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Fourteen papers were submitted to G3 written by 24 authors. One author submitted 
two papers and was asked to decide which she wished to present. Hence thirteen 
papers went through the reviewing process. 
 
The review procedure comprised two stages. All papers were sent to two of the other 
authors for the initial reviews. These reviews were then submitted to a designated 
team leader who wrote a covering review, which was sent to the author of the paper.   
 
Three papers were returned to the authors for major amendment and these were not 
resubmitted. One of the accepted papers cannot be published since the author did not 
attend the conference. Hence nine papers were discussed during the conference. 
 
The 17 participants who attended all sessions of the group included five who were 
also at CERME3. Everyone was asked to read all the papers and to prepare questions 
and comments in writing for each paper. These were then given to the authors in 
advance with the request that they gave a brief overview of their research but to 
spend most of the forty minutes allotted to them, responding to the written questions 
and comments. We found that this provoked excellent discussion and deep probing of 
the research and analysis given in each paper. The discussion of each paper was 
chaired by one of the Group Leaders. Notes were taken and these were used as the 
basis for making any necessary amendments. The papers have been resubmitted and 
the review procedure re-enacted. They are now published in this section of the 
proceedings. 
 
It should be noted that the diversity of topics covered in the papers, which were 
reviewed, was extremely wide, from the point of view of research problem, 
methodology used and theoretical background. An innovation occurred during one of 
the presentations which was agreed beforehand by all the Group Leaders. The authors 
of the paper dealing with ‘mathematical thinking through oral communication’ felt 
that the best way that the participants could understand their research methods was to 
run a mini-workshop. This method was well received by the participants and the 
Group Leaders decided to offer this method of presentation for CERME5. The 
participants could be offered challenging tasks, which might be solved at or away 
from the conference or even tried by participants in their own teaching. Two of the 
papers presented at CERME4 were the results of international collaboration and it is 
felt that the proposed method of presentation will help to establish additional trans-
national research and collaboration. 
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It was decided to discuss the papers under the following six headings:  
  
Methodology 
Methodology was a frequent point of discussion. Two aspects of this discussion are 
raised below: 
If a group of researchers work for several years together, they usually develop their 
own methodology, technology and language and sometimes are not aware of how 
difficult it is for a person not familiar with their work to follow their presentation. A 
set of illustrations appeared to be the best way to overcome this communication gap. 
 
If the presenter of a paper does not put stress on issues which are important for other 
participants of the group, it causes concern. For example if an experiment is not at 
least audio-recorded and relies on memory of the researcher or even a third person, 
then the analysis of such research data must raise doubts about its validity in the eyes 
of those researchers for whom this is profoundly important.   
 
 
Phylogeny and Ontogeny 
How can the history of mathematics be used for the teaching of mathematics? If a 
teacher is unaware of the history of mathematics, does this make him/her less able to 
understand the development of mathematical topics within the mathematical 
syllabus? For instance one paper showed how the development of the language of 
algebra extended over centuries whilst in school this is done over a very short period. 
For example the introduction of the language of letters in history was an organic 
developmental step (expressions in words were abbreviated to letters which 
facilitated dealing with the expressions).  In the reverse idea to phylogeny, in 
ontogeny most pupils have no idea why they have to use letters in algebra. This is 
probably the main difficulty in bridging arithmetic and algebra. 
 
Differences in syllabuses in different countries  
This depends on the profound question of what is the goal of teaching mathematics.  
If the goal is just seeking concrete mathematical knowledge then the differences in 
syllabuses are a great obstacle for the exchange of ideas in the didactics of 
mathematics. However if we agree that the goal is the development of meta-cognitive 
and cognitive abilities then the differences are of minor importance. In this case the 
method of teaching and questions such as motivation, class discussion, mistakes etc 
are the major issues to deal with.  
 
Linkage between research and class/teacher 
It is important that researchers involve the class teachers of the students/pupils with 
whom they are working. If the teacher feels that he/she is simply the postman for the 
researcher, then the interaction between experimenter and teacher has a transmissive 

Working Group 3

288 CERME 4 (2005)



and not constructive character. The consequence of this is that the interaction 
between the teacher and the class also has a transmissive character. Again the teacher 
wishes to be involved because the researcher is working with ‘their children’ and the 
teacher feels responsible for his/her class. In addition, the class-teacher can provide 
an enormous amount of information to the researcher about the previous background 
work which the pupils have done. On the other hand the researcher can help the 
teacher in his/her professional development.  
 
Building and recognising structure 
Two different research approaches were presented, one based already constructed 
theory (Schwank) and the other based on experimental findings from specifically 
designed tasks. The common aim of both these approaches was to try to explain how 
pieces of knowledge are connection to create a structure. 
 
Language 
Each structure is linked to a particular language(s). When a structure is changed the 
language usually changes. For instance, when students start to move from the 
spontaneous level of understanding solids to a Euclidean level they start to build new 
and more precise language. Vague words like side and corner are replaced by the 
mathematical terms edge and vertex but the term side often used with two meanings 
in its vague form, that of edge and also face, whereas the term corner is used in an 
everyday language sense. In the instructive way of teaching it is usual to start with 
terms without considering the concept with which those terms are linked. Frequently, 
this artificial ordering of terms and concepts presents an obstacle for the development 
of structure. We believe that for a natural development of the underlying structure, 
the concept should come first and the correct terminology applied as the concept is 
being developed.   
 
The papers which were presented raised many fundamental issues as seen from above 
and the research done to create the papers goes someway to resolve some of them or 
at least offer suggested outcomes. 
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BUILDING STRUCTURE IN MATHEMATICS WITHIN 
TEACHING AND LEARNING PROCESSES - A STUDY ON 

TEACHERS’ INPUT AND STUDENTS’ ACHIEVEMENT 
 

Astrid Brinkmann, University of Duisbur, Germany 

 
Abstract: Mathematical objects are multiple connected one to each other, but also 
with non-mathematical objects and thus build up a network with manifold linkages, 
characterizing the structure of mathematics. During teaching and learning processes 
some parts of this network are carried over into pupils’ minds, changing their 
structure. This paper presents part of a study carried out in Germany, investigating 
the transformation of a network to the topic “sets of two equations of straight lines” 
during teaching and learning processes. Especially there are compared the network, 
that teachers stated to have taught in middle grade classes, and the networks, their 
students really learned. Overmore, there are provided findings on students’ abilities 
in using their network knowledge for problem solving. 

Keywords: mathematical network, network knowledge, connections, structure, 
network categories 
Introduction 
In the preface of the NCTM Yearbook 1995 it is pointed out that 

One of the four cornerstones of the NCTM Curriculum and Evaluation Standards 
for School Mathematics asserts that connecting mathematics to other mathematics, 
to other subjects of the curriculum, and to the everyday world is an important goal 
of school mathematics. Among recent reports calling for reform in mathematics 
education, there is widespread consensus that mathematics … must be presented as 
a connected discipline rather than a set of discrete topics … (House, NCTM 
Yearbook 1995 – Preface.) 

The notion that mathematical ideas are connected should, according to the NCTM 
Principles and Standards for School Mathematics 2000 (p. 64), permeate the school 
mathematics experience at all levels. 
These demands are not new, but they are expressed to an increased extend in the last 
few years. Especially in Germany, the call for a reinforced representation of mathe-
matics as a network of interconnected concepts and procedures becomes louder, not 
at least because of the results of the TIMS-Study (Baumert & Lehmann, 1997; 
Beaton et. al., 1996; Neubrand et. al., 1998) that reveal a great failure in students’ 
problem solving abilities according to a lack of flexibility in thinking in mathematical 
networks. This failure was once again confirmed by the PISA–Study, where 
interconnections and common ideas were central elements (OECD, 1999, p. 48). 
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However, there hardly exists detailed information about the existing deficits. Thus 
there is a need to reveal the exact lacks concerning students’ knowledge of 
mathematical networks (and with it mathematical structures and conceptual 
knowledge) and the reasons of the deficits. The presentation below reports on a part 
of a study to this concern (see also Brinkmann, 1999, 2002a, 2002b). The aim of the 
study was to investigate how a mathematical network as it is presented in textbooks is 
transformed when carried over into students’ minds during teaching and learning 
processes, and particularly focused on the topic “sets of two equations of straight 
lines” in middle grade classes. This paper reports on the investigation and comparison 
of the network, that teachers stated to have taught, and the networks, their students 
really learned. Overmore there are presented some findings on students’ abilities to 
use their network knowledge for problem solving. 
Theoretical Background 
The Concept of Mathematical Network 
The term network as it is used in everyday language denotes a system consisting of 
some components that are manifold connected, interrelated, and so dependent from 
each other. Such a network can be modelled mathematically by a graph: the 
components are represented by the vertices of the graph and every connection 
between two components, every dependence from one component on another, is 
represented by an edge of the graph. If two components, a and b, are mutual 
dependent one of each other, the edge showing this dependence is pictorial 
represented by a line, or alternatively by two arrows, one connecting a with b, 
denoted (a, b), and one connecting b with a, denoted (b, a). If only b is dependent 
from a, the edge between a and b is directed and pictorial represented by only one 
arrow (a, b). Thus, the edge-set of a graph corresponds mathematically to a relation 
on the vertex-set, modelling the interrelations of the system components. 
Mathematical knowledge has the structure of a network, as mathematical objects, i.e. 
for example concepts, definitions, theorems, proofs, algorithms, rules, theories, are 
manifold interrelated but also connected with components of the external world. 
Thus, a mathematical network may be represented by a graph whose vertices 
represent mathematical objects and nonmathematical components, and whose edges 
represent a relation on them, each of the edges linking the vertices of two 
mathematical objects or the vertex of a mathematical object and the vertex of a 
nonmathematical component. 
Cognitive Theories 
At present there exists no comprehensive theory that could describe the cognitive 
dimension of knowledge networks. However various theories and models are suitable 
for the description of particular cognitive aspects, such as aspects of manifestation of 
connections in the brain, the generation of networks, their storing, alteration, retrieve 
from memory, or the use of networks in thinking processes or problem solving 
processes (Brinkmann, 2002b, pp. 74-100), as for example the followings. 
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One of the most adequate theories is that of constructivism, with its basic principle 
that knowledge (in its interrelatedness) is not passively received but actively built up 
by the cognising subject. The social constructivism takes additionally social 
interaction into consideration. The constructivism provides a model suitable to 
explain the generation and alteration of individual cognitive knowledge networks. 
Theories of situated cognition point out the situated nature of learning, remembering 
and understanding. According to these theories, knowledge is always connected to 
the context of its acquisition. This context is mostly of nonmathematical nature, it is 
stored in mind together with the respective knowledge and influences its activation, 
its use and transfer. 
Network Categories 
Mathematical objects may be linked in very different ways one to each other or to the 
external world. The different sorts of linkages define different relations on sets of 
mathematical objects respectively between mathematical objects and nonmathe-
matical components, and thus different network categories. Main mathematical 
network categories with relevance for mathematics education in school are defined by 
Brinkmann (2001c, 2002b). The study part presented here restricts on some relations 
on sets of mathematical objects, i.e. relations according to subject systematics and a 
special relation according to the application of mathematical objects, the model 
relation. 
Essential relations according to subject systematics and the linking aspects defining 
them are: 
• different interpretations of the inclusion relation (part-whole link, subset-superset 

link, subconcept-superconcept link, case distinction link, classification link, 
characteristic/feature link (i.e. link between a characteristic/feature of a 
mathematical object and this object)), 

• relation of deduction (deduction link, i.e. link between a mathematical object and 
another deduced from it), 

• relation of belonging (belonging link, i.e. for example link between a theorem and 
a proof of this theorem, link between a problem and its solution). 

The model relation on a set of mathematical objects is given by model links, i.e. links 
between two different mathematical representations (for example a geometric 
representation and an algebraic representation) of the same mathematical object, in 
order to get solutions for a mathematical problem using representational change. 
Graphical Representation of Mathematical Knowledge 
When we want to analyse mathematical knowledge in its interrelatedness it is 
appropriate to represent this knowledge in graphs. Methods to transform texts (out of 
textbooks, or transcripts of interviews) respectively interrelated contributions given in 
an interview, a discussion or a conversation (e.g. in mathematics lessons) into a 
graphical structure are described in Brinkmann 2001b, 2001c, 2002. In order to map 
out an individual’s knowledge of mathematical networks graphically, concept 
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mapping (see e.g. Novak & Govin, 1984; Novak, 1990, 1996) turns out to be a 
suitable means. It uses special two-dimensional graphs - named concept maps - 
showing the concepts related to a given topic together with their interrelations. 
Methodology 
The participants of the study were 3 experienced teachers, regarded by their 
colleagues as being very proficient, of different schools in Germany (2 gymnasiums 
and 1 comprehensive school) and altogether 137 of their students (6 courses: 5 
courses of the 2 gymnasiums and 1 course with higher achievers of the comprehen-
sive school), out of grades 8, 9, 10 and 11. The 8th and the 9th graders had just been 
instructed in the focused subject, the 10th graders had learned the subject one respec-
tively two years ago, and the 11th graders three years ago. Every course dealt several 
weeks with the topic focused in the study. At the moment, when the teachers were 
asked to participate together with their classes at the study, the respective teaching 
unit was already finished. Thus no special educational style with regard to the study 
was used, but only usual traditional education. Characteristically, new knowledge is 
either presented by the teacher or developed in a question-response sequence, in 
which the teacher poses mostly narrow questions that require short answers. 
Teacher interviews 
The teachers’ statements in respect to the network around “sets of two equations of 
straight lines” they implemented in classroom were investigated by interviews, 
following the questionnaire given below (table 1). According to the network 
modelling by a graph, vertices (i.e. teachers’ statements about concepts they 
presented in classroom) and edges (i.e. how these concepts have been linked to each 
other) had to be revealed. The conception of the questionnaire took into account that 
classroom teaching is mainly based on textbook contents: correspondences and 
differences were asked. The questionnaire follows the principle of putting first broad 
questions that are subsequently narrowed down. Dependent on the answers given by a 
teacher during the interview some supplementary questions revealing further details 
should be formulated. The fifth question serves getting information about special, 
extraordinary facts that may have taken influence quite out of the ordinary on the 
students’ achievements. 
Table 1: Questionnaire 
1. Which contents were taught? Did the choice of the contents follow the textbook 

and if so, to which extend? Did you teach also contents that aren’t represented in 
the textbook? 

2. How did you integrate the contents? 
3. Which solving algorithms did you introduce to the students? Did they learn also 

graphic solving methods? 
 Have algebraic representations of pairs of simultaneous linear equations and 

solutions of pairs of simultaneous linear equations been interpreted 
geometrically? ... 
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4. Which links between mathematical contents were shown? Did you deal exactly 
with the connections presented in the textbook; where did classroom presentation 
differ from that in the textbook, what was left out, what was replaced, what was 
added? … 

5. Did the students show any special affective attitude? ... 

Student tests 
In order to map out the networks learned by students, concept maps drawn by them 
would have been a suitable means. The use of concept mapping requires the students 
to be familiar with this method, this condition was not given. Thus, the author 
developed students’ tests demanding activities closely related to those of concept 
mapping, without asking the students to draw a concept map by themselves: 

• First the students had to write down all the concepts that they connect in some way 
with “pairs of simultaneous linear equations”. This brain storming indicates 
predominant links in students’ minds. 

• As it is possible that students are aware of further links to concepts that they didn’t 
remember in the brain storming process, they received a list of concepts in the 
second test step, with the task to mark those ones that are linked in some way with 
the topic-concept. The selection of concepts to be listed, had to take into account 
what students could know according to the presentation of the focused topic in the 
classroom lessons, thus research results of the teacher interviews had to be 
considered here. Concepts which are in no way connected with the topic-concept 
were chosen that way, that they couldn’t be simply guessed. If the students knew 
further concepts linked to the topic-concept, but not listed, they were asked to 
complete the list with them. 

• By the third test item the students had to build conceptual classes with concepts of 
the list from the second item and to give for every class a generic term. This item 
reveals more detailed information about students’ knowledge of existing linkages 
and gives an insight in the way how students’ conceptual knowledge is structured. 

• To get more details about the knowledge of some special links, an incomplete 
concept map was given to the students in the fourth test item, with the task to fill in 
missing concepts and links. The most part of this concept map is shown, in its 
completed form, in figure 11. It represents major concepts implemented in 
classroom together with the relations between them.2 The missing concepts and 
links were some at the bottom of the map. Thus, this item examines especially the 
knowledge of model links between mathematical concepts but also of links 
according to subject systematics between the concepts in the last concept-row and 
those in the row above. 

                                                           
1 The concept map used included in addition different algebraic structures of a set of 2 equations in 
straight form, and their relations to concepts shown in figure 1. 
2 The concept map shown in figure 1 was constructed by the author on the basis of the outcomes of 
the teacher interviews; see figure 2, first graph. 
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the investigation of students’ abilities to use their network knowledge, some 
problems were posed in a fifth test item (table 2). These problems were of a new type 
for the students so that they could not be solved just by already practised algorithms, 
rather flexible thinking in networks was demanded.  
Table 2: Problems 
1. The equation 3x + 2y = 7 describes a straight line g. Write down an equation for another 

straight line h, that 
 a)  is parallel to g, 
 b)  intersects g in the point P(1; 2), 
 c)  has more than one intersection point with g. 
2. The straight lines g1and g2 are parallel. The straight line h intersects g1 in the point P(2; 1) 

and g2 in the point Q(0; 3). Write down equations that may describe the three straight lines. 

Networks 
Out of the data obtained by the teacher interviews and the first four student test items 
the corresponding networks were represented graphically, and compared (for more 
details on the methodology used here see Brinkmann, 2002b). In the graph based on 
the outcomes of the student tests only those links were drawn, that were achieved by 
at least 50% of the students. 
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Research Results 
Results of the teacher interviews – brief outline 
All three interviewed teachers answered that their classroom implementation to the 
topic “sets of two equations of straight lines” followed nearly exactly the textbook, 
referring the represented concepts as well as their connections. In particular, there 
were discussed the different relations of position of 2 straight lines (case distinction 
link), and correspondingly the different number of intersection points (case 
distinction link, model link), respectively the different number of solutions of a set of 
two equations of straight lines (case distinction link, model link). Further there were 
introduced several solving algorithms for sets of 2 linear equations with 2 variables 
(subconcept-superconcept link). The teachers expressed that most of the students 
understood and learned the presented connections between algebra and geometry, but 
that the solving algorithms are the best and lasting learned. After some time, they 
said, most of the students essentially remember the solving algorithms, connections 
between algebra and geometry get first lost. 
Results of the student tests 
The first test item reveals that the students connect in a sensible way several 
geometric and algebraic contents with the topic, e.g. “graphs in a coordinate system”/ 
“lines” (54%), “addition method” (19%), “equation of the straight line” (16%), 
“linear function” (15%). 
The results of the second item show that most of the concepts that are linked with the 
topic-concept were also marked by the majority of the students and concepts that 
have no connection to the topic-concept were respectively marked only by a minority 
of the students. In particular, it turns out that most of the students know the names of 
suitable solving algorithms. Further it is obvious that students know about some 
connections between geometry and algebra, as most of them marked correctly 
algebraic concepts as well as geometric concepts. 
By working on the third test item the students showed various classification aspects 
for concepts linked to the focused topic. The generic terms named most frequently 
were: algorithms (51%), lines (45%), solutions (32%). Most of the concepts connec-
ted with the single generic terms were correctly subsumed. Right solving algorithms 
were named by about 80% of those students who gave “algorithms” as generic term. 
Under the superordinate concept „lines“ there were subsumed a lot of concepts that 
might also be classified in a more differentiated way. Most of the conceptual classes 
given by the students show linkages according to a subconcept-superconcept relation, 
i.e. simple links according to subject systematics. Model links between geometry and 
algebra were pointed out only by one student under the generic term „solutions“. 
The fourth test item reveals a great uncertainty in the knowledge about model links 
between mathematical concepts. The students were more successful in finding the 
right missing concepts than the missing links. Only 5% of the students managed to 
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complete correctly all the missing elements of the concept map. The concept comple-
tions show that about half of the students know about the different possible number 
of solutions of sets of 2 equations of straight lines and also about the different possi-
ble number of intersection points of lines (case distinction link). The knowledge a-
bout the different relations of position of 2 lines appears only by 30% of the students. 
The problems of the fifth test item were solved only by a minority of the students 
(problem 1a by 22%, 1b by 9%, 1c by 27%; problem 2 by 5%). Even those students 
that appeared to have the necessary conceptual knowledge, partly failed in solving the 
posed problems, especially problem 2. 
There were no significant differences between the results obtained from students who 
had just dealt in classroom with the focused subject (8th and 9th graders) and from 
those who learned this subject longer time ago (10th and 11th graders). 
Networks 
The following graphs (figure 2) represent outcomes of the investigations. The first 
graph shows the network teachers stated to have implemented in classroom, the 
second graph visualizes, according to the outcomes of the first four test items, which 
of the network links are achieved by the majority of the students. The different links 
according to subject systematics are marked with S, model links with M. 
Figure 2 
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A comparison of the two networks brings out that the mainly learned connections by 
students are part of the links according to subject systematics, model links are hardly 
known. The manifold interrelations of the concepts, that students associated in the 
second test item with the topic-concept, are for a great deal lost. The students know 
about isolated concepts around the topic, but these are not well-structured. 
Discussion 
The study reveals the incompleteness of the transfer of implemented networks in stu-
dents’ minds, in usual traditional education in Germany. Moreover, the missing rela-
tions in the achieved networks are pointed out and characterized; thus we have more 
differentiated and exact results than provided by the great studies TIMSS and PISA. 
Consequences in respect to the teaching of connections have to be discussed. 
According to the theory of constructivism, the students have to be given tasks so that 
they can discover connections by themselves. In particular, these tasks should 
develop linkage and understanding between the algebraic and geometrical represen-
tation of simultaneous linear equations, as the study indicates lacks here. 
Furthermore we should use more adequate methods for representation of mathema-
tical networks in classrooms. Concept maps and mind maps seem to be efficient tools 
for this purpose (see e.g. Brinkmann 2001a, 2002c, 2003a, 2003b), not at last because 
of their graphical structure with network character. 
The study presented in this paper shows also, that even those students having the 
necessary conceptual knowledge are not necessarily able to use it successfully in 
problem solving processes. One reason might be the presentation of the focussed 
topic in the textbooks followed by the teachers. Although there is given a description 
and explanation of the interrelatedness of concepts connected with simultaneous 
linear equations, there is a great lack of problems demanding this network knowledge 
for solving them. Most of the problems given in the textbooks can be solved by using 
algorithms, and thus these are the problems mainly treated in lessons, homework and 
exams. An increased number of purposefully constructed problems requiring flexible 
thinking in networks should be offered and probed in classrooms. 
In order to evaluate the efficiency of respective changes in the educational stile, in the 
methods for representation of mathematical networks, or in textbook presentations, 
further studies have to be carried out, including also direct observations of teaching 
processes. 
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THE METAPHOR “CONTRACTS TO DEAL WITH CONCEPTS” 

AS A STRUCTURING TOOL IN ALGEBRA 

Elmar Cohors-Fresenborg, Universität Osnabrück, Germany 
Christa Kaune, Universität Osnabrück, Germany 

 

Abstract: Many students’ mathematical knowledge is fragmented and they do not 
perceive the links between these fragments. A Cognitive Mathematics Education ap-
proach, i.e. an orientation on the thinking processes, gives a chance for change. We 
report about the main ideas and the outcome of a curriculum project, in which the 
construction of a cognitive mathematical operating system in the pupils’ heads is put 
into the centre of our conceptual work. Metaphors play an import role in establishing 
the system. The aim is that in the beginning of any maths lesson this operating system 
boots in pupils minds and organises the connection of the mathematical knowledge. 
This hinders fragmentation. We present examples of pupils’ work and analyse how 
the operating system controls the organising of mathematical knowledge. 
Key-words: Cognitive Mathematics Education, metaphors, algebra, metacognition, 
classroom culture. 

