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WORKING GROUP 5 ON “STOCHASTIC THINKING” 
Dave Pratt, University of Warwick, United Kingdom 

 
This section of the proceedings reports on the work of the Working Group 5 on 
Stochastic Thinking, which incorporated issues pertaining to the teaching and 
learning of both probability and statistics, as well as the interface between the two. 
This group was led by four organisers: Dave Pratt (UK, Chair), Rolf Biehler 
(Germany), Maria Meletiou-Mavrotheris (Cyprus) and Maria Gabriella Ottaviani 
(Italy). 

After an initial review in which all received papers were inspected by at least two 
other contributors to the working group, 16 papers were accepted for presentation 
within this working group, including one invited paper, presented as a plenary 
discussion. This initial review placed heavy emphasis on inclusivity and where 
possible reviewers gave sufficient support to enable the papers to reach a standard 
appropriate for initial presentation. The papers represented work from authors spread 
across three continents and eleven countries.  

The working group began with an 
ice-breaker (see Figure 1), planned 
and led by Michele Cerulli (Italy), 
who set up several experiments, 
each involving the use of robots. 
Small groups of delegates worked 
on each task in turn, finding that in 
each case interesting questions 
were raised about the relationship 
between randomness and 
determinism. More detail about 
these ideas is provided later in the 
paper by Cerulli et al. The ice 
breaker provided opportunity for 
delegates to meet and talk, a crucial 
foundation we felt for subsequent 

productive discussion. 

There was one special session in which we invited Manfred Borovcnik (Austria) to 
talk more generally about the nature of statistical thinking. The other two themes, 
Probability and Statistics, each occupying two sessions. In each session, papers 
relevant to that theme were briefly re-introduced with the aim of reminding the group 
about their key ideas. The aim was that most of the session was devoted to asking 
specific clarification questions or raising important discussion points. We felt that 
that aim was successfully accomplished. Difficulties with language were handled 
through the informal use of interpreters where necessary. 

Fig 1: Michele Cerulli (centre background) leads an 
ice breaker exploring randomness through robots. 
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In order to summarise the discussion, we collected a set of research questions, which 
we would like to see the stochastics community address in its future work. The 
following questions were presented at the final plenary by Rolf Biehler. 
 

1. Which factors influence negative and positive attitudes and values and sustainable 
interest towards probability and statistics (in students, pre-service and in-service 
teachers)? 

2. How can mathematics teachers learn the specificities of probabilistic and 
statistical thinking as compared to mathematical thinking? 

3. How can we support teacher development in using innovative pedagogies to teach 
stochastics in a new form that is more related to mathematical and statistical 
literacy? 

4. How can we design better classroom studies to investigate the relationship 
between pedagogy (classroom culture) and learning outcomes? 

5. What are students’ situated understandings of basic concepts (such as: average, 
spread, distribution, determinism, causality, randomness, stochastic & physical 
independence) and how can we support their development? 

6. How can we design new tasks, textbooks, computational environments, 
experimental environments to offer intuition-based pathways towards more 
sophisticated understanding? 

7. How can students’ experiences in various probability-and-statistics simulations be 
fostered towards more generalisable knowledge? 

8. How does the setting (material, physical or virtual experiments, simulations) 
shape stochastic thinking? What are the cognitive affordances of virtual (on-
screen) and material stochastic objects, and what are the design-and-learning 
issues related to this? 

9. Respecting multi-disciplinary approaches to Exploratory Data Analysis, how 
should we investigate the potential tradeoffs inherent in introducing and 
incorporating realistic data and iterated data-analysis cycles? 

10. How can assessment approaches for statistical competence reflect the complexities 
of students’ activities (e.g. the role of project reports and answers to interpretation 
and data analysis tasks)? 

After the conference, a second review phase was set up. The reviewers for this 
second phase were the four organisers of the working group together with Manfred 
Borovcnik, Robert Peard (Australia), Arthur Bakker (The Netherlands), Joachim 
Engel (Germany) and Katie Makar (Australia), and we would like to thank all these 
people for their efforts but especially the latter three, whose efforts were entirely 
altruistic, given that they were not involved in the working group at an earlier stage. 
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The second phase of the review represented an opportunity for further improvement 
in the papers and we believe that, as a result of the dedication of the authors and the 
reviewers, the 13 papers all satisfied the increased emphasis on quality reflected in 
this second stage. 

At the end of the conference and the subsequent collation of the proceedings, there 
was a feeling that the community established at CERME 3 has continued to flourish 
and will be able to support research in stochastics in the future. Indeed, we look 
forward to the continued work of this group at the next CERME conference. 
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PROBABILISTIC AND STATISTICAL THINKING 
Manfred Borovcnik, University of Klagenfurt, Austria 

 

Abstract: Mathematical concepts enable us to structure our thinking; corresponding 
models help us to structure reality. They supply us with tools to recognize and solve 
problems. Stochastic models are not mere images of reality that fit more or less. 
Right from the basics they have more the character of scenarios to explore reality. 
Given this circumstance, and the way that feedback about success is only indirect, 
understanding of concepts and the reasonable application of models is impeded. 
Accordingly, misconceptions are abundant and recipe application is ubiquitous. 
Stochastic thinking seems to be quite different from other types of thinking like causal 
thinking, or logical thinking. The educational discussion until the 90’s coined the 
notion of ‘probabilistic thinking’, from the 80’s the discussion shifted to the notion of 
‘numeracy’ and ‘statistical thinking’. By examples and figurative deliberations a 
multi-faceted image of probabilistic and statistical thinking will be given. 

 
 1 Thinking in scenarios – some examples 
The scenario feature of probabilistic thinking will be illustrated by some examples, 
which will also shed light on the merits of the probabilistic approach. 

Transparency of decisions 
In the face of uncertainty, a single decision may be made more transparent if one 
allows for weighing the various possibilities. The competing decisions can then be 
compared by computing (expected) values instead of actual costs or wins.  

The problem dealt with here is whether one should take out a policy for a 
comprehensive insurance of one’s car for the next year. The focus is not on mapping 
the situation precisely onto a model but on illustrating matters; the rough model 
should just highlight the situation and the purpose of modelling by probabilities. The 
following table will give the costs of the various decisions (insurance yes or no) 
under the prospective circumstances (no accident at all, total wreckage). 

 
Decision 

Cost [in Euro] 
A1 = Insurance yes A2 = no 

T1 = No accident 1 000         0 Potential 
future T2 = Total wreckage 1 000 20 000 

 

With hindsight, one can easily tell if it were better to take out a policy – if no accident 
happened, no insurance = A2 is the better decision. If one minimizes the maximal 
cost, then A1 = insurance is better. This corresponds to risk-avoiding behaviour. More 
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margin for innovative behaviour will be opened by introducing probabilities: if one is 
ready to ‘weigh’ the possible futures T1 and T2, e.g. by relative weights of 39 : 1 (this 
corresponds to a probability of 1/40 for the total wreckage), then the cost of decision 
A1 still is 1 000, but the cost of A2 has decreased to 500. Hence it would be better not 
to take out a policy. Clearly, the actual decision will depend on the weights for an 
accident. Other weights will lead to other decisions. However, the decision is now 
transparent: if one can weigh one’s chances of such an accident by 39 to 1, then A2 
would be better. To free oneself of the burden to fix one’s chances, it could be 
advisable to find the so-called break-even point, i.e. those relative weights at which 
the decision turns from A1 to A2. Here it is 19 to 1. If someone evaluates his/her own 
chance to be higher or lower than this break-even, he/she should decide accordingly. 
With the latter procedure there is no need to weigh someone’s chances exactly. 

Judgment of risks 
Not only technical systems have a reliability of survival dependent on its 
components. One may derive probabilities for the whole system to operate from an 
elementary (or more sophisticated) assumption. The result has more or less the 
character of scenario figures and gains more relevance in the comparison of various 
changes to the system. This will give indications for which changes to promote. 

The following problem is drawn from engineering applications. A system has 3 
components, the reliability of each is 0.95 for a specific purpose – e.g. that they are 
working well for exploring the Titan in a special mission. The system works if B1 and 
B2 operate well, or if B3 works, see Fig. 1 

 
        

  B1    B2    

         

        

    B3     

Fig. 1 

 
What is the reliability, i.e. the probability of working well for the mission of the 
whole system? Is it better to take two full systems on the mission, or is it better to 
have each component doubled? How many complete systems or, how many stand-by 
components for each one should be taken on the mission, if the reliability of the 
resulting system is required to be 0.99999 (whatever that should mean)? 

The standard solution treats the components as if they were independent of each other 
and have really the same reliability. Of course, they are not independent, and they 
have not the same reliability, and their reliability is not 0.95 (this is a qualitative 
statement of the involved engineers). Yet, the scenario is the only way to deal with 
the problem before the spacecraft is sent on its mission to the Titan. From this, one 
gets an idea of the reliability of the final system and whether it would pay the 
additional costs to build in a specific level of redundancy. A residual risk will always 
remain; the scenarios, however, will allow judging relative risks and costs of the 
various actions. 
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Fixing prices in the face of uncertainty 
Expected values are the basis of fixing prices when the future is open to variation. 
The procedure necessitates weighing the various possibilities. One basis for weighing 
is taken here, namely to extrapolate risks of the past to the future, i.e. to use relative 
frequencies for the estimation of probabilities of the various risks at hand. 

For a single car-owner e.g., the relative weights of total wreckage have to be 
measured individually; the insurance company may rely on the statistics of accidents 
of the last years. For the sake of simplicity, we will again assume only two 
possibilities for all the policies: total wreckage and no accident. With 2% total 
wreckages from the past and 10 000 policies, the bookkeeping of the insurance 
company looks like: 

200 total wreckages with a cost of 20 000 each amounts to payments of 4 000 000, i.e. 
400 Euro per policy. This amount plus an equivalent for taking the risk plus expenses 
plus profit makes .., let us say 1 000 Euro per policy. 

However, there is always a remaining risk for the company (not in our modelling here 
but in general) that the premium will not be sufficient. How high will be that 
remaining risk? How will it change if there are only 100 policies, or if there are 
100 000? The higher remaining risk with a smaller number of policies reflects the fact 
that the (implicit) use of expected values is less reliable in small companies/samples. 
How will the risk change with various levels of the premium? Are all possibilities 
included in the scenario? No, the scenario is suitable only for a normal financial year, 
for the occurrence of catastrophes, the insurance companies have the system of 
reinsurance, which reduces the remaining risk (of making high losses) by distributing 
it to a higher number of policies. 

Concluding from circumstantial evidence 
At court, if no confession is available, the judges have to rely on circumstantial 
evidence. Doctors diagnosing various diseases have to rely on indications from blood 
tests, X rays, mammography results etc in order to decide about medication or 
operation of a patient. There are ubiquitous situations where conditional probabilities 
could help to find the direction of further measurements to be taken best. Formal 
calculation is done according to Bayes’ formula. 

In what follows, we will refer to a blood test for diagnosing HIV with the following 
reliabilities: a person with the virus will be recognized by the diagnosing procedure 
(test positive) with a probability of 0.99 (in medical jargon this is called the 
sensitivity); a person not having the virus will be judged virus-free (test negative) 
with probability of 0.987 (the rate of false positives therefore is 0.013). For a person 
with positive result, how high is his/her risk to actually have the virus? If we apply 
the scenario to a person being representative of the whole population, we could use 
the prevalence of HIV (e.g. 0.02%) and come up with a probability of 0.0150 for 
having the virus under the condition that the test was positive. Judging the person to 
belong to a high-risk group with a prevalence of 10%, will result in a probability of 
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0.8943. For a discussion of the impact of various input probabilities on the 
interpretation of the resulting probabilities, for example on the question of how to 
communicate these to the patients, see also Gigerenzer et al. (1998). 

How do we perform an adequate calculation of the actual probability of having the 
virus after a confirmation test when the first result was positive and the second then 
also was positive? Can one simply combine two applications of the Bayes’ formula? 
(There is evidence that the reliabilities of the test conditional to the first positive 
result are not the same as before – in other words, if the test has wrongly gone 
positive it will more likely do the same a second time).  

Which scenario is more applicable to the patient? Where do the reliabilities of the 
testing procedure come from? Do they also have only figurative character or have 
they come from a controlled experiment with blood samples of which the status of 
HIV (or not) was absolutely clear? Do we recommend the testing procedure for mass 
screening? What will be the consequences of mass screening? Is the testing suitable 
as diagnosing procedure? How can one improve the diagnosing procedure?  

Again, the application has somehow the character of a scenario and gives more 
information about which action to do next. At the level of implementation of the 
diagnosing procedure e.g. it will allow a transparent deliberation of advantages (more 
precise information) and the relative ‘cost’ (from wrong positives and from wrong 
negatives). For a teaching approach including such questions, see Vancsó (2003, 
2004). For an example related to mammography and resulting doubts if it should be 
introduced as screening procedure for 50+ women, see Hoffrage et al. (2000). 

 2 Approaches to generalizing information 
Singular data sets are prone to variation and therefore could convey everything. If 
someone seeks to adapt to future events, or if someone wants stable descriptions of 
the ‘status’, then what to rely on? There is a big need, there is also a desire to extract 
general features from singular data sets, i.e. to generalize the results found. 
Accordingly, there are a lot of strategies and models for this purpose. If one can 
derive other statements from the data at hand by logical argument, fine. If one can 
find out the exact conditions that will lead to a specific (desired) result by causal 
connection, fine. If though the results are also due to some yet unexplained but small 
variation how does one find out that? 

L’homme moyen 
This figurative idea of Adolphe Quetelet (1835, see Stigler 1986) is intended to 
explain how a person gets his/her final outcome of a characteristic (e.g. height or 
head circumference etc) by a value that represents the l’homme moyen. By errors of 
nature, however, this value is superimposed by many small errors.  

The individual process of superimposing small errors to the (ideal value of) l’homme 
moyen ‘leads directly’ to the normal distribution of the investigated characteristic in 
the population. Quetelet transfers herewith the mathematical model in the 
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background from the elementary error hypothesis from physics to a very broad range 
of applications; the derivation of the normal distribution is based on the central limit 
theorem of Laplace, which was well-known at that time. Historically this marks an 
early milestone of the application and interpretation of the normal distribution outside 
the error theory of physics. The enthusiasm about this transfer was so great that at 
times the normal distribution was rated to be a law of nature. 

 

data = l’homme moyen + many small errors 
 

Remarkably, the addition of these errors amounts to the unexplained variation of 
modern views, which is modelled by randomness (a normal or some other 
distribution). The l’homme moyen represents the model for the data. In terms of 
generalization, it is the generalizable feature of the data, which is estimated by 
filtering out random fluctuations from the sampling process. 

Other structural equations to split the data describe the generalizable part differently. 
All have their own interest: 

signal noise 

pattern deviation 

fit residual 

model residual 
explained unexplained variation 

data = 

common 

+ 

specific causes 
 

All these equations describe different approaches to model the individual’s deviation 
from a true or theoretical value (representing the generalizable part of the data), 
which may be re-interpreted commonly as l’homme moyen to facilitate 
understanding. Some of these approaches model the deviations of single objects by 
random fluctuations (see the classical inference approach below), some by causal 
influences from other sources, some use a mixture of both (see the ANOVA approach 
below), while others analyze the deviations by mere patterns and explanations of the 
patterns from the context of the data (see the EDA approach below). 

Classical inference from data 

Observed data are usually summarized to give 

  • predictions for future events 
  • a generally valid description of the population – e.g. a confidence interval 

Both procedures include a risk of statements not being valid and necessitate 
estimating the magnitude of the variation. Furthermore, they require that the data 
generation process is a random sample of the population. In terms of the idea of 
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l’homme moyen this means: If one knows the value of l’homme moyen and the 
magnitude of errors, i.e. the variation, then this amounts to generalizable information, 
i.e. one can predict future outcomes to be within the following bounds: 

l’homme moyen ± variation 

If a person is within these bounds then it is due to no special cause, only natural 
variation due to random sampling is effective; if not then other specific (usually 
causal) explanations have to be searched for as he/she does not fit to the general case. 
In other words, there ‘must be’ some other l’homme moyen type working for that 
person. 

This pattern of argument follows the modern interpretation of the concept of 
distributions. The normal distribution (as other distributions) is interpreted as an 
external phenomenon, i.e. as a tendency to produce (by random sampling) an 
individual with a specific measurement of the investigated characteristic. The 
underlying internal process of causal or other factors influencing the final value is 
usually no more an object of study (with the exception of the ANOVA approach in 
empirical investigation, see below). Usually these other influences are balanced and 
eliminated for a whole group of observations. However, there are some cases for 
which this balancing is not effective, which might make a causal interpretation of 
these influencing factors relevant. 

Actually, Wild and Pfannkuch (1999) find out that the tendency for searching for 
such specific causes is very deep-seated and would lead people to seek for causes (for 
shifts) also in case that an individual’s data are quite within the predicted bounds 
based on a (pure) random model for the variation. For example in sports, if the 
‘scores’ decrease, the trainer or other responsible persons of a team are inclined to 
look for the special causes for that development even if a formal analysis of current 
scores does not yet yield a significant decrease of achievement. This gives a more 
direct basis for earlier intervention e.g. the initial decline in achievement say in 
sporting prowess (but also in a quality control setting). That means that people are 
more ready to search for a causal re-interpretation of observed data than to model 
them solely by pure randomness. And in a way they are sometimes quite right in their 
approach. 

If the process of data generation does not compare to the naturalistic process of 
elementary errors acting upon the l’homme moyen, then the data cannot be 
generalized and used in the way indicated before. In modern terms, we could say that 
in this case the data are not from a random sample of the population. The key to 
allow for generalizing findings from data is that they stem from a random sample. 

Analogous deliberations may be made for the confidence interval method to 
generalize findings from data. Clearly, the context will be important to judge whether 
the random sample argument is valid and if the sample is actually taken from the 
target population to which the findings are to be generalized. 

Working Group 5

490 CERME 4 (2005)



EDA approach towards inference from data 
Exploratory data analysis is centred on the following structural equation: 

data = pattern + deviations 
 

So-called robust techniques should allow filtering out the pattern which means the 
procedure to find patterns should not be affected too much by some unusual, extreme 
data. Here, we are farthest from the idea of Quetelet. There is no process of natural 
superimposing of small errors; they could even be very different to different elements 
of the population and quite big sometimes. In terms of the classical approach, there is 
no need for the sample to be random.  

