenced and 
experts are very efficient at ruling out wrong turnings in the problem-solving process 
early on. Intermediates also have acquired an extensive amount of domain 
knowledge, but it is not yet well enough organized to facilitate quite such effective 
problem-solving as experts, though much better than novices.  It is therefore 
interesting to note that some of the students doing our MCQs, even when getting full 
or partial credit for their answers are showing by their explanations that their 
modelling skills may not be consistently working at optimal level, even though there 
appears in general to be considerable movement in that direction. 

A preliminary analysis suggests that the majority of students are indeed getting full or 
partial credit for their answers to the MCQs, as we might hope for from final year 
students. However, some students still appear to be demonstrating difficulty in taking 
both the model and the real-world context into sufficient account and holding the 
balance between them, as experts would be expected to be able to do. Student M1 
(MCQ1) and M3 (MCQs1,5) consider the real world situation without relating it to 
the model, whereas students F1 (MCQ2) and F4 (MCQ5) appear to engage only with 
the abstract mathematical model without reference to the real world. Goldstone & 
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Sakamoto (2003, p417,p443), reviewing research, suggest that there seems to be a 
mental competition between viewing an object in terms of its concrete existence in 
the real-world and viewing it in terms of its abstract symbolic representation. Whilst 
abstraction needs a perceptual grounding in the real world, too much attention to 
concreteness appears to interfere with the process of abstraction. This could imply 
that it requires considerable experience to keep both the real world and the model 
consistently in mind at once, without one or the other getting out of balance.  

Experts can integrate abstract concepts with concrete detail to form a representation 
of the problem that is neither too general nor too concrete (Zeitz 1997, p48), and this 
representation successfully mediates between the concrete and the abstract 
(Goldstone & Sakamoto 2003, p417). In physics, for example, an expert’s problem 
representation can be seen as a bridge between the detailed concrete physical 
situation and the abstract mathematics needed to find a solution (Zeitz 1997, p50). At 
this intermediate level, some of our students appear to be indicating that there are still 
some problems in consistently developing this bridge. 

Some students’ explanations indicate that they have not got a sufficiently accurate or 
relevantly detailed grasp of the real-world problem context. Students M2 (MCQs1,2) 
and  F2 (MCQ3) have formed their own slightly inaccurate or insufficiently detailed 
view of the real-world context. Zeitz (1997) states that, in general, experts can focus 
on the detailed physical aspects of the problem situation that are relevant to the 
problem category. Lesgold et al. (1988) give an example of this from radiography, 
where experts looking at an X-Ray photograph can focus on specific relevant 
physical detail. People at an intermediate level of skill can still have difficulty 
deciding which of the information in the real-world situation is of high relevance 
(Patel & Ramoni, 1997, p56). 

Other students appear to have some difficulty successfully deploying the relevant 
mathematical concepts and procedures (MCQ4, students M6 & M7). Lee & Anderson 
(2001) have demonstrated that overall skill at a complex air-traffic control task 
improves consistently with improvement in the sub-tasks involved. So students’ 
overall modelling expertise may not improve until their expertise on mathematical 
sub-tasks improves, by being able to activate and utilize appropriate mathematical 
concepts and procedures more speedily and accurately, following extensive practice 
with different types of problem. There is evidence that at an intermediate level of 
expertise on some complex tasks, people may get worse before they get better 
(Lesgold et al.1988). Patel and Ramoni (1997, p93) suggest this may be due to people 
at an intermediate level having their domain-specific knowledge of concepts and 
procedures stored in memory in a less efficiently and accurately structured form than 
experts. So it takes longer to recognize and access relevant prior knowledge.  

How could these students increase their level of expertise further? Movement forward 
from intermediate level can be achieved by extended relevant motivated practice 
(with feedback) on all aspects of building models for a variety of problem types 
(Ericsson et al., 1993). Such practice needs to be aimed towards developing 
recognition of underlying problem categories and formation of sufficiently and 
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relevantly detailed problem representations that mediate between the abstract model 
and the real world problem context. Students need also to have extended practice to 
improve speed and accuracy in accessing and deploying appropriate mathematical 
procedures for particular categories of model and in relating these, where appropriate, 
to relevant features of the real world problem context. 
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LEVELS OF MODELLING COMPETENCE 
 

Herbert Henning, Otto-von-Guericke Universität Magdeburg, Germany 
Mike Keune, Ökumenisches Domgymnasium Magdeburg, Germany 

 

Abstract: Since the publishing of the TIMSS and PISA-results, a more competence-
oriented approach of education at school is in the focus of attention of the current 
discussion and research about didactic. The discussion about mathematical 
competence places special emphasis on the aspect to apply mathematics to solve 
different problems of daily life. In this paper the concept of a competence-oriented 
approach of modelling will be examined and furthermore, a level model of modelling 
competence will be introduced. The characteristic abilities associated with each level 
are listed and some insightful examples are provided. The level model will be put in 
the framework of the concept of mathematical literacy and it will be briefly compared 
with other models of modelling competence. 

Keywords: modelling, competence, abilities, level model. 
 
COMPETENCE-ORIENTED APPROACH 
This paper refers to a competence following the definition of Weinert (2001) in 
which it is described as the sum of available or learnable abilities and skills as well as 
the willingness of a student to solve upcoming problems and to act responsible and 
critical concerning the solution. 

If we look up the domain of mathematical competence, a precise definition of the 
term mathematical competence is provided by Niss (2003). Niss describes 
mathematical competence as the ability of individuals to use mathematical concepts 
in a variety of situations, including those that lie within and outside of the normal 
realm of mathematics, where mathematics can or could play a meaningful role (to 
understand, to decide, and to reason). 

In order to identify and examine this type of competence, Niss distinguishes between 
eight characteristic mathematical competencies. These characterized competencies, 
however, are closely related and in some cases overlapping. The presented 
classification scheme uses the notion of overlapping "competency clusters" to 
describe the cognitive activities involved. 

Competence in the building of models is derived from a wide range of human 
abilities. These abilities, however, are primarily the same as those deemed essential 
for the concept of mathematical competence. Furthermore, modelling competence 
also requires an overlapping set of abilities, those that specifically relate to the act of 
modelling. 
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If you look at the teaching and learning of modelling there are at least two possible 
approaches. One approach aims at describing necessary abilities, skills and attitudes 
of students, we can call this approach component descriptions. The examination of 
differently shaded competencies is based on so-called level descriptions. Klieme et al. 
(2003, p. 61) call these two descriptions “Komponentenmodelle” and 
“Stufenmodelle”. This paper follows these distinctions between a list of abilities, 
skills and attitudes (components) and the examination of different levels of these 
abilities, skills and attitudes considering these two perspectives as complementary 
possibilities to describe modelling competencies. 

MODELLING COMPETENCE 
In the following we will look on modelling competence. Following a definition of the 
term modelling competencies by Maaß (2004), this paper includes in the term 
modelling competence those abilities, skills, attitudes and the willingness of students 
that are important for the modelling process. 

Modelling competence includes the following: to structure, to mathematize, to 
interpret and to solve problems and it includes as well the ability to work with 
mathematical models: to validate the model, to analyze it critically and to assess the 
model and its results, to communicate the model and to observe and to control self-
adjustingly the modelling process (Blum et al., 2002). 

THEORETICAL FRAMEWORK 
In the following the theoretical framework of the paper will be shortly introduced. 
Based on the considerations of a component oriented descriptions on mathematical 
literacy and modelling competence the authors adopted the competence levels of 
mathematical literacy to build up a level oriented description of modelling 
competence. 

The construct competence cannot be observed directly. One can only observe 
students’ behaviour and actions as they solve problems, for example. Competence is 
understood here in the sense of a variable, from which different values can be reached 
by observing the behaviour of students. In a pilot study (Henning and Keune, 2004; 
Henning et al., 2004; Keune et al., 2004) students’ behaviour was observed as they 
worked on modelling problems with the goal of reaching conclusions concerning the 
level of modelling competence. The authors include their observations from 
modelling examples in different levels of school education to obtain a theoretical 
construction of a level model of modelling competence. 

In a second phase the authors set up empirical research to achieve deeper insight of 
the relations between the proposed levels of modelling competencies and the abilities, 
skills and attitudes of students. 

In the following a level model of the modelling competence will be introduced. 
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LEVELS OF MODELLING COMPETENCE 
The development of the modelling competence is characterized in three levels. The 
three modelling competence levels are: 

 Level 1: Recognize and understand modelling 

 Level 2: Independent modelling 

 Level 3: Meta-reflection on modelling 

This competence level model focuses mainly on cognitive modelling abilities and 
bases on theoretical considerations and empirical studies (Henning and Keune, 2004; 
Keune et al., 2004). 

The construct competence cannot be observed directly. One can only observe 
students’ behaviour and actions as they work on modelling tasks. Competence is 
understood here in the sense of a variable, from which different values can be reached 
by observing the behaviour of the students. 

The theoretical assumption here was that methods would at the first level be 
recognized and understood so that students would be able to independently solve 
problems at the second level. Furthermore the authors make the assumptions that 
meta-reflection on modelling would at the very least require both familiarity with 
modelling and personal experience. 

In the following the characteristic abilities that are related to the levels will be 
introduced. 

CHARACTERISTIC ABILITIES 
Level 1 – Recognize and understand modelling – is characterized by the ability: 

 -to recognize and 

-to describe the modelling process, 

-to characterize, to distinguish and to localize phases of the modelling process. 

Level 2 – Independent modelling – is characterized by the ability: 

 -to analyze and to structure problems and to abstract quantities, 

 -to adopt different perspectives, 

 -to set up mathematical models, 

 -to work on models, 

 -to interpret results and statements of models, 

 -to validate models and the whole process. 

Pupils who have reached this second level are able to solve a problem independently. 
Whenever the context or scope of the problem changes, then pupils must be able to 
adapt their model or to develop new solution procedures in order to accommodate the 
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new set of circumstances that they are facing. A modest degree of improvement 
occurs within this level when pupils merely apply various approaches to solve the 
problem. Whenever the context or scope of the problem changes, then pupils must be 
able to adapt their model in order to accommodate the new set of circumstances that 
they are facing (Ikeda and Stephens, 2001). 