1 Introduction: Cognitive Mathematics Education 
Many students’ mathematical knowledge is fragmented and they do not perceive the 
links between these fragments, since they are stored in the student’s mind using me-
mory only. In order to remedy this bad state of affairs, it needs a new orientation of 
mathematics teaching and learning. We have moved the main focus away from a sub-
ject-orientation to a cognitive theoretical basis. It means that the cognitive mecha-
nisms when constructing mathematical knowledge in the pupils’ heads and the proc-
ess of knowledge organisation and knowledge use form the centre of the teacher’s 
attention. Our approach “Cognitive Mathematics Education” (CME) combines a cur-
riculum branch (Osnabrueck Curriculum) with a change in classroom culture, based 
both on research in cognitive science. 

• The Osnabrueck Curriculum (OC) puts the construction of a cognitive mathemati-
cal operating system in the pupils’ heads in the centre of the conceptual work in-
stead of teaching fragmented mathematical expertise which remains isolated. Its 
most important elements are  
- the function frame and 
- the contract frame 
with suitable, attached procedures. It includes the development of suitable learning 
environments. The aim is that, in the beginning of any maths lesson, this operating 
system boots in pupils minds and organises the connection of the mathematical 
knowledge. We have followed this guideline when conceptioning OC for grades 7 
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to 10 (age 12 to 15) at schools of the type “Gymnasium”1. (Cohors-Fresenborg, 
2001; for an overall view of the ideas in English see Cohors-Fresenborg, 1993b; 
Cohors-Fresenborg, Schwippert and Klieme, 2000). 

• The classroom culture is determined by  
- an orientation on the pupils’ conceptions, discussing the relationship between 

external and internal representations, 
- an acknowledgement of  a discursive teaching-learning style,  
- a metacognitive behaviour of teachers and pupils (Cohors-Fresenborg & 

Kaune, 2001), 
which all three are supported by new formats of exercises, tests and textbooks. 

• The  basic research is concentrated on the concept formation processes, especially  
- individual differences in cognitive structures, predicative versus functional 

thinking (Schwank, 1993), 
- the role of mental models and specific learning environments. 

 

The question as to whether the considerable shift of emphasis necessary for the 
achievement of these changes – the contents of the present curriculum have to be 
taught in approx. 75% of the teaching time – is at the expense of the performance in 
achieving the learning targets of the regular curriculum or whether the investment in 
the construction of an operating system already pays off after a short while.  
In order to examine this question, a comparative study with TIMSS-instruments had 
been undertaken (Cohors-Fresenborg, Schwippert and Klieme, 2000). In summary, it 
can be said that the construction of the above-mentioned cognitive mathematical op-
erating system makes it possible to make up the necessary teaching time as early as at 
the end of grade 8 and to achieve – at the individual level – significantly better com-
petitiveness when referenced against the TIMSS-scale. One conclusion is that the 
“amount of teaching contents” is not the main hindrance to the improvement of 
mathematics teaching, but that the quality of teaching has to be improved. 
This paper gives a first insight into how one of the two parts of the cognitive operat-
ing system, the “contract metaphor”, is developed in the pupils’ heads with the aim 
that future knowledge is not gained in fragments, but is knotted into an already exist-
ing semantic network. The metaphor “operating system” is meant to make clear that 
the organisation of access is an important task when constructing a knowledge net-
work. With the help of case studies, we further analyse what role the operating sys-
tem plays whenever pupils work on algebra-problems and proofs. This analyse shall 
also theoretically explain to which cause we put down the discovered increase in per-
formance, especially with average and weak pupils, in the above-mentioned empirical 
study: the knowledge is not fragmentary, the access to knowledge is organised. 

                                           
1 The Osnabrueck Curriculum is a result of two long-lasting curriculum projects in the German Federal State of Lower 
Saxony for the improvement in mathematics teaching in schools of the type “Gymnasium”. In Germany the school 
system at secondary level is divided into three levels. A “Gymnasium” is the school of the highest level. In Germany 
about one third of  each age group attend  a “Gymnasium”. 
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2 The Metaphor “Contracts” as part of a Cognitive Mathematical Oper-
ating System 

The description of the mathematical knowledge of pupils via the concepts “frame“ 
and “procedure“, introduced to the cognitively-oriented mathematics education by 
Davis and McKnight (1979), gives cause for searching fundamental frames and pro-
cedures. These have to be developed as parts of a mathematical cognitive operating 
system in the pupils’ heads in the first lessons at grammar school and their combina-
tion has to be consciously implemented for the pupils. 
The “function frame” and the “contract frame” are the most important parts of this 
mathematical cognitive operating system. Both use the frame “formal representation 
of intuitive knowledge”. This requires a fundamentally new judgement of the impor-
tance of language and formalisation in mathematics teaching from the teachers, and 
moreover justifies itself by the increase in value of understanding and communica-
tion. For the introduction of the function frame in grade 7 see Cohors-Fresenborg 
(1993a, b), Kaune (1995) and Sjuts (1999a, pp. 77-91). It is important to notice that 
the “function frame” is not simply a knot of subject knowledge in a knowledge net, 
but part of the cognitive operating system which organises, controls and supports the 
use of knowledge. 
Mathematics teaching, especially at “Gymnasium” level, is meant to give pleasure in 
the theory of, and in the capability to use, mathematics. Here a deep understanding of 
the formation of abstract mathematical concepts is indispensable. Our starting-point 
offers easy access to this by the question what is actually meant by the intuitively ex-
isting mathematical concepts: The cognitive theoretical procedure only has to con-
centrate on mathematics itself. Thus it is clear that questions of meta-mathematics, 
the formation of concepts by and in axiomatic systems and the nature of precise and 
explicit definitions and proofs become an integral part of the lessons. The axiomatic 
method is a means in order to generally organise a (mathematical) stock of knowl-
edge, to ensure it in itself and to develop it. It has been achieved to give even pupils 
of grade 8 a long-term workable framework idea by establishing a suitable micro-
world “Sentences from the Desert”2. Following that the microworld „Contracts for 
the Dealing with Numbers“ (textbook and teacher’s manual: Cohors-Fresenborg et 
al., 1998) offers a frame which provides a unified basis for insight into the formation 
of concepts in customary school mathematics in fields such as extension of the num-
ber domain, term rewriting, equations and the method of proving. Probability calcu-
lus also fits this frame: It is a contract to talk precisely about the uncertain (textbook: 
Cohors-Fresenborg et al., 1994). 
Just like new software is installed with the help of an operating system in the world 
of computers, the cognitive operating system conceived by us enables the pupils to 
integrate new mathematical theories and views, such as extension of number domain 
                                           
2 The text book and a detailed teacher’s manual (Cohors-Fresenborg et al., 2003) unfortunately only exist in German, 
but a short  English description of the didactic concept can be found in Cohors-Fresenborg (1987, pp. 268-271). 
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and probability calculus, into their existing knowledge network already at the time of  
gaining this knowledge. 

3 The Benefit of the Metaphor “Contract” in School Algebra 

3.1 The Introduction of the Metaphor “Contract” in Lessons 
“Contract for Dealing with Concepts” is a metaphor (in the sense of Lakoff, 1980) 
used in the Osnabrueck Curriculum for the axiomatic dealing with concepts. In our 
teaching series “Sentences from the Desert” we do not introduce axiomatic systems 
by abstraction from many examples, contrary to the common procedure in German-
speaking mathematics education of the sixties and seventies. We do, however, use a 
framework story, “Contract for the Construction of Motorways“, (Cohors-Fresenborg 
et al., 2003, p. 33), in which a sheikh concludes a contract with a building-company 
for the construction of a motorway network in his emirate. The discussion during the 
lesson is about what minimum has to be built according to this contract (mathemati-
cally speaking, which characteristics each model of the axiomatic system must have). 
We also want to impart to the pupils that the process of precisely stating concepts by 
defining has to end sometime with an amount of concepts, for the precise stating of 
which other tools are needed: The extent of meaning of those concepts looked at in 
relative terms to other fundamental concepts is regarded as evident in the argumenta-
tion context. A reflection of syntax and semantics clarifies the connection between a 
(mathematical) object, its name and a sign for its name. It provides a workable 
imagination of what a writing figure means, which presupposes the existence of an 
object  (Sjuts, 1999a, p. 123). 
By calling up the metaphor “Contract” we use the pupils’ intuitively existing knowl-
edge about the problems of using the concepts in juridical contracts. Through this we 
also create access to the understanding of the difference between implicit and explicit 
definitions. Proofs in a contract also serve to make sure that the implicit definition of 
a concept network by the contract (axiomatic system) meets the intention. 
 

In the following we first briefly describe how the concept of “whole numbers” is in-
troduced in lessons in grade 8 following the Osnabrueck Curriculum. Then we give 
two examples, one concerning linear equations (in grade 8), one concerning term-
rewriting procedures with roots (in grade 9). Each example first presents a problem 
from a written class test followed by some pupils’ solutions (for partial problems), 
which are interpreted and analysed within our conceptual framework. 
 

3.2 Introduction of a Contract to Deal with “Debit and Credit” 
The availability of the metaphor “Contract for Dealing with Concepts” allows a dif-
ferent procedure for dealing with the extension of the number domain of natural num-
bers to whole numbers: There is a contract to be concluded with a bank in order to 
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book “Debits and Credits”, which guarantees that the bank books exactly according 
to the customer’s ideas in every case. This means that existing intuitive knowledge 
about the booking practice of financial institutes when running an account (i.e. calcu-
lating with positive and negative numbers) has to be precisely stated and the proce-
dures of paying in and out have to be formally described. The result is a contract to 
deal with „Debit and Credit”, mathematically speaking, an axiomatic system for 
commutative groups. It is also worked out to what extend the paying out process can 
be taken as a reversal function of the paying in process. The nominal definition of 
subtraction resulting there from is cited as “S” by the pupils in term rewriting (as well 
in the transcription below).  
As the pupils have already gained considerable experience with formal representa-
tions from the teaching series “Sentences from the Desert”, this does, of course, also 
include for the pupils that the final version of group axioms have been put down in 
writing in a formalized representation in predicative logic. The pupils’ solutions 3.3.2 
show that the pupils have not gained fragmented expertise, but a competence which 
they will use themselves whenever they formulate new facts and have to discuss 
them. 
 

3.3 Application in the Field of “Linear Equations” 
The worked out axioms for fields, understood as a contract for calculating, constitute 
a tool to justify term rewritings. In order to solve linear equations the contract has 
been enlarged by two paragraphs: +R§  justifies the addition of a term on both sides of 
an equation, ⋅R§  justifies the multiplication. 

3.3.1 A Problem from a Written Class Test 
Pupils of grade 8, who had been taught according to the Osnabrueck Curriculum 
since grade 7, were confronted with the following problem in a written class test: 
Problem: Paula exercises the solving of linear equations with the following example: 

yyyy 5,0)5,0(5,025,45,2)5,01(5,025,1 +−⋅−−=++⋅−  
After a couple of equivalent rewritings she has simplified the equation to: 42 −=+y  With 
the following comment she gives up:  
”I must have made a mistake. We have never had such equations. You will only get fur-
ther if you are allowed to use a paragraph R-.” 
a) Check if Paula has made a mistake. 
b) Formulate a paragraph R- according to what Paula has in mind. 
c) What would you reply to her? 

This problem is typical for the Osnabrueck Curriculum and the problem culture prac-
ticed therein (see Kaune, 2001a): The pupils are prompted to reflect their own ideas 
and those of their class-mates and then to put their views down in writing. Such meta-
cognitive activities (see Sjuts, 1999b; Cohors-Fresenborg and Kaune, 2001) also pre-
pare meta-mathematical understanding.  
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The partial problem ‚a’ asks for a term rewriting and a justification by paragraphs. 
Partial problem ‚b’ asks to analyse at first the concrete situation in a general light and 
then to generally formulate the knowledge gained as a paragraph. This means, the 
generating of universally usable new knowledge is demanded. Mathematically this 
means the invention of a new theorem. Partial problem ‘c’ is about the discussion of 
the theorem’s place value in the previous contract. 

3.3.2 Pupils’ Solutions 

Partial Problem b 

Tanja:  dcdbacba
dcbaR −=−+⇔=+∧∧∧∧−  

Henrik:  cbcabacbaR −=−⇔=∧∧∧−  

Frank:  )()( cbcabacbaR −+=−+⇔=∧∧∧+  

Partial Problem c 

Tanja 
“How do you know that you have made a mistake? Instead of 42 −=+y  you can also say 

421 −=+⋅ y  and we have always had such equations. Furthermore we have never needed a § R- 
and will not need it, as this problem can be solved by saying e.g. )( a−+ ”. 

 42 −=+y   

⇔  )2(4)2(2 −+−=−++y  § R+ 

⇔             )2(40 −+−=+y  § I+ 

⇔             60 −=+y  * 

⇔             60 −=+ y  § K+ 

⇔                   6−=y  § N+ 

Henrik 
We have already got this § indirectly, because with the help of S we can change ba −  to 

)( ba −+  and also vice versa. This means we can calculate with R+, e.g. )()( cbca −+=−+ , and 
then we can rewrite this as cbca −=−  with the help of S. 

Frank 
We have already got a sort of paragraph R- . It belongs to paragraph R+. It is used according to 
the principle of paying debts.  

3.3.3 Interpretation 
All three pupils’ solutions have to be considered correct, but there are quality differ-
ences regarding their depths of understanding. 
Tanja’s formalization is very much oriented to the example’s term structure. She 
starts from terms in the form of a sum, she solves, however, the problem of subtrac-

Working Group 3

CERME 4 (2005) 305



tion of an arbitrary term. In her argumentation she furthermore shows that the prob-
lem can be solved without the use of a new theorem. We consider this an initial kind 
of proof for her theorem. 
Henrik states a general solution and gives reasons, why this new theorem from the 
previous contracts is provable. 
Frank states the general solution under a name and in a description which provides 
the reader immediately with the idea for a proof. Apart from this, his argumentation 
also makes clear what use the metaphor „credits and debits” has for his understand-
ing. 
 

3.4 Application in the Field of “Term-Rewriting with Roots” 
The Osnabrueck Curriculum deals with all term rewriting rules in the way docu-
mented in the last paragraph. The distinction between syntax and semantics as a sub-
ject of the Osnabrueck Curriculum on one hand allows to prove facts in axiom sys-
tems and then to use them for different interpretations. On the other hand it allows the 
discussion of the problem with the pupils to what extend certain „terms” make sense 
or only pretend to be meaningful and therefore only look as if they were terms. 

3.4.1 A Problem from a Written Class Test 
Pupils in grade 9, who had been taught according to the Osnabrueck Curriculum 
since grade 7, were confronted with the following problem: 
Problem: Four pupils are discussing the solution of the following problem: 

Simplify the following term as far as possible: 5,4185,418 +⋅− . 

Silke: “First I thought the solution would not work. But now I know it has to be 25,2−  
and that is 5,1− .” 
Eva: “This is not possible, as the solution is syntactically wrong.” 
Michaela: “It is not only the solution that is wrong, the first line must be wrong as 
well.” 
Ariane: “Every line is wrong. I think we should not even have started calculating … “ 
 
a) Which of Silke’s comments do you agree to? 
b) Why does Eva think the solution is syntactically wrong? 
c) Do you agree with Michaela? 
d) Please assess Ariane’s comment. 

This problem as well is typical for the Osnabrueck Curriculum and the different prob-
lem culture practiced therein. The construction principles and the intended effects of 
such problems are shown in Kaune (2001b, p. 44). 
In partial problem ‚a’ a typical pupil is addressed to. Part ‚b’ also helps to direct the 
pupils’ focus to the problem of the meaninglessness of certain formal writing figures.. 
The partial problems ‚c’ and ‚d’ are meant to teach the pupils to reflect more clearly 
where the problem lies. 
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3.4.2 Pupils’ Solutions 

Partial Problem a 

Markus 

( ) ( ) 5,05,4185,4185,4185,4185,418 2 −=−=+⋅−=+⋅−  

The problem is syntactically wrong as there is a name given for 5,0−  in every line, but 5,0−  
does not exist as a name for a number.  
I can only agree to Silke’s comment, i.e. 5,125,2 −=− . This means the solution of the problem 

is not 25,2− , and she should have explained more clearly that this problem cannot be solved. 

Jutta 
I agree with Silke when she says the problem “does not work”, as there is no 25,2− , because it 
does not matter if you multiply a positive number by a positive number or a negative one by a 
negative number. You also get a positive number, never a negative one. Furthermore Silke 
probably thought that 25,225,2 −=− , which is not the case. 

Marion 
Silke’s first presumption is correct, as 25,2−  is not a name of a number. There is no number 
which - multiplied by itself - is 25,2− . 

Partial Problem c 

Markus 
Yes, I agree with Michaela. As the solution is syntactically wrong, there is also a name for the 
solution in the previous lines, which does, however, not exist as a name of a number. 

Jutta 
Michaela is right, because if you have calculated correctly, the last line is the same as the first, 
and if the last line is syntactically wrong, then, consequently, the first line is wrong as well. 

Marion 
The first line and the one in between must be wrong, too, as we have always drawn conclusions 
starting from the first line, and there are also the equals signs, and every line is covered by a 
paragraph.  

Partial Problem d 

Markus 
Ariane is right in saying that every line is wrong. You were, however, allowed to get on calculat-
ing, as re-writings have been made in every line which can be justified by rules, laws and formu-
las. Moreover, it was not recognizable in the beginning that the problem is syntactically wrong. 

Jutta 
Ariane is also right because when you have calculated correctly, there is the same in every line, 
only under a different name. And then,  if one line is syntactically wrong, all the others are also 
wrong. She is also right in saying we should not have started calculating, because if the problem 
is syntactically wrong, all the rest will also become syntactically wrong.  
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It is, however, understandable that we started calculating, as it could not be seen at first glance 
that the problem is syntactically wrong. 

Marion 
It is allowed to start calculating, because it cannot be recognized straight away that the term is 
syntactically wrong. You only notice that when you have come to the end of the calculation. 

3.4.3 Interpretation 
Presumably Markus makes two mistakes at the end of his calculation according to 
part ‚a’. The wrong result, however, allows him to continue his work on the problem 
according to the formulation of the problem. With his formulation: As the solution is 
syntactically wrong“ he takes up his knowledge from his maths lessons (see Cohors-
Fresenborg et al., 2003, p. 51): As there is no object with the characteristics men-
tioned, access with the help of an indication operator – as used in the definition of the 
root function – is not allowed, therefore he uses the formulation „syntactically 
wrong“. 
The problem, to what extend a meaning and therefore a name (for a number) is given 
by the supposed root term, is more clearly mentioned by Jutta. 
Marion gives reasons that the syntax mistake of the last line must also have been in 
the first one. The view of calculating by using paragraphs of a contracts becomes 
very clear in her argumentation. 
While Markus and Marion thought that they were allowed „to start calculating“, Jutta 
realizes that actually they should not have started calculating, but that this knowledge 
could only have been gained after calculating. Jutta has got a remarkable understand-
ing of the argumentation pattern of indirect proofs. 

4 Summary 
We have shown how to counteract the splitting into fragments of the pupils’ mathe-
matical knowledge: by means of the construction of a cognitive mathematical operat-
ing system in the pupils’ heads in grades 7 and 8. Its two components “function 
frame” and “contract frame” bring together essential contents and methods of school 
mathematics. We have explained how calculating, term rewriting, defining and prov-
ing are linked with each other. Pupils as well have this insight as can be seen in the 
following dialogue in grade 10: 

Teacher: “What do you have to know when you want to prove something?“  
Clemens: “Yes, I think the most important thing is to know the contract, so that you know right 
from the beginning what you are allowed to do and what not.” 
Teacher: “Do you think proving is more difficult than calculating?” 
John: “If there were a term, you wouldn’t be able to, couldn’t do it any different than that. [He 
means term rewritings do not work any different than proving does]. You would have to get it 
from somewhere, your knowledge from the contracts. And that would not be any different to 
working with variables. [He means the representation of term rewriting rules with the help of 
variables].” 
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FROM EXPERIENCE, THROUGH GENERIC MODELS TO 
ABSTRACT KNOWLEDGE 

 
Milan Hejný, Charles University in Prague, Czech Republic 

Jana Kratochvílová, Charles University in Prague, Czech Republic 
 
Abstract: The theory of generic models (or TGM) as a concept development theory is 
described and compared to the reification theory. In TGM, the knowing process is 
decomposed into generalization and abstraction levels with the generic model as its 
pivot term. TGM is applied as an educational and/or research tool to: 1. characterize 
a teaching style and 2. create a teaching scenario (of a particular mathematical 
topic). Within these two issues, we consider a students’s 3. discovery of relation 
(rule, formula, procedure), 4.  concept development process, 5. non-standard solving 
process, 6. failure.  
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Key words: generalization and abstraction level, generic model(s), isolated 
model(s), knowledge with understanding, mechanical knowledge, structurisation.  

 
INTRODUCTION  
A transmissive teaching method based on transmitting ready-made knowledge from a 
teacher to students causes that a student’s knowledge often suffers from the lack of 
understanding. Such mechanical knowledge is kept in memory without connections 
to the student’s life experience or other areas of his/her knowledge structure. Such 
isolated knowledge can only rarely be used (except in standard situations such as 
drill) and is quickly forgotten. The theory described and used in this paper was 
elaborated in the 1970th by the first author under the guidance of his father V. Hejný. 
It was first published in English in (Hejný, 1988) and later elaborated further in 
several papers, e.g. (Hejný, 2003). This paper presents our current understanding of 
the pivot term of TGM, i.e. a generic model, which gave the theory its name.  
 
THEORETICAL FRAMEWORK 
Theory of Generic Models 
The structure of TGM is depicted in the following scheme:  

 → abstraction → abstract knowledge  
                                                             (i) 

experiences → generalization →                       

generic 
model 
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It consists of two consecutive levels. In the first, Generalization level, i.e.  
             experiences → generalization →  generic model,            (i’) 
students’ experiences group and change into one image – the generic model. In the  
second, Abstraction level, i.e.  
             generic model → abstraction → abstract knowledge,            (i”) 
the generic model loses its embedment in object thinking and changes into abstract 
knowledge whose structure is richer than that of the generic model. 
Generalization level (i‘). Each concrete experience is stored in memory as a model of 
future knowledge. At first, each of the models is isolated but later on, some of them 
start to refer to each other (see the example below). When the web of these bilateral 
references reaches a certain density, the set of models, so far isolated, is arranged and 
changed into a group. The references are often of two types: congruent and 
contradictory. The congruent ones, which create the group, are changed into a new 
mental object (concept, relationship, rule, scheme, etc.). The contradictory ones help 
to define the boundary of the new mental object. The mental object is a generic 
model which plays a role of a representative of the whole group. In some cases, the 
final generic model arises from particular generic model(s) via amalgamation.  
For example, a child observes that two sweets and one sweet give three sweets, two 
dolls and one doll give three dolls, etc. At the beginning, there is no linkage among 
these experiences. However later on, a child starts to see that there is something 
common in all these situations and finally he/she recognizes the fact that two fingers 
and one finger give three fingers is the same as cases with sweets, dolls, etc. Fingers 
become a generic model, or even a generic tool not just for this particular knowledge, 
but also for many arithmetical situations. The described process is generalization 
terminating in the knowledge which we will refer to as the generic model of the 
future abstract knowledge 2 + 1 = 3. For more detail, see (Hejný, 2003) where the 
term ‘universal model’ is used instead of the term used here, i.e. ‘generic model’.  
Abstraction level (i”). On one hand, the generic model covers a wide area of object 
experiences, on the other hand, the generic model remains an object representation 
and does not allow for a higher level of structurization of acquired knowledge. 
Therefore, the next step of knowledge development must be abstraction, i.e. 
disconnection from an object characteristic of a generic model. This shift is 
accompanied by a change of language and an object representation is enriched by a 
symbolic representation.  
Generic model. We have seen that the generic model is a pivot term in scheme (i). 
Within (i’), it is the final stage of generalization and at the same time within (i”), it is 
the source of abstract knowledge. As the former, the generic model is a 
representation of all corresponding isolated models. It may replace any of them if 
needed. If the generic model covers just a part of all isolated models it is not 
sufficient for solving the whole variety of problems (see Illustrations 3, 4 and 5). As 
the latter, the generic model plays the same role as the isolated model with respect to 
generalization. Many of our experiments proved that knowledge is mechanical if and 
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only if there is no generic model linked to this knowledge. In reality, we rarely find 
knowledge that can be regarded as purely mechanical. Nearly any abstract 
knowledge, even if stored as a memory record, has a certain link with other pieces of 
knowledge and therefore the student “understands” it in a certain way. It is possible 
to say that the measure of understanding abstract knowledge is determined by the 
richness and quality of generic models to which the abstract knowledge is linked.  
Theory of Reification 
Even though the aim of this study is not to compare TGM with other theories of 
knowledge acquisition, one of them is so close to our ideas that it is worth 
mentioning. It is the theory of reification (or TOR) (Sfard, 1991). The structure of 
TOR is depicted in the following scheme:  
processes on objects→interiorization→condensation→reification→new object     (ii) 
The scheme is close in appearance to scheme (i). In both cases, gaining concrete 
experiences is an entrance to the process. In TGM, the emphasis is put on experience, 
in TOR on process.  Other two terms in scheme (i) distinguish the process, i.e. 
generalization, and the concept, i.e. the generic model. In (ii), both these terms are 
procedural. Condensation corresponds to the term of generic model in the following 
way: The generic model is perceived as a mental structure built by generalization. 
The condensation is perceived as a period of “squeezing” lengthy sequences of 
operations into more manageable units. In other words, the condensation represents 
the way in which the generic model works, but it does not explain how it has been 
created. In TGM, the mechanism of its creation is described by congruent and 
contradictory references and grouping process.  The abstraction process in (i) is also 
near to reification in (ii). The reification “is defined as an ontological shift – a sudden 
ability to see something familiar in a totally new light… reification is an 
instantaneous quantum leap: a process solidifies into object, into a static structure” 
(pp. 19-20). The reification is understood as sudden cognition. Similarly in Hejný 
(1988, p. 66), the abstraction was understood as “a very short period … in which 
…very strong emotion of delight is experienced, …”. However, in the contemporary 
TGM the abstraction is frequently understood as a long-term process.  We can say 
that the abstraction in (i) is created by a series of reifications in (ii). For example, the 
abstraction which yields the discovery of Pick’s formula is frequently realised 
through a sequence of “smaller” abstractions revealing particular formulas.  
 