The justification for generalizing the split of data into a specific pattern and 
deviations comes from the knowledge of the context: the pattern should give an 
interesting insight into the context; the deviations may sometimes even shed more 
light onto the problems within the context. Furthermore, the aim of EDA is a multiple 
analysis of the data with the aim of several splits and resulting views on the 
underlying phenomena. The power for generalizing the findings is based on the 
comparison of the various patterns found. Deviations get more attention; they do not 
merely reflect small error entities ‘caused’ only by nature. Accordingly, a lot of effort 
is also invested to interpret those deviations on the basis of context knowledge and 
explain or see why they are as they are. In terms of the ‘cause split’ of data, EDA 
looks for common causes in the pattern and for specific causes in the deviations. 

Of course, different sides in a ‘conflict’ would evaluate context knowledge 
differently. There is a lot to undertake to improve the preliminary and/or subjective 
character of results generalized from one data set. Sometimes further projects 
produce more data giving more conclusive results; or a cross-validation of potential 
results with subgroups, or with other co-variables, or with other populations or 
similar problems could help. Also the EDA approach may be shifted to the inferential 
approach in the ongoing phases of analysis to corroborate preliminary findings. 

The ANOVA approach to generalize findings from data 
The analysis of variance approach is a standard but sophisticated technique to split 
the variation in the data into that from specific sources and the rest variation that is 
modelled by randomness (usually by the normal distribution). We will not go into 
technical details here (see e. g. Montgomery 1991) but will just discuss the structural 
equation for the data and its similarities to the l’homme moyen idea.  

For illustration, we will use the context of various teaching methods A, B, .. 
(= treatment) which might have an influence on some achievement score – the target 
variable of which data are available. The specific influences are attributed to the 
treatment A (or B, ..) a ‘person’ has actually got, the unspecific influences are 
modelled by randomness. The formal procedure of ANOVA allows deciding when 
the variation due to the specific influences is big enough as compared to the variation 
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due to randomness in the remainder, so that an influence of the treatments may be 
generalized from the data.  

data = general 
mean + specific 

influences + unspecific 
influences 

       

data = l’homme 
moyen + effects attributed 

to treatment + unexplained 
remainder 

       

data = common 
cause + specific cause + random 

influence 

 
With respect to Quetelet’s figurative thinking, we separate the deviations of l’homme 
moyen into two parts, one is causally explained by the effect of the actual treatment, 
and a remainder that is not yet open to a causal explanation and that should also be 
small enough that it would not pay to search for further causal explanation. 

 3 Structuring of thinking 
Concepts and models allow us to ‘see’ reality in a specific way – this acts as feedback 
also on our thinking; it structures our thinking insofar as it anchors analogies and 
figurative ideas and archetype models in our approach to reality. We have seen from 
the examples in section 1 that probability has a strong feature of building up 
scenarios for reality which means that usually it does not directly model reality in the 
sense of constructing a model as a more or less good image of the real situation. As a 
consequence, that has a deep impact on how learners can integrate probabilistic 
concepts into their repertoire as there is only indirect measures of how close the 
model depicts the real situation and also the success of a model is not easily judged. 
No wonder that misconceptions are abundant and deep-seated, i.e. are often not 
revised by pertinent education. 

Feedback in probability situations is only indirect 
Normally, we learn by trial and error. By wrong decisions we lose and thereby we 
think about improvements and come up with better models and so forth. Here only 
one simple example is given to illustrate that matters with probability are much more 
complicated and feedback about success is by no means open to direct interpretation.  

Take the two Falk wheels of fortune of Fig. 2 and give the choice which to spin. 
Obviously the left wheel has the bigger sector for winning (=1), therefore one should 
choose it. However, once you spin, you have not a high probability of winning, .. , 
and you might lose. What then? Was the choice wrong? The best action here may not 
be awarded. Thus, you might speculate about the reasons why. At times, I checked 
this with my then seven years old daughter and right from the beginning she 
wondered about the special margin of the right wheel, …, and concluded that grown-
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ups should take the left but children had to take the right…(the author named the 
wheels after Ruma Falk). 

 

 
 
 

Fig. 2 

 

With reference to the scenario use of probability in section 1 and with respect to the 
example above, relative frequencies as companion of probabilities are thus often 
more or less a metaphoric way to describe probability (for the genuine theoretical 
nature of probability see also Steinbring 1991). Yet they amount to a useful way to 
describe some features of the abstract concept, which is out of the reach of 
understanding. All the more relative frequencies often may be used as a short cut to a 
mathematical derivation of probabilities by the method of simulation. 

The idea of weighing the evidence 
Relevant information about a situation under uncertainty may come from: 

  • Combinatorial multiplicities of possibilities, which are judged to be equally likely 
  • Frequencies of events in past or comparable series, which are judged to be 
 ‘similar’ 
  • Personal judgement of involved risks 

Core of the further information process to derive at a decision is the concept of 
expectation as illustrated in some of the examples of section 1. Quite often the three 
types of information above involve – despite exact numerical values for the 
probability requested – qualitative aspects and the scenario character of the models 
used. Calculating (expected) values of tentative decisions in order to find a 
justification for the final decision made may be viewed as an exchange between 
‘money’ (utility, cost) and uncertainty like in the car insurance example of section 1: 
The small probability/risk of an accident with a high loss of money is exchanged for 
the premium of the insurance, which is a small but fixed amount of money to be paid 
anyway in advance. The question is how to find a justifiable amount of money for the 
actual premium, or how to decide if one should take out a policy if it is offered for a 
specific premium. 

If someone is faced with a decision, the consequences of which lie in the future and 
cannot be foreseen (except a listing of all cases, which are considered to be 
‘possible’), then one has to find some optimality principle to signify one or some of 
the decisions as better than others. Minimizing maximum ‘loss’ works without 
introducing probabilities; ordering decisions by expected ‘loss’ requires the weighing 
of uncertainty. The potential of the method increases by an investigation of how 
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sensitive the derived decision reacts to changes in the weighing process – again a plea 
for the scenario character of the probability approach. 

Mis-Conceptions 
With the indirect feedback to the probability approach, it is not surprising that 
thinking in probabilities is not well integrated into the cognitive frame of individuals. 
Often, modelling a situation involves an attribution and separation of and between 
causal and random parts (see the discussion in section 2). The causal part of a 
problem, if separated and explained, allows for more direct interventions and thus 
seems more promising. 

For example, in Wild and Pfannkuch (1999), the actual score of 2 out of 5 is 
compared to a probability of scoring of 70%. ‘Has something gone to the worse, or is 
the team as good as always and had only an unlucky series, or can one find a specific 
explanation for the low achievement at present?’ According to the classical inference 
approach, modelling comprises only random elements and an appropriate statistical 
test yields that the achievement is not significantly low, which means it is within the 
usual fluctuation  and therefore no intervention is necessary. 

People, however, tend to seek for other, mainly causative explanations of the low 
actual score. Once one has found such a causative explanation (e.g. temporary private 
problems of the player, a small physical injury, a quarrel in the team etc), the track 
for success promising intervention is open. This in mind, people seem to extremely 
favour the causative approach as compared to the random approach (see Wild and 
Pfannkuch 1999). 

In the tradition of Kahneman and Tversky (see e. g. Tversky and Kahneman 1972, or 
Kahneman e. a. 1982), a lot of misconceptions have been identified and described. 
Intuitive strategies like representativity, anchoring, and causal strategies constitute 
subsidiary strategies to surmount the difficulties in the process of weighing the 
uncertainty (for a discussion see Borovcnik and Peard, 1996). Among many others, 
here only the outcome orientation of Konold may additionally be referred to. 

According to it, information available to a person is more likely to be actually used in 
solving a problem if it allows for a direct prediction of the outcome in quest, or, the 
problem is reformulated in order to allow for such a direct prediction (see Falk and 
Konold 1992): For example, the probability of 0.95 for rain allows for a direct 
prediction to encounter rain if one goes out – with a small risk of having no rain, 
which is even rated to be smaller than it actually is if it is not neglected at all. And if 
it actually does not rain, people would complain that the weather forecast was wrong. 
If the probability were 0.5 – fifty fifty – then people tend to pick up any external or 
causal information if it serves to predict the ‘outcome’ in question directly. This fits 
quite well to Wild and Pfannkuch’s observation above. 

From the abundant misconceptions, one may conclude the difficulty of the venture to 
teach probability concepts and its necessity. This is also true for the education of the 
statistics part as not only Wild and Pfannkuch (1999) describe individual’s problems 
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to discriminate properly between causative and random parts in splitting and 
explaining variation in empirical data. 

To use misconceptions effectively in teaching, it is not sufficient to confront learners 
with relevant situations which are prone to wrong approaches; instead of trying to 
revise wrong intuitions (which are very basic and deep-seated) one should build a by-
pass by re-presenting the situations by (very) simple material forms that allow for 
solutions. For promising examples in view of the Bayesian formula, see the unit 
square of Bea and Scholz (1995) representing (conditional) probabilities by areas, or 
the natural frequencies, see Krauss et al. (2002), or Hoffrage et al. (2002), 
representing (conditional) probabilities by absolute (natural) frequencies. For some 
other crucial concepts such basic material representations are still waiting to be 
‘invented’. 

Probabilistic and statistical thinking 
From the examples in the first two sections, types of situations and types of thought 
that help with them are derived. In all cases to follow, a mingling between 
probabilistic and statistical thinking may be traced. With some twist of thought, the 
one or the other part predominates. Always the following strategies may be 
supportive in presenting (or in solving) the following standard situations: To give 
simple analogies, which are similar in characteristic features and which have 
illustrative potential for the solution. To give simulations which necessitate 
organizing clearly the model assumptions for the involved situation and effortlessly 
yielding the solution. To re-formulate, or even to re-present the situation in a more 
basic manner. 

One-off decision: The procedure of attributing (expected) values to decisions by an 
exchange between uncertainty and ‘money’ goes back to Christian Huygens 1657 
(see Bentz 1983 or Freudenthal 1980). He developed his ideas in the context of 
lottery games and speaks of some uncertain lottery to ‘be equally worth as’ some 
amount of money given by a formula (for the expectation). Huygens himself already 
applied his concept of expected value also to insurances especially to life insurances. 
The less agreement there is on weighing the uncertainty, the more it gets important to 
supply additional justification to the weighing by investigating the consequences of 
different weights – the stronger becomes the scenario character of probability as was 
discussed in section 1. 

To think about uncertain situations in terms of scenario like expected values and 
respect that as one tool amongst others to derive at transparent decisions is a basic 
ingredient of stochastic reasoning. It cannot be stated clearly enough that the values 
for the decisions allow to signify some decisions as better than others without making 
it possible to predict (or even attempting to aim at predicting) the specific outcome in 
the ‘future’ – this seems counter-intuitive not only against the background of 
Konold’s findings on the ubiquity of the outcome orientation in individuals. 
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Decision in the face of circumstantial evidence: Abundant situations require 
proceeding according to the actual values of conditional probabilities relative to new 
facts. Judgement before court by circumstantial evidence, or diagnosing procedures 
in medicine, are just two prominent examples of that kind of reasoning. Formally, the 
new conditional probabilities are calculated with the formula of Bayes. The never-
ending disputes about the validity of prior probabilities (prior to the circumstantial 
evidence) indicate again the scenario-character of probability. Furthermore, the two 
involved ‘directions’ of conditional probabilities do have a completely different 
connotation from a causal standpoint: Whereas the conditional probability of, for 
example, having some virus to having a positive result on the diagnosing test is 
causally (and it is only by some errors possible that a negative result is achieved at), 
the backward direction of conditional probability from a positive diagnosis to actually 
having the virus is merely indicative. This is a fact that is hard to accept for many due 
to a causative misinterpretation of it. Findings from research on misconceptions tell 
us that conditional probabilities are grossly overestimated in case of a possible causal 
interpretation, and are often even neglected (too small to be taken into consideration) 
when they are only indicative. 

To think about pertinent situations in suitable terms of a Bayesian model, amounts to 
basic ingredients of stochastic thinking. There are many endeavours to improve 
teaching on these issues. While it seems inadequate to transform us to Bayesian 
thinkers, it establishes a great progress in the teaching of probability to make us 
aware about the cognitive biases from causal re-interpretations. A great help with that 
comes from very basic material re-presentations, which demystify the causal 
connotations that always come back to mind if the mathematics involved becomes 
too complicated. From all the endeavours, here only the approach of Krauss et al. 
(2002) of natural frequencies is referred to. 

‘Natural’ variation of randomness: Investigating the variation of data involves often 
a split of the data into explained and unexplained parts, or in causative and random 
parts, see section 1. As this separation is neither unique nor clear-cut, our intuition 
has to be backed up by simulation studies about what it would mean if the variation 
were only random. What are the implications of ‘pure’ randomness? The so-called 
‘square root of n’ law may be demonstrated by such investigations and teaching 
experiments, see e.g. Riemer (1991), or Kissane (1981): If a target variable is the sum 
– or better the mean value – of other variables (that need not necessarily have the 
same distribution, e.g. 1 or 0 according to some dichotomous experiment, or the 
result of throwing a die), then  

  • a two sigma-rule becomes more accurate with increasing number of summands: 
approximately 95% of (simulated) values of the target variable are between the mean 
value plus or minus two times the standard deviation of the target variable, 

  • the standard deviation of the target variable decreases by a factor 1/√n , n being 
the number of summing variables. 
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This is a manifestation of the elementary error hypothesis of physics of earlier times 
and a concrete example of the central limit theorem that states that the ‘limiting’ 
distribution for the (mean) target variable is a normal distribution. 

To think about pure randomness’ consequences in terms of a normal distribution and 
in terms of an ever-decreasing variation (by the square root of the number of ‘trials’) 
is the key to many a statistical procedure: to name only one, the estimation of a 
population mean by the mean of a random sample. The precision of that procedure is 
improved by larger random samples. The amount of improvement may be read off 
and adjusted to some accuracy required by investigating a sample, which is large 
enough. The model situation with the same summands (as in the simulation situation) 
being independently taken from the same population will also shed light on the 
importance of a random sample and not just an arbitrary sample to be taken in order 
that the law comes true. 

 4 Structuring reality 
It would be too restricted to think of structuring reality by models as to depict the 
relevant features of a real-life situation, abandon less relevant ones, and to ‘filter out’ 
a model that represents more or less an image of the original situation. Within that 
model one could then derive mathematical solutions and re-interpret them into the 
context problem from the onset. This is one feature of probabilistic modelling only, 
one that is truly important, but there is more to say about probability models with 
respect to their more indirect and scenario character already described within the 
examples of sections 1 and 2. 

Models and concepts allow us to structure thinking and this in turn allows us to apply 
these models to reality, structuring it and (partially) solving the problem there. It is 
worth devoting some extra thought on the objective side of models structuring reality. 
There are more ingredients that come to the fore with this focus, especially the 
interplay between causative and random parts of the variation of variables, which 
allows dealing with real problems. 

An example for the structural equation ‘in action’ 
The following example deals with the explanation of the target variable ‘body 
weight’. From many examples we have learned that there is quite a tight relation 
between weight and height of persons. Another explanatory variable is gender. The 
remainder is unexplained (by further influential variables) and modelled to be 
random. It could, for example, be explained further by the body type of a person 
(pyknic, leptosome etc), or it could be explained by race, or by nutrition in early 
childhood etc. 

Body 
weight = a constant 

value + gender 
effect + b × body 

height + random 
‘error’ 
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Without the gender term, one would have a simple regression line for the model to 
describe the relation between weight and height. Separated between genders there is 
quite a different slope of the regression line. If the investigator does not include 
gender into the study, the variable would have the status of a confounding variable. A 
confounding variable changes or even completely reverses the relations found. Once 
data are available on gender, the variable may be tested if it should be taken into the 
model; in case if it were a continuous variable like the height, it would be called co-
variate. A covariate is simply a candidate to be included in the model for the data. 

The remainder is not open to causative explanation as there are no specific data 
available. It will be modelled simply by pure randomness. The evaluation of whether 
the explanatory variables should be integrated into the model for the data is done in 
comparison to the ‘size’ of the remainder: are the changes in variation, due to 
candidates for explanatory variables, big enough in comparison to the variation due to 
that remainder. 

Neither is the interactive building of a model unique, nor are the components, which 
constitute the remainder, unique. For an interpretation of the final model for the target 
variable, the separation of variation into causative (explained) and random (non 
explained) parts is essential – the split is not ontological but only pragmatic. If this 
separation yields a relevant model, the causative interpretation may lead to promising 
interventions. 

The formal procedure to separate the model entities is based on significance tests in 
the ANOVA or ANCOVA models; we will not go into details. An intuitive 
understanding of this separation is at the core of anyone’s reasoning who is involved 
or concerned with statements that are backed up empirically by data from 
investigations. Accordingly, textbooks on empirical research covering the ANOVA 
approach devote a lot of effort to develop it. 

Furthermore, the intuitive strive for looking for causative explanations for 
phenomena at hand, is not being teased out by probabilistic reasoning. On the 
contrary, probabilistic models are a key factor to filter out causative elements of a 
problem to get more control over interventions on the target variable. 

The split of variation into causative and random parts 
In empirical research, often causal influences for the variation of a target variable are 
searched for. For illustrative purpose, the reader should think of several alternative 
treatments, which could affect a target variable. The simplest model would be (with 
some known function f): 

Target 
variable = f (treatment effect)  

 

The variation of the target variable would then uniquely be determined by the 
treatment effect. However, there is a lot more sources of variation in the data for the 
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target variable like plain measurement errors, variable external circumstances of the 
experiment, other attributes of the ‘persons’ which also could influence the final 
value, variation due to the specific persons that are sampled and investigated, etc. We 
have here a similar but more differentiated situation as in the l’homme moyen figure 
of Quetelet. We will give a simple structural equation of how the target variable 
emerges (more precisely, the equation establishes only one simple model for the 
situation; there are many other suitable models): 

Target 
variable = a constant 

value + treatment 
effect + influential 

variable + random 
‘error’ 

 

Treatment and influential variables are explanatory variables, which explain the 
variation of the target variable by some causative (or associative) argument, the 
random part could represent further causal relations between values of some other 
variables of the person investigated and his/her value of the target variable. If one can 
establish tight relations of some of these with the target variable, then they could be 
integrated into the explanatory variables (see also Wild and Pfannkuch 1999). 
However, lacking more precise information about these variables necessitates dealing 
with them as if they were random. 