Level 3 – Meta-reflection on modelling – is characterized by the ability: 

 -to critically analyze modelling, 

-to characterize the criteria of model evaluation, 

 -to reflect on the cause of modelling, 

 -to reflect on the application of mathematics. 

At this third level of competence, the overall concept of modelling is well 
understood. Furthermore, the ability to critically judge and to recognize significant 
relationships has been developed. Consideration concerning the part played by 
models within various scientific areas of endeavour as well as their utilization in 
science in general is present. 

At this level, it is not absolutely necessary to have previously solved problems by 
means of modelling techniques. This implies that finished models are examined and 
the inference that was drawn from them evaluated (Jablonka, 1996), while at the 
same time criteria for model evaluation is scrutinized (Henning and Keune, 2002). 

MATHEMATICAL LITERACY AND MODELLING COMPETENCE 
The concept of classification levels of modelling competence was developed in order 
to provide insight into the following important areas: 

-Portrayal of the range of requisite human abilities involved 

-Coordination of lesson plans and the selection of suitable instructional 
materials 

-Implementation of a criteria based grading scheme for pupils 

-Formulation of learning goals (i.e., acquisition of a mathematical competence, 
improving modelling competence) 

The level of modelling competence pupils/ students achieved could be considered as 
one dimension of at least three dimensions in which a modelling activity takes place. 
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Figure 1: Different views on development of expertise in modelling 

 

The concept of mathematical literacy connects the development of mathematical 
terms with the treatment of realistic tasks. This connection can be considered as 
analyzing, assimilating, interpreting and validating a problem, to be brief – 
modelling. The OECD/PISA (OECD, 1999, p. 41) gives a precise definition of the 
term mathematical literacy. “Mathematical literacy is an individual’s capacity to 
identify and understand the role the mathematics plays in the world, to make well-
founded mathematical judgements and to engage in mathematics, in ways that meet 
the needs of that individual’s current and future life as a constructive, concerned and 
reflective citizen.” 

The competencies which form the base for the process of such tasks have already 
been examined. In the works of Haines et al. (2001) component-oriented approaches 
are applied. Haines et al. distinguish between modelling competences and skills based 
on the phases of the modelling process. 

Based on the works of Niss (1999, 2003), Blomhøj and Jensen (2004) characterize 
modelling competencies within three dimensions. According to that, the competence 
acquired by students concerning “technical level”, “radius of action” or “degree of 
coverage” can vary. 

The presented level oriented description of modelling competence can be considered 
as another perspective on modelling competencies. The level model can be used as a 
descriptive, normative and meta-cognitive aid when assessing student performance, 
planning lessons and selecting teaching contents. 

Working Group 13

1670 CERME 4 (2005)



 

EXAMPLES 
In the following three examples for assessing the level of modelling competence are 
given. The examples are based on PISA study examples (OECD, 2003) and have 
been reformulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While solving the tasks the pupils who are confronted with the problem have to 
demonstrate their ability to recognize that the water tank as depicted is a compound 
object, recognize that material thickness does not play a role in the solution of the 
problem, recognize that a qualitative graphical model is used, recognize that the 
quantitative data given is not used in the model. These are abilities situated in level 
one. 

The "Water Tank" Problem: 
Consider an actual water tank. At the beginning the tank is empty. Now it is 
being filled with water at the rate of one liter per second.  

What you see here is the result of a model building process used by pupils. These 
pupils have made certain assumptions about the tank and then sketched an 
appropriate graph. 

 

a) Describe how these pupils proceeded with the modelling process. 

b) What assumptions did they make? 

c) What kind of model did they used? 

d) Are there any assumptions that were not used in this graph? 

e) What could be the next step after sketching the graph? 
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The second example aims to assess abilities from the second level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this modelling task the pupils have to demonstrate their abilities to solve a problem 
by using modelling techniques. 

 

The third example is based on the PISA example “Rising Crimes” and has been 
reformulated to assess the abilities in level three. 

 

 
 

The "Rising Crimes" Problem: 
Presented below is a table that shows the number of reported crimes per 100,000 
inhabitants over a 24 year period. 

year 1960 1965 1970 1975 1980 1984 

number of crimes 110 200 330 480 590 550 

A certain manufacturer of security alarm systems has used this data to create an 
advertising slogan: "Every 10 years the number of crimes doubles or triples. Buy 
your alarm system now!" 

a) Is the first sentence of the advertising slogan correct? Support your answer. 

b) Why did this manufacturer use this mathematical statement? 

c) Is it possible to misuse mathematics? 

SCHOOL PARTY 
It has been announced that a famous band is going to play in the gym at a school 
party in our school. Almost all the students from your school and many students 
from neighbouring schools would like to come to the concert. From the 
organizers of the party you receive the task of calculating the maximum possible 
number of spectators for the gym. 

a) Plan how you will proceed with solving the problem and write out the steps 
needed for the solution.  

b) Complete the task which the organizers gave you. If any details are missing, 
figure them out by estimating. 

The organizers would like you to show your work to the heads of the school in a 
short presentation.  

c) Make up a sheet of key points which you would like to tell the heads of  

the school. 
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In this problem pupils are asked to demonstrate their ability to reflect critically on the 
modelling process and its use in a real world application. Furthermore, they have to 
develop the ability to evaluate the use of models in general.  

When considering models and the modelling process, one must be incessantly aware 
of the possible misuse of mathematics, as well as the social relevance of models, their 
interpretations, and the predictions that they can make. 

CONCLUSION 
In the paper a level model of modelling competence has been presented and it has 
been compared with other descriptions of modelling competence. Important issues for 
further research are the examination of the level model in different levels of the 
educational system and the role of the context of the modelling tasks. 
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APPLIED OR PURE MATHEMATICS1 
 

Thomas Lingefjärd, Gothenburg University and Jonkoping University, Sweden 

 

Abstract: In a basic algebra course for prospective elementary and secondary 
teachers in mathematics, the students were asked if they wanted applied or pure 
problems for a two week assignment. Most of the 31 students were in favor of applied 
problems, implying that an applied situation would help them to find greater pleasure 
in the problem solving process. A wider exchange between formal mathematics and 
intuitive strategies were observed among the group who selected applied problems. 
This group also investigated more general solutions for their problems, indicating 
that applied problems with a natural context, inspires conjecturing and exploring. 

Keywords: Applied or pure problems, formal or intuitive strategies, problem solving, 
teacher education. 

 

INTRODUCTION 
The primary consideration any researcher should do before she or he conducts a study 
is of course to think about: what am I expecting to find out of this study? I start by 
declaring that this is not a deep, theoretical research study. It is a small study of how 
students in a teacher program responded to pure or applied problems, and to different 
problems in these categories. I will also discuss the possibilities of rich applied 
problems when teaching mathematics to prospective elementary or secondary 
teachers of mathematics. 

PURE OR APPLIED MATHEMATICS 
Mathematics can be categorized in many different ways, for many different purposes.  
In elementary and secondary school, we usually divide mathematics into branches 
like arithmetic, algebra, geometry, statistics, and so forth. Another way to divide 
mathematics is to look at mathematics as an intellectual game and a problem solving 
activity and to divide or classify the problems into the categories pure or applied 
mathematics. 

In the beginning of the 20th century, the very foundations of mathematics were under 
intense discussions. In parallel, a split between “pure” and “applied” mathematics 
developed, probably for the first time. Traditionally, mathematicians were generalists 
combining theoretical mathematical work with applications of mathematics and often 
with work in mechanics, physics, and other disciplines. Leibniz, Lagrange, Gauss, 
Poincare, and von Neumann all worked with concrete problems from mechanics, 

                                                 
1 Thanks are due to Gabriele Kaiser and Morten Blomhøj, who discussed a preliminary outline of the paper and made 
several helpful comments and suggestions.  
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physics, and a variety of applications, as well as with theoretical mathematical 
questions. 

The split was highlighted by the book A mathematical apology by Godfrey Harold 
Hardy, first published 1940. In this book, Hardy expressed emotionally arguments for 
why one should prefer applied or pure mathematics. 

Pure mathematics is on the whole distinctly more useful than applied. A 
pure mathematician seems to have the advantage on the practical as well on 
the aesthetic side. For what is useful above all is technique, and 
mathematical technique is taught mainly through pure mathematics. 
(Hardy, 1992, p. 134) 

Also John von Neumann argued why to prefer one side of mathematics in favor of the 
other: 

As a mathematical discipline travels far from its empirical source, or still 
more, if it is a second or third generation only indirectly inspired by ideas 
coming from "reality", it is beset with very grave dangers. It becomes more 
and more purely aestheticizing, more and more purely l'art pour l'art. This 
need not be bad, if the field is surrounded by correlated subjects, which still 
have closer empirical connections, or if the discipline is under the influence 
of men with an exceptionally well-developed taste. But there is a grave 
danger that the subject will develop along the line of least resistance, that 
the stream, so far from its source, will separate into a multitude of 
insignificant branches, and that the discipline will become a disorganized 
mass of details and complexities. In other words, at a great distance from 
its empirical source, or after much "abstract" inbreeding, a mathematical 
subject is in danger of degeneration. 

John von Neumann (Simmons, 1991, p. iii) 

Evidently these opinions are somewhat opposite. Where Hardy sees the beauty of 
pure mathematics, von Neumann sees a danger in the development of pure theory 
sprung from and gradually separated from its empirical sources. One could claim that 
when we are going from concrete examples to abstractions we are doing this over and 
over again. And sometimes, like in non-Euclidian geometry or abstract algebra, we 
surely develop l'art pour l'art. Nevertheless, this also works the other way around. 
Even the purest mathematical ideas finally end up in some application. I we look at 
Hardy who so strongly advocated for staying pure, and prayed that his research 
results would stay out of practical use, his results are useful today for example in 
blood group analysis. The theorem is called the Hardy-Weinberg law and throughout 
information about details and practice can easily be found via the Internet. 