GENERIC MODEL AND TEACHING STYLE 
A transmissive teaching method neither takes countenance of the student’s need to 
build the generic model individually nor appreciates the importance of the generic 
model. This can be seen in the following illustration. 
Illustration 1. Alan (aged 16) was standing in front of the blackboard. He was to 
solve the following problem: From the team of 21 hockey players, the coach should 
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choose a group of 5 hockey players for a penalty shot. In how many different ways 
can the coach choose a group of 5 hockey players? (A stands for Alan, T stands for 
the teacher.) 

1 A: (The boy is reading the problem quietly.) 
2  T: So, what is it, Alan? Permutation or variation or combination? 
3  A: It is like with the horses. 
4 T: (She is coming to the blackboard and she would like to say something.)    
5    A: (He is writing down very quickly: ( )21

5 .) It is twenty-one above five. 
6 T: So you do not understand it much, but at least count it. 
7   A: (He is writing down: 21.20 .19.18 .17

5.4 .3 .2 .1 , after some time of counting with the help of  
8         a calculator, he writes down the result: 20 349.) It is … 
9 T: Ehm, good. But you have not said whether you have used permutation or    
10       variation or combination. 
11 A: (hesitates) Variation. 
12 T: You have not written that. You have used combination. You’ve used a  

    13      formula and you do not know what it means. 
Commentary to Alan’s solution. Alan solves the problem without any mistakes. In 
(3), he even explains the strategy he uses. He finds out that this problem is morphic to 
a problem which he solved earlier with much energy and time. The problem 
concerned the number of possible distributions of four horses into seven boxes in a 
stable. He grasps the organizing principle of the situation and understands how the 
problem differs from the case where four horses were considered as individuals. 
Thus, the horse situation serves as the generic model for the given combinatorial 
situation. Alan considers the word “combination” and other similar words as 
unimportant. His solving strategy will be called a generic model solving strategy.  
It is worth asking how Alan’s generic model is created. We have no direct evidence 
of this process but on the basis of several other processes of this type analyzed 
earlier, we can say that it is highly probable that the model is created in three phases. 
First by manipulating representations of horses and stables, Alan creates his own way 
of getting an insight into the set of all possible distributions. This process is based on 
the idea of decomposition of all possible distributions into several subsets. Second, 
the cardinality of each of these subsets is found and the numbers are added (in our 
case, it is probably 20+10+4+1 = 35). Third, this result is linked to the previous 
knowledge of combinatorial numbers ( )n

m , in our case ( )7
4 . This concept, better to say 

pre-concept, is understood by Alan by means of the generic model “horses-stables”. 
The last phase might be reached in different ways. In our experimental teaching, the 
most successful way of guiding students to discover the formula ( )n

m  was by solving 
the Abracadabra situations (Polya, 1966, p. 68). From the point of view of the procept 
theory (Gray, Tall, 1994), the first two phases might be regarded as a process, the 
generic model as a concept and the formula ( )n

m as a procept (provided it was not 
learnt by heart). 
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Commentary to the teacher’s reaction. For the teacher, the generic model solving 
strategy is not sufficient. For her, the expected (and the only acceptable) solving 
strategy is based on the following process:  
1. A given problem is classified and labelled. (It is clear that she expects Alan to 
categorise the problem as permutation or variation or combination.) 
2. Using the label, a student recalls a procedure or formula, which is a base of the 
solving process. (Alan finds the appropriate formula (5), however not through the 
appropriate label (9).) 
3. The student writes the procedure or formula generally and then substitutes concrete 
numbers from the problem. The teacher may have expected Alan to say:  
    “It is the case of combination without repetition and the formula to solve   
      the problem is ( )n

m . It is the number of all m-tuples chosen from among  
      the set of n objects. In our case n = 21 and m = 5.“ 

(*) 

4. The final step is most frequently a calculation or realization of the procedure.    
We will call the above solving strategy label based solving strategy. According to our 
experience, it is the most frequent cause of students’ mechanical knowledge. From 
the experiments, many observed lessons and discussions with teachers, we know that 
many teachers believe that teaching the label based solving strategy is the most 
effective way to prepare students for entrance examinations to a higher level of 
schools. We notice that the teacher from the above illustration considers other solving 
strategies, especially the strategy of generic model, as insufficient (see (6), (9), (13)).  
 
GENERIC MODEL AS A TOOL FOR A TEACHING SCENARIO  
Illustration 2. Record of a lesson in Grade 6 (age 12-13) . (Note that the presence of a 
video camera, two researchers and several tape recorders in the classroom did not 
have a bad effect on the students’ work, it motivated them to be more active.)   
The class teacher uses constructivist approaches in her teaching. She does not present 
students with ready-made knowledge but by a suitable series of graded tasks, she 
directs them towards an autonomous discovery of knowledge. She knows that the 
generic model plays the decisive role in this process. Her teaching objective for the 
next two lessons is the discovery of the following abstract knowledge: A natural 
number n is divisible by 4 if and only if the last 2-digit number of n is divisible by 4. 
In brief,  
 4|n <=> 4| the last 2-digit number of n.     (iii) 
She believes that some of the students will discover a similar rule for divisibility by 
8. The lesson proceeds in the following way. 
1. The teacher presents the students with a series of 4-digit numbers and challenges 
them into dividing the numbers into two boxes. The numbers divisible by 4 belong to 
the first box and the numbers not divisible by 4 belong to the second box. Then the 
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students are asked to find a simple rule, which differentiates the numbers in both 
boxes.  
2. The information “the last digit must be even” gets around very quickly.  
3. Michael says: “The number is divisible by 4 if its last digit is 4 or 8.” His statement 
is supported by the fact that numbers 1 524, 1 528 belong to the first box and 
numbers 1 522, 1 526 to the second box.  
4. Jane shows number 1 520 as a counter example. Michael extends his rule by digit 0 
on the unit place. Several students protest against Michael, some of them state other 
hypotheses. The teacher gives Richard an opportunity to express his hypothesis. He 
shows numbers 7 334 and 7 338 as counter examples to Michael’s hypothesis and 
says: “You cannot say that just by looking at the last digit.”  
5. The camera records Dirk’s notes because Dirk does not get an opportunity to say 
his hypothesis. His list of numbers comprises about ten numbers in each box. 
Numbers 1 260, 1 280 (in the first box) and 1 230, 1 250 (in the second box) are 
underlined. The camera observes Dirk checking numbers 1 200, 1 210, 1 220, 1 230, 
1 240, 1 250, written in the column. He crosses numbers 1 210, 1 230, 1 250 and 
sends numbers 1 200, 1 220, 1 240 to the first box using arrows. He writes “C is 
even”.  
6. The teacher can see that the camera records Dirk’s exercise book and therefore 
gives him an opportunity to say his idea to the whole class. Dirk says: “Number 1 
2C0 is divisible by 4 if and only if C is even. If it is odd, then it is not divisible.” He 
writes on the blackboard: “12C0 divis. 4 <=>  C is even”. The teacher asks: “Is it 
correct?” Nobody reacts. Some students run to the blackboard to write their 
hypotheses. There are (besides Dirk’s) about ten records on the blackboard. E.g.:  
Norbert: 1 212, 2 424 are divisible and all such numbers (he means the numbers for 
which A = C and B = D). 
Kate: 2 222, 6 666 are not divisible, 4 444, 8 888 are divisible. 
Lucy: 1 000, 2 000, 3 000, 4 000, …, 9 000, all these are.  
Jane: 23odd2 is divisible. 
7. The blackboard is crowded and the activity of the class grows into spontaneous 
discussions within small groups. About three students want the teacher to assess their 
solution. She encourages them to ask their classmates. No student asks the teacher to 
reveal the rule.  
8. The teacher looks at the clock and stops discussions. She praises all students for 
their ideas and says: “I have not expected at all that you find so many promising ways 
how to find the rule for divisibility by 4. Because I have promised to our guests that 
we will get very near to the discovery of the rule, I leave only two records on the 
blackboard. I think that these records will lead us to the discovery very quickly.”    
9. Meanwhile, Dirk, Richard and Jane sit together and after a while, Jane says that 
they know the exact rule. Hesitating, the teacher lets Jane express her idea. Jane says: 
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“Such a number (she writes ABCD) is possible to divide by 4 in these two cases: if C 
is even then D = 0, 4, 8; if C is odd then D = 2, 6. Otherwise it is not divisible.” 
10. At the end of the lesson the teacher says: “We can formulate the result of your 
work as follows: 4-digit number ABCD is divisible by four if and only if 2-digit 
number CD is divisible by 4.” Finally, she poses the following voluntary homework:  
Task 1. Find out how to decide whether a 7-digit number is divisible by 4. 
Task 2. Find out how to decide whether a 5-digit number is divisible by 8. 
11. The next day, Dirk and three more students bring their solutions to Task 2. All 
solutions are in the language of letters. For example, Dirk’s solution is: Number 
ABCDE is divisible by 8 in these four cases: 1. C is odd, D is even and E = 0, 4 or 8; 
2. C is odd, D is odd and E = 2 or 6; 3. C is even, D is even and E = 2 or 6; 4. C is 
even, D is odd and E = 0, 4 or 8. In all other cases, number ABCDE is not divisible 
by 8. The teacher is surprised that none of the four solutions uses the language of 
abstract knowledge: 
A number is divisible by 8 if and only if its last three-digit number is divisible by 8. 
Commentary  
1) At the beginning, the teacher decides to only work with 4-digit numbers ABCD.  
2) The previous students’ experience with the concept of even/odd numbers enables 
the first classification into the set of numbers: all odd numbers belong to the second 
box.   
3) Michael, remembering the abstract rule for divisibility by 2, 5, 10, focuses his 
attention on the last digit and formulates the incorrect hypothesis on the level of 
abstract knowledge. This is supported by four numbers which do not play the role of 
isolated models but serve as a tool for verifying the hypothesis.  
4) As a reaction to Michael’s hypothesis, Jana, Richard and maybe other students too 
accept an idea that it is necessary to notice the last digit and possibly others as well. 
Some more hypothetic generic models are discovered, formulated and tested. Finding 
the generic model is almost always quicker in a class than individually.  
5) Dirk discovers the importance of the last but one digit C and this hypothesis seems 
to be meaningful.  His investigative process is the first part of generalization and the 
obtained pattern is the first part of future generic knowledge. Contrary to Michael’s 
grouping, which consists of several randomly chosen numbers, Dirk’s grouping is 
already systematic since he identifies congruent and contradictory references and 
obtains the knowledge “C is even” as a generic model of the sub-group (D = 0).  
6) Dirk is the first who discovers the rule on the level of generic model. Moreover, he 
expresses it in a sophisticated way. All other solutions (on the blackboard) are made 
by investigating a certain set of numbers ABCD about which it is possible to say 
something general from the point of view of divisibility by 4. Norbert formulates an 
incorrect hypothesis.  Neither Kate nor Lucy is on a promising track to find the rule. 
The density of Kate’s set of models is poor; Lucy’s set of models lacks contradictory 
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examples. In her discovery process, Jane reaches the same level as Dirk. Her 
presentation of the result using the word “odd” might be more understandable for her 
classmates than Dirk’s language of letters. 
7) The students’ behaviour shows that the teaching style is constructivist. For the 
majority of the students, it is this constructivist climate that enables them to partly 
construct or at least interiorize their generic models.  
8) The teacher usually leaves opened problems as homework. However, in this case 
she wants the video recorded lesson to have a “happy ending”. She wants to lead the 
students quickly to the discovery.   
9) The analysis of Dirk’s, Richard’s and Jane’s written records shows that Richard 
discovered earlier that the digits A and B were not important. Jane and Dirk 
discovered that it was necessary to consider the numbers with C odd and the numbers 
with C even separately. It is possible to say that the general rule was created as an 
amalgam of the three particular generic rules.  
10) The teacher makes a didactic mistake changing Jane’s objective generic model 
into abstract knowledge by means of translating the result into another language. 
Jane’s generic model is in the language of concrete digits, which represents her object 
thinking. The rule formulated by the teacher is not linked to separate digits and has a 
character of abstract knowledge. Unlike the students’ generic models, the teacher’s 
abstract rule can be easily generalized to 

• the rule of divisibility by 4 for more than 4-digit numbers  
• the rule of divisibility by 8.  

This is what the teacher anticipated when setting the two tasks as homework.  
11) It is noteworthy that none of the students formulated their discovery in the 
‘elegant’ language offered by the teacher. According to our understanding of the 
whole process, the reason why the students do not accept the teacher’s suggestion of 
the abstract formulation is that they did not pass through the abstraction process on 
their own; the final abstraction was not interiorized. In terms of TOR, the absence of 
condensation was an obstacle for reification.  
 
CONSEQUENCES AND REMARKS 
1. In general, the generic model is more effective if dealing with concrete cases 
(former isolated models). For example, if Dirk (Illustration 2) has to decide whether 
74 364 is divisible by 8, his rule is more effective than the abstract knowledge. 
However, if new knowledge is to be embodied into the whole mathematical structure, 
the abstract form of knowledge is more effective. It is also more effective if the given 
knowledge is to be generalized (into divisibility by 4, by 8, by 16) or transferred to 
another situation (divisibility in other than the decimal number system).  
2. From our experiments, it follows that a student who is familiar with abstract 
knowledge often prefers the generic model when solving a task. Thus, we think that 
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Alan (Illustration 1) would have preferred the generic model “horses – stables” even 
if he had known (*).  
3. Professional mathematicians often believe that the appearance of abstract 
knowledge strongly diminishes the importance of its generic model(s). The same 
belief can often be found in practising teachers, namely secondary school teachers. 
An example is the teacher in Illustration 1.  
 
FURTHER ILLUSTRATIONS 
The above illustrations cover just part of situations in which THE generic model 
plays an important or even crucial role. The following illustrations illuminate the 
situation further.  
Illustration 3. Peter (aged 11) had to draw a square ABCD. The points A (0,0) and B 
(2,1) were given on a grid board. He found C (2,3), D (0,2) and called this 
quadrilateral a square. No one objected. This misconception is caused by a lack of 
generic models of squares drawn in a “skew” position. The concept of square is 
closely linked to horizontal and vertical directions.   
Illustration 4. George (aged 13) had to find the area of triangle ABC where BC = 5 
cm,AC= 4 cm and∠ACB= 120°. He drew the correct figure with segment BC in 
the horizontal position. Then he wrote the formula A = (a x h)/2 and put a = 5 cm. He 
was unable to find the altitude of this triangle since he had never seen the altitude of a 
triangle which lies outside the figure. The restricted generic model of the concept 
‘altitude of triangle’ is an obstacle for George’s ability to find the solution.   
Illustration 5. Lisa (aged 12) added 1.20 + 1/2 as 1.50. The seemingly meaningless 
result can be understood via determining Lisa’s generic model of fractions. She used 
the clock face and interpreted 1.20 as 1h 20min and ½ as 30min.   
 
SUMMARY 
The generic model as the pivot term of our knowledge development theory was 
described in general and then used for the analysis of at least six following issues:   
1. Teaching style. A teacher for whom the main goal of opening the mathematical 
world to students is the construction of the generic model, acts in a constructivist 
way. However, the teacher who transmits abstract knowledge to students, acts in a 
transmissive way. We saw both cases in Illustrations 1 and 2.   
2. Creation of a teaching scenario (of a particular mathematical topic). The 
backbone of this scenario lies in the discovery of generic model(s). Frequently it is 
the case that different students construct different generic models, some of them 
simple and some of them sophisticated. This enables the teacher to address each 
student individually and in addition the rich spectrum of identified generic models 
allows the class to develop convincing generic model(s).  
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3. Student’s discovery of relation. This process is based on building a sufficiently 
rich variety of isolated models. If this variety is poor, the corresponding generic 
model has a restricted application (see Illustrations 1 and 2).    
4. Student’s concept development process. The generic model usually serves as a 
pre-concept in the concept development process. In fact, it is an inevitable stage in 
this development (for Alan, “horses-stables” is the generic model of the concept 
( )n
m and for Lisa, the clock face is an environment for the generic model of fractions). 

5. Student’s non-standard solving process. The kernel of a student’s solving 
process is his/her understanding of the whole situation. He/she uses the previous 
experience generalised into the generic model and using morphism, he/she solves the 
problem. This process cannot be understood without the knowledge of the used 
generic model (see Illustrations 1 and 2).  
6. Insufficient generic models as a source for the student’s failure. Very often in 
the classroom practice, some concepts are presented only in “standard” forms. E.g. 
whole numbers as natural numbers, rational numbers as fractions (or decimal 
numbers), a triangle as an acute-angled one, a rectangle as a quadrilateral with sides 
in the horizontal-vertical position, a cylinder as a rotated cylinder with axes of 
rotation in the vertical position, etc. The consequence is a frequent failure of students 
(see Illustrations 3, 4 and 5).  
Note: In points 3 and 4 we focus on creating generic models. In point 6, we consider 
consequences of the generic model which is not sufficiently developed.  
Our further investigation of the generic model is aimed at:  
7. Diagnosis of the student’s mathematical knowledge. In short, abstract 
knowledge without any linkage to the corresponding generic model is mechanical.  
8. Changing mechanical knowledge into knowledge with understanding. In short, 
missing generic models must be constructed.  
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Abstract: Tasks aimed at classifying a group of solids using only tactile perception 
make pupils consider solids in a different way than when visual perception is 
involved. Pieces of information about the attributes of solids, gained through tactile 
perception, come to the pupils’ mind gradually and this is projected into their way of 
manipulating solids. Analysing both the observations of pupils’ manipulations and 
their verbal communication enabled us to construct the process of them building their 
structure of geometrical knowledge. Some results of our research on learning about 
solids and structuring geometrical knowledge are presented in the paper.  
Keywords: tactile perception, mental models, classification, manipulation.  

 
INTRODUCTION AND FRAMEWORK 

In this paper we investigate how the pupils’ process the structuring of existing 
geometrical knowledge, then create new knowledge by extending the existing 
structure or its restructuring, or construct new knowledge occurs when pupils are 
classifying a group of solids. Some phenomena are discussed, related to the building 
of structure identified in pupils’ mathematical behaviour when solving a geometrical 
problem and in a case study the process of constructing and reconstructing structure, 
related to a set of 3-D geometrical objects, is described and analysed. To avoid 
misunderstanding and misinterpreting of pupils’ verbal expressions, the task was 
devised for tactile manipulation with 3-D geometrical solids and pupils’ verbal 
communication was used to clarify our propositions.  
Hejný (2002, 2003) propounds the theory that knowledge is gained by experiences, 
which in the first instance are unconnected, then an experience makes the pupil 
suddenly see a connection amongst several of the previous experiences. This triggers 
linkages between the experiences to form a network and which could lead to a 
generalisation. He states that the Internal Mathematical Structure (IMS) “binds all 
these networks together and equips them with an organisation”. This approach 
together with four important properties that govern structure defined by Gestalt 
psychology (Van Hiele, 1986, 28) reflects our understanding of structure.  
The dynamically nested RBC model of abstraction (Schwartz, Hershkowitz & 
Dreyfus, 2002a, b) was found to be a useful tool to help us to analyse, understand and 
describe the pupils’ process of structuring their geometrical knowledge in the context 
given by a task (see below). All three epistemic actions, namely Recognizing, 
Building-With and Constructing are present in the observed process and we found 
that this theory fits the outcomes of our research closely. The three epistemic actions 
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which are the constituents of abstraction are (Schwarz, Hershkowitz & Dreyfus, 
2002b, 83): 

Constructing is the central step of abstraction. It consists of assembling 
knowledge artefacts to produce a new knowledge structure to which the 
participants become acquainted. Recognizing a familiar mathematical structure 
occurs when a student realizes that the structure is inherent in a given 
mathematical situation. ... Building-With consists of combining existing artefacts 
in order to satisfy a goal such as solving a problem or justifying a statement. 

The pupils in our research are not starting to build knowledge from a zero base, they 
have some knowledge about solids from their experiences in and out of school. The 
pupils construct and build-with their knowledge to make structures for each 
individual solid and later use these structures to find ‘cross-solid’ structures between 
certain solids, that is, to find solids which are connected by some common 
attribute(s).  
We consider three different levels of quality of mental picture of a perceived solid, 
which reflect the extent to which the pupil is familiar with it. For this purpose we 
applied Vopěnka’s approach to geometry. In his study, Vopěnka (1986) introduces 
the concept of a ‘personality’ of a geometrical object, and his approach enabled him 
to give a deep analysis of the genesis of geometrical thinking. In a simplified way a 
solid (geometrical object) is considered as a ‘personality’ for the individual if s/he 
can associate the image with the name of solid, can describe some of its attributes, is 
able to recall the solid on the basis of a verbal description and in different positions 
and sizes, can represent it by a model or drawing, can recognise solids which are in 
some way related to it and describe the relationship. The three levels of the quality of 
the mental picture of a perceived solid are: 1. the solid is a ‘personality’ for the pupil, 
2. the solid is unknown to the pupil, however, the pupil perceives some relationship 
between the considered solid and another solid which is a ‘personality’ for him/her, 
3. the solid is entirely new for the pupil (Jirotková, 2001).  
Our long-term research started by Hejný and Jirotková in 1994 leads us to believe 
that the structure which pupils build up in their minds, related to solids through visual 
and tactile perception, depends mostly on their life experience. In general the primary 
school mathematics curriculum does not offer many activities leading to creating 
geometrical structure. The solids, which are usually introduced to pupils by the age of 
10-11 years, are the cube, cuboid, pyramid, cone, cylinder and sphere. The pupils 
learn them individually without possible connections between them. These individual 
solids might be committed in pupils’ long-term spatial memory as ‘personalities’.  
When there are only tactile perceptions of a solid, which is not a ‘personality’ for the 
pupil, they may be of a general nature at first such as big/small, rough/smooth. When 
the pupils are asked to communicate verbally about their perceptions or when they 
are asked to perform certain manipulative operations, they usually begin to feel the 
attributes of the solid randomly (Van Hiele, 1986). However, these attributes which 
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are committed to the short-term memory are usually related to one solid and are 
memorised as individual pieces of information, with the gestalt of the solid remaining 
the dominant feature. In our previous research (Jirotková & Littler, 2003; Littler & 
Jirotková, 2004) we found that when the pupils were aware that they would have to 
communicate their perception (tactile and/or visual), they began to work more 
systematically with each solid, counting all the edges, faces and vertices, both to get a 
more analytical picture of the solid in their minds and to be able to describe the 
examined solid more precisely. The cube is no longer a solid with which they are 
familiar, know its name and possibly differentiate it from cuboids simply by its 
shape, but is categorised in the pupil’s mind as having eight vertices (often termed 
corners), six faces which are all squares and so on. Other common solids would be 
categorised analogically.  
In our previous research the pupils were asked to group a number of solids into two 
groups such that all the members of each group had a common attribute. We focused 
on the pupil’s understanding of geometrical phenomena and their communication 
about them. We could not get evidence of the process of solution of the task, because 
the solids were hidden in an opaque bag. On the basis of pupils’ communication and 
the results of the task we constructed two important mental processes – the 
Mechanism of tactile classification and the Mechanism of visual check of tactile 
classification (Jirotková, 2001; Littler & Jirotková, 2004). We applied these 
mechanisms in this current research to find how and what geometrical structures the 
pupils create when solving a similar task. 
We also have observed at first hand the truth of Bell’s (1993) assertion that 
“a fundamental fact about learned material is that richly connected bodies of 
knowledge are well retained; isolated elements are quickly lost”.  