The question if treatments are effective, i.e. different treatments have a ‘substantially’ 
different influence on the target variable, is now transformed to the question if the 
variation of the target variable is mostly ‘explained’ by the variation of the treatment 
effect, or if it is due to other influential variables, or even if it is due only to variation 
of those parts which are modelled to be random (and which are not yet open to 
causative explanation). However, the split into causative and random parts, the split 
of causative parts into treatment and other explanatory effects is not unique and may 
influence of course the final findings heavily. 

The question when the causal part of the model is big enough to be judged as relevant 
is a technical one met by several specific significance tests, which should not worry 
us here. It is only important to state that these procedures rely on an investigation 
how pure randomness would influence the target variable. 

Two model situations to equalize other influential variables 
Generalization of findings from samples to the population: To get reliable 
information about the mean of a population, a sample is taken from that population 
and the sample mean is taken as an estimate. If ‘measuring’ a single object of the 
population may be modelled merely by ‘natural’ variation of randomness, then all the 
properties of that randomness from the last section may be applied to an artificial 
summing or calculating the mean value of all the objects. Hence, the normal 
approximation and confidence intervals can be applied. This modelling is justified by 
a random sampling procedure to select objects for the sample to be ‘measured’. It is 
the random sampling which guarantees – with the exception of some calculable risk – 
that the results are generalizable, i.e. that the confidence interval covers the ‘true’ 
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mean of the population. In this sense, with random sampling the sample drawn is 
representative for the population (see also Borovcnik 1992). 

Thinking that samples are representative of populations if the sampling is ‘purely’ 
random is a key concept for the generalization of empirical findings. Randomness 
avoids all conceivable selective properties, which would lead to biased samples, or, 
randomness equalizes all selective properties so that finally the sample is 
representative for the population. Any arbitrary procedure to select the sample is 
prone to systematic, unforeseeable and uncontrollable deviations. 

Generalization of differences between two samples: Often, a comparison between two 
(or more) groups has to be made. The groups have got a different treatment – one for 
example may be a special medication for insomnia, the other only a placebo (a 
harmless substitute without a pharmaceutical substance). ‘Is the medication more 
effective than the placebo?' is the decisive question. Of course, the two groups have 
to be as equal as possible with respect to all characteristics that could influence the 
effect of the treatment: People have not to know that they get the placebo; people in 
the treatment group should not represent the most persistent cases already proven 
insensitive to any treatment, and so forth. Strictly speaking, should the groups to be 
drawn purely randomly from the population? With the exception of very few cases, 
this could not be fulfilled in practice. 

However, if the investigated group as a whole does not differ substantially from the 
population, it is sufficient that a random attribution process establishes the subgroups 
for the different treatments, i.e. randomness decides to which group the next patient 
will belong. This random attribution should equalize all differences in the objects 
across the whole subgroups, which could have a causative influence on the target 
variable representing ‘success’ of the treatment. Insofar as the random attribution 
should eliminate, or better equalize all causative elements that could make the 
subgroups different (i.e. equalize the effect of all confounding variables), the actually 
observed differences then may be attributed solely to the treatment and are thus 
generalizable. 

 5 Statistical Thinking 
A brief introduction into the debate is given against the background that at all times 
the argument was used that there is more to probability and statistics than is 
contained in the mathematical version of the pertinent concepts – a special kind of 
thinking was advocated; several authors refer to an outstanding role of an interplay 
between intuitions and formal concepts (see Fischbein 1975, or Borovcnik 1992). 

The educational debate on probabilistic and statistical thinking 
The educational debate on probabilistic and statistical thinking is a long-ongoing one. 
Even in times as early as the 70’s when the accent was heavily put on the 
mathematical and probabilistic part of the curriculum, a special type of thinking was 
argued to be behind the formal concepts – probabilistic thinking. It was not quite 
clear what could be understood by that but the argument was that there is some 
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additive not yet included in the mathematical concepts. However, when put to a 
crucial test, either mystique arguments were used to describe and justify what 
probabilistic reasoning is, or it was reduced to key ideas in the mathematical 
development of the concepts. 

Heitele (1975), for example, gave a catalogue of fundamental ideas, which on the 
whole should constitute the various dimensions of probabilistic thinking. His list is 
reading like the titles of the chapters in a mathematical textbook on probability but 
could always also be attributed to some more general idea at second inspection: 

  • Calibrating the degree of confidence 
  • The probability space 
  • The rule of addition 
  • Independence 
  • Uniform distribution and symmetry 
  • Combinatorics to count equally likely cases 
  • Urn models and simulation,  
  • The idea of a sample to represent a population 
  • The idea of a random variable and its distribution 
  • Laws of large numbers. 

There were a number of attempts to get a clearer image of the fundamental ideas 
behind probabilistic thinking. For example, Borovcnik (1997) endeavoured to arrange 
the ideas around the idea of information as a central hinge between individual’s 
intuitions and the formal concepts of the mathematical theory: 

  • Probability as a special type of information about an uncertain ‘issue’ 
  • The idea of revising information when faced with new evidence 
  • To make transparent which information is used–also in the simulation of situations 
  • To condense information to a few numbers (thus eliminating randomness) 
  • To measure the precision of information 
  • To guarantee the representativity (=generalizability) of partial information  
  • To improve the precision of information 

The roots of probabilistic reasoning in the psychological research go back to 
Kahneman and Tversky. They identify various tendencies in individual’s behaviour 
to wrongly re-interpret problems and solve them in a way different to the accepted 
standard. Their approach of misconceptions had a great impact on further educational 
research. In an empirical investigation on children’s behaviour, Green (1983) found 
abundant misconceptions that were to be expected according to Kahneman and 
Tversky. Scholz (1991) tried a constructive approach of a cognitive framework for 
individuals to allow for probabilistic reasoning in an adequate manner (i.e. to accept a 
standard interpretation of situations and end up with acceptable solutions). The work 
of Fischbein (1975) is devoted to develop instructive approaches towards developing 
a sound interplay between individual’s intuitions and formal concepts of mathematics 
as a key to develop probabilistic reasoning. 
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From the 80’s on, initiated by the EDA discussion started by Tukey (1977), the focus 
shifted towards statistical thinking and reasoning. The new motto then was numeracy, 
i.e. to learn to understand data and the information, which lies in them. The shift also 
involved more applications, real-life situations, all leading away from mathematics 
and probability – and also away from games of fortune. In the German debate at that 
time also, procedures of formal statistical inference entered the stage and won much 
attention in the reform of curricula. (The high goals of those times have now made 
place for more realistic ones, especially enabled by the simulation technique and the 
resampling idea for statistical inference.) Numeracy and statistical reasoning 
internationally were promoted by big projects in the USA, beginning with the 
Quantitative Literacy project, see for example Scheaffer 1991. 

Numeracy and ‘graphicacy’ were targeted at simple but intelligent data analysis 
alongside the techniques of descriptive statistics and EDA. The role of the context 
where the data stem from, for the interpretation of results, received increasing 
attention; it became undisputed that a sound analysis of data and results is not really 
possible without reference to the context. In the German debate, Biehler (1994) is 
seeking a balance between probabilistic and statistically loaded curricula, as courses 
biased towards data analysis would cause an all-too simple and probability free 
conception of stochastics. 

However, asked what statistical thinking could be, no one gave a clear answer. This 
unsatisfactory circumstance was the starting point for Wild and Pfannkuch to 
integrate ideas from empirical research. 

Statistical thinking as contrasted to probabilistic thinking is involved in all steps from 
the provisional problem out of a context, across all cycles of making the problem 
more precise and model it, to a final model substantiated by the data. Statistical 
thinking is tightly related to the process of empirical research to filter out 
generalizable findings from empirical data. More or less, statistical thinking might be 
associated with strategies to increase knowledge.  

The approach towards statistical thinking by Wild and Pfannkuch 
Here, a brief discussion of statistical thinking along the lines of the approach by Wild 
and Pfannkuch (1999) will be given. According to their approach, four dimensions of 
that type of thinking should be regarded: 

  • The investigative cycle 
  • The interrogative cycle 
  • Types of thinking involved 
  • Dispositions 

The investigative cycle is a systems analysis approach toward the initial (research) 
questions. It involves the components of 

Problem → Plan → Data → Analysis → Conclusions, 

which might be run through several times for refinement. 
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In the problem phase it comprises to grasp the “system dynamics” of describing the 
target variable, i.e. to find ‘all’ relevant explanatory variables, and to reflect about 
possible confounding variables. Also, assumptions of relations, hypotheses on 
relations from relevant other investigations or theories have to be used to clarify and 
“define problems”. Omissions in that phase give rise to many failures in empirical 
research. 

In the planning phase, the investigator has to deal with the development of a 
“measurement system” for all the included variables. A “design” has to be developed 
on how the “sampling” and the “data management” is actually to be undertaken. A 
“pilot study” should give indications as to whether the plan is adequate and 
practicable. 

The data phase comprises “data collection, data management and data cleaning”. 

The analysis phase comprises “data exploration, planned analyses, unplanned 
analyses, and hypothesis generation”. 

The conclusions phase consists of “interpretation, conclusions, new ideas, and 
communication”. 

The interrogative cycle represents the strategic part of the investigation and includes 
the following phases (see Wild and Pfannkuch 1999 for details): 

Generate → Seek → Interpret → Criticise → Judge 

Types of thinking: Wild and Pfannkuch (1999) discern between general types of 
thinking and those fundamental to statistical thinking. For the general types, they list 
“strategic, seeking explanations, modelling, applying techniques”. Specific to 
statistical thinking they list 

  • Recognition of need for data 

  • Transnumeration  
– changing representations to engender understanding […] 

  • Consideration of variation 
– noticing and acknowledging, 
– measuring and modelling for the purposes of prediction,  

explanation, or control 
– explaining and dealing with investigative strategies 

  • Reasoning with statistical models 

  • Integrating the statistical and the contextual  
– information, knowledge, conception 

Dispositions amount to the psychological side of investigations and comprise the 
following attitudes: Scepticism, imagination, curiosity, openness (to ideas that 
challenge preconceptions), a propensity to seek deeper meaning, being logical, 
engagement, and perseverance. 
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Wild and Pfannkuch (1999) then proceed to the split of sources of variation in data 
into real (a characteristic of system) and induced (by data collection). 

Finally they come up with the explanation of the regularities, the model found on 
basis of the data analysis process. They refer to statisticians who see the biggest 
contribution of their discipline in the isolation and modelling of ‘signal’ in the 
presence of ‘noise’. Then they discuss about the relative and interchangeable 
character of random and causal influences. They refer to randomness as “just a set of 
ideas, an abstract model, and a human invention which we use to model variation in 
which we can see no pattern”. In that they come close to the scenario character of 
probability described here. 

 6 Conclusion 
Questions central to probabilistic and statistical thinking have been raised. They 
should clarify that both types of thinking are intermingled and are not easily 
described. From the discussion, however, crucial components of these types of 
thinking should become clearer. There will be no simple answer also after further 
endeavours into that topic. Even if the ideas are not easily described, the foregoing 
exposition and the examples illustrate how pertinent thinking is organized, to which 
end it could serve, and how such thinking is blurred.  

The role and eminent importance of data, the context where they stem from, and the 
attitude of empirical research should become quite clear from the discussion. The 
interpretation of probability statements as scenario figures assisting in a broader 
problem solving process to come up with a more transparent decision may become 
more accepted by the examples outlined in the paper. The splitting of variation in 
data into causative and random parts in the search of explaining, predicting, and 
controlling phenomena may be a guideline for further attempts to clarify the issues of 
statistical thinking. 
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A STRUCTURAL STUDY OF FUTURE TEACHERS’ ATTITUDES 
TOWARDS STATISTICS  

Carmen Batanero, Universidad de Granada, Spain 
Assumpta Estrada, Universidad de Lérida, Spain 

Carmen Díaz, Universidad de Granada, Spain 
Jose M. Fortuny, Universidad Autónoma de Barcelona, Spain 

 

Abstract: We analyse the main components of 367 future teachers’ attitudes towards 
statistics through their responses to the Survey of Attitudes Toward Statistics (SATS) 
scale. Analysis of components correlations and factor analysis serve to describe the 
relationships among main components of teachers’ attitudes and compare with 
previous research. Our results suggest that the four components (difficulty, value, 
affective and cognitive factors) described by the SATS authors might not appear 
clearly separated in future teachers. Relationships with other variable are also 
explored. 

 

1. Introduction 
Statistics is increasingly taking part in the primary school mathematics curriculum; 
yet most primary school teachers have little experience with statistics and share with 
their students a variety of statistical misconceptions and errors (Stohl, 2005). An 
additional factor that affects teaching performance is teachers’ attitudes towards the 
topic.  

Background 
In conceptualising the mathematics education affective domain, McLeod (1992) 
distinguishes among emotions, attitudes and beliefs. Attitudes are intensive feelings, 
relatively stable, which are consequence of positive or negative experiences over time 
in learning a topic (in this case statistics). The interest towards beliefs, attitudes, and 
expectations that students bring into statistics classrooms is increasing in statistics 
education, since “such factors can impede learning of statistics, or hinder the extent 
to which students will develop useful statistical intuitions and apply what they have 
learned outside the classroom” (Gal & Ginsburg, 1994, p. 1). In educating the 
teachers we should follow the advice by these authors, and make statistics teaching 
enjoyable and useful for them. In this way, the teachers will develop an appreciation 
for how the application of statistics is useful in their professional and personal lives 
and for their students. 

In the past two decades a large number of instruments to measure attitudes and 
anxiety toward statistics have been developed in order to assess the influence of 
emotional factor on students’ training (see Carmona, 2004 for a review). Research on 
students' attitudes towards statistics is increasing; although it is still scarce when 
compared with research related to attitudes towards mathematics and has not 
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focussed specifically on teachers. Multidimensional studies of attitudes are more 
frequent in the past years and try to establish the basic elements that conform them. 
This research is summarised in Gal & Ginsburg (1994) and more recently in Carmona 
(2004), who also analyses the psychometrical features of the different instruments. In 
this paper we complement our previous studies (Estrada, 2002; Estrada, Batanero & 
Fortuny, 2003, 2004) of teachers’ attitudes towards statistics. The aim is describing 
the structure of these attitudes and its relationships with statistical knowledge, 
number of statistics courses taken, speciality and gender, as a base to develop 
formative actions directed to these teachers. 

2. Method 
Participants were 367 pre-service teachers training in different specialities at the 
Faculty of Education, Lérida, Spain. The survey was given to the students as a part of 
the mathematics course and before they were taught the statistics unit. Student 
attitudes were measured using the Survey of Attitudes toward Statistics (SATS) 
(Schau, Stevens, Dauphine, & Del Vecchio, 1995). The authors define attitude 
towards statistics as a multidimensional construct, composed of different analysable 
dimensions (p.57), which are structured in four components. The SATS (included in 
appendix) is a 28-item Likert instrument that has four sub-scales: 

• Affect: Positive or negative feelings concerning statistics: items 1, 2, 11, 14, 15, 
21.  

• Cognitive competence: Perception of self-competence, knowledge and intellectual 
skills when applied to statistics: items 3, 9, 20, 23, 24, 27. 

• Value: Appreciation of statistics usefulness, relevance and value of statistics in 
personal and professional life: items 5, 7, 8, 10, 12, 13, 16, 19, 25.  

• Difficulty: Perceived difficulty of statistics, as a subject: items 4, 6, 17, 18, 22, 26, 
28. 

In our research, each statement was valued in a range from 1 to 5, where 1 indicates 
“Strongly Disagree” and 5 indicates “Strongly Agree”. According to Gal, Ginsburg 
and Schau (1997), scores on affect and cognitive competence scales are strongly 
related to each other. Scores on value and difficulty are moderately related to those 
on affect and cognitive competence, but not related to each other (pg. 44). The reason 
for choosing this scale is that it allows us to analyse the structure of responses and its 
reliability and validity have been assessed through different research. In our sample 
the value of the coefficient alpha was 0,89 for the total score and 0,80, 0,73, 0,77 and 
0,7 for the affective, cognitive, value and difficulty factors, respectively.  

Knowledge of statistics in future teachers was assessed with items 1, 2, 3, 4, 7, 12, 
15, 16 and 17 of the SRA test, with a total of 19 sub items (Garfield, 2003). Each 
item describes a statistics problem and offers several choices of responses, both 
correct and incorrect in a multiple-choice format. Different alternatives include a 
statement of reasoning, explaining the rationale for a particular choice. Given the 
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limitation of space we do not include the particular items (the whole instrument is 
included as an Appendix in Garfield’s paper that can be downloaded from the SERJ 
web page). The particular items we used assess knowledge of main content in the 
statistics curriculum for primary school in Spain. 

The following types of reasoning were included in the selected SRA items: reasoning 
about data, interpreting graphs, reasoning about average and spread, uncertainty and 
bias in sampling, and association. In addition to determining types of reasoning skills, 
these items also identify the following misconceptions or errors in reasoning: 
misconceptions involving averages, outcome approach, confusing correlation with 
causality, law of small numbers, and representativeness heuristics (Garfield, 1998). 

3. Results and discussion 

Below we present three types of results: a) future teachers’ attitudes towards statistics 
and its components; b) future teachers’ difficulties in some elementary statistics 
concepts; and c) effect of statistical knowledge, previous study of statistics, gender 
and speciality on attitudes. 

3.1. Attitudes towards statistics 
In Figure 1 we compare the average score per item in each of the four components 
(dividing the total score in the component by the number of items, in order to get a 
homogeneous scale). Negative statements were reverse coded.  Since a score of 3 
corresponds to the indifference point, our results suggest that participants saw 
statistics as slightly difficult (score under theoretical mean), had slight positive 
valuation of the topic and positive perception of their own capacity to learn it, and 
were a little positive in their feelings towards statistics. 

Figure 1. 95% Confidence intervals 

 

  

 

 

 

 

On the other hand the study of correlation among components (Table 1) suggest the 
order of impact of these components on the global attitude, which is scarce in the 
case of difficulty. That is, future teachers’ attitudes were little influenced by 
considering the topic either difficult or easy. Contrary to Gal, Ginsburg and Schau’ 
(1997) results, affect is highly correlated with cognition; and difficulty and value 
have small correlation. Therefore teachers seem to value statistics regardless of the 
perceived difficulty and feelings towards the topic that seem to depend on the 
perceived self capacity for learning. 
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Factor analysis 
We carried out an exploratory factor analysis; this is a technique used in previous 
studies of attitude towards statistics (e.g. Mastracci, 2000). Our data fulfilled the 
assumptions to apply the method (more than 10 cases per variable, experimental unit, 
factorizability of the correlations matrix, normality, linearity and lack of 
multicolinearity). The matrix determinant, Barlett test of sphericity and Kaiser - 
Meyer – Olkin index all gave values in the appropriate range.  