PROBLEM SOLVING AND TEACHER EDUCATION 
Most, if not all, of the courses in mathematics that I teach have a problem solving 
approach. It does not matter if I teach a course in algebra, calculus, discrete 
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mathematics or geometry. Since I mainly teach prospective teachers (pre-service or 
in-service) I believe it is easier to get my students interested in the subject if I start 
with a problem from a well known context. The starting point for a problem solving 
situation should, if possible, be concrete while the ultimate objective should be 
abstraction or generalization. When deciding on a problem solving perspective, I 
have chosen the right side described in Figure 1 below. Consequently, many of the 
problems end up in a mathematical model of a real situation. 

PROBLEM SOLVING 
 

Pure mathematics  Applied mathematics 

 

To investigate To construct 

Models 

Figure 1: One way to divide mathematical problems into categories 

In an algebra course for elementary and secondary teachers, given at Jonkoping 
University, the students were asked whether they wanted to have an applied or a pure 
mathematical problem for a two week assignment. The 31 students in the class were 
encouraged to solve their problem in pairs (obviously one group had to consist of 
three students). Predictably the majority of the students asked for applied problems, 
probably based on a “fear” for pure problems and an “attraction” to applied 
situations. The problems within these categories were selected randomly and the 
students were asked to carefully describe and explain their problem solving strategy. 
They were also asked to think about the possibility to generalize the problem. 

APPLIED AND PURE PROBLEMS 
A “pure” problem could be the following (problem 1): 

There are many special relations between numbers. One such relation is 
that we sometimes can “turn around” the numbers in two-digit 
multiplication, and get the same product. One example is: 

 39 ⋅ 62 = 93 ⋅ 26 

� Are there more such two-digit combinations? 

� Exactly how many such two-digit combinations are there? 

An “applied” problem could be the following (problem 2): 

Sven owns a small boarding house in the mountains. Right now there are 
just three guests, and the new cook who hasn’t met the guests yet, wants to 
know how old they are. Sven knows that problem solving is the chef’s 
passion, and formulates his answer in the following manner. ”The product 
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of their ages equals 2450 while the sum of their ages is equal to twice your 
age.” 

The chef sits down with paper and pencil and starts to solve the problem. 
After a while, she comes back to Sven and says: “With the information I 
got from you, I’m not able to calculate the ages of the guest.” 

”Well” Sven says,”I can add that I’m the oldest person in this boarding 
house. Can you solve it now?” 

The chef says yes. Explain why she could solve the problem after the last 
piece of information and reveal the involved mathematics hidden in the 
problem. How old was Sven? 

Obviously both problems explore elementary number theory, but the students who 
got the applied problem seemed more positive about their problem. Without being 
explicitly encouraged to say so, the students clearly argued that the style in solving an 
applied problem, a word problem, drives one into a more conceptualized manner of 
doing mathematics. When translating a situation into the language and syntax of 
mathematics, one could argue that we always need to develop a mathematical model 
as a result of the translation. Verschaffel, Greer and De Corte (2000) suggest the use 
of word problems to engage students in mathematical modeling. One could add, that 
any applied problem engage students more in making sense of the semantics of the 
problem and less in doing tedious computations. 

DIFFERENT KINDS OF APPLIED PROBLEMS 
In the same way as pure problems may differ from applied problems in terms of style 
and language, applied problems may differ widely in context, and that, in turn, may 
lead to quite different problems solving approaches. The following two problems 
share partially the same objective concerning the procedure of constructing and 
solving a quadratic equation, but in a different ways. 

Problem 3: The following problem is quoted from the old Babylonian 
kingdom: An area A is equal to 1000 area units and consist of two squares. 
The side in one of the squares is 2/3 of the side of the others square, 
subtracted by 10. What length are the sides in the two squares?  

Problem 4: Angela has 2 one liter bottles. Bottle A contains 1 liter pure 
orange juice, bottle B is empty. She pours a part of the juice from bottle A 
into the empty bottle B. Thereafter she fills up bottle B with water, so that 
bottle B is full and shakes it so the liquid is well mixed. Finally she fills up 
bottle A with the mixture from bottle B, until bottle A is full again. 
Calculate the amount of orange juice which at least is in bottle A. 

STUDENTS’ PROBLEM SOLVING TECHNIQUES 
A lot of research is published addressing the fact that productive reasoning in 
problem solving cannot exclusively be based on formalistic reasoning. A student with 
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access to only formal structures will not easily develop the creativity that is necessary 
in problem solving. 

The main idea is that the same type of mental attitudes and endeavors 
which characterize an empirical attempt at solution intervene also at the 
formal level. /…/ Therefore, even when dealing with axiomatical 
structures, the mathematical activity resorts to the intuitive forms of 
acceptance and extrapolation which may assure its required behavioral 
firmness, its productivity, its dynamic, flexible consistency! ((Fischbein, 
1987, p. 23) 

The students in my algebra class did not show any such behavior to begin with. 
About 2/3 of the students decided on applied problems, with a larger percentage of 
prospective secondary teachers among the “pure” problems group. 

Nevertheless, when the assignments were turned in, I could notice that the group with 
applied problems seemed to have worked much harder, written longer and more 
developed essays, and used much more intuitive and creative reasoning. They also 
showed more developed ways to generalize their solutions into other situations. 

Viewing a problem solver, we can conceive her or him as someone forced to search 
through a number of possible solutions witch are not immediately available to the 
problem solver, but which needs to be produced. The problem solvers task is to 
generate the possibilities in some reasonable order, testing each and every one, as she 
or he goes along, until the problem solver finds a solution that satisfies the problem 
solver or until she or he gives up. 

If a procedure exists for calculating a solution in a finite number of steps, or for 
ordering the search so that the solution is guaranteed after a finite number of trials, 
then such a procedure is called an algorithm or a formula. It seems as if the students 
who chose “pure problems” were much more focused upon the search for a formula. 
Something in the presentation of the problem itself thrive the problem solver to 
search for a formula. 

Student group 1 (prospective secondary teachers): 

Here is our explanation about how we arrived to the solution. We used the formula:  

23 � 64 = 32 � 46 which we translate to ab � cd = ba � dc 

Algebra: (10a + b) (10c + d) = (10b + a) (10d + c) 

100ac + 10ad + 10bc + bd = 100bd + 10bc + 10ad + ac 

99ac = 99bd 

ac = bd 

There is one restriction in the equation, namely that ac = bd. All figures must be 
larger than zero and smaller than ten: 0 < a, b, c, d < 10.  
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All figures between 1 - 99 that can be produced by 2 different singular figures, for 
example 2 � 6 = 12  or 4 � 3 = 12 can be placed in the equation ab � cd = ba � dc.  

Example: 21 � 36 = 12 � 63  or  48 � 63 = 84 � 36. 

Answer: There are 12 possible combinations.  

Summary: As a matter of fact the solution is wrong, there are 14 possible 
combinations, and the solution is also thin and unconnected. An illustration with help 
of the multiplication table would probably have helped this group a lot. When 
suggested to write down and look at the multiplication table in order to find all 
solutions and finish the assignment, the students expressed an attitude of being at a 
higher level of expertise and not in need of the multiplication table. 

This group finally managed to find a way to complete their solution of the problem to 
the end. Nevertheless, the students did not explore the problem in full; neither did 
they try to find generalization possibilities. After arriving to the formula, implicitly 
expressed in the problem statement, they were quite satisfied to generate solutions to 
the formula. 

Student group 2 (prospective elementary teachers): 

Here is our essay about our problem solving journey. We started with playing with 
the number 2450 and finding the proper divisors and found that 2450 = 1�2�5�5�7�7. 
Three guest means that it is not the smallest factors we need, and since three numbers 
can add up to twice the chefs age (called CA) in a number of ways, we decided that 
we must have a table describing all possible outcomes. We also have an intuitive 
feeling that there is a “trick” or some hidden difficulty in the problem, since the chef 
needs to get more mysterious information all the time. After some time of 
brainstorming, we decided to label the guests A, B, and C, and the chefs age CA, and 
structure our ideas into a table. The table will bring order into our chaos and 
illustrates the 12 possible outcomes. 

Table 1: Possible outcomes of guest ages 

  A     B   C   Sum   CA 
  (1)  1  2×5×5 7×7   100   50 
  (2)  1  2×7×7 5×5   124   62 
  (3)  1  2×5×7 5×7   106   53 
  (4)  2  5×5  7×7     76   38 
  (5)  2  5×7  5×7     72   35 
  (6)  5  2×5  7×7     64   32 
  (7)  5  2×7  5×7     54   27 
  (8)  5  2×5×7   7     82   41 
  (9)  5  2×7×7   5   108   54 
(10)  7  2×5  5×7     52   26 
(11)  7  2×7  5×5     46   23 
(12)  7  2×5×5   7     64   32 
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At first we talked about possible and expected ages for the chef and among the guest. 
She is probably not 23, and the guests are probably not 1, 98 and 10. We decided to 
have a “common sense” and intuitive perspective when we analyzed the figures, but 
without excluding any combinations. 

Then we discussed like this. The chef must know her own age. If the chef for instance 
is 38 years old, she would immediately see that alternative (4) is correct. She could 
then determine the guest ages as 2, 25, and 49. So why couldn’t the chef solve the 
problem at this stage of the process? 

It must mean that the information about her age does not give an unambiguous choice 
among the 12 possible alternatives. We only have alternative (6) and (12) generating 
the same age for the chef, namely 32 (which we consider a reasonable age). 
Consequently the chef is 32 and the guests are either 5, 10, and 49 years old or 7, 7, 
and 50 years old. 

The chef then goes back to Sven and learns that Sven is the oldest person in the 
house. Compared to the guest’s ages, we see that Sven must be at least 50 since he 
otherwise wouldn’t be oldest. If Sven on the other hand would be older than 50, the 
chef wouldn’t be able to solve the problem after given this final information. So Sven 
must be exactly 50 years old, and the guest’s ages are 5, 10, and 49 years. The answer 
to the question is that Sven is 50 years old. 

We believe that this type of problem easily could be constructed for different ages in 
compulsory school. By constructing numbers that can be divided into proper divisors 
and at the same time sum up to unambiguous results, it is possible to teach students at 
different age’s basic number theory and problem solving at the same time. 

We illustrate this by adding a similar, but little less complicated, problem: 

Adam has just moved into a new house in Gothenburg together with his family. 
Caroline comes by and asks him: 

Caroline: How old are your sisters? 