 
METHODOLOGY 

Our study is focused on the process of building an internal mathematical structure 
(IMS) which is not a directly observable mental activity, hence we had to devise 
experiments which would show whether and how the pupil is developing an IMS. 
The following task was used as the tool of our experiment:  

Sort the solids into two groups, using only tactile perception, so that at least all 
the shapes in one of the groups have a certain common property. 

Materials: The following 13 solids were used: cube (CU), square based prism (SPR), 
rectangular prism (RPR), triangular prism (3PR), non-convex pentagonal prism 
(5PR), hexagonal prism (6PR), square based pyramid (SPY), truncated rectangular 
based pyramid (TPY), non-convex pentagonal based pyramid (5PY), tetrahedron 
(TH), cone (CO), truncated cone (TCO), cylinder (CY). 
Scenario: The pupil was asked to sit down in front of the screen behind which there 
were 13 solids. There were arm-holes in the screen through which the pupils could 
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manipulate the solids but could not see them. The task was given to the pupil and 
their understanding of it was verified. S/He was then asked to put their arms through 
the holes and to carry out the task. 
When the pupil indicated they had completed the task, pictures of the groups were 
taken and s/he was asked what criterion they had used to separate the solids into two 
groups. The groups were then taken from behind the screen so that the pupils could 
visually perceive them. They were asked whether or not they wished to change their 
selection in any way and if so why. Several additional questions relating to the solids 
and their relationships were asked at this stage to identify the level of the pupil’s 
mathematical vocabulary and communicative ability.  
The experiment was carried out in June 2004 with nine 10-11 years old pupils, three 
boys and two girls from an inner city school in the UK, three boys and one girl also 
from an inner city school in CZ.  
The pupils’ manipulation of the solids behind the screen as well as their 
communication was video-recorded, transcribed into a protocol form, and analysed 
first individually by each of authors then collectively with respect to phenomena 
related to structure and the epistemic actions forming RBC model in the process of 
classification. 
Analysis of the task 
The solids used in this task were deliberately chosen to cover three types of solids: 1. 
those the pupil would meet in school as part of the geometrical syllabus or in 
everyday life such as CU, SPR, RPR, CO, CY, TH and SPY; 2. more unusual solids 
such as 3PR, 6PR, TCO and TPY which might be known in some form from 
everyday life; and 3. two solids namely those with re-entrant angles, 5PY and 5PR, 
which we considered the pupils would not have met.  
The basic set on which the task is constructed is the Cartesian product of the set of 
solids and their attributes. The task challenges the pupils to make a structure, a subset 
of the Cartesian product.  
Pupils’ geometrical knowledge is based on their real life experiences which differ 
from pupil to pupil therefore we expected to meet a variety of reactions and different 
solutions. Two types of classifying the solids into two groups were anticipated 
(Jirotková, 2001; Jirotková & Littler, 2002). The first type is complementary 
classification in which the pupil finds an attribute A, common to all the solids in one 
group and the other group is simply its complement, characterised by not having 
attribute A. The second type of classification is attributal in which each of the two 
groups is described by a certain property.  
Visually one can get immediate information about the individual shapes of a set of 
solids and their mutual relationships. In this task, the pupil is familiarising 
him/herself with a group of solids using tactile perception only, perceiving the solids 
one by one. If comparison is needed, only a small group of solids can be perceived at 
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any one time, which is why intensive collaboration with the short-term spatial 
memory is required. Tactile perception gives information on which the mental image 
of a shape is created. How quickly and how precisely the image is created depends to 
a certain extent on what geometrical phenomena are committed in the pupil’s long-
term memory. It could be for example a set of solids like cuboids, pyramids or some 
attributes of solids like regularity, non-convexity. Some geometrical phenomena 
could be associated with tactile perception like a prick, sharpness, smoothness etc. 
A particular geometrical phenomenon, the image of a solid, can be considered as a 
‘personality’ (Vopěnka, 1986).  
Data  
The table below indicates the solids finally chosen by the pupils to be in their selected 
group. For each pupil, UK1-5, CZ1-4, the first line shows his/her tactile classification 
(T) into two groups, one is marked with # and one is blank. The second line shows 
the pupils’ choice when they had visual perception (V) following the tactile 
classification. These two groups are marked with * and blank. Six pupils described 
the group marked with # or * by a common attribute – complementary classification. 
Pupils UK4, CZ3 and CZ4 described both groups – attributal classification. 

  CU SPR RPR TPY 3PR 5PR 6PR SPY 5PY TH CO TCO CY 

UK1 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

 
* 

 
* 

     

UK2 T 
V 

# 
* 

# 
* 

# 
* 

# #   #      

UK3 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

 
* 

 # 
* 

     

UK4 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

     

UK5 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

         

CZ1 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

         

CZ2 T 
V 

 
 

    # 
* 

  # 
* 

    

CZ3 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

   

CZ4 T 
V 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

# 
* 

   

The pupils’ verbal criteria for their tactile classification were as follows: 
UK1: They all have a square base, not triangular. 
UK2: I put six on one side and the rest on the other. (He first selected according to a 

criterion, but he forgot this when confronted with solids he did not know and 
placed the rest randomly). When given visual sight of the solids he changed his 
criteria to ‘Cube or cuboid’. 

UK3: This group has got square and rectangular bases and this group has got other 
bases. 

UK4: This group has got rectangular or square faces at least. This group has got 
triangular or circular faces. 
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UK5: My group has only got quadrilateral faces. The other group may have 
quadrilateral faces but they have other faces as well. 

CZ1: They have eight vertices. But they cannot be only squares. They can be any 
quadrilateral. I put aside all which were squares, rectangles, cubes and 
cuboids, then I added another shape which was like a not successfully made 
pyramid as if something was chopped off. The others I put on the other side. 

CZ2: These solids had a piece bitten out from them. 
CZ3: I put all rounded on one side and edged on the other side. 
CZ4: If it was rounded or if it had a circle I put it here, and if it had edges then I put 

it in the other group. She created the group shown above but described the 
complementary group because it was easier to do so. 

 
DISCUSSION 

First, we will discuss some phenomena derived from the table above, pupils’ 
statements and our observations, and then we will focus on a particular pupil and 
analyse his process of classification in more detail. Our considerations are supported 
by findings from our previous experiments and the given table provides illustrations 
of some of them.  
Cognitive phenomena 
We have identified the following cognitive phenomena related to the process of 
structuring. 
‘Four-sidedness’ as a criterion for complementary classification. From the verbal 
descriptions above it can be seen that the presence of squares and rectangles on a 
solid was perceived as a dominant feature of certain solids in most of the pupils’ 
minds and thus it became an important structure making element (see UK1-5, CZ1). 
After considerable manipulation of many solids the same six pupils added the 
truncated rectangular based pyramid to the group of solids in which only cubes and 
cuboids were present. 
A ‘personality’. The cube, square based and rectangular based prisms were picked 
out by both the UK and CZ pupils and we observed that very little tactile perception 
was necessary. We consider this was because these solids were most familiar to the 
pupils from experiences both in and out of school and they were able to quickly bring 
a mental image from their long-term spatial memory to match that they had got from 
tactile perception. These three solids were most likely personalities for the pupils. 
Global perceptions as selection criteria. We know from our previous research that 
both ‘edgeness’ and ‘roundness’ are easily tactilely perceived and these global 
attributes are often used as criteria for attributal classification (see CZ3, 4). Quickly 
after selecting the first three shapes (CU, SPR, RPR) many of the pupils then selected 
the cone, truncated cone and cylinder and put these in a separate group. Similarly 
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‘non-convexity’ was strong tactile sensation and became for the pupil CZ2 a criterion 
for complementary classification.  
Confrontation of tactile and visual perception. It may happen that tactile and 
visual perceptions create different images about a solid. We identified this 
phenomenon when pupils wanted to change their tactile classification after visually 
checking it (see UK1-3). When the pupil UK1 perceived the hexagonal prism 
tactilely, a feeling of ‘roundness’ dominated, when she perceived the square based 
pyramid ‘pointedness’ or ‘triangularity’ dominated. When she perceived these two 
solids visually, she noticed the presence of a rectangle or a square and replaced them 
both in the group of ‘four-sided’ solids. For the same reason, the pupil UK3 added the 
non-convex pentagonal prism to the ‘four-sided’ solids. The sharpness of the edges 
was the initial dominant tactile sensation. On the other hand, she kept the hexagonal 
prism in the ‘non four-sided’ group after visual perception. This was because her 
thinking was dominated by base (see UK3) and the solid was ‘sitting on’ a hexagon. 
We can also see that the visual perception provides quite precise information about 
the measures of solids contrary to tactile perception. This is our explanation why the 
pupil UK2 separated solids TPY, 3PR and SPY from the group of cube and both 
cuboids after visually perceiving ‘right-angledness’.  
Conflict between attributal groups. Several pupils considered the triangular prism 
for a long time, feeling the triangular ends and the sharpness caused by the edges 
joining the 45o vertices. One reason for their hesitancy into which group it should be 
put was that its faces were rectangles and triangles and several pupils were separating 
their solids into those which had rectangles and squares as faces and the second group 
had circles and triangles. Hence when the solid had attributes which fitted into both 
groups, a tension was created when deciding into which group to put the solid. Six 
pupils finally put it into the rectangle and squares group. The square based pyramid 
fell into this category too, having a square and four triangles as its faces.  
Process of tactile classification – case of John (CZ1) 
We now cite a case study of pupil John (CZ1). We chose John because, first he took 
the longest time over the task (approximately 3 times longer than the others), second, 
he started by attributal classification and then after creating four groups had to give it 
up and change to complementary classification. In the case study, the description of 
our observations, taken directly from a video-recording, is written in italics and split 
into stages (S1–S7) applying RBC theory. However, we are aware that the same task 
can lead to ‘building with’ or ‘construction’ depending on the pupil’s knowledge, so 
our interpretations are necessarily subjective (Schwarz et al, 2002b). We make 
comments (C1–C7) on these stages, which include our interpretations of the pupils’ 
actions.  
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S1. Looking for criterion  
John took the solids one by one as they came to hand. Some of them he tried to grasp 
at once, some of them he perceived as a whole briefly, some of them he manipulated 
carefully, moved them in his palm, touched their vertices with his fingers. 
C1. John’s manipulations with the solids indicate clearly which solid was a 
‘personality’ in his mind – to those he paid little attention, but the solids which were 
new to him were observed for a considerable time, during which he tried to perceive 
their ‘anatomy’. His initial familiarisation of the solids took 1.5 minutes and whilst 
doing this he tried to determine some criterion for classification. 
S2. Creating the first structure, attributal classification – building-with 
He took the non-convex pyramid (5PY) and put it into the group on his left (L). Then 
he put the cuboid (SPR) to the right (R) and after some manipulation he put the 
rectangular prism (RPR) in R. He then put both cuboids one above the other.     
C2. John first chose 5PY. This caused a distinct tactile sensation which recalled the 
image of a pyramid and its characteristic, ‘pointedness’. This was the first selection 
criterion for group L. When he chose SPR, it became the carrier of the characteristic 
for the second group R. RPR was put into this group and then by placing the two 
solids one above the other, he expressed what these solids had in common. The type 
of classification at this stage was attributal, pointed solids (L) and cuboids (R). 
S3. Need for restructure – construction  
John perceived four solids at once (CU, 5PR, TH, 3PR), he then checked both groups 
R and L, each by one hand and then he returned to the four solids taking two solids 
in each hand. He put these down and tried to perceive how the groups of solids were 
arranged on the table. He took the non-convex prism (5PR) but seemed not to know 
where to put it. Then he took the 5PY in one hand and compared it with 5PR, which 
he held permanently, by careful touching. Quite clearly he perceived the vertices of 
the 5PR and he paid special attention to the vertices of non-convex angles. Finally he 
touched the vertices of 5PY with the right hand and after marked perception of its 
apex he put 5PY and 5PR into L. 
C3. When John perceived 5PY, which was a new solid for him, he perceived its 
gestalt and its dominant characteristic (pointedness) was put into his short-term 
memory. When he perceived 5PR he recognised that it was not possible to put it to 
the group R together with SPR and RPR and started to compare it with 5PY. 
However, there was the ‘pointedness’ characteristic in his short-term memory which 
did not allow him to put these two solids together in L immediately. In other words 
he could not put 5PR into existing structure. He wished to compare these two solids 
simultaneously so he had to use an ‘external memory’, that is he held a solid in each 
hand. Finally he realised they had a common attribute, non-convexity, so he put them 
together in L. We can derive from John’s manipulation that he perceived this 
phenomenon as an analytical attribute of each solid which he perceived in a different 
way for each solid. For the 5PR he perceived two non-convex angles on opposite 
faces and for 5PY just one. His noticeable perception of the apex of 5PY indicated 
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that he was not very happy having to give up his first criterion, break his first 
structure and build up new structure in which 5PR fitted. The new structure building 
property was non-convexity.  
S4. Using the new structure – building-with 
John put the truncated cone (TCO) into L. He then added the tetrahedron (TH)  to L 
after a check of all the shapes in this group. John then tried to hold 3PR, which lay 
on the table like a ‘roof’, it slipped from his grasp three times, then he carefully 
perceived the vertices by pairs on corresponding parallel faces. He put it to L but 
immediately took it out. After a new check of all the shapes in this group he put it 
back in L. 
C4. The classification of TCO and TH into L can be explained by his return to the 
original criterion ‘pyramidity’ which was recalled by ‘pointedness’. His hesitation 
when manipulating with 3PR was probably caused by the domination of a rectangular 
face. The structure of the solids in L was not as firm as before because each solid was 
linked to 5PY but not linked to each other.  
S5. Confirmation of structure – recognition 
John put the cube (CU) directly into R, face to face with the SPR. 
C5. The cube was a ‘personality’ for him so he knew in which group to place it 
without any hesitation. 
S6. Establishing a new structure – building-with and construction 
He considered the hexagonal prism (6PR) for a long time, turning it, touching all the 
vertices of a face at the same time with his fingers. He put it back without making a 
decision, then picked it up again and put it in the R group for a while and finally 
placed it between the two groups L and R, creating a third and new group N. 
C6. It is clear that the solid 6PR was also new for the pupil and his tactile perceptions 
were not linked to such geometrical images which would enable him to classify it. As 
in the case of 3PR and later SPY, the perception of rectangular/square faces 
dominated, which led the pupil to classify 6PR first in group R. However this group 
is seen as strong in the pupil’s mind and all solids are mutually linked by their 
attributes hence 6PR could not remain in group R. He could not put it into L because 
he did not succeed in linking 6PR with 5PY so he had to establish the new group N.  
S7. Constructing new knowledge 
He took 5PR again perceived all vertices carefully and placed it now into N. He 
hesitated where to put the cylinder (CY) and so replaced it on the table. Then he took 
SPY and after touching its base he placed it in R but immediately took it out and 
compared it with the cylinder and placed them both into N. He then took the TPY and 
investigated its attributes quickly, and placed it in R. Following this, he put all the 
shapes from L to N.  
C7. By placing TPY in R he restructured this group. The initially strong relationship 
was loosened from ‘right-angledness’ to ‘having 8 vertices’. It seems that the newly 
created group N was linked only by the property ‘cannot be placed into the group R’ 
(see CZ1). The creation of this structure, no matter how weak it appears, was 
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accompanied by a careful investigation of the new solids. Moreover, group N was 
linked to R as being its complement. Thus his final classification is complementary 
which reverses his initial intention to classify the groups attributally.     

 
CONCLUSIONS 

This study is part of our long-term research on pupils’ understanding of 3-D 
geometry investigating such aspects as cognitive abilities, spatial ability, 
communicative ability, visualisation and etc. We have used one of the tasks, 
developed previously, for this research to see whether it would enable the researchers 
to determine whether the task helps primary pupils to develop structures within 
geometry. The results showed that three types of structure were developed during the 
undertaking of the task:  
- ‘single-solid structure’ which is a solid and its attribute(s) (see structures 
L1=<{5PY}; pointedness> in S2 and N1=<{6PR}; cannot be put in L or R> in S6); 
- ‘cross-solid structure’ which is that structure which links several solids each having 
the same attribute (see final structure R3=<{SPR, RPR, CU, TPY}; have eight 
vertexes> in S7, which was developed from R1=<{SPR, RPR}; rectangularity> in S2, 
then R2=<{SPR, RPR, CU}; rectangularity> in S5 and finally R3 in S7, then 
L2=<{5PY, 5PR}; non-convexity> in S3);  
- ‘web structure’ which is several solids linked in pairs or small groups by some 
attributes but not to each other (see structures L3={5PR, 5PY, TCO, TH, 3PR} in S4, 
and N2 which is the complement to R3 in S7). 
After completing the task the pupils realised they had now got a tool which would 
help them give the ‘one-solid structure’ to new solids and more importantly to look 
for ‘cross-solid structures’. We feel it is important for teachers to know of these 
structure building processes and to use tasks such as the ones we advocate to develop 
this significant cognitive ability (building structures) in their pupils. We believe that 
we also showed that the theory of abstraction in context could be applied to the case 
of building geometrical knowledge on primary school level. 
Our future research will be aimed at typologising the structure building processes and 
applying it to different contexts such as 2-D geometry and arithmetic. 
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DISCUSSING THE CHALLENGE OF CATEGORISING 
MATHEMATICAL KNOWLEDGE  

IN MATHEMATICS RESEARCH SITUATIONS 
Eva Knoll, University of Exeter, United Kingdom 

Cécile Ouvrier-Buffet, Laboratoire Leibniz - Équipe CNAM, Grenoble, France 
 
Abstract: Starting with a quotation describing mathematical research, this paper 
presents ways of providing students with comparable experiences in mathematical 
research, in the classroom. The paper focuses on the benefits and implications for the 
students of such experiences. “Real mathematics research-situations” are defined, 
and the didactical goals of these situations, as they are experienced are elaborated 
on. These elements are presented through examples, looking at similar situations 
(research-situations) in two contexts and using different theoretical frameworks.  

Keywords: mathematical research situations, mathematical reasoning, experience of 
knowing, definition construction processes.  

INTRODUCTION, THEORETICAL FRAMEWORK AND AIMS 

It is widely accepted that school mathematics differs considerably, in scope as well as 
in purpose from what mathematicians do; the necessities of the classroom are 
certainly different from those of cutting edge scientific research. It is less obvious 
why the specific activities of students in the classroom are so different from what 
mathematicians do in their research. According to Corfield (2003, p. 35): 

Theorem proving, conjecturing and concept formation make up the three principal 
components of mathematical research. The brilliant observation of Lakatos […] was that 
these components are thoroughly interwoven. […] Mathematicians perform these 
activities simultaneously […] 

In contrast, in the classroom, such three activities are marginalised to the extreme, so 
that students are rarely involved in research situations. We use naturally the word 
“research situations”, but it has to be defined more precisely. We propose in this 
paper a characterisation of what we called “real mathematics research-situations”. Of 
course, there are many such research-situations, and the ways we could approach 
them are also multiple. In this paper, we describe possible issues surrounding 
research situations by focusing on two sets of considerations: epistemological and 
social/didactical. These considerations stem from the following examinations:  
Q1: why investigate research-situation? 
Q2: what qualifies a research-situation as such? 
Q3: what does it mean to “implement a research situation in the classroom” and what 
are the didactical goals? What can a student learn through research-situations? 
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In addition, to illustrate the implications of their implementation in the classroom, we 
call on two cases of such research-situations. These situations will be characterised in 
terms of the above-cited considerations as well as their individual contexts.  

RESEARCH SITUATIONS: A MATHEMATICAL AND DIDACTICAL 
CHARACTERISATION 

Mathematical (epistemological) characterisation 
We call ‘research-situations’ situations of a mathematically open nature. This 
characteristic needs to be fulfilled for all parties engaged in the situation (students, 
teacher, professional researcher). In particular, such situations may be still open in 
the ongoing professional research. In addition, accessibility of such research-
situations is established by insuring that the mathematical pre-requisites be of minor 
importance: anybody can engage in research-situations because it mobilizes only 
basic mathematical knowledge (of integers, or basic geometrical forms, etc.).  
The situations are also characterised by a purposeful focusing on the engagement of 
students in a mathematical research process, and therefore, the emphasis is placed on 
the experience of process, as opposed to the acquisition of conceptual/technical 
‘content knowledge’. 
An example of this can be found in the work of a ‘Research Situations for the 
Classroom’ (RSC) team called “Maths à Modeler” (http://mathsamodeler.net), 
centred on an initial presentation by a researcher for classes at different levels (from 
primary school to university). The study of these RSC suggests that they differ from 
what is traditionally known as problem solving by several characteristics: 

• Questions are raised in a similar way to the approach of open conjectures in ongoing 
mathematical research and, sometimes, they are ‘open’ questions; 

• the mathematical objects considered are not necessarily part of the explicit school 
curriculum, and the questions are generally not given in a mathematical form; 

• there need not exist a unique answer (or any answer at all); 

• a solved question can possibly lead to other new questions; 

• the knowledge involved is more often ‘transversal’, such as arguing, conjecturing, 
proving, modelling, defining… bringing us back to Corfield’s view. 

This reflection about RSC is based on the notion that a researcher can, and often 
must, select his own suitable framework of resolution, modify the rules or redefine 
objects or questions. This is precisely the type of practice, fundamental to 
mathematical activity, in which we aim to involve students despite the fact that this 
type of practice is not frequent in class, and even seems practically taboo in many 
circumstances (Godot & Grenier, 2004). 
The concept of ‘transversal knowledge’ cited in the list above has not yet been 
formally defined. At present, it refers to the skills and knowledge which straddle 
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various mathematical domains and are used in a whole variety of mathematical 
contexts. In that respect, it relates to what Bruner defined as ‘non-specific transfer or, 
more accurately, the transfer of principles and attitudes’ (Bruner, 1960, p. 17). 
Indeed, transversal knowledge and skills allow the knower (student) to navigate 
within different mathematical domains. They are therefore more valuable as they are 
less context-bound. In this context, they include proving, conjecturing, refuting, 
creating, modelling, reasoning by induction or by decomposition/recomposition, 
extending but also transforming a questioning process, reasoning non-linearly, 
building definitions and having a scientific responsibility.  