The method of initial factor extraction was principal components, also used by 
Mastracci’s (2000) in his research with undergraduates. This method does not distort 
the data, since it only involves a change of reference in the variables vector space. 
Following Cuadras’ (1991) recommendations and the general principle of 
interpretability we decided to retain 5 factors. The total variance and percent of 
variance explained by each factor are displayed in Table 2. The greater weight of the 
first factor and the similar relevance of the remaining factors are visible.  
 Table 1. Pearson’ correlation coefficients             Table 2. Factor analysis summary 

 

 

 

 

 

To facilitate the interpretation of the retained factors we rotated the axes using the 
Varimax method, an orthogonal rotation that maximizes variance and does not distort 
the data. In table 3 we present the rotated factorial scores. In order to facilitate 
interpretation, the variables appear in decreasing order according to their 
contributions to the first factor. We include a sentence to remember the item content 
(expressed as a positive attitude) and a letter to describe the component to which the 
item belongs (A=affect, C= Cognitive competence; V=Value; D= Difficulty). Below 
we interpret the factors.  

• First factor: affective and cognitive components. This factor explains 26.2% of the 
total variance and includes most items in the affective and cognitive components. 
Variables in these two domains are matched in pairs (I understand: I feel secure; I 
have ideas: lack of frustration, etc.). In our sample these two components are 
related, contradicting the opinion of Gal, Ginsburg and Schau (1997). These 
results suggest the extent to which the teachers’ affection towards statistics might 
be conditioned by their understanding of the topic. Of course this might be a 
specific characteristic of teachers, but reinforces our view that the statistical 
training of teachers should be increased, since a teacher who feels insecure or 
scared about a topic is unlikely to support its teaching. 

 
 

Component  Affect Cognitive Difficulty Value 
Total score 0,88 0,87 0,75 0,77 

Affect 1,00 0,78 0,47 0,64 
Cognitive  1,00 0,45 0,63 
Difficulty   1,00 0,33 

Value    1,000 

Factor Total % Variance Cumulative % 
1 7,36 26,28 26,28 
2 2,22 7,94 34,21 
3 1,68 6,00 40,21 
4 1,26 4,47 44,71 
5 1,20 4,27 48,98 
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Table 3. Varimax rotated factors. Principal components extraction 

Statement Component Item Factor loadings 
   1 2 3 4 5 

Security A I2 0,76     
Understanding C I3 0,72     

Lack of frustration A I11 0,58  0,35   
Having ideas C I9 0,57 0,32    

Not many errors C I20 0,51  0,35 0,41  
No fear A I21 0,50  0,43   

Concepts easy to understand C I27 0,50  0,39   
Easy D I6 0,45  0,42 0,37  

Lack of Stress A I14 0,42  0,31   
Applicability V I12  0,71    

Useful V I10  0,71    
Wide presence V I16  0,71    

Professional value V I19  0,68    
Worth V I5  0,46    

Relevance V I25 0,37 0,44   0,34 
Frequent use V I13  0,36    

Understand equations C I24   0,74   
Easy formulas C I4 0,39  0,65   

I can learn C I23   0,64   
I like A I1 0,46  0,53   

I enjoy A I15 0,37  0,49 0,35  
Most people learn D I17   0,30   

Lots of computation D I22    0,77  
Very technical D I26    0,71  

New way of thinking D I28     -0,72 
Increases employability V I8  0,44   0,55 

Should be a requirement V I7  0,37 0,39  0,55 
Requires discipline D I18    0,33 -0,45 

 

• Second factor: Value. This factor groups all those items that present statistics as 
an important tool in different domains. It represents teachers’ beliefs on the 
relevance of statistics in the society, their own training and the school curriculum. 
These items have little influence on the other factors, so that our results agree with 
those of Mastracci (2000), who have also got value as a separated component of 
the attitudes.  

• Third factor: affective and cognitive components. The items in factor  1 are 
repeated again with slight variations. 

• Fourth and fifth factor: difficulty. These factors group most statements related to 
sources of difficulty in the study of statistics. Here we again agree with Mastracci 
(2000) who obtained difficulty as a separate component. The relative strong 
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weight in items 22 and 26 suggests that many students might associate the 
discipline’s difficulty to the mathematical technical features. The negative 
correlations of some difficulty items connected to value on factor 5 suggest that 
professional relevance of statistics might be perceived in inverse relation to the 
degree of difficulty of the matter.  

3.2. Statistical knowledge 
Table 4. Percent of correct responses to SRA sub items 

Item Item in SRA % Correct Item content 
1 1 46.9 Mean as best estimator in presence of outliers 
2 2 76 Interpreting probability 
3 3 59.5 Outcome approach 
4 4 72.2 Mean as representative value 
5 15 73.3 Comparing two groups (graphs) 
6a 16a 84.2 Sample size 
6b 16b 49.3 Correlation vs causality 
6c 16c 42.8 Correlation vs causality 
6d 16d 69.5 Sample size 
6e 16e 51.8 Correlation vs causality 
7 17 33.2 Relating mean to total 
8 12 73.3 Sampling Variability as related to sample size 
9a 7a 77 Sample mean as estimator of sample population 
9b 7b 74.9 Adequate sample size 
9c 7c 72.2 Adequate sample size 
9d 7d 58.3 Bias in sampling 
9e 7e 69.1 Random vs conglomerate sampling 
9f 7f 70.6 Bias in sampling 
9g 7g 84.5 Estimation in random sampling 

In Table 4 we present the percentage of correct response to each SRA item. In case an 
item is composed by several sub items results are presented for each sub item. Even 
when the difficulty was low or moderate in most items, results suggest that an 
important percent in the sample of future teachers did not understand some 
elementary statistical concepts they have to teach their future students correctly. 

For example 45% of participants did not take into account outliers when computing 
averages; 27.8% of them showed the outcome approach, around 45% of them 
confused correlation with causality in different questions; 23.8 % did not relate the 
mean with the total, more than 30% was insensible to sample bias in different items, 
15% considered estimation was not possible because of random fluctuation, 30% did 
not understand the idea of conglomerated sampling and around 30% have other errors 
related to sampling. 
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3.3. Factors affecting future teachers’ attitudes 
In table 5 we present Pearsons’ correlation coefficients between total score in the 
items taken from the SRA questionnaire (these score ranged between 0 and 19, since 
there was a total of 19 sub items) and the attitudes total and component scores. The 
only non significant component was difficulty, which suggests that participants 
considered statistics to be difficult regardless of their knowledge. Positive small 
correlations in the other components suggest that attitude and its components in 
general  tend to improve a little with increased knowledge. 

 
Table 5. Correlation coefficients    Table 6. Results from Variance Analysis 

  

* pvalue < 
0.01       

 
 

 

In table 6 we present results from Variance analysis of total score in the attitudes 
scale as regards different factors. The only significant factor was the number of 
statistics courses previously taken (in secondary school) by the participants (this 
number ranged between 0 and 3). Detailed analyses of scores showed that attitudes 
improved consistently with this number. Similar analyses showed the improvement 
with the number of courses in all the components (improving systematically) except 
by difficulty. 

4. Conclusions 
Our results suggest that the four components (difficulty, value, affective and 
cognitive factors) described by the SATS authors might not appear clearly separated 
in future teachers, although we coincided with Mastracci (2000) in obtaining separate 
components of difficulty and value. The affective and cognitive components are 
linked in the first and third factor, which indicates the extent to which affect is 
influenced by the understanding of the matter in our sample. This conjecture is 
reinforced in the fact that the number of previous courses of statistics was the only 
significant factor affecting teachers’ attitudes and by positive correlations with total 
score in the knowledge test. 

There is general consensus in the mathematics education community that teachers 
need a deep and meaningful understanding of any mathematical content they teach. 
This type of understanding was not present in our study as regards very elementary 
statistical concepts. Sullivan (2003) suggests that the issues of mathematical content 
knowledge and beliefs about the nature of mathematics are formed by experiences 
prior to the teacher education program. Consequently it would be useful for teachers 
trainers to consider the appropriate formative experiences that will foster the 

Correlation with SRA score 
Total score 0,23* 
Affect 0,20* 
Cognitive 0,26* 
Difficulty 0,09 
Value 0,22* 

Source d.f. F  P value
Courses taken or not 1 10,10   0 
Gender 1 3,26 0,07 
Speciality 5 1,84 0,11 
Interaction 5 0,60 0,7 
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prospective teachers’ capacity for ongoing statistical learning, help them reflect on 
the nature of statistics, and help them value statistics knowledge and literacy in 
improving the education of all the citizens. 

Acknowledgement: Research supported by the grant SEJ2004-00789, MEC-FEDER, 
Spain. 
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Apendix. Sats scale 
(Note. Each item below should be followed by a 5-point scale, ranging from 
1(strongly disagree) to 5 (strongly agree). 

1. I like statistics.  

2. I feel insecure when I have to do statistics problems. 

3. I have trouble understanding statistics because of how I think.  

4. Statistics formulas are easy to understand. 

5. Statistics is worthless. 

6. Statistics is a complicated subject. 

7. Statistics should be a required part of my professional training. 

8. Statistical skills will make me more employable.  

9. I have no idea of what’s going on with statistics. 

10. Statistics is not useful to the typical professional. 

11. I get frustrated going over statistics tests in class. 

12. Statistical thinking is not applicable in my life outside my job. 

13. I use statistics in my everyday life. 

14. I am under stress during statistics class. 

15. I enjoy taking statistics courses. 

16. Statistics conclusions are rarely presented in every day life. 

17. Statistics is a subject quickly learned by most people. 

18. Learning statistics requires a great deal of discipline. 
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19. I will have no applications for statistics in my profession. 

20. I make a lot of maths errors in statistics. 

21. Statistics scares me. 

22. Statistics involves massive computation.  

23. I can learn statistics. 

24. I understand statistics equations. 

25. Statistics is irrelevant in my life. 

26. Statistics is highly technical. 

27. I find it difficult to understand statistical concepts. 

28. Most people have to learn a new way of thinking to do statistics. 
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TEACHERS’ REPRESENTATIONS OF INDEPENDENT EVENTS: 
WHAT MIGHT AN ATTEMPT TO MAKE SENSE HIDE? 

Sylvette Maury, Université René Descartes – Paris 5, France 
Marie Nabbout, Université René Descartes – Paris 5, France 

 
Abstract: Teachers tend to attribute meanings to certain mathematical concepts in 
order to make them more accessible to students. But to what might that lead, when 
teachers tend to attribute a common sense definition for independent events valid in 
the cases of “Chronological events” to other purely theoretical cases like “Stochastic 
independent events”? In this paper, we tried to study teachers’ representations of 
independent events based on their evaluation of students’ pre-prepared answers and 
on their answers to some direct questions. We mainly focused on studying the link 
that may exist between the common sense definitions that teachers attribute to 
“independency” and the confusion between independency and incompatibility, which 
is students’ most common confusion. 
 
1. Introduction 
Steinbring (1986) distinguished between two cases of independent events that are not 
contradictory but are in opposition. In the first case, we talk about “Intuitive 
independency” where two events are said to be independent when “they are not 
influenced one by the other”, that is when they are associated to experiences 
occurring successively and where the independency is postulated. Such events are as 
well called “Chronologically independent events” or, “a priori independent events” 
(cf. Maury 1985) when the situation consists of successive “independent” events in 
the naïve sense of the term. 
The second case of independency is the “formal independency” or the “stochastic 
independency” of events, which is based on the formal mathematical definition: “2 
events A and B are independent ⇔ P (A∩B) = P (A) x P (B)”. In this case, no 
reference is made to any experiments or to any chronology, and the independency is 
only defined by the mathematical formula. 
According to Maury (1984), the a priori independency does not present any necessity 
in the probability theory; but most teachers and textbooks’ authors do refer to it, 
while trying to attribute meaning to the mathematical concept of independency.  
Sanchez (2000) observed in his study that teachers display the same confusions as 
students, and he attributed that to the fusion between the intuitive idea of 
independency and the abstract mathematical concept of independent events. 
2. General Framework 
The data on which our work is based are collected from a research1 that aims at 
studying some representations of Lebanese (French speaking) high school 
mathematics teachers in probability and statistics and their methods of teaching. 
                                                 
1 This paper is related to a doctoral dissertation carried by Marie Nabbout under the supervision of Sylvette Maury at 
Paris 5 – René Descartes University. The research consists of 4 individual interviews with 16 Lebanese mathematics 
teachers.  
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In this paper, we studied teachers’ representations of independent events by 
analyzing, on one hand, their assessment of students’ answers, and on the other hand, 
their answers to some direct questions. 
First, we studied the comments and the arguments of teachers while assessing 
students’ work on two problems (cf. Appendix 1) both about stochastic independent 
events2. The work was done during (registered) individual interviews, where teachers 
were asked to assess (correct, grade and evaluate) four answers. Each answer was 
chosen with a specific intent, as explained in the following paragraph. Second, we 
studied teachers’ answers to some direct specific questions3 related to independent 
events (cf. Appendix 2). 
3. Choices of the tasks 
As stated before, our concern in this paper was to study teachers’ representations for 
independency, and accordingly we chose the problems and the corresponding 
answers.  
The first point we intended to check was the recognition by teachers of stochastic 
independency situations, in other terms whether they are able or not to distinguish 
between stochastic and chronological independency. To do that, we chose the 
erroneous answers S4E34, S6E2, and S6E3 (cf. Appendix 1) which are based on 
invalid “paraphrases” of the mathematical definition of independent events, but 
which correspond to the naïve meaning of “influence” that works in the case of 
chronologically independent events.  
In fact, a valid paraphrase of the mathematical definition of independent events is 
‘The occurrence of A has no influence (or does not affect) the probability of B, thus A 
and B are independent’. But, due to language imprecision, such a paraphrase 
becomes erroneous like P1: ‘The occurrence of A has no influence (or does not 
affect) B, thus A and B are independent’; or like P2: ‘If A occurs, B may occur or not 
and if A does not occur, B may occur or not, thus A and B are independent’. In P1 
and P2, no references are made to any probability and hence these two statements are 
not valid in the case of stochastic independency.  
Dupuis and Rousset-Bert (1998) observed such answers among students and they 
inferred that such answers indicate that students consider independency as an intrinsic 
property of the events, without taking into consideration their probability. 
The other three erroneous answers, S4E1, S4E2, and S6E1 (cf. Appendix 1) are about 
the confusion between incompatible events and independent events, which is 
recognized as students’ most common confusion. What we needed to check at this 
level was how teachers would evaluate these answers. 
The last two answers S4E4 and S6E4 were correct.  

                                                 
2 This is part of the work done during the 3rd interview with teachers, where teachers had to evaluate students’ work on 
8 different problems and where, for each problem, 4 answers were proposed. In this paper, we studied 2 problems S4 
and S6, related to the stochastic independency. The other 6 problems were about chronological independency, 
conditional probability and simple probability. 
3 This is part of the work done during the fourth interview with teachers.  
4 In SiEj, i designates the number of the problem and j that of the answer. Thus, S4E3 stands for the third answer given 
to problem 4. 
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The following table summarizes the differences and similarities between the chosen 
answers:  
The 
answer
s we 
chose 
hide 
misco
ncepti
ons 
that 
we 
needed to check whether teachers would recognize, and in case they would not be 
able to identify them, to see how they would defend their validity. The correct 
answers, which helped teachers in certain cases to regulate their judgments through 
comparison and to change their evaluation, were chosen on purpose because we 
wanted to observe the whole process that might occur in case of conflict; especially 
in problem 4 which consists of 2 questions, one being aligned with the expected 
answer, and the other not being aligned.  
 
It is as well important to distinguish between problem 4 and problem 6. Even though 
problem 6, is a stochastic independency situation, still it may be interpreted in a 
“special” intuitive way and that by considering it as the cross  product of 2 
independent criteria, but that does not figure clearly in the proposed answers. Yet, 
there is no way to interpret problem 4 in a similar way. 
As for the direct questions, the first served to classify and to compare teachers’ 
definitions of independent events; the second, to investigate the meaning that teachers 
attribute to the “independency” while discussing the equivalence (or not) of “non 
independent events” to “dependent events”.  
Finally, it is important to mention that the repetition of certain questions at various 
moments during the experiment and in different forms was carried out in order to 
keep track of the persistence of certain ideas or their evolution5.                 
4. Results 
In the following paragraphs, we will describe teachers’ behavior while evaluating the 
erroneous answers, and will discuss how we drew conclusions about their 

                                                 
5 The fourth interview took place at least 6 months after the third interview.  

 Answer Alignment with the correct answer 
S4E1 – Q1 
S4E1 – Q2 

Confusion: Independency – Incompatibility 
Confusion: Independency - Incompatibility 

Aligned with the correct answer 
Different from the correct answer 

S4E2 – Q1 
S4E2 – Q2 

Confusion: Independency – Incompatibility 
Confusion: Independency - Incompatibility 

Aligned with the correct answer 
Different from the correct answer 

S4E3 – Q1 
S4E3 – Q2 

Paraphrase of the definition. 
Paraphrase of the definition. 