Adam: The product of their ages is 36 and the sum is equal to your house number. 

After some thinking, Caroline gives up. Adam then tells her that his oldest sister has 
red hair, and after a while Caroline says that she now knows the ages of his sisters. 

How old are Adams sisters? 

Summary: This group certainly explored their problem deeply and with great 
enthusiasm. They even invented more problems along the same way; they wrote 
about teaching strategies and discussed different ways to assess open problems like 
this one. They went back and forth with intuitive ideas and formal reasoning. 

Student group 3 (prospective elementary teachers): 

Students: We actually guessed the squares first and then found the 
equation. It was not that hard to see that 302 + 102 = 1000 and that 2/3 of 30 
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minus 10 is 10. It only took us some 10 minutes more to conclude that 
there are no other solutions among the natural numbers, since 332 = 1089 
and 272 = 729. 

Algebraic solution: We finally got the equation: 

900090012013100010
3
2 22

2

=+−⇔=+�
�

�
�
�

� − xxxx  

with a positive root x = 30. From the problem we found that the other square 
must be 100. So the sides in the squares are 10 and 30. 

Summary: Besides geometrical drawings illustrating the squares, this group did not 
go beyond the problem itself and did not try to generalize and invent anything 
similar. When they found the algebraic solution, they were happy to confirm their 
assumptions from the beginning and stopped there. They acted as true formula 
seekers. 

Student group 4 (prospective secondary teachers): 

We had no idea about how to directly translate the situation into mathematics and to 
construct a quadratic equation, so we started with bottles in our kitchen and by 
pouring from A to B and back to A again; we made up the following table: 
Table 2: Pouring orange juice back and forth 

From A to B Becomes in B Back to A Finally in A 

1/5 
1/4 
1/3 
1/2 
X 

1/25 
1/16 
1/9 
1/4 
x2 

1/25 
1/16 
1/9 
1/4 
x2 

1 – 1/5 + 1/25 
1 – 1/4 + 1/16 
1 – 1/3 + 1/9 
1 – 1/2 + 1/4 
1 – x + x2  

So by induction we finally (after quite some struggling) invented the mathematical 
model y = 1 – x + x2 which we made a graph of on a graphic calculator in order to 
understand its behavior and to find eventual extreme points. Then we started to 
discuss the size of the bottles. Did the bottle volume matter? We did not think so, at 
least not as long as the two bottle volumes were the same. 

But if A and B were 2 liter bottles, we would get the formula y = 2 – x + x2 which has 
an extreme point at x = ½ (the same as first formula) but at which y = 1,75! Error! We 
quickly graphed a numbers of graphs for y = V – x + x2, where V = {1, 2, 3, …, 10} 
and arrived to terrifying contradiction! Our reasoning led to the result that the larger 
bottles, the less impact. At the same time, we knew that the situation should be the 
same, picturing Angela pouring back and forth in bottles in any size. So where was 
the error? 

At this point, we decided to concentrate on a purely analytical approach. Presume that 
Angela pours over x liter orange juice to B from A. Then bottle B contains x liter 
orange juice and bottle A contains 1 – x liter orange juice.  After mixing the orange 
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with water in bottle B, every part of the mixture in bottle B will contain ax liter of the 
orange juice from A. Angela pours back as much fluid as she took (the amount x liter 
mixture) which means that a = x and that bottle A therefore contains an amount of 
orange juice equal to y = 1 – x + x2  which can be written y = (x – ½)2  +  ¾ yielding 
that y is at least ¾ or 75 %. 

When getting this far, we understood that if the bottles are larger (or smaller) than 1 
liter, then x and x2 will be part of that volume and not absolute quantities related to 1 
liter.  For instance, if the bottles are 2 liter each, we get that 1/5 of 2 liters is 2/5 of 
one liter and the model will become y = 2(1 – x + x2) with a minimum at x = ½ where 
y = 1.5 or 75 % of 2.  So our inductive reasoning from the beginning holds even when 
the bottles are larger. We illustrate this by a graph for five different bottle sizes. 

 
 
 
 
 
 
 
 
Figure 2: Graphing y = V(1 – x + x2) for V = {1, 2, 3, 4, 5} 

If the bottles are of different sizes one has to look at every situation differently. If for 
instance we imagine the situation where A’s volume is 1 liter and B’s volume is 2 
liters, then we will get the following table: 

Table 3: Different size on A’s and B’s volumes 

From A to B Becomes in B Back to A Finally in A 

1/5 
1/4 
1/3 
1/2 
X 

1/10 
1/8 
1/6 
1/4 
x/2 

1/50 
1/32 
1/18 
1/8 
x2/2 

1 – 1/5 + 1/100 
1 – 1/4 + 1/64 
1 – 1/3 + 1/36 
1 – 1/2 + 1/16 
1 – x + x2/2  

This model has a minimum value at x = 1 where y = 1/2. It means that if we transfer 
all the orange juice from bottle A to bottle B, we will get half the amount of orange 
juice back again, which is the lowest possible concentration of orange in this 
situation. 

Summary: This group obviously found this problem highly challenging and 
motivating and if there had not been a timeline of two weeks, they probably would 
have taken their investigation even further. They presented me with a 10-pages long 
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solution/discussion and I’m honestly sorry that I cannot share it with the readers of 
this paper. At least I hope that I have been able to give you a flavor of what this 
group managed to do with their applied problem. This group also clearly visualized 
the strategy of moving back and forth between intuitive and formal knowledge, which 
identifies a good problem solver in mathematics. 

CONCLUSIONS 
Even though these excerpts are not extreme in any sense among all the essays I got, 
they clearly illustrate the different approaches I found when comparing essays from 
students who worked with different applied or pure problems. It simply seems as if 
students who worked with applied problems became much more involved and 
engaged in the problem solving process. The context itself seems to be important, 
especially when the problem offers possibilities to explore at different directions. 
Many researchers emphasize the importance the context and the use of language in 
the discourse have for the understanding word problems. It also seems as if when you 
can engage the intuitive or “common sense” part of your mind, then you are ready to 
go deeper into the problem solving process. When analyzing the work of the students, 
I have found that most students express intuitive ideas about the concepts involved in 
the problems they are dealing with. These intuitive ideas often play a crucial role in 
the creative part of their problem solving process, and are obviously needed for the 
students to be creative and find different ways to a solution. 

The richer the problem is, the further the students will be able to go when exploring 
and generalizing. Evidently, we can discuss the favor of differentiation between 
contexts, as in formal or more natural connections for a problem. This is illustrated in 
problem 1 and 2. We can also discuss differentiation within a context, as within a 
mathematical concept. To be able to switch between an intuitive and formal approach 
as the students with problem 4 did, forms a good example of how students structures 
their mathematical knowledge. 

Fischbein has acknowledged the vast importance of students learning to master the 
interplay between formal mathematics and intuitive ideas. 

One of the fundamental tasks of mathematical education – as has been 
frequently emphasized in the present work – is to develop in students the 
capacity to distinguish between intuitive feelings, intuitive beliefs and 
formally supported convictions. In mathematics, the formal proof is 
decisive and one always has to resort to it because intuitions may be 
misleading. This is an idea which the student has to accept theoretically but 
that he has also to learn to practice consistently in his mathematical 
reasoning.” (Fischbein, 1987, s. 209) 

This implies huge benefits in using as many applied problems as possible and maybe 
always try to find applied problems, even when some of them are of the artificial 
constructed kind I have explored in this paper. It simply seems to be much more 
interesting to explore even constructed situations. When students are given problems 
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to solve in which more than one route to the solution is possible, and especially when 
students can at least discuss the problem in pairs, then it seems as if the students 
benefit much more compared to when solving pure problems. 
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CONCEPTUALIZING THE MODEL-ELICITING PERSPECTIVE OF 
MATHEMATICAL PROBLEM SOLVING 

 

Bharath Sriraman, The University of Montana, USA 

 

Abstract: The notion of modeling occurs abundantly in mathematics education 
literature, primarily in the context of studies documenting modeling behaviors of 
students and teachers. However there is a lack of studies related to epistemological 
issues arising in the teaching and learning of modeling constructs, especially vital for 
the training of future researchers in the field. This paper explores the complexities, 
preferences and the variety of meanings that post-graduate students’ attach to the notion 
of model eliciting. Students’ conceptualization about model eliciting was influenced by 
classroom discourse, reflections on their cognitive mechanism whilst engaged in a 
problem as well as the features of a given problem. 

Key words: Conceptualization; Epistemology; Modeling; Model-eliciting; Problem 
solving; University researcher education. 

 

1. INTRODUCTION 
The importance of modeling has been stressed by numerous curricular documents 
(NCMST, 2000; NCTM, 2000, NRC, 1998) as well as by mathematics education 
researchers (Gravemeijer and Doorman, 1999; Lesh and Doerr, 2003; Lesh and Lehrer, 
2003). Modeling activities provide students with a glimpse of how mathematical 
knowledge relates to and is applicable to the real world. Examples of the presence of 
modeling activities permeate day-to-day human activity, the arts and the sciences. These 
activities can vary from the simplistic sketch of a novice carpenter to the use of 
probability-distribution tables in the financial and economic sectors. For instance 
Poisson distributions are often used in the insurance industry to model the number of 
claims received by an insurance company. Differential calculus is a classical example of 
a useful modeling tool in engineering, financial sciences and physics. Regression 
techniques are routinely applied in the physical and social sciences for the purposes of 
using the gathered data for predictive purposes. 

The literature shows numerous papers that report on studies conducted at the K-12 level 
on the modeling behavior of students and teachers. However there is a dearth of studies 
at the tertiary level related to the epistemology of modeling, particularly on the 
development of understanding of theoretical constructs that arise in the literature. This is 
an important but under-investigated area of mathematics education research with 
tremendous implications for the teaching and learning of modeling at the post-graduate 

1686 CERME 4 (2005)



level. This is especially crucial since post-graduate students are on the crux of doing 
research in the field, and are future mathematics educators. Schoenfeld (2000) 
recommended that in the preparation of researchers, “one must guard against the dangers 
of being superficial…high quality research comes when one has a deep and focussed 
understanding of the area being examined” (p.476). 