Didactical characterisation 
It is essential, for these epistemological characteristics of the experience to be 
fulfilled, that the teacher takes a specific position, similar to that of a researcher faced 
with an open problem, and comprising an awareness of the involved transversal 
knowledge (Godot & Grenier, 2004). This brings us to the social and didactical 
contract (Brousseau, 1997) that will produce the appropriate context for these 
activities to lead to the desired goals. There are many ways to grasp and characterise 
a research process: a didactical viewpoint is proposed in Godot & Grenier (2004) for 
instance, and Rota, in his introduction to The Mathematical Experience, explains that: 

A mathematician's work is mostly a tangle of guesswork, analogy, wishful thinking and 
frustration, and proof, far from being the core of discovery, is more often than not a way 
of making sure our minds are not playing tricks. (Davis & Hersch, 1981, p. xviii) 

The didactical contract needs to focus on the aspects of mathematics research which 
are relevant and the way these aspects can be made present in the experiment. To 
illustrate, Rota’s description suggests that the creative process in mathematics 
research is a messy activity with no guarantee of successful results. This contrasts 
with the traditional classroom experience where the students seek a definite solution 
that the teacher already knows. Each aspect such as this one needs to be evaluated for 
usefulness, then, if possible, reformulated for the classroom context. 
Many of the teacher’s decisions impact on the format and content of the activities. 
Firstly, mathematical research is a creative endeavour, and cannot be easily framed 
into the occasional one-hour session. The timeline must therefore be made to reflect 
this characteristic: the student must have the opportunity to appropriate the 
experience of the process reflexively, and to pass the frustration point where the 
temptation to give up is the strongest.  
Secondly, as discussed above, the mathematical concepts have to be accessible 
enough to the participants that they can focus on their research process (in a reflexive 
endeavour). This is designed to ensure that the responsibility and power is shifted to 
the participating students and it is accomplished in three ways. To begin with, the 
students are given ownership of the experience through their own process of 
formulation of the question/problem. In consequence, and secondly, the teacher does 
not know the answer in advance, or even if there is one. Thirdly, and most 
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importantly, the teacher works as a sounding board only, in order to avoid leading the 
process.  
Finally, these constraints need to be recombined with the needs of the curriculum, 
including the teaching of basic notional mathematics. The following two sections 
illustrate instances where this plan was implemented. 

EXAMPLE 1: RESEARCH SITUATION AND EXPERIENCE OF KNOWING 

In 2003, a class of elementary student teachers in an American university spent two 
months in one of their required mathematics courses on a research project ‘at their 
own level’ (Knoll et al., 2004). They spent a month investigating research situations 
similar to the one described above, in informal groups. In many cases, there was not 
even a specific question, let alone a unique answer. In the second month, the students 
chose one of the investigations and took it or one deriving from it to a deeper level. 
Remember, these are not subject specialists; despite that, each student or group of 
students conceived their own topic!  
In this particular case, the students investigated geometry topics such as proper 
colourings1, polyhedra, and tilings. Note again, that the mathematical objects were 
easily accessible. And of course these problems, though seemingly trivial to a 
mathematician, have not all actually been solved; their resolution would not increase 
the canon, because it does not require the development of new mathematical tools, 
and so they are left out, but that is another story. 
Concerning the anticipated achievement of the participating students, the study 
focused on their relationship to the subject of mathematics, including attitudes, 
beliefs and practices. Indeed, if a knower sees mathematics as made of a closely 
interconnected network of concepts, skills and relationships, she will be more likely 
to operate at a higher level than if she regards it as an amalgam of disconnected facts 
and procedures. To illustrate, the theoretical framework is summarised into a table 
with the action of knowing (‘modes of knowing’) in one direction, and the object of 
the knowing (‘notions’) in the other (see Table 1, below).  
In this model, both categories are divided further, creating a matrix describing 
various situations. The key to this categorisation is that different people could place 
experiences of knowing the same mathematics in different cells.  
In addition, the columns are distinguished by whether their content is (a) 
reproducible, (b) transferable, or (c) reconstructible. Clearly, a notion is not known if 
it cannot be reproduced. Further, if you know why something is the case, chances are 
you would be able to use it in a different situation. For example, understanding that 
the ‘carry the 1’ action in two column addition comes from the notion of place value, 

                                           
1 A proper colouring is a colouring of a subdivided system such that no adjacent cells share the same colour. 
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can lead to being able to transfer this to the case of two column multiplication 
without being told.  
 

Modes of 
knowing 

 

Notions 

Knowing that/how 
Reproducible but  
neither transferable 
nor reconstructible 

Knowing why  

Reproducible and 
transferable but  
not reconstructible 

Knowing when 
Reproducible  
and transferable  
AND reconstructible 

Convention 
arbitrarily 
chosen 

Memorised 
information and use  

Nothing  
to understand/derive 

Cannot be 
reconstructed by 
reasoning 

Application 
moving from 
theory to 
practice 

Subjectively the same 
as a ‘convention’: 
memorised 
information and use 

Derived from other 
notions using the 
logical structure of 
mathematics 

Derived from other 
notions using the 
logical structure of 
mathematics 

Theorisation 
moving from 
practice to 
theory 

Subjectively the same 
as a ‘convention’: 
memorised 
information and use 

 Derived from other 
notions using logical 
structure of 
mathematics 

Derived from other 
notions using logical 
structure of 
mathematics 

Table 1: Ways of Knowing and Notions 
In the case of ‘reconstructible’ knowledge, the knower has grasped the mathematical 
structure underlying the notion to such an extent that, given the need, she would be 
able to reconstruct it. This distinction is important in that it implies a deeper 
understanding of the mathematical structures from which the specific emerges, giving 
it more transferability potential and a more wide-ranging applicability, making it 
more fundamental and going back to the notion of transversal knowledge. This is not 
saying, however, that it applies only to higher domains of mathematics.  
Let us now look at the rows, the categories of knowledge. There are many models for 
this in the literature on mathematics education (Piaget, 1970; Bell et al. 1983; Skemp, 
1987, Hejný, 2003; etc.). They are generally constructed to emphasise one aspect or 
another, or to make key distinctions. For the sake of clarity, in the present case we 
will refer to the fragments of specific knowledge as notions, avoiding thus the need to 
specify to whose definition of ‘concept’, ‘skill’, etc. we are referring. 
The first and perhaps most important distinction separates a convention from the 
others. This distinction is important in that it is carried through to the ways of 
knowing. As can be seen in the table, a ‘convention’ is not the result of a logical 
derivation from a more basic or fundamental entity. It is somewhat arbitrary. This is 
key: Considering a given notion as a convention is a kind of fallback position, when 
the learner just cannot grasp something. The learner will then regard the notion as 
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something that was decided for reasons that remain obscure, or even arbitrarily 
determined by someone else and take it at face value. This mechanism can be the 
correct one, but mostly it will lead to problems.  
The second distinction is between applications and theorisations. Both categories 
contain the results of mathematical reasoning, unlike conventions. In addition, the 
two categories are distinguished through the direction of activities that call on them. 
In the case of application, notions are used to solve problems, to execute algorithms, 
and perform other activities that take the knower from the general, abstract, 
theoretical, to the specific, concrete, applied, as in the majority of traditional 
classroom work. 
In contrast, the theorisation category operates from the specific, concrete, applied 
case to the general, abstract, theoretical. This is what is used in the mathematical 
activities described earlier: proving, conjecturing, refuting, defining, etc.  
Evidently, the right end and the bottom of the table represent deeper thinking. In 
addition, the whole network is interconnected. Unfortunately, in many models, the 
distinction between the centre and right columns is left out and the two are collapsed 
or even left out altogether. This deeper thinking, which relates to the transversal 
knowledge described above, is therefore little emphasised, or verified and assessed in 
conventional classroom activities, even though it is much more fundamental and most 
importantly more resilient.  
The important point to consider in this model is that moving towards the right does 
not imply delving into higher mathematics. The level of mathematics constitutes a 
third, independent dimension, and theorisation notions can be accessed in the context 
of very accessible mathematics, as indeed can ‘knowing when’ be achieved.  
The project formed an experiment focusing on this. In fact, the course was designed 
to direct the students’ attention onto their engagement in a mathematical research 
process, as discussed earlier, with special attention to the elements on the right and 
lower ends of the table. This was done using a whole battery of strategies, including 
the use of writing and portfolios for assessment, reflections and other interactions 
with the didactician. This last in particular was encouraged through the use of 
reflective student journals and the emphasis of the final project report on the 
students’ process as opposed to their results. The participants found generally that the 
atmosphere of the classroom was unlike the mathematics context they were used to. 
Several commented that their outlook if not their feelings had changed, and many 
realised that mathematics was more than they had previously been led to believe 
(Knoll et al., 2004). 
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EXAMPLE 2: RESEARCH SITUATION AND DEFINITION 
CONSTRUCTION PROCESSES 

Processes of defining represent an important part of mathematical activity, as 
underlined by Lakatos with an example concerning the immersion of a proof in a 
classification task: 

there are other ways of communicating meaning than definitions. I, for one, shall initiate 
my pupils into the problem-situation which I am dealing with not by definitions, but by 
showing them a cube, an octahedron and showing that for these V-E+F=2. Then I shall 
ask for the domain of validity of this formula. (Lakatos, 1961, p.69) 

In this context, Lakatos shows that a definition is not only a tool for communicating, 
but also a mathematical process taking part in the formation of concepts. In the 
example at hand, the aim consists of a characterisation of markers in order to 
examine the concept formation process, and, in particular, to identify specific 
statements in the defining processes in order to say something about concept 
formation. 
If we consider classification tasks as a part of the definition building context, this 
definition building process itself takes place within the wider problem that is the 
search of a proof, which in turn catalyses the construction of the concept, of 
polyhedra for example (Lakatos, 1961). If we concentrate our attention on a 
classification situation as a definition construction situation (it can be a particular 
RSC), this may appear simple: one takes some examples and counter-examples of a 
mathematical object and asks for a definition. We have experimented with this type 
of defining situation with the mathematical object ‘tree’ (see Ouvrier-Buffet, 2003) 
and also with the mathematical object of the ‘discrete straight line’ (see Ouvrier-
Buffet, 2004). Both these situations have been conducted with students in their first 
year of university (scientific and not scientific sections). These mathematical objects 
are noteworthy because they are accessible by their representations, and are non-
institutionalised, thus no pre-existing definition of these concepts exists. Furthermore, 
let us notice that to classify is a familiar task, both in everyday life and in sciences (in 
geometry or in biology for instance). Moreover, some students’ conceptions about 
mathematical definitions (what definitions are or should be, what they do, the aspect 
they should have, etc.) will certainly have a leading role in such a situation, and may 
represent an obstacle to the defining process, or even a catalyst. We have to be aware 
of this fact, but the main question stays: are students capable of awareness of their 
own defining process? We want to study this kind of reflexive process. So, the 
challenge is now to characterize defining processes and situations in which a 
definition has to be built. 
There exists a model for defining processes (Ouvrier-Buffet, 2003) which emphasises 
the operators and controls taking part in the processes. Modelling defining processes 
involves exploring the procedures implicated in the creativity of professional research 
mathematicians when they build new concepts (admittedly this is no small challenge! 
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That is why the roots of the presently characterised operators and controls, which are 
taking part in a defining process, are epistemological and philosophical2)  
The study also involves the identification of the markers of these processes in order 
to analyse how students define. These markers also allow a first characterisation of 
some key tools at the teacher’s disposal for a definition building activity. Let us 
present some element of this. Remember that the teacher, in an RSC, is not the holder 
of knowledge. He has to adopt the position of researcher, like the students. Even then, 
there are ‘didactical levers’ such as recalling the instructions and asking for a 
definition.  
The study of the concept of definition shows that a defining process is based on four 
poles, graspable in three epistemological conceptions: one concerns the construction 
of a theory (Popper, 1963), another deals with Problem-Situation (Lakatos, 1961), 
and two other poles concern the logical and the linguistic aspects (Aristotle), 
respectively. In this context, the teacher (who becomes a Manager-Observer in an 
RSC) may interfere in the defining process of the students through logical requests, 
linguistic or axiomatic exigencies or the supply of given counter-examples. The MO 
can also ask for the construction and/or recognition of an object (tree or discrete 
straight line in a classification task for instance): it is a request obviously related to 
the function of the definition (does the definition help to recognise or construct the 
discrete object?). For instance, a question like this: “draw a discrete straight line 
crossing these two given pixels” engages students in a new reflection, of an axiomatic 
kind; the uniqueness of such straight lines is of crucial importance, and implies thus a 
new movement in the defining process.  
This last statement necessitates a wider characterisation of the teacher’s levers for 
defining situations. It can be comfortable for the teacher, because this kind of activity 
(the didactical contract for students is to build a definition) leads to a product, re-
usable in a course. The teacher also remains in control of the process to a large 
extent, because there are clear goal posts.  
 

CONCLUSION/ OPENING REMARKS 

This paper brings an overall picture of the potentialities of research situations for the 
classroom. RSC give us an opportunity to work on scientific processes, constituted by 
students’ experiments with different cognitive attitudes: doubting, conjecturing, 
refuting (generating new counter-examples), testing etc. In particular, the processes 
of defining can be modelled through four main items: formulating, logic, heuristic, 

                                           
2 We will propose an integrated picture of these operators and controls, in relation with different kinds of defining 
situations during the conference, with a poster entitled “On Modelling Conceptions about Mathematical Definitions”. 
We will also present an illustration of the use of this model with a definition-construction situation. 

Working Group 3

CERME 4 (2005) 339



theorising. The situations also give potential for students’ reflections on wider issues, 
for example about the nature of mathematics, or even knowledge in general. 
The discussions initiated in this paper illustrate the challenges facing education 
researchers interested in the research-situations as applied in the classroom. Further 
work concerning the nature of transversal knowledge and the understanding of a 
mathematical concept is fundamental. We have now to continue the implementation 
of research situations in the classroom in order to refine the characterisation of 
transversal knowledge and to define “properly” the learning in a specific context: that 
of the creation of knowledge, both in the discipline in general and in the mind of the 
learners.  
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ON LINGUISTIC ASPECTS OF STRUCTURE BUILDING 
Ladislav Kvasz, Comenius University in Bratislava, Slovak Republic 

 
Abstract: On a historical case study we examine the connectedness between 
structures that exist on different levels of abstraction. We take the history of 
algebraic equations and following the development of algebraic symbolism we show 
how the maturation of one structure is a precondition of the emergence of the next 
one.  

 
One of the typical features of cognitive structure building is its hierarchical 

nature. Structures exist on many different levels of abstraction. Therefore besides 
horizontal connectedness, that is connectedness among elements on the same level of 
abstraction, also structures that exist on different levels of abstraction are connected. 
For example the notion of a group is connected not only with notions like the notion 
of a ring or the notion of a field, which are on the same level of abstraction as the 
notion of a group itself. The notion of a group is connected also with the notion of a 
quotient group, which represents the next higher level of abstraction on which 
operations with groups themselves are being performed. On the other side the notion 
of a group is connected also with permutations and symmetries, which form the lower 
level, that is the level, from which the notion of the group was abstracted. 

An important problem of the theory of cognitive structure building is to 
understand how structures on different levels of abstraction are connected. One of the 
tools, which foster the coexistence and connectedness of structures on different levels 
of abstraction, is symbolic language. In the paper I would like to examine the 
construction and coexistence of three different layers of structures in algebra. For this 
purpose I will use historical material, because in history of mathematics we can 
follow the process of structure building over a long period of time and so examine, 
how the different layers of abstraction follow each other and how different layers 
influence each other. I will concentrate on the development of algebraic structures 
from Al Chwárizmi to Euler, thus just before the notion of an abstract algebraic 
structure appeared. This analysis reveals an interesting twofold dynamics of structure 
building: 

1. On the one side there is the turning of a process into an object. This part of 
the dynamic is well understood by the theories of concept formation (see Hiebert 
(1986), Sfard (1989), Gray-Tall (1994), Hejný (1999)). 

2. There is also a dynamics in the opposite direction. After a process has been 
turned into an object, the new objects are expressed by symbols, and these symbols 
enable the emergence of a process on a higher level of abstraction, a process of 
manipulation with these symbols (see Corry 1996). 

In order not to mix the two levels, the objects representing the processes of the 
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first level must be rather rigid, the process of object formation must be stabilized. 
That is why the turn from the first to the second level took in history several decades. 
It is not clear whether similar phenomena could be observed also in the development 
of algebraic thinking of children. Thus there is an open question for experimental 
research, whether it is possible to find spontaneous building of one structure on the 
basis of another. But let us now turn to the historical case. We shall examine the 
language by the help of which algebraic equations were solved, and discriminate 
three layers of cognitive structure. 

1. The solution of an equation as a rule 
Abú Abdalláh Muhammad al-Chwárizmi (780-850) is the author of the Short book of 
algebra and al-muqabala a treatise on solving „equations“. The word al-gabr 
(algebra) in the title of the book came in time to be used as a name for the whole 
discipline dealing with „equations“. We cannot speak about equations in the modern 
sense, because the book of Al Chwárizmi makes no use of symbols and even 
numbers are expressed verbally. For the powers of the unknown the book uses special 
terms: for x it uses shai (thing), for x2 − mal (property), for x3 − kab (cube), for x4 − 
malmal, for x5 − kabmal, etc. Algebra was understood as a set of rules for 
manipulating with the thing (i.e. the unknown), which enable us to find the solutions 
of particular „equations“. 

Before attempting to solve an „equation“, Al Chwárizmi first rewrote it in a 
form where only positive coefficients appeared and the coefficient of the leading term 
(term with the highest power of the unknown) was one. In order to achieve this 
standard form, he made use of three operations: al gabr−if on one side of the 
„equation“ there are members that have to be taken away, the corresponding amount 
is added to both sides; al-muqabala−if the same power appears on both sides, the 
smaller member on the one side is subtracted from the greater one on the other side; 
and al-rad−if the coefficient of the highest power is different from one, the whole 
„equation“ is divided by it. We write the term „equation“ in quotation marks, because 
Al Chwárizmi did not write any equations. Rather, he transformed relations among 
quantities, everything being stated in sentences of ordinary language, enriched by few 
technical terms. Piaget characterized structure by transformations (Hejný 2002, p. 
15), thus al gabr, al-muqabala, and al-rad can be viewed as transformations creating 
the first layer of algebraic structure. 

We can illustrate this structure with an example. Consider the equation 
x2 + 10x = 39, which Al Chwárizmi expressed in the form: „Property and ten things 
equals thirty nine“. His solution reads as follows: „Take the half of the number of the 
things, that is five, and multiply it by itself, you obtain twenty five. Add this to thirty 
nine, you get sixty four. Take the square root, or eight and subtract from it one half of 
the number of things, which is five. The result, three, is the thing“. This is a set of 
specific instructions telling us how to find the solution. Nevertheless, Al Chwárizmi 
has the notion of the unknown (shai) and therefore his instruction „take the half of 
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the number of the things, multiply it by itself, add this to thirty nine, take the square 
root, and subtract from it one half of the number of things“ is a universal procedure, 
which can be applied to any quadratic equation of that particular form. Thus he is 
able to grasp the procedure of solution in its entire universality. When he uses 
concrete values for the coefficients, he does so only for the purpose of illustration. 
With the help of the notions as shai, mal and kab he is able to grasp the universal 
procedure, and in taking this step he became the founder of algebra. 

2. The solution of an equation as a formula 
In the 12th century the works of Al Chwárizmi were translated into Latin. The 
custom of formulating the solution of an „equation“ in the form of a verbal rule 
persisted until the 16th century. The first result of western mathematics that surpassed 
the achievements of the Ancients was formulated in this way. This was the solution 
of the cubic equation, published in 1545 in the Ars Magna Sive de Regulis Algebracis 
by Girolamo Cardano (1501-1576). Cardano formulated the equation of the third 
degree in the form: „De cubo & rebus aequalibus numero.“ The solution is given in 
the form of a rule: „Cube one-third of the number of things; add to it the square of 
one-half of the number; and take the square root of the whole. You will duplicate this, 
and to one of the two you add one-half the number you have already squared and 
from the other you subtract one-half the same. You will then have binomium and its 
apotome. Then subtracting the cube root of the apotome from the cube root of the 
binomium, that which is left is the thing.“  

In order to see what Cardano was doing, we present the equation in modern 
form x3 + bx = c and we express its solution in modern symbolism: 

            x  =  c c b c c b
2 2 3 2 2 3

2 3
3

2 3
3+ 





+ 





− − + 





+ 





. 

Of course, Cardano never wrote such a formula. In his times there were no formulas 
at all. On the surface algebra was still regula della cosa, a system of verbal rules used 
to find the thing. Nevertheless, below this surface some fundamental changes were 
taking place. 

Even if Cardano’s rule itself did not deviate from the framework of Al 
Chwárizmi’s approach to algebra, it is not clear how was it possible to discover 
something so complicated. In order to understand this, we have to go back a century 
before Cardano and describe the first stage of the reification of the language of 
algebra, connected with the creation of algebraic symbolism. After western 
civilization had absorbed Arabic algebra, a tendency arose to turn algebraic 
operations into symbols. This process was slow, lasting nearly two centuries. We will 
present only some of the most important innovations. Regiomontanus (1436-1476) 
introduced the symbolic representation for root extraction. He denoted the operation 
of root extraction with the capital R, stemming from the Latin radix. Thus for 
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instance he expressed the third root of eight in the form R cubica de 8. In this way he 
represented the operation of root extraction by the expression of the root itself, that is 
by the result of the operation. Michael Stifel (1487-1567) replaced the capital R by a 
small r, so that instead of R cubica de 8 he wrote c8 . He introduced the convention 
to write the upper bar of the letter r a bit longer. Stifel placed the first letter of the 
word cubica below this prolonged bar, so that everybody would know that it was the 
cube root. The number placed after this sign is the one whose root is to be extracted. 
Our modern convention was introduced by Descartes (1594-1650). Descartes 
replaced Stifel’s letter c by the upper index, and placed the number itself below the 
bar of the letter r, thus writing the third root of eight in the form 83 . This changing of 
the letter c into the numeral 3 opened up the possibility of devising arithmetical rules 
for handling exponents. 

Another very important development took place in connection with the 
representation of the unknown. The Arabic terms of shai, mal and kab were translated 
as res, zensus and cubus. Instead of writing the whole words mathematicians started 
to use only their first letters, thus r for res, z for zensus and c for cubus. Just like the 
Arabs algebraists, the Cosists (as the practitioners of this new algebra were called) 
did not stop with the third power of the unknown, introducing higher powers, such as 
zz (zenso di zensi), zc (zenso di cubo), etc., and developing simple rules for 
calculating with such expressions. Through such gradual processes symbols for the 
algebraic operations were introduced and gradually a whole layer of operations was 
reified, acts were turned into objects. (It would be interesting to compare the 
historical case with the theory of reification in maths education, see Sfard 1989.) This 
process was slow, and at the beginning it was only little more than replacing words 
by letters for the sake of brevity. When the new symbols accumulated in sufficient 
quantity, they made possible a radical change in algebraic thought−the solution of the 
cubic equation. As we saw, Cardano formulated his result as a verbal rule. 
Nevertheless, its discovery was made possible by the new symbolism. We will 
present a reconstruction of this discovery, presenting it in modern symbolism for the 
sake of comprehensibility (see Scholz, 1990). 

Let us take a cubic equation 
    x3 + bx = c, 

The decisive step in the solution of this equation is the assumption that the result will 
have the form of the difference of two cube roots. We do not know how the Italian 
mathematicians hit upon this idea. When we make this assumption, everything 
becomes simple. Let 

   x  = u v3 3− .       (1) 
Raising this expression to the third power and then comparing it with the equation we 
obtain the following relations between the unknown quantities u and v, and the 
coefficients b and c: 
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   b  = 33 uv     c  =  u − v.    (2) 
When we isolate v from the second equation, and substitute the resulting expression 
into the first one, we obtain a quadratic equation 

    u2  −  uc  − b
3

3






 =  0.     (3) 

The root of this equation is given by the formula for quadratic equations as  

    u = c c b
2 2 3

2 3

+ 





+ 





.     (4) 

The value of the unknown v can be now determined from the second equation of (2). 
Knowing u and v we can find the solution of the original problem from (1) 

  x    =    u v3 3−    =    c c b c c b
2 2 3 2 2 3

2 3
3

2 3
3+ 





+ 





− − + 





+ 





. 

In this derivation the advantage of the algebraic symbolism, i. e. of the reification of 
the language of the Arabic algebra, is clearly visible. Right at the beginning we 
assumed that the result would have the form of the difference of two cubic roots. In 
Arabic algebra there were no expressions, there were only rules. And a rule has no 
form, because it cannot be perceived. We can only listen to it, and then perform all 
the steps precisely as the rule instructs us. Only when we represent the steps of the 
rule by symbols does the sequence of calculations appear before our eyes, only then 
are we able to perceive its form. The rule is thus transformed into a formula. 
Algebra becomes an analytic art, the art of transforming algebraic formulas, guessing 
the form of the result and finding suitable substitutions. This art forms the core of 
Cardano’s Ars Magna. 