Different from the correct answer 
Aligned with the correct answer 

S4E4 Correct answer  
S6E1 Confusion: Independency – Incompatibility Different from the correct answer 
S6E2 Paraphrase of the definition.  Aligned with the correct answer 
S6E3 Paraphrase of the definition. Aligned with the correct answer 
S6E4 Correct answer  
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representations of independent events. These results are summarized in the following 
chart.                                               
4.1. Recognition of correct answers: 
All teachers recognized with no trouble the correct answer in both situations. 
4.2. Chronological independency and stochastic independency:  
Most teachers did not distinguish between chronological independency and stochastic 
independency. In fact, there were 3 teachers out of the 16 who were implicitly able to 
recognize in I36, that S4 and S6 are situations of stochastic independency, and only 
one of them distinguished between the 2 cases while defining independent events in 
I4. Few teachers acknowledged that there are cases where one cannot use common 
sense to interpret “independency”. They considered these situations as complex or 
fuzzy, and they preferred to refer, in such cases, to the formula. But they failed to 
describe these cases and generally failed to distinguish between them before hand, 
which is the first difficulty observed with the teachers concerning this concept.  
4.3. “Explicit”7 confusion between Incompatible events and Independent events: 
The confusion between incompatible events and independent events is a very 
common error observed among students. This confusion was observed with four 
teachers in I3. Two of them accepted answers S4E1 and S4E2, and realized later on 
by comparison to S4E4 that the answers were wrong; but they were not able to refute 
them. The other two were later able to recognize the mistake and recognized the 
underlying confusion. What we can tell at this stage, about the last two teachers, is 
that their notion of independency seems to be inconsistent and it might hide a 

                                                 
6 From now on, we will use I3 to designate the third interview, and I4 for the fourth interview. 
7 We used the term explicit to distinguish this case from another one used later in this paper, where we talk about 
‘implicit confusion between incompatible events and independent events’. 
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misconception (M18). As for the first two, we can confirm the presence of the explicit 
confusion. 
Definitely, this confusion was not observed in S6E1, which took place slightly after 
the evaluation of S4 and whose answer, though based on the same misconception, is 
wrong. 
4.4. Recognition of the confusion between Independent events and Incompatible 
events: 
It is true that the confusion between incompatible events and independent events only 
occurred with two teachers, while correcting S4E1 and S4E2, and that the other 
fourteen teachers refuted these answers. But, not all teachers who rejected these 
answers were able to justify why these answers were wrong, nor to recognize the 
underlying misconception.  
As stated before, two of these 14 teachers had accepted S4E1 and S4E2 but realized 
later on the underlying confusion and accordingly refuted the answers (M1). One of 
them recognized the confusion on S6E1 but the other did not explain why he refused 
it. 
Eight teachers had directly recognized the confusion in S4E2, six of them had 
recognized it in S4E1, and another six in S6E1. Only five teachers had recognized 
this confusion in the three cases. This might be due to the fact that S4E2 is the only 
answer in which the misconception is very explicit. S4E1 hides the same 
misconception, but it is said implicitly in sentences. As for S6E1, which is not 
aligned with the correct answer, it may be that the teachers did not need to reflect on 
the error, or it might equally be due to the fact that it resembles S4E1 more, since it is 
a sentence. 
On the other hand, the eight teachers who did not accept S6E1 did not or could not 
explain why it was wrong. Three of them did the same for S4E1 and two of them for 
S4E2. There was only one teacher who couldn’t tell why S4E1 is wrong, but was able 
to identify the misconception in the other cases. 
What is interesting in this comparison is not the number of teachers who did not 
explicitly name this misconception, or could not identify it, but the significance that 
this non-recognition might hide.  
Two teachers refuted the answer since it was not aligned with the correct one in both 
questions (S4) and explained that the reasoning on which the answer is based does 
not hold in both cases. This drives us to believe that these teachers found something 
credible in the given answers but were obliged to refute the answer since it is not 
aligned with the correct one. We assume the presence of a misconception with these 
two teachers (M2). 
4.5. Results of S4E3, S6E2 and S6E3:  
As we explained in paragraph 3, these three answers are wrong.  
a. As stated before, three teachers had implicitly recognized these situations as ones 
of stochastic independency and easily refuted these three answers. 

                                                 
8 We labeled potential misconceptions by Mi. 
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b. Four teachers accepted part of the answer S4E3 but accepted S6E2 and S6E3. The 
explicit confusion between incompatibility and independence was observed in the 
case of one teacher, while M2 was assumed to be present with the other teacher. We 
assume the presence of a misconception (M3) with the other two teachers.  
c. Three teachers did not accept S4E3 because “there is an influence of A on B”, and 
justified that by talking about common elements between A and B. Even though they 
considered that the answer shows an understanding of the definition of independent 
events, two of them refused S6E2 for the same reason, and were hesitant while trying 
to justify what they considered correct in S6E3. Misconceptions M1 and M3 were 
assumed to be present with two of them respectively. We assume the presence of a 
misconception M4 with the third teacher. 
d. Two teachers did not accept these three answers without explaining why. They 
simply stated that it was wrong. One of them already showed the explicit confusion 
between independent events and incompatible events.  
e. Five teachers were a bit hesitant in their justification. They did not accept the three 
answers. In S4E3, three of them stated that P1 makes sense. In S6E2, two of them 
stated the same thing and two others accepted the answer but found that it required 
justification. In S6E3, they all refused the answer but did not (or could not) justify 
why it was wrong. Misconceptions M1 and M2 were respectively assumed to be 
present with two teachers. 
We described the four teachers who did not show any misconception (in d. and in e.) 
as teachers with a “cautious, careful” attitude. 
4.6. Definition of Independent events (I4): 
All teachers use mathematical formulas to define independent events, at some point 
during their teaching, since this is related to their math course. But, what we tried to 
check in this question is what accompanies or precedes these formulas, and if 
teachers distinguish between chronological independency and stochastic 
independency. 
• One teacher, as stated in 4.1, explicitly distinguished between chronological 

independency and stochastic independency. 
• Four teachers stated that they only defined “independent events” using formulas, 

since it is “more secure for the students”. Misconception M2 was assumed to be 
present with two of them. The third teacher belongs to the group who has the 
“cautious, careful” attitude. 

• Nine teachers defined independent events as the paraphrase P1. Some of them 
even added to it other elements. Four of them stated that they would rather use a 
formula because it is safer. Misconceptions M3 and M4 were assumed to be 
present in two of them and the explicit confusion was observed in the case of the 
third teacher. The fourth teacher belongs to the group having the “cautious, 
careful” attitude. 

• Two teachers defined independent events as a correct paraphrase of the 
mathematical intuitive definition, where they talked about the probability of the 
second event. M1 was assumed to be present with one of them. 
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• One teacher tried to explain his idea with an example of independent events, but 
ended up with an example of incompatible events; he was in the group of teachers 
with “cautious, careful” attitude. We assume the presence of the misconception 
M4 with him. 

4.7. Non-independent events – Dependent events (I4): 
• Six teachers insisted on using “non-independent events” and refused to use 

“dependent events”. Four of them explained that “non independent events” are not 
necessarily “dependent events”. One of these four had the “cautious, careful” 
attitude. Misconceptions M2 and M3 were already assumed to be present with the 
other teachers. 

• Seven teachers found both terminologies similar. 
• Three teachers preferred to use “dependent” rather than “non independent” since 

“dependent” is more meaningful. Misconception M1 was already assumed to be 
present with two of them. 

5. Discussion: Implicit confusion between incompatible events and independent 
events. 
In 4.5.b., we assumed the presence of misconception M3 with two teachers who 
accepted S6E3 and partially accepted S4E3 and S6E2. In fact, we think that the non-
alignment of the 2 parts of S4E3 is what made them partially accept the answer. 
In 4.5.c., we saw that three teachers considered that there is an “influence” of A on B 
since “there are common elements between A and B”. Misconceptions M1, M3 and 
M4 were assumed to be present with them. 
In 4.6, we assumed the presence of M4 with one teacher. 
Five of these teachers are among the nine teachers who defined in 4.6 independent 
events as a paraphrase based on “no influence of one event on the other”. The sixth 
uses only a formula since it is more secure.  
Three teachers are among the ten who admitted in 4.7 that the terms “non 
independent events” and “dependent events” were alike. The other three refused to 
use “dependent events” as the opposite to “independent events” and two of them 
argued that non independent events may not be dependent.  
We tried to hypothesize the confusion underlying the four misconceptions (M1, M2, 
M3 and M4) shared by these six teachers, by constructing a chain of terms they used 
during their evaluation or while defining or talking about independent events.  
When teachers tried to make sense of the independency of events, they tended to use 
paraphrases of the definition, and they considered that: 
- If there is no influence of one event on the other, then the two events are 
independent. 
- If there is an influence of one event on the other, then the two events are non-
independent. 
- If there is a common element between A and B then there is an influence of A on B. 
- Non-independent events are dependent events. 
- “Dependent” means there is a relation or a bond. 
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We put these terms in a sequence that may reveal the succession of ideas for teachers. 
The chain of words thus obtained shows that the hidden misconception is simply the 
common confusion between incompatible events and independent events. In fact, the 
sequence is: Common element - Relation or Bond - Influence - Dependent events – 
Non-independent events. It can be presented in a simpler form: Common element – 
Influence – Non-independent events.  
In other words, if there is a common element between A and B, then there is an 
influence of A on B, and so A and B are not independent. Hence, non incompatible 
would lead to non independent. Following the same logic: Independent events � 
Incompatible events. We named this type of misconception: the implicit confusion 
between incompatibility and independence. 
This confusion was directly observed with the two teachers who displayed M4. We 
assume that the same confusion is present with the four other teachers who had 
displayed M2 and M3. 
6. Conclusion. 
Teachers try to interpret the meaning of “independent events” because they do not 
want to teach this concept in a very abstract way, but want to make it accessible to 
their students. In fact, most teachers insist on the importance of making students 
understand “the real meaning” of this concept in order to overcome obstacles. 
However, this attempt to make a formal mathematical concept meaningful by 
attributing to it meanings that do not hold in all cases, and the inability of teachers to 
identify these cases due to their erroneous representations might lead to inducing 
confusions for to students. 
Three teachers were able to identify stochastic situations and did not present any 
misconception. The remaining thirteen teachers failed to identify stochastic 
independency situations (4.1). A few had recognized that there are cases where they 
cannot apply the “common sense paraphrase of the definition” after being “trapped”. 
This is definitely an indicator of an erroneous representation of independent events 
and of the presence of confusions and misconceptions. Misconceptions were 
evidenced among ten teachers, and we cannot draw any conclusions for the other 
three teachers who kept the cautious, careful attitude. 
Misconceptions M1 and M2 were assumed to be present respectively with two 
teachers, who were careful in their work and we couldn’t draw any conclusion. As for 
the others, we were able to classify their misconceptions as confusions: 
The first confusion, the explicit confusion between “incompatible events and 
independent events”, was present among two teachers in 4.2. 
The second confusion, the implicit confusion between incompatible events and 
independent events, was present among six teachers as described in 5. 
At this point, we conclude that the confusion between “incompatible events” and 
“independent events” is present among eight teachers in an explicit or in an implicit 
form. Might that be a factor inducing the same confusion that appears explicitly 
among students? 
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Appendix 1 
Problem 4 

On lance un dé parfaitement équilibré et on désigne par A, l’événement ‘sortie d’un nombre pair’,  
par B l’événement ‘sortie d’un nombre supérieur ou égal à 4’, et par C l’événement ‘sortie d’un multiple de 3’. 
1) A et B sont-ils indépendants ?  2) A et C sont-ils indépendants ? 
A fair die is tossed once. Consider the following events, A: “the number is even”, B: “the number is greater or equal 
to 4”, and C: “the number is a multiple of 3”. 
1) Are A and B independent? Justify your answer. 2) Are A and C independent? Justify your answer. 
S4E1 
1) Non, car on a des éléments en commun dans A et B. 
Même, si dans A on n’a que des nombres pairs, on aura 
dans B des nombres pairs aussi. 
2) On peut avoir un multiple de 3 qui soit un nombre 
pair tel que 6. Il y a une relation entre A et C ; ils ne sont 
pas indépendants. 

S4E2  
1) A:{2; 4; 6} et B:{4; 5 ; 6}. Non, les événements ne sont 
pas indépendants puisqu'ils ont 4 et 6 en commun. 
2) A:{2; 4; 6} et C:{3; 6}.        
Non, puisqu'ils ont 6 en commun. 

S4E3 
1) A et B sont indépendants car si A est réalisé ou non 
cela n'a aucune influence sur B. Si A réalisé ou non, B 
peut l’être ou ne pas l’être. 
2) Si A est réalisé, C peut être réalisé ou ne pas l’être. Si 
A n'est pas réalisé, C peut l’être ou ne pas l’être. 

S4E4 
1) P (A) = 1/2; P (B) = 1/2; P (A∩B) = 1/3.  
P(A) x P(B) = 1/4 ≠ P(A∩B) � A et B ne sont pas 
indépendants.  
2) P (A) = 1/2; P (C) = 1/3; P (A∩C) = 1/6.  
P(A) x P(C) = P(A∩C) = 1/6 � A et C sont indépendants. 

 
Problem 6 

On tire au hasard une carte d’un jeu de 32 cartes.  
On désigne par E, l’événement : ‘tirer un pique’, et par F, l’événement : ‘tirer une dame’.  
Les deux événements E et F sont-ils indépendants ? 
A card is drawn from a deck of cards. E is the event: E: “the card is a Queen” and F, the event: “the card is spade”. 
Are E and F independent? Justify your answer. 
S6E1 
Non, car il existe une dame de pique donc il y a une 
relation entre E et F. 
D’où, les événements ne sont pas indépendants. 

S6E2  
Les deux événements sont indépendants car chaque 
événement désigne une chose différente de l’autre.  
Si E est réalisé, F peut-être réalisé ou pas. Pas d’influence de 
E sur F. 

S6E3  
Si on tire un pique, on peut avoir la dame de pique et 
on peut ne pas l’avoir ; si on ne tire pas un pique, on 
peut aussi avoir une dame ou ne pas l’avoir. Donc, on 
peut avoir E sans F ou F sans E ; par suite E et F sont 
indépendants. 

S6E4 
 P (E∩F)   ??   P (E) x P (F).  

P (E∩F) =
32
1  ;    P (E) x P (F) =

32
1

32
4

32
8 =× .  

P (E∩F) = P (E) x P (F). Donc E et F sont indépendants. 

 
Appendix 2 
Question 1 : Comment définissez-vous 2 événements indépendants ? (How do you define 2 independent events ?) 
Question 2 : J’ai remarqué que parfois, certains utilisent l’expression « événements non indépendants » et d’autres 
parlent d’ « événements dépendants ». Qu’en pensez vous ? Est-ce qu’on peut utiliser l’une ou l’autre des expressions 
dans l’enseignement ? Pourquoi ?  
(Some teachers use “dependent events” and some others “non independent events”. Can we use any of these two 
expressions while teaching? Why?) 
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Abstract: In order to solve verbal conditional probability problems, students are 
involved in a process in which we can identify several steps or phases. One of them is 
that of the translation from the text of the problem, generally written in everyday 
language, to that of mathematics. In translating sentences, students should recognize 
events and probabilities. But, in much of those problems data are not explicitly 
mentioned in terms of probability. In this case, students can solve these problems 
with the help of arithmetical thinking and not necessarily with the help of 
probabilistic reasoning. Other works (Ojeda 1996, Huerta-Lonjedo 2003) already 
referred to that but not adequately. In this piece of work we investigate, through an 
exploratory study of 166 students from different school levels, the extent to which the 
nature of quantities in conditional probability influences the way in which students 
solve these problems. 

 

Introduction 
We use the term problem in a Puig (1996) sense, that is, any problematic situation in 
a school context. Probability problems are problems in which the question is about 
the probability of an event and conditional probability problems involve at least one 
conditional probability, either as data and question or both. In this report we consider 
conditional probability problems written in everyday language. 

In addition to the nature of data, there are, as we know, some others factors that also 
have an influence on problem solving of conditional probability tasks. One of these 
factors is not necessarily previous knowledge about relationships between 
probabilities but, for example, the identification of the events and their probabilities. 
The prior identification of events and the corresponding assignment of their 
probabilities have to do with semiotic and semantic aspects as well as the right 
correlation between data and events. In this piece of work we are not going to deal 
with this issue, instead we investigate the nature of quantities in problems, and its 
influence on the problem solving process. 

When data in conditional probability problems are expressed in terms of frequencies, 
percentages or rates, students do not necessarily interpret them as probabilities. 
Consequently, relationships between probabilities are not used when students are 
solving problems, at least in an explicit way. However, this does not mean that no 
student can solve these problems. Of course, there are students that succeed in 
solving, but they mainly use arithmetic thinking and not probabilistic thinking. It is 
only at the end of the problem solving process that students answer the question in 
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terms of a required probability, usually by assignment methods. In this paper, we will 
show the results of an exploratory study with 166 students from different school 
levels solving conditional probability problems, in which the type of data is varied 
systematically so that its impact on solving strategies of individuals may be studied. 

Nature of quantities in conditional probability problems 
From an investigation of conditional probability problems in textbooks we noticed 
that data involved are not always expressed in terms of probabilities. Previous studies 
(Ojeda 1996; Huerta, Lonjedo 2003; Lonjedo, 2003) show that problems could be 
solved just by using numeric thinking. We, too often observed students using 
arithmetic instead of probabilistic thinking when solving conditional probability 
problems. This is because data are not being interpreted consciously as probabilities 
and consequently, students do not need to use relationships between probabilities to 
solve the problem. It is only at the end of the problem solving process that students 
try to express their answer in terms of the required probability and assign a 
probability to their arithmetic solution. We will term this strategy as “solving by 
numeric assignment”. On the other hand, we will use “solving by probability 
calculations” to denote the strategy to use probability relations to derive at a solution 
(see next example)  

According to these different strategies, we will subsequently classify probability 
problems into assignment and calculation problems.For a conditional probability 
problem this means that it will be classified as assignment problem if the quantities 
involved are presented as frequencies or percentages, and it will be classified as 
calculation problem if data involved in the problem are given as probabilities and, 
consequently relationships between probabilities are needed in order to answer the 
posed question. 

Nevertheless, teachers and textbooks usually present problem situations asking for 
this type of probabilistic thinking, which is by no means really requested by the posed 
task. The following example illustrates matters. 
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Two machines A and B produce respectively 
100 and 200 pieces. It is known that machine A 
produces 5% faulty pieces and machine B 
produces 6% faulty pieces. If you took a piece 
at random calculate: a) The probability that this 
piece would be faulty. b) Knowing that the 
piece is faulty, the probability that it is made by 
machine A.  

Dos máquinas A y B han producido 
respectivamente, 100 y 200 piezas. Se sabe que A 
produce un 5% de piezas defectuosas y B un 6%. Se 
toma una pieza y se pide: a) Probabilidad de que sea 
defectuosa. b) Sabiendo que es defectuosa, 
probabilidad de que proceda de la primera máquina 
(Cuadras 1983, p. 55). Fig. 1. Solution of the schoolbook 

The solution of this problem can be seen in Figure 1. The textbook considers this as a 
problem of calculation, consistent with its placement in the unit of “Total Probability 
and Bayes’ Theorem”. However, some students (Lonjedo, 2003) solved problems 
similar to that both in data nature and in data structure by the numeric assignment 
strategy – according to the nature of presented data: 
If we have 100 pieces from machine A and 5% are faulty, in 100 pieces we have 5 faulty ones. If 
we have 200 pieces from machine B and 6% are faulty, in 200 pieces we have 12 faulty ones. In 
total, among 300 pieces we have 17 (5+12) faulty pieces. So, if we take a piece at random, the 
probability that it will be faulty is 17 out of 300 or 17/300 or 605.0 � . We have 17 faulty pieces, 5 of 
them are from machine A and 12 from machine B. If we know that the piece is faulty, the 
probability it is made by machine A is 5 out of 17 or 5/17 or 0.2941. 