In any discussion of epistemology, the underlying philosophical question is to examine 
the nature of a given construct, specifically its meaning. The words “model” and 
“modeling” lend themselves to a variety of everyday interpretations. The meanings can 
range anywhere from solving word problems, conducting mathematical simulations, to 
creating representations such as scaled drawings that serve as archetypes for buildings 
and other physical objects or a hypothetical abstract representation of a situation for 
descriptive or analytical purposes. The mathematics education literature also uses the 
generic term “model” to denote hypothesized problem solving models as well as 
schemes that describe mental processes such as abstraction and generalization. 

The difference between the terms modeling and model is analogous to the difference 
between process and product. Modeling is used to refer to the processes employed to 
model a problematic situation. On the other hand the word model refers to the end 
product, the end result of the modeling process, typically a physical, symbolic or 
abstract representation. Recently Lesh and Doerr (2003) introduced the term “model 
eliciting” which encapsulates the terms model and modeling. The danger of introducing 
a term that encapsulates both process and product is that it converts a dynamic process 
into a static object (Gascón, 2003). The pedagogical goal of model eliciting activities is 
to help students create mathematical models when confronted with a problematic 
situation, which typically involves some data (Lesh and Lamon, 1992). In essence, the 
term model eliciting is used to refer to the Gestalt of process and product in a problem-
solving context. Given the wide variety of potential meanings attached to these words, it 
becomes important for the university educator to discuss the meaning of terms used the 
in modeling literature as well as to arrive at an objective, agreed upon usage of these 
terms. The primary questions explored in this paper are: 

(1) What meanings do post-graduate students attach to the notion of modeling 
(particularly model eliciting? 

(2) What criteria do post-graduate students use to decide whether a mathematical 
problem is a model-eliciting situation? 

2. A BRIEF REVIEW OF MODELING CONSTRUCTS 
For the sake of brevity, only the main constructs that were part of the assigned readings 
in the study and which recently appeared in the literature will be reviewed. The word 
modeling has been defined in mathematics education essentially as a framework via 
which a simple or complex real world situations or systems can be mathematically re-
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constructed, described, and used for predictive purposes (Lesh and Harel, 2003). 
Numerous examples were provided in the introductory section of the paper. Model 
eliciting is defined as a problem solving activity constructed using six specific principles 
of instructional design in which students “make sense of meaningful situations, 
and…invent, extend, and refine their own mathematical constructs” (Carlsen, Larsen 
and Lesh, 2003, p.465). In other words, while the traditional problem-solving goal is to 
process information with a given procedure, model eliciting is the process itself.  The 
purpose of the process is for students to take their model elicited through solving the 
original problem and apply it to a new problem. Some examples will help better 
illustrate the notion of a model-eliciting activity. Suppose students are asked to “rate” 
the quality of all the potential players on a soccer team and then select the team based on 
a consensus on the ratings. This task requires students to gather/procure “objective” data 
related to players speed, endurance, past performance, special abilities and reach 
“subjective” consensus on the criteria most valued for the selection of the team. This is a 
model eliciting activity because it invokes the six instructional principles of Lesh et al 
(2003) namely, (1) the Reality Principle (i.e., Does the situation warrant sense making 
and extension of prior knowledge/experiences?), (2) the Model Construction Principle 
(i.e., Does the situation create the need to develop (or refine, modify, or extend) a 
mathematically significant construct?, (3) the Self-Evaluation Principle, ( Does the 
situation require self-assessment?), (4) the Construct Documentation Principle (i.e., 
Does the situation require students to reveal their thinking about the situation? (5) the 
Construct Generalization Principle, (i.e., Is the elicited model generalizable to other 
similar situations?) and finally (6) the Simplicity Principle ( Is the problem solving 
situation simple? ). As alluded to earlier, the construct of “model-eliciting” 
circumscribes a problem solving situation, its mathematical structure, the mathematical 
models generated as well as the problem solving processes that are invoked by the given 
situation. The epistemological question here is given the exposure to the meanings of 
modeling and model eliciting through readings and discussion, what meanings do post-
graduate students attach to these constructs? Are the meanings derived by students 
identical or are they influenced by other sources besides the explicit definition spelled 
out in the text? If students have been exposed previously to mathematical modeling in 
various higher-level mathematics courses, what is their understanding of the construct of 
model eliciting? Is it different from the construct spelled out in Lesh and Doerr (2003)?  

3. METHODOLOGY AND DATA ANALYSIS 
The study was conducted with five post-graduate students enrolled in a graduate level 
mathematics education course on cognition. The post-graduate students had a fairly 
strong undergraduate background in mathematics and were in different stages of 
completing the M.S and Ph.D degrees in the mathematical sciences. The author was the 
instructor of this course. The data was gathered through classroom discourse, written 
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assignments and two interviews (approximately in the middle and the end of the 
semester). Classroom discourse on modeling was based on a selection of readings from 
Lesh and Doerr (2003). These discussions were led by one of the students (in rotation) 
and the instructor. The interviews involved looking at problems from pure and applied 
mathematics. One purpose of these interviews were to create a problem solving 
experience based on which students could classify the given problems as model-eliciting 
problems or not. Another purpose was to create a situation whereby students would 
reflexively apply the definition of model eliciting to their thought processes while 
solving the problem. Both the classroom discourse and interviews were audio taped and 
transcribed for the purpose of data analysis. A variety of complementary data sources 
were chosen so as to ensure both triangulation of data and that an accurate picture of 
student understanding could be constructed. Since the author was an integral part of 
classroom discourse and the interviews, the ethnomethodological approach (Holstein 
and Gubrium, 1994) was most appropriate to interpret events in the classroom and the 
interviews. The data from the discourse and interview transcripts was analyzed in 
iterative cycles for emergent themes. The emergent themes were compared with student 
writings on the written assignments over the course of the semester to check for 
consistencies as well as deviations in student understanding of modeling constructs. The 
student interpretations and understanding of modeling constructs (specifically that of 
model eliciting) is now presented in the form of a time series of episodes over the course 
of the semester, followed with commentaries that discuss the episodes and findings. 

4. COMMENTARIES, FINDINGS AND DISCUSSION 
The following classroom episode took place about half way into the 15-week semester. 
The discussion was centered on the constructs of modeling and model eliciting, based on 
the readings in Lesh and Doerr (2003). The edited classroom excerpts reveal the various 
interpretations made by the students.  

4.1  Episode 1 
S1: So students make mathematical descriptions of meaningful situations…And is not 
done in teacher guided way like traditional problems that we are used to. (i.e.,) By 
saying, okay, I will ask you a leading question and try to get you to the next spot.  It is 
done in more of the attitude of what we think of the constructivist (notion) …let them 
construct their own knowledge and their own models… (In this example) they were 
producing a product and their clients were the coaches. So they were thinking about this 
in a real life situation. So they were the consultants. So then they had to say how did this 
strategy meet the needs of your client? So they went through the warm-up activity, they 
started into the model eliciting activity. They are coming up with these 
strategies…they're analyzing, presenting, formulating ideas. 
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S2: They find some way to understand what to ask for and what the problem is. Like if 
you ask them to develop a model of…a right triangle. Most of them have heard it before 
and they can find things on their campus and such. And they find out that the 
hypotenuse always has to be longer than the legs and they can actually do some 
measurements. It becomes their problem. It is not a static thing that they are seeing in 
the book (or)…You can start with the school and say if you didn’t want to go down any 
hall two times, what kind of room would you set up. You could have a different kind of 
room and find out that the parity of the vertices matters when you are solving an Euler 
circuit. You would never have to call it an Euler circuit. And just have them in a 
concrete situation or build like a mouse maze so the mouse would never run over the 
same part twice. 

S3: So what is the difference between taking a mathematical idea and formula and 
relating that to reality versus taking reality and translating that into mathematics? Well 
the one is far more complicated. Taking reality and translating into mathematics is far 
more complicated rather than taking something in mathematics and corresponding that 
and coming up with some real life example. 

4.1.1 Commentary 1 

The classroom excerpts presented in episode 1 are “prototypical” understandings of the 
students 1, 2, 3 about the notions of modeling and model eliciting. Based on the repeated 
consistencies in the patterns of understanding of these three students seen in the 
discourse and interview transcripts and writings, the emergent themes under which their 
understanding/interpretations were placed were “Constructing Own Knowledge/Mental 
Model”(S1), “Real life Connections with Problem Ownership” (S2), and “Ambivalence 
between Knowledge Construction and Real life Connections” (S3). These themes are 
further developed and analyzed later in this paper. Now consider the following interview 
episode. These interview vignettes are based on student attempts on the following 
problem: What is the last digit (i.e., the digit in the units place) when you expand 7365? 
This interview took place 3-4 weeks after the aforementioned classroom episode. 

This problem was purposely chosen because it was not situated in any context. While 
the researcher does not think that this is a model-eliciting situation, arguably, one can 
make an extremely “subjective’ case that the six design principles of Lesh et al., are 
satisfied. Given that the post graduate students had a strong background in mathematics, 
the reality principle is satisfied in the sense that the problem is a simple extension of 
prior mathematical techniques the students may have been exposed to. One could argue 
that the five other design principles also fit, given the sophisticated mathematical 
background of these students. The interesting question for the author was how would 
these students interpret the six principles given this blatantly posed, non-real world 
situated problem? Would they construct a context/meaning under which this problem 
could be classified into a modeling situation or simply discard it based on a literal 
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interpretation of the Reality principle. The three emergent themes stated earlier 
consistently appear in this vignette.  

4.2 Episode 2  
Student1 [Constructing Own Knowledge/Mental model] 

A: So…would you consider this a model-eliciting problem? 

S1: I think so. 

A: Ok, why? 

S1:  This one I really came up with a couple of different models that I was using. This 
one is sort of similar to something that I have done before.  I didn’t necessarily 
develop this myself. But because I did a problem that was sort of like this in a 
math competition. Where you dealt with some super huge numbers with some 
super huge powers and you had to talk about whether they were divisible by a 
number or had a last digit or something. So I just started breaking it down into 
simpler terms. Things that I could use and I could have done by hand if I wanted 
to. To break it down until I was convinced that I got 7…with logical arguments 
along the way. So I think I had a pretty concrete model. If I had a different 
number to different power, I could repeat this process in a similar fashion. And 
this one the same thing, I looked for the pattern. Once I had the pattern, I just had 
to figure out what power I needed to get there and then I found the end result. So 
they are two very different models but both equally valid, I think. 
 