Nevertheless, it is important to realize that new possibilities are opened up 
when one reifies one level of the algebraic language by turning the rules into 
formulas (i.e. when the rule „square the thing and add to it five things“ becomes 
simply the „x2 + 5x“). Al Chwárizmi knew only three algebraic operations−al-gabr, 
al-muqabala and al-rad−but not substitution. His transformations did not make it 
possible to change the „form“ of the algebraic formulas. Substitutions are used in 
order to simplify algebraic problems, transforming for instance a cubic equation for x 
into a quadratic equation for u. The substitutions do not simply shift a term as a 
whole from one side of the equation to the other but rather decompose them and then 
rearrange them in a new way. For instance, the substitution x = u v3 3−  decomposed 
the unknown x into two parts, rearranged these parts, and then put them together 
again. Thus it seems that this transition shifts the ontological foundations one level 
deeper. Algebra as regula della cosa understood the unknown as a „thing“, that we 
can „take in our hands and move to some other place“, but the „form“ of this thing 
remained unchanged. Now the „thing“ itself is transformed. It is, for instance, 
decomposed into two parts, which can be treated separately. 
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Another important change introduced by the use of substitutions concerns what 
counts as the solution of an equation. Formerly, in the framework of algebra 
understood as regula della cosa, mathematicians accepted only positive solutions, 
because the number of the things cannot be negative. If the unknown represents some 
real quantity, some number of things, it cannot be less than nothing. But as soon as 
we start using auxiliary equations, the unknowns of which refer only indirectly, due 
to substitutions, it can happen that the positive solution of the original equation 
corresponds to a negative root of the auxiliary equation. Therefore in the auxiliary 
equations we have to take into account the positive as well as the negative roots. In 
this context Cardano distinguished between the „true“ and the „false“ solutions. The 
notion of an equation is thus slowly freed from its dependence on direct reference. 

The most important shortcoming of the previous algebraic notation was that it 
used different letters (r, z, c, ...) to represent the powers of the same quantity. Thus, 
for instance, if r is 7, then z must be 49, but this dependence is not indicated by the 
symbolism. When substitutions are used, such a convention becomes unwieldy, 
because whenever we make a substitution for r, we must also make the appropriate 
substitution for z. Further, in a substitution we have to do with at least two unknowns, 
the old one and the new one. To represent both with the same letter r would create an 
ambiguity. Another shortcoming of the symbolism of the Cosists was that it had no 
symbols for the coefficients of the equation. Instead they used such phrases as „the 
number of things“, meaning by this the coefficient of the first power of the unknown. 
The symbolism was unable to express the coefficients in a general way, and 
consequently they only used fixed values of the unknowns in their symbolic 
manipulations. 

In 1591 François Viéte (1540-1603) published his In Artem Analyticem 
Isagoge (Introduction to the analytic art). In this book Viéte introduced the 
symbolical distinction between unknowns and parameters. He was the first to 
represent the coefficients of equations with letters. It is only beginning with his work 
that we can speak of a universal formula, which expresses the solutions of an 
equation in terms of its coefficients. Viéte used capital vowels A, E, I, O, U, to 
represent the unknowns and the capital consonants B, C, D, F, G, ... to represent the 
coefficients. In addition, each quantity had a dimension:  1-longitudo, 2-planum, 3-
solidum, 4-plano-planum, ... The dimension of each quantity was expressed by a 
word written after the symbol, thus for instance A planum was the second power of 
the unknown A (what we now write as x2) while A solidum was the third power of the 
same unknown. Thus the letter indicates the identity of the quantity while the word 
indicates its particular power. This expedient makes it possible to use more than one 
quantity, and among other things makes it possible to express a substitution. Even 
though Viéte’s symbolism is rather complicated, it was the first universal symbolic 
language for the manipulation of formulas. Viéte was fully conscious of the 
importance of his discovery. He believed that this new universal method would make 
it possible to solve all problems. 

Working Group 3

CERME 4 (2005) 347



3. The solution of an equation as a splitting of a form 

One of Cardano’s merits was the systematic nature of his work. Therefore besides the 
equation of the form „cubus and thing equal number“, the solution of which was 
discussed above, he presented rules for the solution of the other two forms of cubic 
equations. The rules for the solution of these equations have a form very similar to 
the first case. Nevertheless, Cardano made a surprising discovery when he tried to 
apply his rule for the equations of the form  „cubus equals thing and number“ to the 
equation x3 = 7x + 6. When he applied the rule he obtained a result we would express 
as follows: 

   x  =  3 100
27

3 100
27

3 3+ − + − − . 

Below the sign for the square root a negative number appeared. The formula 

required him to find −
100
27

, something he was not able to do. For the further progress 

of algebra it was crucial to understand what was going on when a negative number 
appeared below the square root sign. The discovery of the casus irreducibilis, of the 
insoluble case, led to a gradual loosening of the bond between language and reality. 
The algebraic expressions are viewed more and more as forms, as formal objects 
constructed from symbols, independent of any realistic context in which they are 
supposed to be interpreted. An important motive for such a development was the 
situation in the theory of equations. Cardano considered equations such as x3 + bx = c 
and x3 = bx + c to be different problems. The reason was that he allowed only positive 
numbers for coefficients and solutions. For equations of the third degree this 
represents only a small complication, but in the case of the equation of fourth degree 
we have seven different kinds of equations, and in the case of quintic equations 
fifteen. Therefore it is natural to try to reduce this complexity. It was Michael Stifel, 
whom we already mentioned in connection with the introduction of the symbol for 
the square root, who first saw how this might be accomplished. In his book 
Arithmetica integra (1544) Stifel introduced rules for the arithmetic of negative 
numbers, which he interpreted as numbers smaller than zero. That is a natural 
extension of the number concept, as negative numbers begin to play an important role 
as values of the auxiliary variables. Nevertheless, Stifel went further and started to 
use negative numbers also as coefficients of equations. This enabled him to unite all 
fifteen kinds of quintic equations, which formerly had to be treated separately, into 
one general polynomial form: x5 + ax4 + bx3 + cx2 + dx + e  = 0. Thus a polynomial as 
a mathematical object is first found in Stifel’s work. He used a simple symbolism 
without symbols for coefficients. Nevertheless, the basic idea reducing all the 
different cases into a single form, by allowing the coefficients to be negative, was 
decisive. A polynomial unites different formulas into one universal form. 

When we start to understand the algebraic expressions as more-or-less 
independent formal objects, it becomes possible to accept the square roots of negative 
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numbers simply as special kind of expressions. Even though we do not know what 
such expressions represent, we know how to calculate with them. This understanding 
is implicit in the book Algebra, written by Rafaelo Bombelli in 1572. Bombelli 
introduced rules for the addition, subtraction, multiplication and division of these new 
expressions, and did not ask what they stood for. This view can be found also in 
Leonard Euler’s book Vollständige Anleitung zur Algebra from 1770, where 
imaginary numbers are called numeri impossibiles, because they are not smaller than 
zero, not equal to zero, and not greater than zero. Euler writes: „They force 
themselves on our mind, they exist in our imagination and we have sufficient notions 
of them, because we know that −4  means a number, which when multiplied by itself 
gives -4“. Thus even though in reality there is no quantity whose square is negative, 
we have a clear understanding of the meaning of the symbol −4 . 

The transition from formulas to forms is also important for another reason. If 
we consider formulas as the basic objects of algebra, one central aspect remains 
hidden. A polynomial has many roots, thus in general there is not just one number 
satisfying the conditions of an algebraic problem. In the first stage, the stage of rules, 
this was ignored, because in reality, in the normal case, the number of things we are 
looking for is unequivocally determined. Mathematicians therefore simply ignored 
the existence of other roots of an equation, and as the solution of the problem they 
accepted the root that made sense given the context of the problem. In most cases 
they were even not aware that they are overlooking some solutions, because in most 
cases the other solutions were negative, and thus from the realistic point of view, 
unacceptable. In connection with the stage of formulas the situation was somewhat 
better. For the auxiliary equations it was necessary to take the negative solutions into 
account as well, because it can happen, that a negative solution of the auxiliary 
equation corresponds to a „true“ (i.e. positive) solution of the original problem. 
Nevertheless, as a solution of the whole problem mathematicians still accepted only a 
positive number, one that gave the „number of things“. Only when the bonds tying 
the language to reality became looser did they accept that equations generally have 
more roots. Thus the transition from algebraic formulas to algebraic forms was 
crucial for the understanding of the relation between the degree of an equation and 
the number of its roots. 

We expect a formula to tell us the result. A formula expresses a number we 
want to know, it represents the answer to the question we are asking. A form, on the 
other hand, is a function, giving different results for different inputs It might not be 
easy to imagine that a given problem has more than one answer, because if we are 
asking something about reality, we expect that the answer is uniquely determined. 
Yet when we understand the equation describing the problem as a polynomial form, it 
becomes understandable that the form can produce the same value (usually zero) for 
more than one value of its argument. Thus the transition from formulas to forms 
makes it easier to accept that an equation can have more than one solution. When the 
equation is understood as a form the relation between the roots and the coefficients 
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can be disclosed, as was done independently by Albert Girard (1595-1632) and René 
Descartes. 

In this way the language of algebra becomes a means for grasping the unity 
behind the particular formulas and quantities. This unity opens up a new view of 
equations. Instead of searching for a formula that would give us the value of the 
unknown, we face the task of finding all the numbers that satisfy the given form. In 
other words, we are searching for numbers which we can use to split the form into a 
product of linear factors. Consider, for example, the form 

  x3 − 8x2 + x + 42   =   (x − 7).(x − 3).(x + 2), 
which shows that 7, 3 and −2 are the roots of the polynomial x3 − 8x2 + x + 42. To 
solve the equation x3 − 8x2 + x + 42 = 0 now means to find all its roots. When we 
have found the roots, we are able to split the form x3 − 8x2 + x + 42 into linear factors 
(x − 7), (x − 3) and (x + 2). This factorization shows that no other root can exist (for 
any number different from 7, 3 and −2 each factor gives a nonzero value and so their 
product is nonzero). Thus the splitting of the form into linear factors gives a complete 
answer to the problem of solving an equation. To solve an equation means to split a 
form into its linear factors.  

5. History of algebra and structure building 
In history of algebra the tree layers of structure−algebra of rules, algebra of 

formulas, and algebra of forms− are separated by rather long periods of time. It is 
possible that many of the difficulties students encounter in understanding algebra are 
caused by the fact that these three layers are introduced quickly one after the other. 
Therefore one layer is not stable enough to be able to support the building of the next 
layer, and so the connections between them are only vague. 
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APPROACHING THE DISTRIBUTIVE LAW WITH YOUNG PUPILS 

Nicolina A. Malara, University of Modena and Reggio Emilia, Italy 

Giancarlo Navarra, University of Modena and Reggio Emilia, Italy 

 

Abstract: This paper contributes to the research strand concerning early algebra and 
focuses on the distributive law. It reports on a study involving pupils aged 8 to 10, 
engaging in the solution of problem situations, purposefully designed and presented 
through concrete objects, drawings, oral or written descriptions. The study focuses 
on ways in which perception leads to different mental images that influence the 
choice of either the (a+b)× c or the (a)×c)+(b)×c) representation. Our hypothesis is 
that understanding these dynamics is a fundamental step for the construction of a 
meaningful approach to properties based on suitable activities, organised so as to 
favour an explicit statement of proposed solutions and a collective comparison of 
arithmetic expressions that codify solution processes. 
Keywords: perception, mental models, language representation of processes, 
distributive law. 

 
1. Introduction 
This work is part of the ArAl project, which was designed to revisit arithmetic 
teaching in a pre-algebraic perspective (Malara & Navarra, 2001, 2003a, 2003b) and 
concerns a fragment of a teaching path centred on problem solving activities finalised 
to construct in pupils an experiential basis for an objectification of the distributive 
law, through collective discussions for sharing and reflection1. The distributive law, 
together with associative and commutative laws, plays a key role on both the 
arithmetical (mental calculations, algorithms, rule of signs, …) and algebraic side 
(transformation of expressions, recognition of equivalence relationships, formal 
identities, …) and more generally in the production of thinking via algebraic 
language. In usual teaching practice however, these properties are taken for granted, 
almost assumed as tacit axioms, or worse, they are assigned to be learned by heart 
from the textbook. Pupils are thus led in the position not to understand the sense of 
these properties, to perceive a rupture between the experiential and the theoretical, 
and not to recognise their value on the operative level. The tacit spreading of this 
phenomenon is documented by studies concerning teachers (Tirosh et al., 1991) and 
by studies focusing on a conscious learning of arithmetical properties and of the 
distributive law in particular (Mok 1996, Vermeulen et al. 1996). In our project this 
property enters the game in many situations and it is exactly due to this pervasiveness 
that we deemed important to design a path aimed at its objectification through 
problem situations that highlight its genesis. Our first results highlight the influence 
                                                 
1  The theoretical frame of the work is essentially the one of the project and it is sketched in the quoted papers. The 

English version of the project is in <www.matematica.unimo.it/0attività/Formazione/ArAl>. 
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of perception on the construction of mental images, useful for conceptualising the 
property, and the effectiveness of processes of sharing. 
 

2. The situation 
The class2 which is object of the present analysis, is beginning a path which will lead 
to the conceptual embryo of the distributive law. 
The objective is to construct premises for subsequent developments, finalised to the 
appropriation of the property as a mathematical object. The activity develops through 
three problem situations that favour the development of dynamics that can be 
summarised in three phases: 1) from confusion to the first arithmetical 
representations; 2) from the first perceptions to the two constitutive representations of 
the property; 3) reflection on the two representations and appropriation of the mutual 
equality of the expression values. The three situations are meant to favour the 
transparency of the transition from perception of the situation to translation into 
mathematical language. It is thus necessary to (a) educate pupils’ perception, i.e. lead 
them to become aware of the existence of diverse ways to perceive a situation, among 
which some may be more productive from a mathematical point of view; (b) make 
pupils understand that it is possible – through collective sharing – to understand the 
meaning of translations and conceptualise their mutual equivalence beyond the 
process each of them identifies. Very often teachers themselves must be educated 
analogously. 
We present here a teaching sequence, overall lasting about three hours (distributed in 
three sessions) to be considered as an example of the evolution of thinking in both 
individual and collective forms. The most meaningful parts of the diary are described 
in detail, whereas other parts, meaningful for their overall sense, are synthesised. As 
the reader will notice, the initial interventions by pupils denote a certain confusion 
about the assigned task and an apparent regression with respect to competencies that 
were acquired the previous year in the solution of problems that had a similar 
structure. These are consequences of the assignment, repeatedly asking not to solve 
the problem finding a result, but to explore one’s own modus operandi. Confusion is 
thus due to an atypical didactical contract: pupils are asked to work at metacognitive 
level and this request, although having strong educational value, is harder to be 
managed by both students and teacher. One of the main features of the ArAl project 
is to favour reflection on processes: to obtain this, it promotes activities that stimulate 
metacognitive and metalinguistic competencies and construct sensitivity towards 
these aspects in teachers. 
 
 

                                                 
2  It is a grade 4 class from Birbano (Belluno, Italy) at the beginning of the year school (2002-03). The 

activity was planned within a yearly cycle of meetings in which the teacher researcher Giancarlo Navarra 
and Cosetta Vedana, class teacher for the mathematical-scientific area were simultaneously present. 
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3. Phase 1: from confusion  to the first arithmetical representations  
(i) Problem presentation and assignment 

 

The teacher puts 6 bags (made of a 
non-transparent fabric) on a desk 
and explains that each of them 
contains 7 triangles and 12 squares. 

 

 

The task is to count how many objects are in the bags totally. It is strongly underlined 
that the important thing is not the number of objects, but rather the reasoning process 
followed to find it. Pupils know the quantities referred to objects but cannot see them, 
therefore they are forced to construct mental models. In order to do this, they must 
initially focus on their perception of the imagined situation, in an intertwining of 
unstable perceptions and floating calculation attempts. 
The task is complex: in fact the pupil is asked not to count, but to look at 
himself/herself in the counting act. He/she must face a metacognitive task: reflecting 
on his own actions. 
3.1. From confusion … 
(ii) (Class3) The first difficulty is a psychological one: pupils are anxious and do not 

understand the task. 
(iii) (C) The next step occurs at cognitive level: being uncertain about the task, pupils 

go for the most familiar interpretation and mentally count the content of a bag: 
there are 19 items4. These are in a single bag, but they show to be thinking that 
anyway one step is completed, because what seems to be important for them is 
the number, i.e. the ‘result’. 

(iv) (TR) A visual aid is given: pupils are invited to open the bags. 
 
 
 
 
 

(v) (C) Still confusion: seeing the objects does not seem to offer significant help. 
While searching for an interpretation of the task, pupils start manipulating the 
items: they group them by colour, by shape, others leave them shuffled. 
However, this manipulation does not provide particular hints. 

(vi) (TR) The task is reformulated and a discussion is solicited: “I did not ask you to 
tell me a number …do you remember? I asked you to count mentally the pieces 
and then try to explain how you proceeded for counting. Look inside yourselves, 
as in a movie. What did you think? Where did you start from?” 

                                                 
3  From now onwards C will stand for ‘class’ and TR for ‘teacher researcher’.  
4  Pupils are still not seeing the items, but need to imagine them, hence ‘counting’ is done on a virtual 

context, without the reassuring feedback given by a physical contact with objects. But, as we will see 
later, pupils will keep interpreting the request to ‘count’ in a strict sense, an operative one, instead of 
management of a complex situation in which ‘counting’ may become a sort of umbrella, under which 
several strategies for calculation can be developed.  
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(vii) (C) The new discussion is still confused, but more choral and animated, with 
weak metacognitive features: some pupils say that they count pieces one by one5, 
others using the times 2 - table, others using the times 5 – table (discussion about 
the strategies highlights that they count pieces two or five at a time, to go faster), 
others by groups of colours. 

(viii) (TR) The task is formulated again, and pupils are invited to give less generic 
explanations, taking into account the information given by the problem: “Look 
carefully at what is in front of you: there are six bags; each bag has the same 
content, made of triangles and squares, and there are seven triangles and twelve 
squares. Your brains are working with these numbers”. 

(ix) (C) The activity evolves at metacognitive level: pupils, working in small groups, 
manipulate blocks meditating on the moves, with slow shifts accompanied by 
reflection; in a Gestaltian sense, pupils are restructuring their field, searching for 
meaningful perceptions. Calculation processes start shaping up in a complete 
and communicable way. Embryos of processes are proposed: for instance, pupils 
of a group say that in order to find the total number they “did 19 times 6”. 

Steps i – ix: 
The initial situation (i) in which triangles and squares are not visible makes pupils 
uncomfortable (ii) and is sorted out by means of a calculation (iii) but it forces pupils 
to construct mental images of the situation. Seeing physically the objects (iv) does not 
help in the beginning (v) because possibly  the real problem does not lie in vision per 
se, but in the organisation of the vision itself. The repeated invitation to look inside 
oneself (vi-viii) leads to an increasing development of metacognitive activity and, 
consequently, to the elaboration of more organised attempts to ‘see’ the situation 
with the eyes of mind. Hence a virtuous circle is enacted (ix) between an increasingly 
‘guided’ perception and a growing clarity in the interior visualisation of mental 
processes and in their verbal description. The situation is mature for Brioshi’s6 entry. 
3.2. … to the first arithmetical representations 
(x) Mathematical language enters the scene: it is time to verify if and how field 

restructuring – and hence the game of back-and-forths between perception and 
development of mental models – has produced images that can be represented 
through mathematical language. Brioshi is called in: (TR)  “What message could 
you send him to explain how you managed to count triangles and squares inside 
a bag and then to find the total number of triangles and squares?” 

                                                 
5  As underlined in previous note, ‘counting’ still emerges as a litany.  
6 Brioshi is an imaginary Japanese pupil (variably aged according to the age of his interlocutors) and is a 

powerful support within the ArAl project (the first Unit is completely dedicated to him). He was 
introduced to make pupils aged between 7 and 14 approach formal coding and a difficult related concept: 
the need to respect rules in the use of language, need which is even stronger when engaging with a 
formalised language, because of the extreme synthetic nature of the symbols used in them. Brioshi is able 
to communicate only through a correct use of mathematical language and enjoys exchanging problems 
and solutions with foreign classes, through a wide range of instruments, such as messages written on 
paper sheets or more sophisticated exchanges through the Internet. 
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(xi) (C) Part of the pupils formulate (individually) the following proposals, 
transcribed on the blackboard and then discussed. 

(a) 9 + 7 + 3 = 19 
(b) 19 × 6 
(c)  (5 + 5 + 5 + 5 + 5)7 
(d) 5 × 3 + 4 = 19 
(e)   5 × 4 - 1 
(f)   2 × 4  = 8 + 11 = 19 

Sentences highlight a short circuit with the task. Except for (b), the others 
express a conviction that different ways of expressing the content of a bag, that 
is 19, must be listed. This misunderstanding leads to substantially unreasonable 
expressions, often impenetrable, because the authors cannot justify the reasons 
underlying their representation.8 

(xii) (TR) Description of the situation: inviting pupils to use a representation in 
mathematical language was premature and natural language becomes again the 
mediator – with a fundamental role, given the age of pupils – through which 
pupils are asked to describe the concrete situation as it is. 
(C) At the end of the discussion, the class comes to a collective formulation: 
“There are six bags, all on a desk: there are 7 triangles in each bag and 12 
squares in each bag, we must represent and find how many they are altogether”. 

(xiii) A proposal of sending a new message to Brioshi is made, in order to take into 
account what has been said. 

(xiv) The class formulates different proposals, showing an evolution with respect to 
the previous ones: 

(g) 7 + 12 = 19 
(h)  7 × 6 + 12 × 6 
(i)  72 + 42 
(j)  19 + 19 + 19 + 19 + 19 + 19 

Through discussion pupils focus on (h), (i) and (j) but they see them as different 
things. They do not grasp the underlying mental models.  

(xv) (TR) Pupils are asked to re-describe the situation in written natural language. 
(xvi) (C) Some descriptions are still generic, for instance: “there are 6 bags and 2 

different shapes”, but two families of descriptions emerge that mark the 
beginning of a turning point: (a) “6 groups of squares and 6 groups of triangles”; 
(b) “6 bags, in each bag there are 7 triangles e 12 squares”. 

(xvii)  (TR) Pupils are asked to write other sentences for Brioshi individually; two 
groups of sentences come out, referring to the two models: 

                                                 
7 The proposal comes by a pupil with difficulties. 
8  It often happens that when the task is not clearly understood, pupils that express a higher self-confidence 

are the least aware whereas more prudent pupils show to have a stronger critical capacity and prefer to 
‘stay at the window’.  
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(k)  7 × 6     6 × 12     72 + 42 
(l)   72 + 42 
(m)  6 × 12 + 6 × 7 
 
(n)  19 × 6 
(o)  12 + 7 × 6 
(p)  (12 + 7) × 6 
(q)  7 + 12 × 6 

(xviii) (TR) Pupils are asked to comment on the formulations. 
(xix) (C) At the end of discussion these conclusions are reached: 

Group (A) conclusions‘… first they find the whole lot of triangles and then the 
whole lot of squares’; group (B) conclusions say that ‘… they calculate the 
number of squares and triangles altogether’. 

Steps x – xix 
Brioshi’s entry (x) starts up an activity of representation in mathematical language; 
after a start influenced by a possible misunderstanding on the task (xi) the recourse 
to formalised and natural language alternatively (xii-xiv) produces increasingly 
meaningful results. A system of relationships is outlined that can be visualised 
through the following model:  

 

Perception 

impact on      impacts on 

mental models 

impact on      impact on 

representations 
in 
 

natural language              mathematical language 
 

Pupils’ increasing capability in moving inside the relationships illustrated in the 
model leads to the production of sentences (i), (j) and (k) in (xiv), the transparency of 
which makes possible to trace back the organisation of perceptions that generated 
them. Pupils are the protagonists of this reconstruction, through which the activity is 
read at a metacognitive level. 