Si tenemos 100 piezas de la máquina A y el 5% son defectuosas: tenemos 5 piezas defectuosas de las 100 de 
A. Si tenemos 200 piezas de la máquina B y el 6% son defectuosas: tenemos 12 piezas defectuosas de las 
200 de B. En total, de 300 piezas de las dos máquinas, 5+12=17 son defectuosas. Luego la probabilidad de 
ser defectuosa es: 17 de 300 o 605.0 � . Para la segunda cuestión, tenemos 17 piezas defectuosas, de donde 5 
vienen de la máquina primera, luego la probabilidad pedida es de: 5 de 17 o 0.2941. 

Different nature of data 
Conditional probability problems may be classified according to the nature of the 
data presented in the formulation of the problem. We distinguish the following types: 

Data expressed in probability terms 

If quantities are expressed in terms of probability, they quantify the probability of a 
certain event A by a number p (A) ∈ [0,1], as in the following example:  

 
Complete the next contingency table. From this table build a tree 
diagram and calculate p (B|A), p (noB|A), p (B|noA) and p (noB|noA) - 
p(noB|A) means  A)|Bp( . 

 A noA Total 

B 0.4 0.2  
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Completa la següent taula de contingència. A partir de la taula, confecciona un 
diagrama d’arbre i determina P(B/A), P(noB/A), P(B/noA) i P(noB/noA) 
(Matemáticas 4t ESO, p. 240). 

noB 0.25   

Total   1 
 

Here, the solution is derived by relationships between probabilities, namely by: 
p(AB)=p(A∩B)/p(B), that is, only by using probabilistic calculations and thinking. 

Data expressed in absolute frequency terms 

When in a conditional probability problem data are expressed in terms of absolute 
frequencies, they express the frequency of the objects that satisfy certain 
characteristics. From a mathematical point of view, frequency can be seen as a 
cardinal number associated to the set that represents these objects. Consequently, the 
quantity in a problem presented as frequencies has to be used with that meaning. 
Thus, p (A|B) is obtained by comparing two numbers: p (A|B) = n(A∩B)/n(B). 

On the other hand, because A|B is not an event, we cannot consider a set that 
represents it. So, data referring to a conditional probability could never be expressed 
in terms of absolute frequencies. If we do so, the only meaning that one can associate 
to such data will be that of a cardinal number associated to an intersection event. The 
following example illustrates matters:  
An intelligence test was administrated to a group of 500 students to 
assess their academic performance. The results of that test were as 
follows (contingency table). Let A be “having higher intelligence test” 
and B “having a higher academic performance” Answer the questions: 
a) Are A and B independent events? b) If we randomly choose a student 
with higher performance at school, what is the probability that he/she 
has higher intelligence? 

En un grupo de 500 individuos se pasó un test de inteligencia y se midió su 
rendimiento académico. Los resultados fueron como sigue (tabla de 
contingencia). Considerando que A es “ser superior en inteligencia” y B es 
“tener rendimiento alto”, averiguar: a) Si A y B son independientes. b) Si se 
selecciona al azar un alumno con rendimiento alto, ¿cuál es la probabilidad de 
que sea superior en inteligencia? (Santos Serrano, 1988, p. 248) 

 Rendimiento 
académico 

Inteli-
gencia Alto Bajo 

Superior 200 80 

Inferior 100 120 
 

 

Data expressed in terms of rates 

When quantities are shown in terms of rates, data are implicitly expressed in terms of 
probability and it is up to the solver to decide whether to translate the rates to 
probabilities or not. Here, we have two examples. The first one shows two rates as 
data and the second one shows data in percentages: 
In Sikinie one man out of 12 and one woman out of 288 are affected with Daltonism. The 
frequencies of men and women are the same. A person is chosen at random and it is known that 
he/she is affected with Daltonism. What is the probability that this person is a man? 
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En Sikinie, un homme sur 12 et une femme sur 288 sont daltoniens. Les fréquences des deux sexes sont 
égales. On choisit une personne au hasard et on découvre qu’elle est daltonienne. Quelle est la probabilité 
pour que ce sois un homme? (Engel 1975, p. 270) 

Experience shows that during the process of making circuits for radio transistors 5% of them faulty. 
A device that is used to find out which are faulty, detects 90% of the faulty ones, but also qualifies 
2% of faulty circuits as correct. What is the probability that a circuit is correct if the device says that 
it is faulty? What is the probability that a faulty circuit is qualified as correct? 

En el proceso de fabricación de circuitos impresos para radio transistores se obtiene, según demuestra la 
experiencia de cierto fabricante, un 5% de circuitos defectuosos. Un dispositivo para comprobar los 
defectuosos detecta el 90% de ellos, pero también califica como defectuosos al 2% de los correctos. ¿Cuál es 
la probabilidad de que sea correcto un circuito al que el dispositivo califica como defectuoso?¿Cuál es la 
probabilidad de que sea defectuoso un circuito calificado de correcto? (Grupo Cero 1982, p. 170) 

Data expressed in combined terms 

There are certain conditional probability problems in textbooks where not all data are 
expressed by the same type, like in the examples above, but by combining more than 
one.We find data presented both in terms of probability and percentages, probability 
and rates, or rates and frequencies. In the following problem, for example, data as 
percentages combines more than one sense. 
In a high school class, the percentage of students that succeeded in History (A) was 60%. In 
Mathematics (B) it was 55%. Knowing p(A|B)=70%, what is the probability that a student chosen at 
random did not succeed in either topic? 

En un curso el porcentaje de aprobados en Historia (A) es 60 %. Para Matemáticas (B) es del 55 %. Sabiendo 
que p(B/A) = 70 %, ¿cuál es la probabilidad de que, escogido al azar un alumno, resulte no haber aprobado 
ninguna de las dos asignaturas? (Santos Serrano, 1988, p. 248) 

The examples show how data in conditional probability problems are not always 
expressed in probability terms or with the same type. When this occurs, the solver 
should have the ability to interpret them according to or different from the desired 
meaning in the problem. Depending on how the solver actually interprets the data the 
solving process may imply either numerical or probabilistic thinking. 

The empirical study 
One of the objectives of our study was to explore how students solved conditional 
probability problems when data in problems satisfied specific criteria with resprect to 
their structure and nature. Mainly, we were interested in exploring what kind of 
thinking –arithmetical or probabilistic– students used in solving the problems, in 
relation to the structure and nature of the presented data. 

The test 
We prepared a collection of sixteen conditional probability problems with similar 
data structure, varying the nature of the presented data and the context. All problems 
had three pieces of data explicitly mentioned in their formulation. For each 
constellation of context, we designed a pair of problems, one contained the quantities 
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in terms of percentages, the sibling in probability terms.For example, in problem 1, 
one can interpret data as follows  

%30B)p(A =∩ , %30)Bp(A =∩  and %40)A|p(B =   

In its isomorphic problem, no. 9, data are explicitly mentioned as probabilities  
3.0B)p(A =∩ , 3.0)Bp(A =∩ , 4.0)A|p(B = .  

Both problems, however, share the same question —calculate p(B)— and the same 
context. The collection of problems contained problems from 1 to 8 with data in 
terms of percentages and problems 9 to 16, with data explicitly expressed in terms of 
probability:1-9, 2-10, 3-11, 4-12, 5-13, 6-14, 7-15, and 8-16; see the appendix. Only a 
Spanish version is given as we think that a translation cannot fully preserve meaning, 
and semantic and semiotic factors are influential for the problem perception. 

Considering time limitations, we asked each student to solve a total of four problems 
- two from the ”frequency type problems and two with probability format of the 
presented quantities. 

The students 
The test was administered during student’s regular class time. The sample of students 
that took part in the study was a total of 166 students distributed as follows as follows 
over school levels and ages:  

School U-FM HS2-TS HS2-SS HS1-TS HS1-SS CS4 
Age 20 17-18 16-17 15-16 

# 10 38 16 38 37 27 

 

U-FM: University students at the Math’s College, studying “Didactics of Mathematics” 
HS2-TS, SS: 2nd year high school students specializing in TS – technical subjects, or SS – 

social sciences, which means different competence at mathematics 
HS1-TS, SS: 1st year high school students 
CS4: 4th year compulsory students 

Analysis of results 
The results in the tables below are organized according to the following variables: 
nature of data, number of students who attempted to solve each problem; number of 
students who succeeded in solving each problem including its distribution over the 
various school levels; the number of students that did not answer the specific 
problem; and depending on the reasoning used in problem solving, the distribution of 
the number of students that succeeded with probability assignment or probability 
calculation strategies. 

Tables 1 and 2 display the number of students who succeeded in solving and also the 
number of students who did not attempt to solve the problems or similar - expressed 
as blanks. Information about students who did not complete successfully the 
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problems is not reported here. In the process of solving we could observe mistakes 
and misunderstandings of different nature. 
 

Counts Frequencies type problems Probabilistic type problems 

Problem P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

Sample 34 33 33 34 66 33 67 34 34 33 33 34 33 33 33 33 

 

Succeeded 4 6 1 8 20 2 4 0 0 2 0 6 3 2 2 0 

UFM 1 0 0 2 1 2 4 0 0 1 0 2 1 1 2 0 

HS2-TS 0 3 0 2 6 0 0 0 0 1 0 1 2 0 0 0 

HS2-SS 0 0 0 3 2 0 0 0 0 0 0 1 0 0 0 0 

HS1-TS 1 1 0 0 8 0 0 0 0 0 0 0 0 1 0 0 

HS2-SS 2 2 1 1 3 0 0 0 0 0 0 1 0 0 0 0 

L
ev

el
 

CS4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 Blank 5 11 4 2 11 4 12 9 12 4 13 12 11 6 18 19 

Assignment 4 6 1 7 20 0 1 0 0 0 0 1 0 1 0 0 

St
ra

te
gy

 

Calculation 0 0 0 1* 0 2 3 0 0 2 0 5 3 1* 2 0 

Table 1: Number of students succeeded in solving by school level and type of reasoning used – * UFM 

 

% Frequencies type problems Probabilistic type problems 

Problem P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

Succeeded 12 18 3 24 30 6 6 0 6 0 18 9 6 6 0 0 

 

Blank 15 33 12 6 16.6 12 18 27 12 40 35 33 18 55 58 19 

Assignment 100 100 100 87 100 0 25 0 0 0 16.7 0 50 0 0 0 

St
ra

te
gy

 

Calculation 0 0 0 13* 0 100 75 0 100 0 83.3 100 50* 100 0 0 

Table 2 Percentages of students succeeded, blank and, type of thinking of successful students – * UFM 

Tables 1 and 2 display the same information, with Table 1 in absolute frequencies 
while Table 2 gives the results in percentages. It should be noted that for problems 9 
to 16, where data are expressed in terms of probability, the percentages of correct 
solutions is lower than for the first 8 ones. On the other hand, we would like to point 
out that when data are shown in terms of probability, the number of students trying to 
solve the problem is much smaller1 compared to frequency type problems;with the 

                                           
1 According to the official curriculum of students for 1st and 2nd year at high school studying social science-humanities 

option, some conditional probability knowledge is provided. However, this does not always happen. We cannot assure 
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exception of P2 where the high percentage of “blanks” stands out. This confirms that 
nature of data is an influential factor in the problem’s solution processes. The 
summary table below gathers those columns of Table 2 that give evidence of the 
solution process of the problems, the nature of their data and those that have been 
successfully completed: 

 

% Frequencies type problems Probabilistic type problems 
 

Problem P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

Assignment 100 100 100 87 100 0 25 0 0 0 16.7 0 50 0 0 0 

St
ra

te
gy

 

Calculation 0 0 0 13* 0 100 75 0 100 0 83.3 100 50* 100 0 0 

Table 3: Percentages of the types of solutions for those problems successfully completed – * UFM 

One of the features to be seen from the Table 3 is that in some cases it contradicts the 
assertion that data expressed in percentages favours the solution of the problem by 
assignment. We can see, for example, that in problems 6 and 7; the majority of those 
students that successful solved the problems used probability calculations. However, 
all the students in this sample belong to the Math’s College, who have more 
education in the theory of probability. 

We can also notice that in some cases, when data are expressed in terms of 
probability, some students translate those terms into percentages and solve the 
problem by using arithmetic thinking and assigning probability at the end of the 
solution process. This is the case in problem 12. One student from the HS1-SS group 
translated data expressed in terms of probability into percentages. When solving 
problem 14, another student, from the HS1-TS group, used the same process of 
translation. 

The eight problems with data presented in percentages and the number of students 
that succeeded in solving them can be seen from Table 4: The results of problem 8 
are coherent with the enunciation of the problem and the competence level of the 
students. The two students from the Math’s College, theoretically provided with a 
good knowledge of the theory of probability, tried to solve it by using wrong 
formulas. The high percentage of answers left “blank” is basically due to the way 
these data are presented: p (B|A)=70%. 

                                                                                                                                            
that students belonging to these courses were knowledgeable in the subject. Consequently, problems with data 

expressed in terms of probability are not attempted to be solved very frequently. 
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% Frequencies type problems 

Problem P1 P2 P3 P4 P5 P6 P7 P8 

Succeeded 12 18 3 24 30 6 6 0 

Blank 15 33 12 6 16.6 12 18 27 

Table 4: Percentages of problems that give evidence of the success or failure of the solution. 

With reference to problem 2, also with a very high percentage left “blank”– 33% – 
correspond to 8 blank answers and 3 with an unfinished solution. We do not 
understand the reason why this happens because the enunciation is similar to 
problems 1 and 3, where the percentages with a blank response are not so relevant. 
Moreover, if we observe the results of its isomorphic problem no 9, there are only 
12% of left blanks. 

Conclusions 
We suspect that apart from the nature of the data, there are some other factors that 
have a direct effect on the way students approach conditional probability problems. 
These factors are not necessarily related to knowledge of relationships between 
probabilities. The nature of probability problems in textbooks is influential in the 
classification of the problems: problems of probability assignment or problems of 
probability calculation. The problems successfully solved by the students who took 
part in this research could be classified as problems of probability assignment. Most 
of these students did not understand data as probabilities and consequently would 
never use the relations between probabilities to calculate the probabilities requested 
in the problems. Data in these problems are presented in percentages and students 
solve them by using numerical thinking and final assignment of a probability. 
However, a few students attempted to solve problems with data presented in terms of 
probability. In this case, the students mostly approached the problems by using 
probability calculation rules. 

Numerical data shown in selected probability problems, acquire some meaning to the 
students when they are expressed in terms of percentages. When quantities have 
specific meaning for students, they can produce new quantities that can also be 
relevant for the solution of the problem, thus facilitating the problem solving process. 
However, when quantities are expressed in terms of probabilities they do not make 
feasible that production of new quantities, mainly if one is not competent with 
relationships between probabilities or with formulas. Consequently, we will not be 
saying anything new (Ojeda, 1996) if we continue believing in the solution of 
probability problems where data suggest a focus on probability as a frequency before 
this is shown in a formal way. This applies not only to solving probability problems, 
but also to conditional probability. If conditional probability problems were focused 
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in the way we suggested, it would allow their inclusion in arithmetic lessons or the 
use of rates and proportions for their solution, as a prior step to teaching rules or 
formulas. 
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Appendix:  
The test problems to the right are equivalent to the left ones in the same line with respect to context. 
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Frequency type problems Probability type problems 

P1: De todos los alumnos del instituto, un 30% practican 
baloncesto y fútbol y un 30% practican el baloncesto y no 
practican el fútbol. Sabemos que de los alumnos que no 
practican baloncesto un 40% hacen fútbol. Calcula la 
probabilidad de practicar fútbol. 

P9: En un instituto, la probabilidad de practicar baloncesto y 
fútbol es 0’3 y la probabilidad de practicar el baloncesto y no 
practicar el fútbol es 0’3. Sabemos que la probabilidad de que 
elegido un alumno de los que no practica baloncesto, éste 
practique fútbol es 0’4. Calcula la probabilidad de practicar 
fútbol. 

P2: Un 30% de los huéspedes de un hotel practican el tenis y 
el golf y un 30% practican el tenis y no practican el golf. 
Además conocemos que de los huéspedes que no practican 
tenis un 40% practican golf. Calcula la probabilidad de que 
elegido un huésped al azar no practique ni tenis ni golf 

P10: En un hotel, la probabilidad de que elegido un huésped al 
azar éste practique el tenis y el golf es 0’3 y la probabilidad de 
que practique el tenis y no practique el golf es 0’3. Además 
conocemos que la probabilidad de que elegido un huésped de 
los que no practican tenis éste practique golf es 0’4. Calcula la 
probabilidad de que elegido un huésped al azar no practique ni 
tenis ni golf. 

P3: En una academia de idiomas un 30% de los alumnos 
estudian inglés y francés y un 30% estudian inglés y no 
estudian francés. Además, de los alumnos que no estudian 
inglés, un 40% estudian francés. Calcula la probabilidad de 
que estudie inglés elegido un alumno que estudia francés. 

P11: En una academia de idiomas, elegido un estudiante al 
azar la probabilidad de que estudie inglés y francés es 0’3 y de 
que estudie inglés y no estudie francés es 0’3. Además, 
elegido un alumno de los que no estudian inglés, la 
probabilidad de que estudie francés es de 0’4. Calcula la 
probabilidad de que estudie inglés elegido un alumno que 
estudia francés. 

P4: En una empresa el 55% de los trabajadores son mujeres. 
De las mujeres, el 20% se dedican a las tareas administrativas, 
y de todos los trabajadores, el 11’25% son hombres y 
administrativos. Calcula la probabilidad de ser mujer y no 
realizar tareas administrativas 

P12: De los trabajadores de una empresa, la probabilidad de 
ser mujer es de 0’55. De las mujeres, la probabilidad de 
dedicarse a las tareas administrativas es de 0’2, y elegido un 
trabajador al azar, la probabilidad de ser hombre y 
administrativo es 0’1125. Calcula la probabilidad de ser mujer 
y no realizar tareas administrativas. 