Student 2 [Real life Connections with Problem Ownership] 

S2: Personally I don’t think this is a model eliciting. 

A: Why? 

S2:  Why? No it is not a bad problem. I don’t think only model eliciting problems are 
good problems. When I see it I think clearly it is a number theory problem and I 
don’t think of number theory problems as model eliciting. 

A: So what are the features that a problem should have in order for it to be a model 
eliciting problem? 

S2: I guess I am thinking of it as a word problem that has…I guess because I am 
thinking of it as a specific real-life problem that someone who didn’t know 
mathematical theory could sit down and solve just using common sense. That is 
what I am thinking of as model eliciting. I think that a person would be able to sit 
down and think this through and work on it. A kid could get it. I don’t think only 
model eliciting problems are solvable either. So, the fact that this has a solution 
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and can be solved in different ways makes it an interesting problem. It is a 
problem that I like.  But it’s not, in my mind, model eliciting. 

Student 3 [Ambivalence between Knowledge Construction and Real life 
Connections] 

S3:  Well yes and no. I would not classify this as a true model-eliciting problem. I 
mean it required me to think and to go beyond just the given information and to 
think about powers of seven and what the last digits would be. Why is it not really 
a model-eliciting problem? Because it didn’t seem to have much more to it. Once 
I figured out there is a pattern there was nothing more to it than noticing the 
pattern and figuring out how the answer I wanted figured into that. Which I think 
is kind of model-eliciting to some extent. It is not a traditional problem you can’t 
just plug it into your calculator. I mean you are not just given something. So it is 
not a traditional problem. Model eliciting? I really don’t think it is model eliciting. 

A:  OK 

S3:  I guess I did come up with a model though. 

A:  So you think that in order for it to be a model-eliciting problem that there needs to 
be something more? Because you said something to the effect of once you are 
done with it you are done. 

S3: Yeah, I know the answer now. So given any seven to any power I can figure out 
what its last digit is going to be. Well I guess it does. I am trying to go back and 
think of all the definitions that we have had for these model eliciting problems. 
And it seems to fit most of them. It is not a real world problem. I mean I can’t 
think of any situation where this would be useful to real life. It doesn’t have any 
real world flavor to it. But it did make me come up with some type of model for 
determining a solution. And I did in fact come up with a generalized solution 
applicable to similar situations for it so in that respect it is model eliciting. 

4.2.1 Commentary 2 

As suggested in commentary 1 about the emergent proto-typicality of student 
understandings of model eliciting, the interview vignettes are another example that 
illustrates consistencies. For student 1, this problem was an example of a model-eliciting 
problem because it invoked an a priori mental model/process used to solve a similar 
problem in the past. This process was applicable to other similar problems. Knowledge 
construction did take place although there was no real world context per se. The context 
was created by a subjective interpretation of the mental processes elicited to solve the 
given problem. For student 2, this was clearly not model eliciting because of the lack of 
real world context as well as the analysis that a solver could not experience any sense of 
ownership with the problem or be motivated to solve such a problem. For student 2, 
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model-eliciting problems needed to be situated in the real world, and did not require 
sophisticated mathematical machinery from the solver. Finally in the interview vignette 
of Student 3, one sees the skeptical and ambivalent view of model eliciting. First student 
3 stated that there was no real world context to the problem which went against the 
reality principle, but on the other hand (like S1) the student valued the mental process 
invoked to solve the problem, and viewed this process and the generalizability of this 
process as model eliciting.  

Students were given the same problem on a classroom assessment two weeks after the 
interview, to see if their understanding (and criteria for classification) of model eliciting 
problems had changed. 

4.3. Episode 3 
S1: This is a traditional problem. Not only is this not real life in any way, I don’t think 
students would see a need for it. Meaning students would have a hard time relating it to 
real life. 

S2: This is a traditional number theory problem. 

S3: Traditional problem Not sure? It only required basic knowledge of modular 
arithmetic, however if it was being used in a slightly different context or ways than I am 
used to seeing it, then it is model eliciting. 

4.3.1 Commentary 3 

Once again the responses of students 2 and 3 was consistent within their proto-typical 
understanding. However student 1 now imposed the reality criteria (meaning relating to 
a real-world situation) and classified this problem as not model eliciting. 

5. ANALYSIS, DISCUSSION AND IMPLICATIONS 

The three episodes illustrate the complexities of teaching modeling constructs in the 
classroom as well as the nuances in student understanding. In this paper the author has 
deliberately focused on a single construct, namely model eliciting. Although there were 
six specific principles outlined as the criteria for a model-eliciting problem, student 
interpretations of these criteria were not literal in any sense. For student 1 the word 
model eliciting emphasized the mental processes/models invoked while solving the 
problem, i.e., the knowledge construction that was taking place. The understanding was 
focused on the Model Construction and Construct Generalization principles. This 
general view was modified at the end to accommodate the reality criteria.  In the case of 
student 2, the emphasis was on the Reality principle. For this student, model eliciting 
only occurred when the problem was situated in a real world context. The mental 
processes invoked while solving this particular problem were deemed as number 
theoretic procedures. Finally in the case of student 3 there was a back and forth 
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ambivalence between the Reality, Model construction and Model generalization 
principles. For this student, the mental processes/model invoked created the reality 
context. Clearly the meanings and interpretations of the students are subjective and 
dependent on the given problem. While this is reasonable within a post-modern 
perspective of letting meaning be subjective, a positivist would raise several objections 
with such a pedagogical approach. From a positivist perspective, a uniform “objective” 
explanation is the goal, since students were given a definite meaning of the term model 
eliciting in the readings. Since this uniformity did not occur, the interesting question 
confronting the author is to hypothesize the reasons why this occurred? One plausible 
explanation is the distortion that occurs when a (given) static “objective” term is 
reflexively applied to ones mental processes in a problematic situation. The dynamic 
nature of the processes invoked while solving a problem result in an emphasis or 
preference for one or more of the six principles over the others as seen in the episodes 
constructed in this paper. In this sense, students actually lived through the definition of 
model eliciting. Creating a pedagogical situation where students were required to 
reflexively apply a static definition of “model-eliciting” to the dynamic nature of 
thinking processes resulted in students’ emphasizing one or more aspects of the 
dynamics. Such an outcome is didactically desirable, in spite of objections that may be 
raised by positivists because it allows the student to experience the dynamic nature of 
the definition as opposed to simply viewing it as a static object. However the danger in 
such a pedagogical approach to the teaching of modeling constructs is in not following 
up the students “lived” experience with an objective discussion of the construct as a 
class and a direct theoretical application of the six principles to the given problem and 
its solution. In doing so, the educator creates a perceptual shift of the definition of the 
construct for the students, from that of subjectively applying it to ones thought processes 
to that of objectively applying it to the product, namely its solution. In doing so, one 
ultimately hopes that the Gestalt of the term “model-eliciting” is fully conveyed to the 
students learning this construct. 

Given this brief exposition and analysis of post-graduate students understanding of one 
modeling construct namely model eliciting, the question still confronting the author is 
the vast potential subjective meanings given to and associated with numerous other 
modeling constructs presently in use in the literature. It is a time consuming effort for 
university educators to create pedagogical scenarios whereby students experience the 
meaning of the construct definitions. Although this is a worthwhile endeavor, it is 
unfeasible to expect complete uniformity in how modeling definitions are used and 
applied. Is it time for the community to explicitly classify modeling terminology (in a 
manner akin to terminologies and meaning found in a dictionary of philosophy) or do we 
continue to adopt the post-modern perspective and let conflicting meanings co-exist? 
The time is ripe to tackle this issue! 
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ASSESSMENT OF MATHEMATICS IN A LABORATORY-LIKE 
ENVIRONMENT: THE IMPORTANCE OF REPLICATIONS 

 

Pauline Vos, University of Groningen, the Netherlands 

 

Abstract: Since 1993 in the Netherlands, the mathematics core curriculum for junior 
secondary schools states that students should develop skills for using and applying 
mathematics in practical situations. For monitoring purposes, a trend study was 
carried out using mathematical hands-on tasks in a laboratory-like environment. The 
study was carried out in 1995 and replicated in 2000. It revealed that this kind of 
alternative, practical assessment can have a satisfying curricular validity, higher 
than written tests based on the same curriculum. However, comparability of test 
results (between students, schools, etc.) depends on the uniformity of test 
circumstances. 

Keywords: junior secondary, modelling, assessment, validity, reliability, 
manipulatives. 

 

INTRODUCTION 
Three decades ago Hans Freudenthal and his colleagues started to transform the 
mathematics curriculum in the Netherlands with a treatise, known as Realistic 
Mathematics Education (RME) (Freudenthal, 1975; De Lange, 1983). RME is 
characterized by the philosophy that mathematics is an integral part of real-life. Thus, 
mathematics is taught, not for its beauty, but for its applicability. In addition, 
mathematics is perceived as an activity and not as a set of rules. As such, 
mathematics is a creative and organizing activity in which unknown regularities, 
relations and structures are discovered. 

 

 

 

 

 

Figure 1: Modelling activities 

In RME, contexts and mathematics are perceived as two different worlds, which can 
be connected through modelling activities (Treffers, 1987). When starting from a 
context, the student has to strip it from its details and find relations and regularities 
that result in a mathematical structure, for example a formula, a graph or a table. This 
activity is called mathematizing (also known as horizontal mathematizing) and the 
resulting formula, graph or table is called: a mathematical model. The model is part 
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of the mathematical world, and needs rewriting, restructuring and refining to obtain 
an answer. This activity is called reformulating (also known as: vertical 
mathematizing). These two activities might need to be repeated a number of times, 
before a sound mathematical answer is reached. Within the mathematical world it is 
also possible to further generalize the problem and refine mathematical knowledge 
(not included in the figure). Returning to the context, the (mathematical) answers 
need to be interpreted in its context. In this activity, for example, units of 
measurement (meters or kilograms) need to be attached to the answer, and estimation 
can be used to verify if the magnitude of the answer is credible in the context. 
Finally, the answer will only make sense if it is related to the initial question, as there 
is need to reflect on the process of reaching results. 