 

(A)   a x c + b x c 

(B)   (a + b) x c 
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(i) 7 × 6 + 12 × 6 

The relationship between 
representation and the mental model 
elaborating perception is 
transparent. 

 

(j) 72 + 42 

The representation (R) reflects the 
previous mental model (M) but it is 
opaque. The relationship between 
(M) and (R) is weak. Control at 
metacognitive level is scarce. 

 

(k) 19 + 19 + 19 + 19 + 19 + 19 

The representation refers to a 
perceptive act, and therefore to a 
mental model, that although 
different is still opaque. 

 

 

Through further intertwining of natural language (xv-xvi), mathematical language 
(xvii) and natural language again (xix), pupils reach conclusions that introduce 
effectively an embryo of the distributive law (xix). 
4. Improving the two representations 
(xx) (TR) A new problem is proposed (a week later): 

Granny prepared for Santa Lucia 8 bags of sweets for her nephews. 
In each bag she put 5 chocolates and 14 candies. 
How many sweets did granny buy? 9 

(xxi) (C) Pupils solve it with no questions about clarification. Two types of solutions 
are provided and they can be ascribed to both representations: 

(r) 5 × 8 = 40 
(s)  14 × 8 = 112 
(t)  112 + 40 = 152 
(u) 14 + 5 = 19 
(v) 19 × 8 = 152 

Models (A) e (B) are nearly equally distributed; proposed calculations are all 
carried out separately until the result is obtained. 

(xxii) (C) During the discussion two pupils provide decisive contributions: 
(A1) Denise wrote in a rough copy: 

5 × 8 + 14 × 8 = 

                                                 
9  The question ‘How many sweets …’ although focusing on the outcome and not on making the process 

explicit is nevertheless clear to pupils due to the established contract. 

(A)   a x c + b x c 
(5 pupils) 

(B)   (a + b) x c 
(6 pupils) 
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but she did not know how to continue and preferred to go back to single 
operations. She explains she recognised the same problem she tackled 
previously. 
(B1) Giada realises that Denise’s procedure is the ‘translation’ of the first 
solution type and tries to translate the second type solution, writing: 

14 + 5 + 19 × 8 
but she realises that it is not good. Collective discussion helps her to modify it: 

(14 + 5) × 8. 
Steps xx – xxii 
Presentation of a new problem (xx) raises two types of representations by separate 
steps, which can be reduced to those of distributive law (xxi); during discussion 
representations in a line appear (xxii). The former representations are blocking, 
whereas the latter constitute a fertile ground. 
Leading pupils to representations in a line seems to be a necessary condition 
(although not a sufficient one) to construct a mental attitude that may favour the 
transition to an embryonic view of the property. As we said earlier, this condition is 
subordinated to an education to perception of elements of the problem situation. At a 
first level, most pupils are attracted by aesthetic, formal and expressive aspects that 
distract them from the logico-mathematical aspects. Denise and Giada are probably 
two among the few students that show a natural inclination for selective analysis. 
Generally, education plays a determinant role: this means leading the class, through 
sharing, to make perceptions and reasoning explicit, so that differences may become 
productive for a collective construction of shared knowledge. 
5. Reflecting on the two arithmetical representations 
(xxiii) (TR) A week later, a third problem situation is proposed: 

 

A giant cardboard necklace made of alternating four grey beads and two 
black beads is shown: 
 
 

The task is the usual one: to explain in either natural language or 
mathematical language (or both) the way in which one can find how 
many beads compose the necklace. 

Again pupils must try to describe what they are thinking. 
(xxiv) (C) Proposals are compared and commented upon: 

 

(Giulia) I count how many the beads are: 2 × 5 + 4 × 5 
but ‘how’ did you count? [note written by the teacher]: I counted this way: the beads are thirty 
and to make this result I counted them with multiplication.10 

 

                                                 
10  For many young pupils the verb ‘to count’ has a similar meaning to the verb ‘to calculate’. Perhaps to 

Giulia the two verbs express the same action, the same content, and this action and content can be 
expressed only in mathematical language, or rather: to her the latter is the most ‘spontaneous’ way to find 
the number of beads. The activity is carried out at cognitive and not metacognitive level. 
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(Lorena) I calculate how many the black beads and the grey beads are: 2 × 5 + 4 × 511 
 

(Claudia) Every two black beads there are four grey beads12: 2 × 5 + 4 × 5 
 

(Giada) Two black ones and then four grey ones13: 2 × 5 + 4 × 5 
 

(Alberto) (2 × 5) + (4 × 5) = 10 + 20 = 30 
I did 2 the number of black beads and I multiplied it by 5, same thing for four. 

 

The class realises that everybody used formulations of a single type (A)14. 
(xxv) (TR) Pupils are invited to express the situation with the other mathematical 

formulation. Alberto proposes, raising general satisfaction in the class: 
(2 + 4) × 5 

(xxvi) (IR) The class is asked to explain how the necklace was “viewed” by those 
who wrote 4 × 5 + 2 × 5 and Alberto, who wrote (2 + 4) × 5. 

(xxvii) (C) Giulia: “We count how many the black beads are and then the grey ones 
and put them together”15. Giada: “Alberto adds the four grey beads to the two 
black beads and repeats them 5 times”. 

(xxviii) (IR) A ‘mental experiment’ is proposed to the class: “Imagine a completely 
dark place where you can switch on a spotlight to illuminate the things you 
want to highlight every time. In this dark place there is your necklace: draw a 
sketch showing, as under the spotlight, the necklace seen in the first case, i.e. 
by the class, and then another sketch showing the necklace in the second way, 
i.e. seen by Alberto.” 

(xxix) After some uncertainty, pupils highlight the ‘two moments’ in which the 
necklace is perceived in the first case. They draw two sequences of beads in 
which they highlight separately the beads of different colours leaving the 
others white: 

 
 

The necklace ‘seen’ by Alberto needs ‘one single moment’ in which the 
spotlight highlights the repeated module. 
 
Stencils and friezes are recalled: pupils agree that in the first case two stencils 
are needed (                           ), and in the second case one stencil is enough 
(                        ). A pupil says that it is more convenient and recalls the already 
encountered economy principle. 

                                                 
11  Lorena suggests that, once explained what she does, numbers and mathematical signs express how you 

calculate. 
12  This is the description of what she sees in the necklace: is it also the “description” of the way in which 

she gets to the solution?  
13  See previous note. 
14  The pupils’ sentences reveal the dominance in the perception of the black colour, it leads the pupils to 

overcome the sequential order of the beads. 
15  Again Giulia uses the verb “to count” as condensing actions, operations that express “the way in which” 

in a compact, condensed way.  
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(xxx) The need for a mathematical expression comes back to make Brioshi 
understand that the two ways of ‘seeing’ the necklace are equivalent. Pupils are 
quick in proposing the following expression: 

4 × 5 + 2 × 5 = (2 + 4) × 5 
Steps xxiii – xxx 
A third problem (xxiii) leads to representations referring to the only expression (A) 
a×c + b×c (xxiv), although the formulation of the text seemed to induce (B): (a+b)×c. 
The ‘dominant’ perception confirms what emerges from other activities of the ArAl 
Project, concerning the search for regularities. In front of a sequence (frieze, 
necklace, etc.) characterised by alternating groups of elements, for instance two, 
pupils identify alternation more regularly than repetition of a module made of both 
groups. The hypothesis we formulate is that perceiving independent elements is more 
spontaneous than perceiving relationships between elements16. Perception of the 
alternation hinders the identification of the structure of the sequence and inhibits 
representation (B). A field restructuring, in Gestaltian terms, is necessary. 
The teacher’s invitation leads to the emergence of (B) (xxvi) and to a verbal  
description of the mental models underlying (A) and (B) (xxvii-xxviii). An 
‘experiment’ is proposed to favour a re-reading of the context (xxix): this leads the 
class to elaborate on visualisations that make the two different perceptions 
transparent (xxx) and to an intuition of the equality of the two representations. 
 
Conclusions 
We now simply give a short indication about the prosecution of the didactical path. 
The key point is focussing pupils’ attention on the comparison of the arithmetical 
writings arising from the solutions of faced problems, in order to lead them to grasp 
the general validity of the equality (a+b)×c = (a×c)+(b×c). The main steps of this part 
of the path are: a) problem situations with iconic support differing for both context 
and numerical values, in order to favour the two different perceptions of the field; b) 
problem situations similar to the previous ones, without iconic support that differ for 
both context and numerical values; c) problem situations proposed in two partially 
different versions, in order to strengthen the sense of the two representations; d) 
comparison among problem situations and the related expressions representing their 
solutions, in order to favour the understanding of the independence of equalities from 
numerical values and types of data; f) framing of the various equalities in a scheme 
and conceptualisation of the property. The detailed analysis of these steps of the path 
and the reflections about the ways in which the pupils conceptualize the property will 
be the topic of another paper. 

                                                 
16 Another hypothesis is that, since ‘seeing’ is a procedural activity, the diversity of colours breaks the 

perception of the unity of a module, highlighting two subsequences, and this would induce a distributed 
vision (A). The other one (B) is more evolved because it concerns a vision that goes beyond colours and 
captures the unitary structure of the bicolour module. The two hypotheses are being compared and 
analysed in depth.  
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THE DEVELOPMENT OF INFORMAL PROPORTIONAL 
THINKING IN PRIMARY SCHOOL 

 
Marilena Pantziara, University of Cyprus, Cyprus 

Demetra Pitta-Pantazi, University of Cyprus, Cyprus 
 
Abstract: The purpose of this study was two-fold. First to describe students’ informal 
strategies for the solution of proportional problems and second to describe students’ 
conceptual understanding of proportion. Kaput and West’s (1994) informal levels of 
proportional reasoning and Sfard’s (1991) levels of conceptual development 
provided the framework for this description. A test and semi-structure interviews 
were used to gather data from 112 ten and eleven year old students. The data 
suggests that students use a variety of informal strategies to solve proportional 
problems. The results also reveal that students who have not received any formal 
teaching on proportion, may exhibit characteristics of internalization, condensation 
and even reification of the proportion concept.  
 
Keywords:  informal levels of proportional reasoning, reification theory, conceptual 
development. 
 
INTRODUCTION 
Proportional reasoning is at the heart of middle grades mathematics. Due to the 
importance of proportional reasoning, numerous studies (Christou & Philippou, 2002; 
Tourniaire & Pulos, 1995; Kaput & West, 1994) have investigated students’ 
strategies in their attempt to solve missing-value proportional problems. Missailidou 
and Williams (2003) have classified missing value proportional problems according 
to their level of difficulty, while Kaput and West (1994) proposed three broad 
hierarchical categories of students’ informal but competent strategies for the solution 
of proportional problems. 
However, so far no major attempt has been made to investigate students’ conceptual 
understanding of the proportion concept before formal instruction. In this study we 
try to investigate the development of students’ conceptual understanding of 
proportion before formal instruction. We have used Kaput and West’s (1994) 
informal levels of proportional reasoning and Sfards’ (1991) levels of concept 
development as a guiding framework for explaining the structure of students’ 
informal proportional thinking. The underline assumption is that the structure (Hejny, 
2003) of students’ informal proportional reasoning is an important factor to their 
subsequent development. 
Kaput and West (1994) proposed three broad types of competent but informal 
proportional reasoning levels that consist of patterns of reasoning that support the 
solution of missing-value problems without reliance on the syntactic manipulation of 
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formal algebraic equations. The first level of proportional reasoning referred to as the 
coordinated build-up/build down approach includes steps like distinguishing between 
the two referents A and B to be quantified in the problem situation (ie., A and B are 
pencils and cents) and constructing a semantic correspondence relation between the 
classes of referents A and B at a gross level (i.e., 4 pencils corresponds to 40 cents).  
It also includes the action of constructing a correspondence relation between 
respective units at the group level and distinguishing between the third given quantity 
and the fourth unknown quantity by linking each to its respective referent type A or B 
(i.e. If 4 pencils corresponds to 40 cents then 5, 6, 7 … pencils to 50, 60, 70,…cents). 
The computation students follow at this first level, is the increment or decrement of 
both quantities until the third given quantity is reached and then identify its 
corresponding element of the other quantity as the problem’s solution. The second 
level of informal proportional reasoning called abbreviated build up/build down 
approach differs from the first level in the computation used. Students in the second 
level divide the total given quantity by the quantity per unit to obtain the number of 
units and then they multiply the number of units by the corresponding quantity per 
unit to determine the total unknown quantity (i.e. If 4 pencils corresponds to 40 cents 
then 7 pencils will correspond to 40 : 4 =10 and 7X10 = 70 cents). Finally, the third 
level includes the unit factor approach in which students divide the unit size of the 
unknown quantity by the unit size of the known quantity to determine the unit factor. 
Then they multiply the unit factor and given total quantity to determine the total 
amount of the unknown quantity (i.e. 15 cans paint 18 chairs, then 25 cans will paint 
18/15=6/5    6/5X25 = 30) 
Sfard’s theory of reification (1991) describes three levels of mathematical conceptual 
development. She argues that when the learner is at the stage of interiorization s/he 
gets acquainted with the processes which will eventually give rise to a new concept. 
She argues that these processes are operations performed on lower-level 
mathematical objects and that the learner becomes gradually skilled at performing 
these processes.  
At the second stage of concept development which is called condensation, the learner 
becomes more and more capable of thinking about a given process as a whole 
without feeling an urge to go into details. At this stage a new concept is formally 
born. Condensation should be regarded as the stage where processes defining the 
concept become more concise for the learner and the learner becomes increasingly 
capable of dealing with alternate forms of the concept (Goodson-Espy, 1998). 
The third stage which is called reification entails that a learner is able to conceive of a 
concept as a ‘fully-fledged object’ (Sfard, 1991, p.19). She explains that various 
representations of the concept are unified in the students’ reified construct and the 
construct is no longer dependent upon a process. The student at this stage is able to 
attribute meaning and significance to the construct by understanding the conceptual 
category in which it belongs. The reified concept is now ready to be used as an input 
in higher-order processes that can lead to even more powerful constructs. 
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Interrelationship of Sfard’s theory and Kaput and West’s levels of informal 
proportional reasoning 
Sfard’s theory aims to provide a way of describing the nature of mathematical 
conceptions that a student holds. A significant question involving this theory is what 
prompts the transition from one stage to the next in the context of proportional 
thinking. In this paper it is suggested that Kaput and West’s levels of informal 
proportional reasoning may be used to illustrate how such transitions may take place. 
Particularly, in order to demonstrate how the subject’s conceptual structures could be 
described, we hypothesise that the levels of informal proportional reasoning defined 
by Kaput and West (1994) can be connected to the stages of the reification theory. In 
this section we will discuss the way in which we believe that the two theories are 
linked. This interrelationship of the two theories was examined in this study. 
In the interiorization stage Sfard (1991) argues that the learner gets acquainted with 
the processes and that these processes are operations performed on lower-level 
mathematical objects. Moreover the learner becomes gradually skilled at performing 
these processes. We hypothesise that Kaput and West’s (1994) first level of informal 
proportional reasoning (i.e. the coordinated build up/build down approach) 
characterizes students at the level of interiorization since students attempt to solve 
these problems mainly with the use of repeated additions or subtractions.   
Sfard (1991) describes condensation stage as the stage in which a person becomes 
more capable of thinking about a given process as a whole without feeling an urge to 
go into details. In the present study students’ problem solving activities were 
examined for connections to the process that the students had used to solve the tasks. 
These connections were classified based on whether the students only reused the first 
method described by Kaput and West (1994) or whether the students moved to the 
second level of informal proportional reasoning i.e. used a less detail process to solve 
the proportional problem. In addition, another characteristic of students’ solutions 
indicating that they belong to the condensation stage is the flexibility and the variety 
in the strategies that they use to solve different proportional problems. 
In the reification stage students are able to operate on a concept without depending 
upon a process. The student at this stage is able to attribute meaning and significance 
to the construct by understanding the conceptual category to which it belongs. In the 
present study the problem-solving activities of students were examined for evidence 
of the third level of informal proportional thinking described by Kaput and West 
(1994). This level includes the unit factor approach as described above. In addition to 
this, a student can be classified in the reification stage if s/he can recognize different 
representations of the same proportional situation and if he could categorize a 
problem as a proportional one without carrying out the computations. 
In order to capture the structure of students’ proportion concept this study 
investigated two questions: 

• How can students’ solutions to proportional problems be classified in the levels of 
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informal proportional reasoning identified by Kaput and West, (1994)? 
• What are the characteristics of the students at each one of the three conceptual 

levels proposed by Sfard (1991) in regard to the concept of proportion? 
• Can Kaput’s and West’s (1994) levels of informal proportional reasoning be used 

to illustrate the transition from interiorization, to condensation and finally to 
reification (Sfard, 1991)  

 
METHOD 
The study was both quantitative and qualitative in nature. More specifically, a test 
consisting of proportional problems, was administrated to 112 students in grades 5 
and 6 (10 and 11 year olds). In addition, interviews were conducted with 3 students 
which were identified based on their responses in the test. It was hypothesized that 
each student belonged at each one of the three conceptual levels determined by Sfard 
(1991). The data was collected before students received any formal instruction on 
solving proportional problems. All of them had been taught addition, subtraction, 
multiplication, division both with whole numbers and fractions.  
The design of the test was crucial to the identification of students’ conceptual 
understanding of proportion. The test consisted of three parts. The first part included 
tasks, which were used in recent studies (Kaput & West, 1994; Misailidou & 
Williams, 2003). The main purpose of part A was to investigate if students were able 
to use different strategies for the solution of the problems and to classify students’ 
strategies in the three levels proposed by Kaput and West (1994). The five problems 
used in the test (see Table 1) could be solved using various informal strategies 
described in the literature (Christou & Philippou, 2002) 

1. John has canaries and parrots. For every 4 canaries he has 3 parrots. If all the canaries that 
John has are 28 how many parrots does he have? 

2. To make Italian dressing you need 3 parts of vinegar for 8 parts of oil. How much vinegar do 
you need for 96 ml of oil? 

3. At a fruit stand, 3 apples cost 90 cents. You want to buy 7 apples. How much do you have to 
pay? 

4. Mary bought 6 books and paid £4. Elena bought 24 books. How much did Elena pay? 
5. George used 15 cans of paint to paint 18 chairs. How many chairs will George paint using 25  

cans of paint?  
Table 1: Test, Part A-Proportional problems. 

Solutions to the problems 
If the child solved problem one with the build up/down strategy described by Kaput 
and West (1994) this was characterized as a process at the level of interiorization. 
The second problem involves larger numbers and so the application of the build/up 
down approach is time consuming. Thus students could solve it by applying a 
different strategy to the one used in the first problem something that will lead them to 
a higher level of informal proportional reasoning. The third problem could be solved 
by first finding the price of one quantity and then multiply the total amount of 
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quantities with the price of one (unit-rate approach). The most suitable approach for 
the fourth problem was the factor of change approach (4 times more). In this study, 
the unit-rate approach and the factor of change approach, were classified at the 
second level of informal proportional reasoning because even though they are 
multiplicative in nature they do not involve the sophistication of thought described by 
Kaput and West (1994) as necessary for the third level of informal proportional 
reasoning (Nabors, 2003). These two problems were also included in the test in order 
to examine students’ flexibility in using a variety of strategies for the solution of the 
problems. Sfard (1991) argues that learners belong to the condensation stage when 
they flexibly use different strategies for the solution of a given problem. 
The fifth problem was the most difficult one. This was documented in Misailidou and 
Williams’s work (2003). In order to solve this problem students should be able to use 
efficiently the unit factor approach as described by Kaput and West (1994) because 
the problem involves the continuation of context in which whole number quotients 
are not required (Nabors, 2003). 
Students were categorized in the levels of informal proportional reasoning based on 
the strategies used to solve the problems in part A. The categorization of students to 
these three levels was also allowing us to clearly state the strategies that students 
apply at the internalization, condensation and reification levels. However, we still 
needed to investigate whether students were able to use different kinds of 
representations and whether they were able to identify the proportion concept in 
different problems without solving them.  
Part B of the Test consisted of two problems similar to problems 1 and 4 of part A, 
but this time accompanied by specific diagrams. Sfard (1991) argues that a criterion 
of students’ conceptual development in the reification level is their ability to 
recognize multiple representations of the same concept. Thus we wanted to 
investigate students’ ability to solve proportional problems when presented with the 
use of diagrams. 
Part C of the Test required students to group the problems that were similar without 
solving them. Four problems were presented. The 1st problem was a proportional 
problem while the second problem was a pseudo-analogical problem (Gagatsis, 
2003). Its given quantities were a boy’s age (10 years old) and his height (1,42 cm). 
The question was “what will his height be when his age is 20”. The 3rd problem was a 
proportion problem and the 4th problem was not a proportion problem. Sfard (1991) 
argues that students who are at the reification level are able to attribute meaning and 
significance to the construct by understanding the conceptual category to which it 
belongs without depending upon a process. Another, characteristic of students’ at the 
level of reification is their ability to use the unknown quantity in their solutions. Thus 
moving away from arithmetic and showing some understanding of algebra. 
Each one of three parts of the test can clearly indicate “what” and “how” a student 
answers at proportional problems. However, students’ responses in all three parts and 
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an interview are needed in order to clearly argue at which level of conceptual 
development a student belongs to. Thus three students, one at each level of concept 
development, were identified from their responses in all three tests in order to give a 
clear picture of students’ characteristics at each level. The students were interviewed 
with the use of semi-structured interviews for approximately 50 minutes. The 
interviews were audio-recorded. First, the students had to explain their strategies in 
part A of the Test. Then they had to recognize which of the problems in part A were 
similar to the problems in part B and justify their decision. In part C of the test, 
students had to explain the way in which problems could be grouped.  
 
RESULTS 
In regard to the first questions of the study, students’ correct responses to the 
problems accompanied by a correct explanation were categorized according to Kaput 
and West’s (1994) levels of informal proportional reasoning (Table 2).  
Proble 
ms 

Wrong 
responses 
%     N=112 

Correct /no 
explanation 
%      N= 11 2 

Kaput &West 
-1st level 
%        N=112 

Kaput & West 
2nd level 
%            N=112 

Kaput & 
West 3rd  level 
%       N=112 

α1 30,4 9,8 10,7 49,1 0 
α2 64,3 1,8 5,4 28,6 0 
α3 35,8 8 1,8 53,5 0,9 
α4 51,7 6,3 5,4 35,7 0,9 
α5 70,5 7,2 1,8 0 20,5 
Table 2:Students’ correct responses classified to the three levels proposed by Kaput and West. 

Most of the correct responses to the 1st problem were at the 2nd level of proportional 
reasoning (49,1%). In order to find the number of parrots students classified in this 
level divided the total given quantity (28 canaries) by the unit quantity (4 canaries) to 
obtain the number of units (7) and then they multiply the number of units by the 
corresponding quantity per unit (3 parrots) to determine the total unknown quantity 
(21 parrots) (Fig.1). 10,7% of the students applied the building up approach (1st level 
of informal proportional reasoning). Students’ responses classified at this level 
involved the increment or decrement of both quantities (canaries and parrots) until 
the third given quantity was reached and then identified its corresponding element of 
the other quantity as the problem’s solution (Fig.2).  

                                      
Figure 1: Student’s strategy-2nd level                                    Figure 2: Student’s strategy-1st level 

In problem 2 most of the students’ correct responses were classified at the 2nd level 
of proportional reasoning (28,6%). Half (53,5%) of the correct responses in the 3rd 
problem were classified at the 2nd level. In problem 4 most of students’ correct 
responses (35,7%) were classified at the 2nd level since students were using the factor 
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of change approach (4 times more books). Some students (5,4 %) used strategies 
classified at the 1st level using the build up/down approach. Only one student gave an 
answer classified at the 3rd level of informal proportional reasoning (Fig. 3). This 
student determined the unit factor (2:3) and then multiplied the unit factor and the 
given total quantity (24 books) to determine the unknown quantity (16 pounds). 

       
Figure 3: Problem 4 -3rd level                        Figure 4: Problem 5-3rd level 

Most of the responses in the 5th problem were classified at the 3rd level (20,5%). 
Students divided the unit size of the unknown quantity (18 cans of paint) by the unit 
size of the known quantity (15 chairs) to determine the unit factor (Fig.4). Then they 
multiplied the unit factor and the given total quantity (25 cans of paint) to determine 
the total amount.  
In regard to the second question of the study, Table 3 shows the percentage of 
students that were able to solve correctly the whole of Part A, B and C respectively. 