P5: En una universidad el 55% de los estudiantes son mujeres. 
De éstas, el 20% estudian carreras de letras, y de todos los 
estudiantes, el 11’25% son hombres y estudian carreras de 
letras. Calcula la probabilidad de que elegido un estudiante al 
azar (hombre o mujer) estudie carrera de letras 

P13: En una universidad, elegido un estudiante al azar, la 
probabilidad de que sea mujer es 0’55. De éstas, la 
probabilidad de que estudien carreras de letras es de 0’2, y 
elegido un estudiante al azar, la probabilidad de ser hombre y 
estudiar carrera de letras es de 0’1125. Calcula la probabilidad 
de que elegido un estudiante al azar (hombre o mujer) estudie 
carrera de letras. 

P6: En un campamento de verano el 55% de los integrantes 
son niñas. De las niñas, el 20% realizan actividades acuáticas, 
y de todos los integrantes, el 11’25% son niños y realizan 
actividades acuáticas. Calcula la probabilidad de que eligiendo 
un integrante que realiza actividades acuáticas, éste sea niña. 

P14: La probabilidad de que los integrantes de un campamento 
de verano sean niñas es de 0’55. De las niñas, la probabilidad 
de realizar actividades acuáticas es de 0’2, y elegido un 
integrante al azar, la probabilidad de ser niño y realizar 
actividades acuáticas es de 0’1125. Calcula la probabilidad de 
que eligiendo un integrante que realiza actividades acuáticas, 
éste sea niña. 

P7: Un 60% de los alumnos de un colegio aprobaron filosofía 
y un 70% matemáticas. Además, un 80% de los alumnos que 
aprobaron matemáticas, aprobaron también filosofía. Si Juan 
aprobó filosofía, ¿qué probabilidad tiene de haber aprobado 
también matemáticas? (Grupo Erema, 2002, p. 26, adaptado 
para la prueba)  

P15: En un colegio, la probabilidad de aprobar filosofía es de 
0’6 y la de aprobar matemáticas es de 0’7. Además, elegido un 
alumno de los que aprobaron matemáticas, la probabilidad de 
que aprobara filosofía es de 0’8. Si Juan aprobó filosofía, ¿qué 
probabilidad tiene de haber aprobado también matemáticas? 

P8: En un curso el porcentaje de aprobados en Historia (A) es 
60 %. Para Matemáticas (B) es del 55 %. Sabiendo que p(B/A) 
= 70 %, ¿cuál es la probabilidad de que, escogido al azar un 
alumno, resulte no haber aprobado ninguna de las dos 
asignaturas? (Santos Serrano, 1988, p. 248, adaptado para la 
prueba) 

P16: En un curso la probabilidad de aprobar Historia (A) es 
0’6 y la de aprobar Matemáticas (B) es 0’5. Sabiendo que 
p(B/A) = 0.7, ¿cuál es la probabilidad de que, escogido al azar 
un alumno, resulte no haber aprobado ninguna de las dos 
asignaturas? 
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EXPLORING INTRODUCTORY STATISTICS STUDENTS’ 
UNDERSTANDING OF VARIATION IN HISTOGRAMS 

Carl Lee, Central Michigan University, USA 
Maria Meletiou-Mavrotheris, Cyprus College, Cyprus 

 
Abstract: Histograms are among the main graphical tools employed in introductory 
statistics classrooms in the instruction of the topic of variability of distributions. 
Hence, it might be expected that students have good understanding of histograms. 
Recent work in statistics education reveals, however, that students have beliefs about 
the features of histograms that are different from what is intended by instruction. The 
purpose of the study was to investigate students’ ability to reason about variation in 
histograms. The article describes the insights gained from the study regarding the 
tendency among students to use “bumpiness”, or unevenness, of a distribution 
displayed by a histogram as a criterion for high variability. 

 
Introduction 
The histogram is among the main graphical representations employed in the statistics 
classroom for assessing the shape and variability of distributions. Introductory 
statistics courses have been traditionally using the histogram both as a tool for 
describing data and as a means to aid students in comprehending fundamental 
concepts such as the sampling distribution. In addition to being widely used in the 
statistics classroom, the histogram is a graphical representation of data broadly used 
in the media to present information. Thus, it might be expected that students are 
familiar with this type of data representation. Recent work in statistics education 
reveals, however, that students are likely to have beliefs about the features of 
histograms that are different from what is expected by statistics instructors (e.g. Lee 
and Meletiou-Mavrotheris, 2003). 

The current study was designed to closely investigate, in a real-classroom setting, 
college-level introductory statistics students’ reasoning about variation in histograms. 
A set of carefully selected tasks was used in the study in order to examine, and at the 
same time support, student reasoning. The article describes the insights gained from 
the study regarding students’ tendency to consider the “bumpiness”, or unevenness, 
of a distribution displayed by a histogram as a criterion for high variability (i.e. to 
concentrate on the vertical axis of the histogram and base judgments solely on 
differences in the heights of the bars), a belief often observed among students 
(Chance, Garfield, and delMas, 1999; Meletiou-Mavrotheris and Lee, 2002; delMas 
and Liu, 2003). 

Methodology 
Context and Participants: The site for the study was an introductory statistics course 
in a four-year college in Cyprus. One of the authors was the course instructor. Class 
met two times a week, for two hours each time. There were thirty-five students in the 
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class, most of whom majoring in a business related field of study. Only few students 
had studied mathematics at the pre-calculus level or higher.  

Instruments, Data Collection and Analysis Procedures: At the beginning of the 
semester, students were given a pretest on graph-understanding to provide a baseline 
for the study. Each of the questions in the pretest was selected from previous studies 
in statistics education, mainly to provide a point of reference and comparison for our 
findings. During the course, a set of carefully chosen, often technology-based, tasks 
related to the construction, interpretation and application of histograms was collected 
to examine, while at the same time supporting, students’ reasoning about variation 
when solving statistics problems involving histograms. Some of the students were 
observed and videotaped while working on the tasks. Completed worksheets of each 
task were collected from the whole class. 

A detailed analysis of the ways in which students approached the tasks was 
conducted. The method of analysis involved inductively deriving the descriptions and 
explanations of how the students interacted with the histograms and reasoned about 
variation through histograms. Using related behaviors and comments within each 
topic, we wrote descriptions of the students’ strategies and actions. These 
descriptions formed the findings of the study. Those findings that relate to the 
observed tendency to judge the variability of a distribution based on the “bumpiness” 
of its histogram are described in the next section. 

Results 
Pre-assessment: Students’ tendency to concentrate on the vertical axis when 
comparing the variation of two histograms and to base judgments on differences in 
frequencies among the different categories was evident in the pre-assessment. On the 
“Choosing Distribution with More Variability” task in Figure 1 (adapted from 
Garfield, delMas, and Chance, 1999), for example, almost half of the students (45 
percent) argued that distribution A has more variability. Student explanations for 
choosing distribution A (see Table 1) suggest that they shared the belief that a 
‘bumpier’ distribution with no ‘systematic pattern’ has a larger variability (Garfield 
and delMas, 1990). 

Figure 1 
“Choosing Distribution with More Variability” Task  

 
 
 
 
 
 
 

A has more variability____ B has more variability____ Explain why 
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Table 1  

Student responses as to “Choosing Distribution with More Variability” Task 

Answer % Reasons given for response 
A has more 
variability 

45% 
(N=15) 

“A has more variability because B is a symmetrical distribution 
which means all of the values are about the same. In graph A the 
values are spread, something that makes the variance bigger.” 
“A is unstable and increases and decreases differently, whereas B 
increases and decreases at the same rate equally. It is symmetric.” 

Graph B has 
more variability 

40% 
(N=13) 

“A has more spread out values.” 
“A ranges from 1-9, while B ranges from 0-10.” 

No response 5% 
(N=5) 

 

 

In a previous study we conducted in a college-level introductory statistics course in 
the USA (Meletiou-Mavrotheris and Lee, 2002), when giving the same task to 
students at the beginning of the course, we again found a sizable proportion (26%) 
arguing that “distribution A has more variability because it’s bumpier.” Chance, 
Garfield, and delMas (1999), have also found that students often use the “bumpiness” 
of a histogram as a measure of high “variability”. 

Duration of course: The purpose of the study was to closely investigate students’ 
conceptions of variation in histograms but also to help improve their graph 
comprehension. In selecting the study activities, we took into consideration findings 
of a previous study we had conducted, in which we had identified different types of 
beliefs regarding histograms shared by students which diverge from those intended 
by statistics instruction (Lee and Meletiou-Mavrotheris, 2003). A set of problems was 
collected to more closely examine, while also supporting, students’ approaches and 
strategies when reasoning about variation in histograms. 

Next, we provide an example of a typical classroom activity. Our purpose in giving 
this activity to students was to challenge their tendency to consider the “bumpiness” 
of a distribution as the main criterion for high variability.  

“Value of statistics” Task 
In the “Value of Statistics” task (adapted from Rossman, Chance and Locke, 2001), 
shown in Figure 2, students were given a set of histograms corresponding to the 
ratings on a 1-9 scale of the value of statistics of students in one of five hypothetical 
statistics classes, and they had to answer ten questions related to this set of graphs. 
Students answered the first three questions using traditional means of investigation – 
paper and pencil – while they answered the remaining seven questions through use of 
the educational statistical software Fathom@. They worked either alone or in pairs to 
complete the worksheet for the task. Two of the students, Xenia and Ekaterina, were 
videotaped while working on the task. 
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Paper and Pencil Stage (Q1-Q3) 
All of the students in the class were able to correctly fill out the table in the first 
question, matching each of the six classes with its corresponding set of frequencies. 
They did so by contrasting the information in the table with the information provided 
by the graphical representations. 

The second question was asking students to use the table and histograms provided to 
guess which had more variability between classes F and G. This task is similar to the 
“Choosing Distribution with More Variability” task (Figure 1) students had in the 
pre-assessment. As we can see in Table 2, the vast majority of students (70%) argued 
that ClassF has more variability, giving justifications similar to those of students in 
the pre-assessment who concluded that histogram A had more variability than 
histogram B. An even higher percentage of students than in the pre-assessment, were 
equating “bumpiness” of a histogram with high variability. 

The tendency to make judgments regarding the variability of a distribution based on 
the unevenness of its histogram was also evident in students’ responses to Q3, where 
they had to decide which among classes H, I, and J had the least and which the most 
variability. Students almost unanimously (93%) argued that ClassJ has the least 
variability, because “J is uniform” (see Table 3). Using a similar mindset, the large 
majority argued that ClassH has the most variability: “H has the most variability 
because the score has a difference of 20 from each other rather than I that has only 
10.”; “H has the most variability because from 2 it goes to 22 and again to 2, while I 
from 12 goes 2 and back to 12.” 

Technology Stage (Q4-Q10) 

After completing the first part of the activity, students moved to the computer. They 
first did Q4. They opened the Fathom@ file containing the raw data of students’ 
ratings in each of the classes, drew plots of ratings, and verified that in Q1 they had 
correctly matched each class with its corresponding set of counts. Next, they used 
Fathom@ to calculate the range, interquartile range, and standard deviation of the 
ratings for each class (Q5). They got the statistics shown in Table 4. 

Figure 2 
“Value of Statistics” Task 

Suppose that students in five hypothetical statistics classes (ClassF, ClassG, GlassH, 
ClassI, ClassJ) were asked to rate the value of statistics on a 1-9 scale. The ratings of each 
of the classes are shown in the following histograms: 
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Q1. The data presented in the histograms is given below in the following table: 

 

 

 

 

      Please fill out the table by putting down the name of the class corresponding to each of 
the five sets of counts in the table. 

Q2. Judging from the tables and histograms, take a guess as to which has more variability 
between classes F and G. 

Q3. Judging from the tables and histograms, which would you say has the most variability 
among class H, I, and J?  Which would you say has the least variability?   

Q4. Use Fathom and the data in HypoValue.ftm to check that you filled the table correctly. 

Q5. Use Fathom and the data in HypoValue.ftm to calculate the range, interquartile range, 
and standard deviation of the ratings for each class. Record the results in the table: 

Q6. Judging from these statistics, which measure spread, does class F or G have more 
variability?  Was your expectation in (2) correct? 

Q7. Judging from these statistics, which among classes H, I, and J have the most 
variability?  Was your expectation in (3) correct? 

Q8. Between classes F and G, which has more “bumpiness” or unevenness?  Does the class 
have more or less variability than the others? 

Q9. Among class H, I, and J, which distribution has the most distinct values?  Does that 
class have the most variability of the three? 

Q10. Based on the previous two questions, does either “bumpiness” or “variety” relate 
directly to the concept of variability?  Explain. 

Table 2 
Student responses to Q2 of the “Value of Statistics” Task 

Answer % Reasons given for response 
ClassF has 
more 
variability 

70% 
(N=21) 

“F is not symmetrical like G.” 
“F rises and falls. G increases and decreases at a constant rate.” 
“F because it has 7 different variables and ClassG only 5 that repeat.” 

ClassG 
has more 
variability 

30% 
(N=9) 

“G covers more values.” 
“G ranges from 1-9. F doesn’t have as much variation, it scales from 2-8.” 
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Class ___ count 0 3 1 5 7 2 4 2 0 
Class ___ count 1 2 3 4 5 4 3 2 1 
Class ___ count 1 0 0 0 22 0 0 0 1 
Class ___ count 12 0 0 0 1 0 0 0 12 
Class ___ count 2 2 2 2 2 2 2 2 2 
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Table 3 
Student responses to Q3 of the “Value of Statistics” Task 

Answer % Reasons given for response 
ClassJ has least 
variability 

93% 
(N=28) 

“All the classes show the same frequency.” 
“J is uniform/rectangular.” 
“The numbers remain constant. They do not increase or decrease.” 
“In ClassJ we have the same number of students, it doesn’t matter 
what score they got.” 
“The same amount of people gave answers to each category.” 

ClassH has least 
variability 

3% 
(N=1) 

(No explanation provided) 

H, I, J have the 
same variability 

3% 
(N=1) 

“They have the same variability because they have the same range.” 

 
Table 4 

Summary Table for “Value of Statistics” Task 

Statistic ClassF ClassG ClassH ClassI ClassJ 
Range 6 8 8 8 8 
IQR 2.5 2 0 8 4 
Standard Deviation  1.8 2.04 1.18 4 2.66 

 
Table 5 

Student responses to Q6 of the “Value of Statistics” Task 

Answer % Reasons given for response 
ClassF has 
more variability 

13% 
(N=4) 

“ClassF has more variability than ClassG because the interquartile 
range is more. Our expectation in question B was correct.”  

ClassG has 
more variability 

87% 
(N=26) 

 “My expectation in B was not correct because Gs values are more 
spread and now we can see that from standard deviation. As we 
know, the bigger the standard deviation is, the bigger the spread.” 
“ClassG has more variability: (i) Range of G is bigger – the bigger 
the range the more the variability, (ii) Standard deviation is more for 
G – the bigger the standard deviation the bigger the deviation of 
values from the mean. Therefore, our answer was wrong.” 

 

In Q6, students had to decide, now based on the statistics they had just calculated, 
whether their earlier conjecture in Q2 as to which of classes F and G had more 
variability was correct. As seen in Table 5, the majority of the class, most of whom 
had earlier argued that ClassF has more variability, now concluded that it is ClassG 
which has a higher variability. Only four students insisted that ClassF had more 
variability. Xenia and Ekaterina, our videotaped students, were among those students 
who had conjectured that ClassF had more variability than ClassG. Looking at the 
statistics they now decided that their earlier conjecture was incorrect: 
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Ekaterina: So the more the standard deviation the more the variability, right?  But, by 
this…judging by the graph we had put down that ClassF has more variability. But by this…by 
the standard deviation…this says that ClassG has more variability. 
Xenia: I don´t understand. ClassF has 7 different variables, but ClassG only 5. 
Ekaterina: But, here also in H, I, J. J has only one variable but it has more variability than H.  
Ekaterina:  This graph has numbers on the horizontal axis and count on the vertical axis. So… 
Xenia:  It is not the count that gives variability. It is the difference between scores. ClassG has 
more different scores. It goes from 1 to 9, but F goes only from 2 to 8. ClassG has more range. It 
has more variability. 
Ekaterina:  So…our expectation was not correct. ClassG has more variability…the range and 
the standard deviation is higher than the range and standard deviation of ClassF. 

Similarly, in Q7 where students had to decide based on the statistics they had 
calculated, which among class H, I, and J has the most and which the least variability, 
looking at the statistics made students conclude that their expectations in Q3 were 
wrong. Whereas, for example, 93 percent of the students had argued in Q3 that ClassJ 
has the least variability, now 77 percent concluded that it is ClassH which does. 

Although in Q6 and Q7 the majority of students based their comparisons of different 
distributions on typical statistical measures of variability such as the standard 
deviation and the range, in the last three questions of the task several of them went 
back into using the “bumpiness” of a distribution as their measure of its variability. In 
Q8, where they had to decide whether the distribution with the higher “bumpiness” 
among classes F and G also had higher variability, less than half of the students gave 
a negative response. Eight students, four of whom had earlier on - after checking the 
summary statistics - put down that ClassF has a smaller variability than ClassG, 
ignoring this fact went back into arguing that ClassF has not only more “bumpiness”, 
but also more variability. Ten students gave no response. 

In Q9 students were asked to find which, among classes H, I, and J, has the most 
distinct values and the most variability. Fifteen students argued that it is ClassH that 
has the most distinct values, while three others that classes H and I have equally 
distinct values. These students’ interpretation of distinct values suggests that their 
focus was still on the vertical axis of the histograms.  

In the last question, students had to conclude, based on the previous questions, 
whether either “bumpiness” or “variety” relate directly to the concept of variability. 
Only fourteen students stated that neither of the two relates directly with the concept 
of variability (see Table 6). Nine students gave no response. Four students – the same  
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Table 6 

Student responses to Q10 of the “Value of Statistics” Task 

Answer % Reasons given for response 
No 47% 

(N=14) 
“F has more bumpiness but not more variability.” 
“We can see graphs like H with great unevenness among 
the number of people that have not much variability.” 
“None of these concepts directly relate to the concept of 
variability. Variability describes the spread of the data.” 

Yes. More bumpiness 
implies more variability. 

13% 
(N=4) 

“More bumpiness or variety means more variability” 

Yes. More bumpiness 
implies least variability. 

10% 
(N=3) 

“Yes, variability is highest for least bumpiness” 

No response 30% 
(N=9) 

 

 

that had in the previous question argued that ClassF has more variability than ClassG 
– reiterated that “more bumpiness or variety means more variability”. Three other 
students drew the over-generalization: “variability is highest for least bumpiness”. 