In 1993, a common core curriculum for Dutch junior secondary schools was 
legislated. It was largely based on RME, emphasizing data modelling and 
interpreting, visual geometry, approximation, the use of calculators and computers. 
Chapters of Dutch mathematics textbooks start with real life situations, in which 
mathematics is used and applied, instead of concluding with these. National 
assessment was adjusted to the new content approach. Generally, test items in the 
RME-based curriculum describe an appealing daily life situation, often with authentic 
photos to enliven imagination. The test items contain modelling activities, requiring 
students to mathematize the context (e.g. into a graph), apply mathematical skills to 
use the model adequately (e.g. derive a solution from the graph), interpret the 
mathematical answer in its context, and reflect upon the methodology used. Readers 
who are interested in this approach can examine and analyze test items from PISA, 
the OECD Programme for International Student Assessment (OECD, 2000), which 
are in English, and similar to those in the Dutch curriculum. 

The new, RME-based curriculum differed considerably from the prior curriculum. A 
large exercise was undertaken to introduce secondary school mathematics teachers to 
the new content and its approach. Many workshops on the new curriculum were 
organized by the curriculum developers, and by teacher training institutes. The 
national exams were adapted to the new intended curriculum. Nevertheless, the 
introduction went hand-in-hand with a dilution of the initial ideals. One of the 
observed weak points in the dissemination of the curriculum was that the assessment 
practice remained of the written form and did not require students to apply their skills 
practically, as in small investigation projects. Therefore, a study was designed in 
which students were tested on their skills to use mathematics in practice, in a 
laboratory environment. Its objective was to investigate whether, as was the aim of 
the new curriculum, secondary school students were indeed improving their abilities 
to apply mathematics in practical situations. The study took grade 8 students as target 
population, as they had learnt mathematics based on the new curriculum for more 
than one year. The study also served as an empirical study to investigate what valid 
and reliable alternative assessment methods can be used to monitor the 
implementation of a RME-based curriculum. 
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INNOVATING MATHEMATICS ASSESSMENT 
When measuring student achievement in mathematics for a large population, in many 
cases, paper-and pencil tests have been used. However, these tests have come under 
debate, as they cannot evaluate all practical competencies from an intended 
mathematics curriculum. Attempts to alter assessment methods were made, which 
lead to the definition of criteria for alternative assessment: (a) testing through open 
questions and for higher order skills, (b) being open to a range of methods or 
approaches, (c) making students disclose their own understanding, (d) allowing 
students to undertake practical work, (e) asking for performances and products, (f) 
being as an activity worthwhile for students’ learning, and (g) integrating real-life 
situations and several subjects (Burton, 1996; Clarke, 1996; Niss, 1993). 

In this section, I will concentrate on alternative assessment for applied mathematics 
and modelling on a nation-wide scale, for example, to monitor curriculum 
developments. In this area of study, a number of issues have emerged. First, formats 
such as observation, interviews and portfolio have shown to be labor- and cost-
intensive. Second, the interpretation of students’ answers can result in unreliable data 
because of inconsistencies between examiners (Kitchen & Williams, 1993) 
Especially the coding of borderline answers (which are neither totally correct nor 
totally incorrect) is conditional to the coders' background (e.g. coding experience, 
subject matter knowledge, teaching experience, etc) (Zuzovsky, 2000). Despite 
obvious disadvantages, nation-wide alternative assessments of mathematics have 
been carried out. For example, countries participating within the Third International 
Mathematics and Science Study (TIMSS) had to administer a standard written test at 
grade 8 level (students at the age of approx. 14 year). Additionally, participating 
countries could opt to administer an alternative assessment, complementing the 
written test. This TIMSS Performance Assessment consisted of practical investigative 
tasks in science and mathematics (Harmon et al., 1997). The test was developed from 
the educational vision that seeks coherence between procedural, declarational and 
conditional cognition. Students were expected to investigate systematically, being 
provided with a practical context (manipulatives and instruments). They were tested 
through open-ended tasks like: designing and executing an experiment, observing and 
describing observations, looking for regularities, explaining and predicting 
measurements, etc. The test provided students with a worksheet that guided them 
through the tasks. Students had to record their answers on the sheet, and hand in 
products (lumps of plasticine, cut-out models, etc.). The use of manipulatives was 
considered appropriate as these assist students to better understand the context of the 
question. Instead of describing real life situations in words, the equipment offered the 
context directly into students’ hands. Especially second language learners and 
students with lower reading abilities were expected to gain from these circumstances. 

In 1995, the test was administered in 21 countries, amongst which the Netherlands. 
The test raised questions on reliability and international comparability of its results; 
in the international report a league table of countries was avoided. In the Netherlands, 
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the test was judged as being very valid in light of the new RME-based curriculum, to 
such an extent that the test was replicated in 2000 (Vos, 2002). Trend results would 
allow monitoring the implementation of the RME-based curriculum. Moreover, a 
replication could give experience in analyzing issues on validity, reliability and 
comparability of alternative assessments. 

In 1995, the TIMSS Performance Assessment was administered to a random sample 
of Dutch grade 8 students (n=437 from 49 secondary schools). In 2000, the test was 
replicated at a slightly smaller scale because of financial constraints (n=234 from 27 
secondary schools). The research questions were 1. To what extent is there a trend 
between 1995 and 2000 in the mathematics achievement of Dutch grade 8 students on 
the TIMSS Performance Assessment? and 2. What opportunities and obstacles do 
exist in large-scale mathematics assessment using hands-on tasks? 

VALIDITY 
Validity of a test can be established in various ways. For the TIMSS Performance 
Assessment in the Netherlands, an expert appraisal was carried out to establish the 
curricular validity of the test with respect to the Dutch RME-based intended 
mathematics curriculum for junior secondary schools. Six experts from a variety of 
mathematics education institutes were invited to assess the test items. Their appraisal 
showed that eight out of twelve tasks matched well with the intended mathematics 
curriculum (Vos, 2002). The other four tasks were from biology, physics and 
chemistry, or a hybrid of disciplines. These tasks were maintained in the test, but 
were not considered relevant for the measurement of mathematics achievement. 
Below are the eight tasks, which were considered to match well with the intended 
RME-based curriculum for grade 8. 

The task Dice is related to probability: students are given a dice and a transformation 
rule for each roll of the dice (an even throw: plus 2, an odd throw: minus 1). They are 
asked to throw 30 times, record their findings, perform the transformation, and 
explain why one output (the '4') has a higher frequency. 
The task Calculator is related to number sense: students are given a simple calculator 
and are asked to discover a pattern in the multiplications of 34x34, 334x334 and 
3334x3334. As the calculator holds only eight positions in the display, this is not an 
obvious task. The second part of the task consists of factorizing 455 into two integers 
between 10 and 50. 
The task Fold&Cut is related to symmetry and spatial abilities: using a pair of 
scissors, students have to cut, with one straight cut only, certain displayed figures. 
Because only one cut is allowed for each figure, the paper has to be folded (see 
Figure 2, left). The final item in this task asks students to design a folding plan 
without actually implementing and testing it. 
The task Around the Bend is related to scale drawing and finding geometrical rules: 
students are given a cardboard model of a corridor with a corner (the bend) and have 
to cut rectangles, modelling furniture to scale. By testing which rectangle fits through 
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the corridor, they have to find a rule for the critical lengths of the rectangles that fit 
the bend (see Figure 2, middle).  
The task Packaging is related to measuring and to the design of nets: students are 
given four table tennis balls and have to design three different boxes to contain the 
four balls. One design has to be cut, folded and fixed together with the sides exactly 
fitting the balls. The other designs only have to be sketched (with clear 
specifications). 
The task Rubber Band covers the topics of tables, graphs and extrapolation. In this 
task a number of washers are attached to a rubber band. Students measure the 
stretching of the band, which increases with each washer. With only ten washers 
given, students are asked to predict the length of the rubber band, if twelve washers 
were attached. This requires students to analyze the decreasing increment of data. 
The task Shadows is related to geometrical transformations. Students are given a 
torch, a card and a white screen. They have to project a shadow, twice the width of 
the object, and find a general rule for the distances between torch, card and screen. 
The task Plasticine asks for problem solving heuristics. Students are provided with a 
two-sided (uncalibrated) balance, two weights (20g and 50g) and a lump of plasticine 
(see Figure 2, right). They are asked to make smart combinations on the two sides of 
the balance, in order to produce pieces of plasticine of 10g, 15g and 35g. They have 
to communicate the method used. 

Figure 2: Students working on the task Fold&Cut (left),  
Around the Bend (middle), and on the task Plasticine (right). 

In hindsight, we should have consulted a sample of students on the validity of the 
test. Anecdotal evidence said that students particularily loved the tasks Around the 
Bend, Fold&Cut, Packaging and Plasticine. In these particular tasks, students had to 
hand in their answers on a worksheet together with their products (cut outs, plasticine 
lumps). Here, the worksheets had a plastic bag attached with a paperclip (with a label 
on which the student wrote his/her name), in which the products were returned to the 
test administrator. One observer noted that students, walking out of the testing 
session, said students did not feel as having completed a mathematics test; instead, 
they had fabricated something worthwhile. 
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Validity of a test can also be checked through an assessment grid, for example the 
grid designed for assessment of modelling and applying mathematics, as in Kitchen 
and Williams (1993). The grid contained the following assessment categories: 
mathematizing, rewriting (generalizing and simplifying), interpreting, and reflecting. 
All test items were allocated to one of these categories. If appropriate, an item could 
be fitted into two categories, but then the weight of that item would be spread. Two 
curriculum experts were asked to categorize the test items independently. Their inter-
rater score was 87% and their average results are reported in Table 1. For 
comparison, a standard written RME-based test for the same level of schooling was 
analyzed through the same procedure: the Afsluitingstoets Basisvorming 1999 (Final 
test for the core curriculum 1999), developed by the Centraal Instituut Toets-
ontwikkeling (National Institute for Educational Measurement). The TIMSS 
Performance Assessment showed a better spread over the grid, with a stronger 
emphasis on mathematizing than the RME-based control test. Often, in written tests, 
an item already readily states the mathematical formula, which models the context 
(and thus, these items do not require the construction of a model). Also, the skill to 
reflect is better covered in the TIMSS Performance Assessment. As a result, the 
TIMSS Performance Assessment can be considered valid on its spread of required 
modelling activities. 
 