Part of the test Correct responses-%     N = 112 
Part A 8,9 
Part B 49,1 
Part C 52,7 

                              Table 3: Students’ achievement in the three parts of the test. 

8,9% of the students solved correctly all the problems in test A while 49,1% solved 
correctly all the problems with the diagrams in part B of the test. 52,7% succeeded in 
recognize the proportional problem amongst problems that were not proportional in 
part C of the test. Only 10 students out of the 112 solved the whole of part A 
correctly. Out of these 10 students only 8 also solved correctly the whole of Part B. 
And finally only 6 students solved correctly all of the three parts of the test.  
Based on their responses to the test, 3 students, one at each level, internalization, 
condensation and reification, were chosen to be interviewed. The interviews aimed to 
highlight some of the conceptual characteristics of each level 
Student at the Interiorization level 
The student classified in the interiorization level used approaches classified in the 1st 
level of informal proportional reasoning for the solution of all the problems in part A. 
This is how she described her strategy for problem 2: 

X: I added 8, 8, 8,…until 96 for the oil and then under each 8 I wrote 3 for the 
vinegar. Then I added all 3s that I wrote under the 8s. 

The girl did not show any flexibility in the strategies used. She applied the build 
up/down approach to all the problems. It is hypothesized that her fixation on this 
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strategy was the main reason for her inability to solve the last problem:  
X: 15 cans of paint can paint 18 chairs. The difference is 3. I added 3 to the 25 
cans of paint and I found that the 25 cans can paint 28 chairs. 

The girl could not identify the problems in Part A that had the same structure as the 
problems in Part B. What she did was to match problems according to similar surface 
characteristics of the problem, such as their story. 
The girl could not recognize which problems were similar in part C and described a 
proportional situation. She was unable to see that the answer to the problem involving 
the height and the age of the boy was not logical. 
Student at the Condensation level 
The student classified at the condensation level used mostly strategies of the 2nd level 
of Kaput and West’s (1994) classification. 

M: I thought that for every 3 parts of vinegar it needs 8 parts of oil. I divided 
the 96 ml of oil with 8 and then I multiplied the quotient by 3 to find out how 
much vinegar he needed. 

Even though this girl applied the same strategy in the 1st, 2nd and 3rd problem, she 
changed her strategy in the 4th problem, although the 3rd and the 4th problem 
intentionally looked very similar. More specifically, she used the build up/build down 
approach, increasing both quantities until the third given quantity was reached and 
then identify its corresponding data of the other quantity as the problem’s solution. 
The flexibility in her solution methods indicated that her conceptual development for 
proportion was at least in the condensation level. In order to verify this, we asked the 
girl to solve some problems in part A using a different approach and she was able to 
do so. Her strategies were oscillating between the two first levels of proportional 
reasoning described by Kaput and West (1994). 
The girl faced some difficulty in recognizing the similar problems in part A and part 
B. She mainly focused on the superficial characteristics of the problems (same story) 
and not to the structural ones. The girl managed to find the two similar problems in 
part C but could not justify her decision. The girl was also unable to use the unknown 
quantity for the solution of the problems. 
Student at the Reification level 
The girl classified in the reification level of conceptual development was one of the 
six students who solved correctly all three parts of the test. This girl had a repertoire 
of approaches for solving the proportional problems. She could use flexibly different 
strategies for the solution of the problems in part A oscillating amongst the three 
levels described by Kaput and West (1994). More specifically, she used the 
abbreviated built up/down process for the solution of the 1st problem. She then 
shifted to the strategy described in the 1st level of informal reasoning for the solution 
of the 2nd problem. She used the unit-rate approach for the solution of the 3rd problem 
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and the factor of change approach for the solution of the 4th problem. She then 
managed to reach the 3rd level of informal proportional reasoning in her attempt to 
solve the 5th problem. Her flexibility in using various strategies for the solution of the 
problems indicated that she had at least reached the stage of condensation. 
This student was also successful in identifying the problems in part A which were 
similar to the problems in part B with the diagrams. In addition she could also 
identify the similar problems in part C and was able to justify her choice. The student 
was able to use the unknown quantity to solve the problems. 

I: If we use X as the unknown quantity in the 1st problem how can we solve it? 
P: Can we use X instead of 28? 
I: Is 28 the unknown quantity? 
P: No the unknown quantity is the canaries. So   X= 4 . ….. =28  
X= (28:4). 3. or X. 3 = 28:4. 
 

DISCUSSION 
The findings of the present study reveal that students are able to solve proportional 
problems even without any formal instruction. The students used various strategies 
for their solutions which can be classified in the three levels of informal proportional 
reasoning by Kaput and West (1994). In problems a1, a2, a3 and a4, the majority 
(approximately 87%) of the students’ correct strategies were classified in the second 
level of proportional reasoning while the majority (92%) of students’ strategies in 
problems 5 were classified in the third level.  
This paper describes how the Kaput and West’s levels of proportional thinking could 
be used to help make an assessment of a student’s degree of concept formation or 
their cognitive structure (Hejny, 2003) concerning proportionality. The results 
showed that these informal levels could serve to pin point the strategies that students 
apply at the levels of interiorization, condensation and reification of the proportion 
concept. Especially noteworthy is the fact that students who have not received any 
formal teaching on the concept of proportion are not confined to the stage or 
interiorization but also exhibit characteristics of condensation and even of reification. 
The findings also suggest that the informal levels of proportional thinking linked with 
some distinct characteristics defined by Sfard (recognition of different 
representations, flexibility in the strategies used and justification of choices according 
to the similarity of the problems) would better describe students’ conceptual 
understanding of proportion. The strongest evidence of student’s higher conceptual 
understanding (reification) of proportion is their ability to use strategies classified in 
levels 2 and 3 defined by Kaput and West (1994) along with their flexibility in the 
strategies that they used. The students’ ability to recognize various representations of 
the same problem and their capacity to identify similar proportional problems did not 
provide sufficient evidence of their conceptual understanding of proportion. It can be 
argued that the combination of all the above characteristics i.e. flexibility with 
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different strategies, recognition of different representations, ability to recognize 
proportional problems and the use of the unknown quantity in the solution of the 
problems best describe learners at the level of reification. 
Overall, it can be said that students can be classified in the stage of interiorization 
when they use strategies according to the first level of Kaput and West’s hierarchy. 
Other distinct characteristics of the interiorization stage that they were revealed in 
this study were students’ inability to use more that one strategies for the solution of a 
problem, their inability to justify adequately their solution methods and their direct 
manipulation of the problem’s data. 
Students can be classified in the condensation level when they use various methods to 
solve the problems, mainly categorized in the second level described by Kaput and 
West. Another characteristic of this level it was found to be students’ sufficient 
explanation of their solution strategies. Students’ inability to find the similar 
problems given in different representation format and their inability to use symbols in 
the solution process may reveal that they did not progress out of the stage of 
condensation to the stage of reification. 
The key characteristics of the  reification level concerning proportional development 
may be students ability to work both using arithmetical methods and algebraic 
symbols and secondly students’ use of the unit factor approach as described by Kaput 
and West in order to solve the proportion problems. Other characteristics of this stage 
may be students’ repertoire of strategies and their ability to use the most appropriate 
strategy for the solution of a problem depending on its context. Students classified in 
this stage captured the concept of proportion. We may say that at this stage they have 
cognitively structured the concept of proportion (Hejny, 2003). This may give them 
the advantage to justify their thoughts efficiently, to recognize similar problems given 
with different representational formats and to use algebraic symbols for the problems’ 
solutions. 
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14 YEARS OLD PUPILS’ THOUGHT PROCESSES: A CASE 
STUDY OF CONSTRUCTING THE TRIANGULAR INEQUALITY  

Elif B. Turnuklu, University of Dokuz Eylul, Turkey 
Sibel Yesilder, University of Dokuz Eylul, Turkey 

 
Abstract: The aim of this case study is to examine pupils’ thought processes in 
constructing mathematical knowledge. The study was carried out with twelve 14-
years-old pupils. Triangular inequality was chosen as a topic and some materials 
were used to construct the knowledge. The data analysis showed that isolated 
wrongly constructed knowledge in pupils’ minds may cause difficulties in 
constructing new mathematical knowledge. 
KeyWords: constructing mathematical knowledge, concept formation, geometry. 

 
1. INTRODUCTION 
The quality of learning can be improved when the learners construct their own 
knowledge. This does not mean that the learners must be alone during the learning 
process as Orton and Frobisher (1996:18) cited from Richards, ‘students will not 
become active learners by accident but by design’. Examining how pupils construct 
the knowledge and develop the concepts can shape this design. In other words, this 
lies behind the constructivism. It is possible to give effective teaching which takes 
into account how a pupil learns as well as how their thinking ways work in 
developing knowledge.  
The main aim of this study is to design tasks (activities) which aim at constructing 
knowledge in pupils’ minds. Now a question arises: does this activity achieve its 
purpose? What kinds of obstacles do we face while constructing a piece of 
knowledge in pupils’ minds by means of this activity? So, the aim of this study is 
focused on the construction of mathematical knowledge and thought processes during 
the activity.  
In mathematics education, several researchers have tried to describe how 
mathematical knowledge is understood and formed. They tackle this process from 
different perspectives. One team, Dubinsky and his colleges, describe this process as 
encapsulation and formulate APOS (action-process-object-schema) theory. Actions 
are physical or mental transformations on objects. When the actions become 
intentional, they are characterized as processes that may be later encapsulated to form 
a new object. A coherent collection of these actions, processes, and objects, is 
identified as schema (Cottrill et al., 1996, cited in Gray et al., 1999, p.115). Sfard 
described this process in three steps: interiorisation of the process, then condensation 
as a squeezing of the sequence of operations into a whole, then reification- a 
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qualitative change manifested by the ontological shift from operational thinking to 
structural thinking (Gray, Pitta, Tall, 2000, p.5). 
Hejny (1989) develops a model of the process of construction of a piece of 
mathematical knowledge in an individual’s mind. This model consists of six stages. 
These are motivation, isolated models, generalization, universal models, abstraction 
and abstract knowledge. These are described and discussed in Hejny’s paper (2003). 
The cognitive process starts with pupil interests and acquisition of an initial set of 
experiences and develops towards the construction of a new, deeper and more 
abstract concept (Hejny, 2003).  
In this study Hejny’s model is used to analyse the data coherently. It helps to 
understand pupils’ thought processes and their behaviour. 
 
2. THE PURPOSE OF THE RESEARCH 
The research design is based on constructivism. The aim of this research is to 
examine pupils’ construction of mathematical knowledge and to examine pupils’ 
thought processes when they are discovering ‘triangular inequality’. 
 
3. METHOD 
In this research, using case studies was chosen as the main approach. It is not possible 
to collect the required data by separating from its context. It is not possible to 
understand pupils’ thought processes outside the classroom. It needs to be evaluated 
within its context when the pupils are engaged in the tasks. 
Participant observation is chosen as a main data collection tool. In addition to this 
observation, probe type questions and some developed worksheets were used in order 
to elicit pupils’ ways of thinking in constructing the concept. The main aim of using 
observation is to record pupil-pupil, pupil-teacher (or researcher) and pupil-materials 
interactions as fully as possible. To meet all these demands, video camera and audio 
recorder and researcher field notes are used. 
3.1. Participants 
12 pupils, 4 girls and 8 boys, participated in the study. They were 14 –years- old 
students in a primary school which is located in a poor socio-economic area in 
Turkey. The pupils participated in the study on a voluntary basis. According to the 
mathematics teacher, the pupils are all average in mathematics. The pupils have not 
been taught the topic before. 
3.2. Materials   
In the study, 21 sticks of which lengths are between 5cm and 25cm are labeled 
according to their lengths and 5 worksheets are given. Additionally, a guideline 
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explaining the aim of the work also is prepared. The following is written in the 
guidelines: 
“You have got a very important task. The mathematical rule regarding the question 
‘which of the lengths of sticks could come together in order to form a triangle’ is lost 
and it has to be found immediately. Your mission is to find this rule via utilizing the 
given sticks. Come on hurry up! The fate of this important rule of mathematics is in 
your hands!” 
In the first worksheet, the pupils were requested to make triangles by using the sticks 
and to write down their trials. In the second worksheet they were requested to choose 
5 samples from the list and to show which ones form a triangle and which ones do 
not, and explain why. In the third worksheet, the pupils were asked to determine 

• the relation between the sum of the lengths of the first and second sides and the 
third side,  

• the relation between the sum of the lengths of the first and third sides and the 
second side and then,  

• the relation between the sum of the lengths of the second and third sides and 
the first side.  

In the fourth worksheet as in third worksheet the pupils were requested to determine 
the relation of the absolute value of the difference of the lengths of the sides. In the 
last one, they were requested to reach a generalization depending upon the 
measurement results they acquired. The main purpose for designing the worksheets is 
to allow pupils to discover the rule of forming a triangle. 
3.3. Procedure   
The pupils who participated in the study were separated into groups. Each group 
consisted of four pupils. Each group was considered as a case. At the beginning of the 
study, the guideline and the sticks were given to the groups. Then the five worksheets 
were given respectively. Two researchers and the mathematics teacher took roles in 
helping the pupils to understand the activity and eliciting the pupils’ thinking process. 
A video camera and audio recorder recorded the work of each group. 
3.4. Analysis 
Before the data was analysed, each videotape was fully transcribed into verbal data 
accompanied with the actions of students. In transcribing the conversations from the 
videotapes, the non-verbal interactions between pupil-pupil, pupil-researcher and 
pupil-material also were described in detail. Audiotapes were also fully transcribed 
and supported by the researchers.  
All recorded conversations were analysed for the content of the talk and through 
interpretation of its meaning in its context. The results that were drawn from the 
study can be checked by cross-case comparison. 
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There are similarities among the thinking process of the pupils in discovering the 
relationship among the sides of a triangle. Taking these similarities into account, the 
researchers held a discussion on the findings.   
 
4. FINDINGS 
4.1. Pupils’ thought processes while selecting the sticks 
After understanding what the task is about, the pupils begin to examine the sticks in 
the envelope. When selections are analyzed, it can be observed that they especially 
choose the sticks whose lengths are close to each other. It can be stated that the pupils 
conclude that “if there is a little difference between the lengths of the sides, they form 
a triangle”. When the pupils were half way through their work, it is seen that they 
select sticks through understanding what it would be like if different selections were 
made via reconsidering the case. The students try to establish which lengths of sticks 
do not form a triangle. 
4.2. Pupils’ thought processes in making a triangle 
At the beginning of the task the pupils have a triangle shape in their mind. They have 
previous knowledge related to triangles. But, up to this task, they did not think what 
the conditions were to form a triangle related to its sides. They know a triangle has 
three sides and is a closed shape. All this knowledge is related toitheir previous 
experience. But, it was observed that the triangular shapes in the pupils’ minds are as 
in Figure 1. The pupils want to place the sticks and make the triangle according to the 
triangular shape in their mind and this causes trouble with some length of sticks. For 
example, the pupils cannot make a triangle side lengths of which are 23-24-10 cm.  
 
  

Figure 1     Figure 2 
The pupils state that it does not form a triangle because it is not in accordance with 
Figure 1. Because of their opinion a triangle in Figure 2 could not be formed although 
they could have obtained one such as in Figure 1.  
According to Hejny’s (2003) model, the pupils in the second stage have isolated 
models related to triangles. But the pupils do not make any linkages between these 
models. The pupils have experience with triangles and these experiences make 
triangle image as in Figure 1. They did not make a link between the knowledge 
related to a triangle (has three sides and a closed shape) with a shape as in Figure 2. 
Probably they have not any experience as in Figure 2. 
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In order to show pupils’ thought processes, a conversation extract is given below as a 
proof. This consists of the conversation itself, descriptions of classroom context 
(given in italics) and analytic commentary (given in the right hand column).  
 
 Nur: Let’s take 21. They start with 25 and 21 
Emrullah: Take this 22. There is also 
22. (while looking for the stick). 

Now trying to find third side. Emrullah 
chose nearest length. 

Nur: Let’s take a small one. Nur suggests a small one. 
Ayse: 22 is here. (while showing the 
stick) 

 

Caglar: (takes 22 from Ayse ) Caglar behaves as a group leader 
prefers Emrullah’s choice. He prefers 
nearest length. 

Ayse: this is a right angled triangle. (it 
is not a right triangle. She said this 
without making a right triangle). 

She remembers a concept related with 
triangle. But she is not using this 
concept in the right place. 

Nur: let’s make a triangle at that time. 
(At the same time they are trying to 
make a triangle with 21, 25 and 22) 

 

Emrullah: it doesn’t fit into these. It is 
too big.  
(22 does not fit in the others. They did 
not change the positions of the sticks). 

But without changing their first attempt 
and without changing the angles in 
order to fit in their sides, they did not 
manage to obtain a triangle. 

Caglar: (changing the third stick with). 
12, 12 is small (while trying). Where is 
13 (find and try 13). (The pupils did not 
change the position of the first two 
sticks) 
Caglar: it did not form a triangle. 

And they start to change the third side 
in order to make a triangle without 
changing the first position of the first 
two sides. Even they choose slightly 
small one than the first two they do not 
manage to make a triangle. 

(They try 20. Nur changes the first 
position of the sides in order to fits 
them according to 20). 

At the end they make a triangle by 
changing the position of the sides and 
using nearest lengths. (21, 25 and 20).  

Nur: 20 exactly fits. Does it form a 
right angled triangle? (It is difficult to 
decide this by just looking).  

She is trying to fit the obtained triangle 
into her triangle image. The image is 
related to the right angled triangle. 

Emrullah: it formed.  
(They are choosing the sticks in order  
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to make another one). 
Nur: let’s take 10. (she puts it near the 
sticks which have been placed before: 
13 and 10). 

Again they are making another one. 

Caglar: (brings 9).  
Nur: it does not form a triangle.  
Caglar: how do you know?  
Nur: it forms a triangle.  
Caglar: not.  
Researcher: how do you decide this  
Caglar: because they are not touching 
(he points the sticks). 

Same mistake.  
He knows a triangle a closed shape. 

Nur: these must be equal. (while 
pointing two sides). 
(She is replying the researcher 
question). 

She has other images in her mind. 
Some concepts related to triangles 
affect her hypothesis. Probably she 
remembers isosceles triangles. She 
knows this is a triangle. 

(Group 2, from videotape) 
In this conversation extract, two cases can be taken into account, Nur and Caglar.  
Nur (a girl) has some isolated models. She is at the second stage of Hejny’s model. In 
other words, she has some experiences and pieces knowledge about the concept of 
triangle and these are stored as isolated images. She has experiences related to 
triangles and she remembers the images of the right-angled triangle and the isosceles 
one. She examines whether their trials fit these images. Even as she makes a triangle 
but not an isosceles one, she decides this one does not form a triangle. Additionally, 
in some their trials, they do not manage to form a triangle by touching the end points 
of the sticks. But according to their choices, it must form a triangle. At this time Nur 
gives the reason why it did not form a triangle - its two sides are not equal. 
Caglar (a boy) has some isolated models like Nur. At the beginning of the activity, he 
is at the second stage according to Hejny’s model. But it seems that he is one step 
ahead according to Nur. Caglar does not reflect his thought process during the 
conversation. Caglar has an image of a triangle. Based on this image it seems that he 
has a hypothesis about how to make a triangle by using the sticks. Because he makes 
the final decision each time about which sticks have to be chosen. His friends 
recommend some of them but he decides which one fits in their trials. 
In the following conversation extract, it is possible to see pupils’ generalisation 
process. 
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Researcher: (by pointing two sides) 
Must these be equal? This and this one? 
If you make a different one, does it not 
form a triangle? 

 

Nur: At this time its base does not fit. 
(she means that a base must horizontal 
according to her position). 

Because of the meaning of a base in her 
mind, she has difficulties to make a 
triangle. 

Caglar: it does not form.  
Researcher: Why do you say that it 
does not form? 

Researcher tries to understand the 
pupil’s mind. 

Nur: because these right sides (by 
pointing at two sides) are not 
equivalent. 

 

Researcher: which sides must be 
equivalent? Could you show me? 

 

Caglar: look this is a base and long. His concept of base is the same as the 
longest side. He tries to make a 
hypothesis related to the base. 

Researcher: Is there any other way to 
form one by using these? (They are still 
discussing 10, 13 and 9). 

 

Caglar: This is a little bit long (his 
attention is still on the base). 

 

Nur: Look at that (she makes a triangle 
by changing the sticks’ positions) 

 

Researcher: that’s great.   
Researcher: Why does it form? What is 
the difference between this and the 
trials before? 

 

Caglar: before, we tried to make a right 
angled triangle. 

His thought in making a triangle is 
shaped by the image of right angled 
triangle. 

Emrullah: let’s make another one. This 
time we choose the small ones. 
(They are making another one). 

 

Caglar: 5, 6 (takes 11)  
Nur: this does not form a triangle.  
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Researcher: Try and then decide.  
Nur: it does not form. Let’s narrow 
them (by referring to the angles). 

 

Researcher: why does it form?  
Caglar: look, these two (by pointing at 
two sides) must be longer than the base. 

Instantly, he says his hypothesis. This 
hypothesis is related to base and the 
other sides’ lengths. In his mind, the 
base means the longest side. 

Caglar: look, put 16 down. If both of 
the sticks are bigger than 16, they form 
a triangle (he finds 10 and 15 and 
makes the triangle).  

He is showing and at the same time 
testing his hypothesis. 

(Group 2, from videotape) 
After several trials, the isolated models do not appear to be so isolated. Caglar links 
these models to construct a new model. He produces a hypothesis; (this is what has 
been expected from pupils). His hypothesis is related the isolated models and a new 
model is constructed. This is the third stage according to Hejny’s model, the stage of 
generalization. This means that he made connections between some isolated models. 
Both of the pupils (Caglar and Nur) at the beginning of the activity (experiment) have 
fixed isolated models related to triangles. During the activity they try to complete the 
tasks based on these models. Because of the models are isolated, they have 
difficulties in completing the tasks. It takes time to reach the generalization required 
from the activity. When the pupils make the connections between isolated models, 
they start to produce new models. This experiment allows pupils to make connections 
between the isolated models.  
It is observed that the pupils have difficulties in absolute value and subtraction of 
integers. These difficulties prevent pupils from seeing basic relations. Furthermore 
there are also pupils who can derive the generalization although they make 
operational mistakes. Some pupils find out the relationship among the side lengths of 
a triangle in the first worksheet. The reason why the pupils catch the critical points 
via strategic measurements while making the triangles is that they are exposed to this 
type of study. 
The pupils come to the conclusions after several trial hypotheses on the worksheet 4.  
 
4. CONCLUSION 
This experiment allows the pupils not only to use basic concepts related to triangle 
but also help them to form the triangle concept. 
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This study shows that the pupils reached generalizations despite their initial wrong 
and deficient knowledge of models. During the tasks, by using sticks the pupils make 
trials then develop some hypothesis. This experiment allows the pupils to test and 
develop their hypothesis despite their wrong and weak basis for the concept. 
Additionally, these activities not only allow the pupils to construct new knowledge 
but also to correct and change old ones. As Tall (1991) said, the existing schema 
needs to change when it is inadequate to assimilate new knowledge (cited in Dahl, 
2004: 136). 
To sum up, the pupils with prior experience that is stored as isolated images and 
wrong concept knowledge have difficulties in constructing new knowledge. But 
activities such as those designed for this study give a chance for pupils to examine 
their thoughts by practical work (testing), it allows pupils to make links with the prior 
experience and construct new images (piece of knowledge). 
It is very important to establish how the pupils understand the mathematical concepts. 
When the aforementioned subject is traced, the accuracy of the old knowledge is also 
tested. Teachers may perform more effective mathematics teaching by considering 
thought processes in developing concepts. 
In order to extend this study, it is possible to develop another activity which asks for 
the unknown side of a triangle. For example two lengths can be given and  the pupils 
asked to find a third length, the three lengths forming a triangle. The present study 
can be expanded to quadrilaterals as well. 
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