Table 1: Percentage of test items in each modelling category, comparison between 
the TIMSS Performance Assessment and a standard, written RME-based test. 

Rewrite  Mathe-
matize Generalize Simplify 

 
Interpret 

 
Reflect 

TIMSS Performance Assessment 35 20 14 16 15 
Standard RME-based test 19 25 13 38 6 

 

RELIABILITY 
Reliability of test data depends on a number of issues. First, uniform test conditions 
must be created. In the TIMSS Performance Assessment, tests administrators traveled 
from the testing center to the schools with a large box containing all test materials 
and an abundance of supplies. In this way, the testing was independent of teachers’ 
skills and experience, and independent of schools’ equipment. To ensure uniform 
procedures throughout the measurement, the administrators were trained in how to set 
up the laboratory environment in an ordinary classroom (in case the school had no 
laboratory), how to introduce the test to the students, how to communicate with 
students during the testing session, etc. 

Alternative assessments contain open-ended questions, and when testing on a large 
scale, students’ answers need to be interpreted and transformed into a code, which 
can be entered into a database. The reliability of these data depends largely on the 
evaluation of students’ answers. Students’ answers must be interpreted in such a way, 
that the resulting code is independent of the coder. In the TIMSS Performance 
Assessment, coders were trained during a one-day workshop on the application of the 
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codes. To verify interpretation differences between coders, two different coders 
coded a systematic sub-sample of 10% of students’ responses independently. In this 
way, the inter-coder agreement was an indicator of the reliability of coding. This 
agreement was calculated as the percentage of items on which the two coders agreed 
with their codes. In the 1995 administration, the agreement on the correctness code 
ranged between 52% and 100%. The lowest percentage was reached on one item 
(from the task Shadows), where the coders only agreed on 52% of students’ answers. 
In the international protocols, no limits were set for the inter-coder agreement, but in 
hindsight, 52% should have been considered as too low to yield reliable results. 

Another source for unreliable results was the range for the equipment. The TIMSS 
Performance Assessment Administration Manual (1994) contained extensive 
inventory lists of the required equipment and materials, including their margins of 
tolerance. For example, for the rulers it was indicated that these should measure at 
least 30 cm and could be read to a precision of a millimeter. Another example is the 
description of the balance, to be used in the task Plasticine: 

"This may be any kind of simple balance, but it should be accurate. It must 
not have a scale, that is, not calibrated. Balance it without masses 
(weights) when setting up the station, and make sure that it does not go out 
of balance with handling. If it is not possible to obtain a balance, one can 
be constructed from common materials (coat hanger, plastic cups and 
string)." (TIMSS Performance Assessment Administration Manual, 1994, 
p. 30). 

All practical guidelines were meticulously followed, both in 1995 and 2000. Within the 
margins of the guidelines, there were possibilities to make slight adaptations between 
1995 and 2000. When organizing equipment for a replication of the test, one cannot 
always obtain exact copies of the equipment of the prior administration. When 
preparing for the replication, we did not know whether small equipment differences 
would have an effect on students’ performance. We made two observations that 
raised our attention, in the equipment of the task Shadows and in the task Plasticine.  
In the task Shadows a torch is used. The torch used in 1995 gave a slightly vague 
shadow, while the torch of 2000 gave a sharper edge to the shadow. The latter made 
student’s measurements easier giving them more time for remaining items. Another 
example of this equipment influence emerged in the task Plasticine. In 1995 a 
delicate metal scale balance was used, while in 2000 a plastic balance was used (see 
Figure 2, right). Both instruments were allowed within the range of the international 
guidelines that dictated the test procedures. However, in 2000 the students gained time 
by the handier equipment, as the new balance reached its balancing point faster. Students 
would remain with more time for additional items or for reflection on the task. 

At the onset of the replication study in the Netherlands in 2000, it was clear that if 
ever a trend was to be measured, the data needed to be comparable between years. 
Therefore, it was decided to check with more methods than only an inter-coder 
agreement. Inter-coder agreement cannot detect effects caused by different laboratory 
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equipment. To detect unreliable and incomparable results, two statistical tests were 
carried out (Vos, 2002). The results are shown in Table 2. First, for each task, 
Cronbach's alpha was calculated for 1995 and 2000 separately. Results higher than 
0.5 were considered acceptable. On this test, the task Rubberband failed. Second, a 
�2-test was carried out to compare the answer patterns of 1995 and 2000. The 
outcomes, indicated by their significance p(�2), indicated the probability that answer 
patterns were comparable. Values lower than 0.05 were considered as indicators of 
unequal testing circumstances in 1995 and 2000. On this test, the tasks Rubberband, 
Shadows and Plasticine failed. For the two latter tasks, this incomparability was 
probably caused by the change in equipment. As a result of the statistical tests, and to 
avoid distortions of the trend measurement, tasks with questionable data were 
eliminated: Rubberband, Shadows and Plasticine. 

 
Table 2: TIMSS Performance Assessment Mathematics tasks, 1995 and 2000 in the 
Netherlands: reliability, comparability between years, and results. 

Reliability 
Cronbach Alpha 

Students’  
achievement results 

 
Task 
(number of items) 1995 

(n=437) 
2000 

(n=234) 

1995-1999 Trend 
comparability 

p(� 2) 1995 
(n=437) 

2000 
(n=234) 

Dice (6) 0.50 0.64 0.77 77 (3) 74 (4) 
Calculator (7) 0.71 0.68 0.99 62 (4) 60 (5) 
Fold&Cut (4) 0.83 0.76 0.53 73 (4) 77 (5) 
Around the Bend (8) 0.59 0.62 1.00 68 (3) 70 (4) 
Packaging (3) 0.61 0.65 0.28 52 (4) 58 (5) 
Rubberband (7) 0.58 0.39 0.00 --- --- 
Shadows (6) 0.64 0.61 0.01 --- --- 
Plasticine (8) 0.85 0.78 0.00 --- --- 
Note.  ---  Dashes indicate omitted results, not satisfying the comparability test. 

Standard deviations are shown in parentheses. 
 
RESULTS 
Five mathematics tasks (with a total of 28 items) remained suitable for analysis. The 
achievement of Dutch students on the Performance Assessment in 1995 and its 
replication in 2000 is given in Table 2, in the right-hand columns. For each task, the 
average percentage of correct scores on the items is calculated. Compared to 1995, 
the achievement results did not show significant changes on these tasks. On each 
mathematics task, the shifts were statistically insignificant. The average percentage 
correct on all five mathematics tasks in 1995 was 66 (not included in Table 2), which 
did not differ significantly from the average score correct of 68 in 2000. The results 
showed that Dutch students in 2000 had not gained practical competencies in 
mathematics since 1995, despite the increased emphasis on these competencies in the 
RME-based curriculum. This answers the first research question. 

Of course, the null-trend was observed with regret. A curriculum change is a costly 
affair, and improvements towards its goals (more practical, applicable mathematics 
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skills) are expected. We had to face the fact that educational change does not happen 
overnight, and it does not happen to its fullest extent. The null-trend could have been 
caused by the classroom practice, in which students seldom encounter tasks in a 
laboratory environment. In Dutch classroom practice, hands-on tasks remained scarce 
and depending on the teachers’ initiative. One discoursing policy can be pinpointed: 
the national assessment practice stuck with a paper-and-pencil format, in which 
students only read texts about real-life contexts. These tests are easier to organize at a 
larger scale. As a result, despite curricular intentions, tests offering students tangible 
real-life contexts (through projects or through manipulatives) are still rare at the 
lower secondary school level in the Netherlands. 

The replication of the test showed, that testing conditions need to be well controlled. 
If one wants to compare between students, between schools, and also between years, 
one has to minimize differences in equipment. Small changes in equipment can have 
a multiplier effect on achievement scores, and thus destroy valuable data. Also, it is 
important to have different coders, who can code and re-code students’ answers at 
different stages in time. Nevertheless, provided these conditions, alternative 
mathematics assessment in a laboratory environment is feasible at a large scale. 
Reliability of data must be scrutinized closely, but the high validity of the test will 
compensate for this. This answers the second research question. 

Anecdotal evidence showed that the TIMSS Performance Assessment was an eye-
opener to many mathematics teachers. During the testing sessions, they observed the 
tasks and how their students coped with these. Some teachers showed their surprise 
admitting that they had never thought mathematics could be tested in a laboratory 
environment. They associated manipulatives with ‘fun mathematics’ as used on the 
day before holidays. Now, the assessment context created a serious atmosphere. As 
such, the TIMSS Performance Assessment could be used as exemplary curriculum 
material, not only in the Netherlands. 

In the Netherlands, the replication of the TIMSS Performance Assessment turned out 
to be a learning experience in many ways. In the first place, only by replicating one 
can measure a trend and monitor student performance after the curriculum change. 
From this, we learned that the curriculum change might not (yet) have the in-depth 
effect that was anticipated. Secondly, the TIMSS Performance Assessment revealed 
itself as an example for improving teaching and learning. One could imagine that if 
laboratory-based tests are part of national exams, then teachers who ‘teach to the test’ 
might better implement a mathematics curriculum based on modelling and 
applications. The implementation of nation-wide laboratory-based tests is still far, 
although the National Institute for Educational Measurement has experimented with 
it. Finally, replicating the TIMSS Performance Assessment was a methodological 
learning trajectory. By replicating the test, we discovered methodological 
weaknesses, which can easily be overcome, if the researcher is attentive and 
experienced. For example, the test confirmed the potential unreliability of coding 
open-ended questions. To improve on this point, samples of students’ work from 
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prior measurements will need to be safe-guarded for re-coding to enable comparison 
with the replication study. Also, the narrow margin for laboratory equipment was a 
surprise. Thus, the replication study turned out to be valuable, because it extended 
our knowledge on improving reliability of alternative assessment in general. 
However, as said before, any lower reliability is fully compensated by the high 
curricular validity. 
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