Students’ tendency to concentrate on the vertical axis and to judge the amount of 
variability in a graph based on its “bumpiness” persisted throughout the semester. 
Even in the end-of-course assessment, when given again the task in Figure 1 of 
having to decide by looking at the histogram of two distributions of scores which one 
had more variability, five students (15%) still argued that distribution A has a higher 
variability because “it is more uneven than B”. 

Discussion 
Our main aim in this study was to strengthen student understanding of one of the 
most commonly used graphical tools, the histogram. Research indicates that 
histograms are particularly difficult for students to understand conceptually and cause 
major problems for many of them (Friel, Curcio, and Bright, 2001). Unlike graphical 
representations such as scatterplots and time-plots which display raw data, histograms 
are employed to display the distribution of datasets which have few repeated 
measures, a large spread in the data, and necessitate the use of scaling of both 
frequency and data values for purposes of data reduction (Friel, Curcio, and Bright, 
2001). People have difficulties in distinguishing the two axes in a display of reduced 
data such as the histogram (Bright and Friel, 1998). Friel and Bright (1996) found 
that middle-grade students have difficulties with histograms, in part because of the 
fact that data reduction leads to a “disappearance” of the actual data. Findings from 
our study suggest that even college-level students might exhibit a tendency to 
perceive histograms as displays of raw data. The persistence of the study participants 
to concentrate on the vertical axis of the histogram when making judgments about the 
variability of a distribution might be because they perceived each bar as representing 
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an individual value and not a set of values. In that case, “bumpiness” of the 
distribution would indeed imply more variability. 

Histograms – as well as bar graphs, stem-leaf plots and other graphs – are a 
transformation from raw data into an entirely different form. Such a transformation 
changes the data representation – a process that Wild and Pfannkuch (1999) have 
defined as transumeration – and is one of the fundamental frameworks for statistical 
reasoning, for better understanding of variation, distribution and many other 
important statistical concepts. Understanding of this transformation is challenging, 
and statistics instruction needs to find ways to support it.  

Our retrospective analysis of students’ responses to the different instructional tasks 
we employed during the study, led us to the conclusion that a possible explanation for 
the persistence of a large group of students in using the “bumpiness” of a histogram 
as their main criterion for high “variability”, might also be that these students 
attached meanings to variation that differed from those we had assumed when 
designing the tasks. When referring to the variability of a distribution of data values 
in the tasks we assigned to students, the notion of variability we had in mind was that 
of the spread of values around the center of the distribution, which can be measured 
using statistical summaries like the standard deviation and the Interquartile Range 
(IQR).This is the statistical  idea of the center of the distribution being the signal (true 
value, model) and the variation being the spread (noise, residual) around that centre. 
However, it seems that many of the students in our study did not share this view of 
variability. Rather, they viewed variability as deviation from an expected pattern. For 
these students, the signal or model of a distribution was not its centre but its expected 
distribution (shape), and its variability was the deviation from the expected 
distribution (Bakker, 2004).  As a result, they insisted in choosing distributions with 
high “bumpiness” as the ones having a higher variability (e.g. distribution A in Figure 
1, ClassF in Figure 2), while considering “stable” or symmetric distributions (e.g. 
distribution B in Figure 1, ClassG and ClassJ in Figure 2) as having little or no 
variability.  

Findings of the study indicate that student knowledge of variation is a much more 
complex system than instruction often assumes. It encompasses a varied set of ideas 
not adequately addressed in the statistics classroom.  Variability is not at all a precise 
notation and concept. There are different possible meanings in statistics and everyday 
language of the terms “variability” and “variation”. In the statistics classroom, 
variability is usually presented as the spread of values around the center of the 
distribution. However, as Bakker (2004) points out, in some instances it makes sense 
to view variability as deviation from an expected distribution. Instruction should not 
simply dismiss as faulty a student’s tendency to use the “bumpiness” of a distribution 
as a criterion for high variability. Rather, it should help students differentiate between 
the different notions of variation and use the appropriate ones depending on the 
context of the situation. 
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The current study has provided some useful insights into students’ conceptions of the 
notion of variability as compared to how variability in the statistical sense is 
measured by certain summary statistics and as is shown in histograms. However, 
there is still a lot to be learned regarding students’ conceptions of variation. Further 
research should be carried out to investigate the ways in which students perceive 
variation of a distribution displayed through different means of representation 
(numerical, tabular, graphical). Findings from such research would greatly enrich our 
understandings of the ways in which students perceive the idea of variation in 
different settings and would inform our instructional practices.  
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IMPROVING STOCHASTIC CONTENT KNOWLEDGE OF 
PRESERVICE PRIMARY TEACHERS 

Dr Robert Peard, Queensland University of Technology, Australia 

 

Abstract: Preservice student teachers (primary) at Queensland University of 
Technology take only one core Foundations Unit in Quantitative Literacy. One week 
is devoted to basic introductory probability. However, they are able to select an 
elective mathematics content subject in probability which extends topics in this field. 
Many of the students enter this subject with little mathematical background and 
research by the author is being conducted to determine the most effective way of 
presenting a unit in more advanced probability to such students. This paper describes 
some of the difficulties encountered and part of the research examining the use of  
intuitive, frequentist and axiomatic approaches to probability in the solution of 
unfamiliar problems requiring a decision making process. Implications for the 
teaching of probability are drawn. 

The use of probability in decision making is a topic that is now included specifically 
in many secondary school mathematics curriculums including those of Queensland, 
Australia (Queensland Studies Authority, 2004). The concept of mathematical 
expectation has a variety of practical applications and is central to the application of 
probability in many decision making situations. Earlier research by the author (Peard, 
1995) demonstrated that relatively sophisticated applications employing the concept 
of mathematical expectation can be performed by students with relatively little 
mathematical background. The author has consequently developed a mathematical 
content elective unit in probability for B.Ed. primary preservice teachers at QUT 
based on this research. Recent curriculum developments in school mathematics have 
seen a much greater emphasis on the role of probability in the classroom worldwide 
(Borovcnik & Peard, 1997). In Australia, “Chance and Data” features as a strand in 
the National Statement on Mathematics for Australian Schools, (Australian Education 
Council, 1991) and the Queensland curriculum includes both topics in all years from 
4 to 12 (Queensland Studies Authority, 2004). However, instruction in probability 
has been described as “a very difficult task, fraught with ambiguity and illusion” 
(Garfield & Ahlgren, 1988, p. 57), and many difficulties in its instruction have been 
reported in the Australian literature (See, for example, Peard, 1996, 2001; Truran, 
1997; Watson & Kelly, 2004; Way, 1997). 

The Content of the Unit 
The unit begins with an informal approach, building on the students’ intuitive 
understandings, interest in and familiarity with probability without assuming any 
prerequisite knowledge other than the ability to convert fractions to decimals and 
percents, fractional equivalence and basic operations. One of the major objectives of 
the unit is to ensure that the students do not hold any of the misconceptions about 
probability that are reported as common. These misconceptions, including the 
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“gamblers’ fallacy", are not confined to naive subjects and are prevalent among 
tertiary students (Peard, 1996; Shaughnessy, 1992). Key to the remediation of these 
misconceptions is the development of the concept of independence and mathematical 
expectation.The study of basic probability begins with the examination of the 
mathematics of simple games of chance and skill with the emphasis on the concept of 
mathematical expectation and its use in the decision making process in such games. 
Towards the end of the semester, more complex probabilities are introduced and the 
content extends to the applications of Binomial and Poisson probabilities using 
Microsoft Excel, including the use of these techniques in simple hypothesis testing. 

Different Approaches to Probability 

The literature commonly identifies three different approaches to probability; classical 
(symmetrical or axiomatic), frequentist (experimental) and intuitive (Shaughnessey, 
1992, p. 469). Difficulties are associated with each approach. Most introductory 
courses in probability begin with situations in which the outcomes are equally likely. 
In doing this there is an assumption of equal likelihood based on symmetry (coins, 
dice etc.) without the formal recognition of the axioms underlying such assumptions. 
The frequentist approach suffers from the clear difficulty that often short term 
frequencies give vastly differing results from long term, and to make inductive 
conclusions in probability is fraught with danger. The process may fail completely. 
For example, if we wish to show that a "six" on the throw of a single die is as likely 
as any other number, the short term frequency may give contrary results and re-
inforce the child's misconception that it is harder to throw a six. Furthermore, earlier 
research by the author (Peard, 2001) has shown that students using frequentist 
probabilities often make an assumption of equal likelihood when none exists. 
Nevertheless it is important to include frequentist probabilities in any course as 
applications occur in situations where there is no symmetry and the axiomatic 
probabilities might not be available. The use of the Poisson probability is one such 
section that is included in this unit. In these situations the mean, np, is estimated from 
the frequency of previous occurrences. Applications include insuring against being 
struck by lightening and calculating the probability that a large lottery prize will be 
shared by a number of winners.  

It is well documented that probability is the one field in which our intuition is often 
unreliable (See, for example, Borovcnik & Peard, 1997; Fischbein, Nello & Marino, 
1991; Peard, 2001; Shaughnessy, 1992). Nevertheless, there are situations in which 
we need to use some intuition, based on prior experiences, in the estimation of 
probabilities. In insurance, for example, where the probabilities are clearly not 
symmetrical and there may be inadequate data from which to draw frequentist 
estimates, a degree of intuition is often used.  

The Use of Simulation 

Simulation can be useful in obtaining a frequentist probability in many situations. 
While activities of this nature feature in the unit, it is emphasized that care must be 
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taken with this. In some situations a simulated solution is much easier to obtain than a 
theoretical one. For example, to calculate the probability of having an opening hand 
in a game of Bridge, or a pair of Aces in a Poker hand, the use theoretical 
probabilities would be beyond the scope of this unit. However, with modern 
computers, or even with enough players dealing cards, a simulated solution is a 
relatively easy matter. However, simulation does not necessarily lead to or improve 
any understanding of the underling theory or analysis of the situation. Borovcnik & 
Peard (1997), cite the simulated solution to “Monty's Dilemma” (p. 376) as an 
example of where a correct solution is readily and easily obtained through simulation, 
but without this resulting in any improved understanding of why.  

The Equally Likely Misconception 

The assumption of assigning equal likelihood to the outcomes of an event is not 
always justified. This is, in many instances a misconception. We see this in its 
simplest form when, for example, young children are asked: “In a class there are 12 
girls and 16 boys. The teacher puts the name of each child in a hat and draws one out 
at random. What is the probability of the name being a boy?” Children who answer 
½, arguing that it can be either a boy or girl and that these are equally likely, are 
exhibiting this misconception. More subtle is the situation where we ask a group of 
people to select a number from 0 to 9 “at random”. There is a tendency to assume that 
each of the 10 digits are equally likely and that about 1/10 of the group will choose 
each. People are often surprised to learn that the numbers 7 and 3 are much more 
likely than any of the others. Unlike drawing numbers from a hat, people do not 
select at “random”. 

Mathematical Expectation  

The concept of the mathematical expectation of the outcome of an event as the 
product of its probability and the return or consequence, is one that has a variety of 
practical applications and is the key concept to the application of probability to 
decision making in the unit. The decision of an airline to overbook flights, for 
example, involves computing the various probabilities of the numbers overbooked 
and forming the product of these and the associated cost of each eventuating. These 
are then compared with the probability and costs of empty seats. Other applications 
include insurance, warranties, restaurant overbooking, cloud seeding, and a variety of 
situations in gaming and betting. The computation of mathematical expectation in 
different situations forms a fundamental component of the unit.  

The research of the present study requires students to attempt solutions using the 
three different approaches and compares and contrasts their responses. 

The Research Study 
The author is involved in on going research into the effectiveness of this unit in the 
improvement of instruction in this difficult field (Peard, 2001). The present study 
undertaken within the unit and described here continues this process by examining 
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the use of and relationships between intuitive, frequentist and axiomatic approaches 
in the introductory unit. 

Aims of the Research 

At the conclusion of the course of instruction, a study was undertaken first to 
examine the students' ability to use simple axiomatic probability in the solution of 
unfamiliar problems involving symmetrical situations and requiring a decision based 
on mathematical expectation. Second, the research sought to compare intuitive 
estimations of the same probabilities with the theoretical and with frequentist 
probabilities obtained through experimentation.  

Methodology 

The group studied consisted of thirty students enrolled in the probability elective unit. 
At the end of the semester they were presented with two mathematical problems each 
requiring a decision of optimal strategy. The students were required to answer each 
question using the following strategies:  

1. Using intuition, the information given and knowledge from prior similar 
experiences. 

2. Using the relative frequencies obtained from playing the appropriate game many 
times and observing the experimental outcomes, and 

3. Computing the mathematical expectations of the various outcomes using classical 
probability theory and/or the Binomial theorem. 

The first two of these strategies were done in a two hour workshop towards the end of 
the semester. Both questions were considered. The third strategy was given as a take 
home problem to be discussed in the following week’s session. Again, both questions 
were to be attempted. 

The Questions 

The questions were selected from situations in the common dice game of Yahtzee, a 
game of chance with an element of skill in selecting strategies. This game was 
familiar to the students, having been played previously in the unit. However, the 
problems as presented were new or unfamiliar to them. 

One objective in the play of Yahtzee involves forming the maximum score of the 
total of the five dice rolled simultaneously. After the first throw the player has the 
option of holding and scoring any of the five, and re-rolling the others. This 
procedure is then repeated for a third throw if the player so chooses. Question 1 is 
related to a decision involved in this. 

Question 1 

The option “Chance” scores the sum of the numbers showing on the five dice. What 
is the optimal game strategy to maximize this score. That is, what numbers (1, 2, 3, 4, 
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5, 6) should be held after each throw in order to maximize the expected score? What 
is the expected score using this strategy? 

Another objective in the play of Yahtzee involves a decision of which numbers to 
hold and which to throw when there are several options. Question 2 required a 
decision in one such hypothetical situation. 

Question 2 

Suppose that a player has rolled on the first throw 1, 3, 2, 2, 6. There are now several 
options to consider. Assuming that the “Chance” option is not available, consider two 
other options: 

1. Hold the 1, 2 and 3 and throw two dice. 

A “4” on either will result in a “short run” of 1, 2, 3, 4 and score 30. A “4 
and 5” will constitute a “long run” and score 40. A pair of ones, twos or 
threes will result in three of a kind scoring 3, 6, and 9 respectively. 

2. Hold the pair of “2s” and roll three dice. 

Scores will result from: three twos (6), four twos (8), five twos (Yahtzee, 
50), or a “full house”, three of any other number (25). A three, four, and 
five will result in a small straight (30). 

Restricting the situation to the second throw only, which of the two 
options has the greater mathematical expectation? 

Strategies 

The questions were done sequentially. For each question there were three parts and 
students were asked to attempt a solution according to the conditions for each part: 

Part 1. An Intuitive Strategy. The students were given the rules of the game and asked 
to formulate an intuitive strategy. They were not to play the game or do any written 
mathematical computations other than any intuitive mental procedures based on prior 
knowledge or the recall of prior results of games of chance involving the throwing of 
dice (Note: As a result of previous experiences in the unit, all students had prior 
knowledge that the numbers on the roll of a die are equally likely and that the mean 
or expected score on any one throw of a single die would be 3.5). 

Part 2. A Frequentist strategy. For each question the students were then given some 
time (about 20 minutes) to play the game in groups with discussion, after which they 
were to decide whether or not they would change their intuitive strategy as a result of 
the experimental outcomes. 

Part 3. Axiomatic Probability. Since the dice are symmetrical and each number is 
equally likely, it is possible to apply axiomatic probability theory to the problems. 
Students were next asked if they could calculate the mathematical expectation of each 
compound event using basic theory. For this they were given one week with the 
problem to be discussed in the following week’s class.  
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Class discussion. Following the completion of parts 1 and 2 for each question, an 
informal class discussion was held in the one workshop in which students had the 
opportunity to explain and elaborate on their reasoning. Responses to part 3 were 
discussed in the workshop of the following week. 

Responses to Questions and Discussion 
Question 1 
Intuitive Strategy 

From the responses to this, five distinct strategies emerged. Table 1 shows the 
strategy and the number of students selecting it in order of popularity, with the 
mathematical expectation computed (by the author) for that strategy. 

Table 1 
Intuitive strategies to Question 1 
________________________________________________________________                                                              
Strategy     Number of students Expected score  
________________________________________________________________    
1.  Hold 4, 5, and 6 on both  2nd and  3rd throws 19  23.12 
2.  Hold 4, 5, 6 on 2nd ; Hold 3, 4, 5, 6 on 3rd.  4  22.92 
3.  Hold 3, 4, 5, and 6 on both    2  21.94 
4.  Hold 5 and 6 on 2nd; Hold 4, 5, and 6 on 3rd. 2  23.33 
5.  Hold 6 on 2nd ; 4, 5, and 6 on 3rd.   2  21.32 
6.  No strategy      1  17.5 
____________________________________________________________________ 
Discussion. The 19 students selecting Strategy #1 demonstrated some reasonable 
intuition in that they recognize that the score of “4” was the critical one to decide 
whether or not to hold. In this case such intuition was probably a result of extensive 
familiarity with games involving the rolling of dice in the unit and a knowledge that 
the mean score on a single roll was 3.5. Others unfamiliar with this may not have 
demonstrated this intuition. Clearly those six students selecting Strategies 2 and 3 
demonstrated little intuitive knowledge beyond recognizing that “1”s and “2”s should 
not be held. However, only two students selected the mathematically correct Strategy 
4 indicating that beyond the simple case of a single throw, intuition was of little value 
in deciding the optimal strategy in the compound situation of two throws. As can be 
seen from Table 1, the optimal strategy (#4) is to toss any “4” on the first throw, but 
hold any “4” on the second. The observed results of Table 1 are not unexpected and 
confirm the results of others in the field that there is no intuitive mechanism for 
estimating compound probabilities (See, for example, Fischbein et al., 1991; Peard, 
1995). 

The Frequentist  Approach  

As a result of playing the game many times and discussing the outcomes, of the 19 
students using strategy 1 above, none changed. Of the 4 using strategy 2, three 
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changed from holding “3” to throwing on the third throw, as did one of the two 
students using strategy 3. None using strategies 4 or 5 changed. 

Discussion. Of the six students who failed to show any intuitive understanding that a 
“3” should not be held, four changed strategy as a result of the experiment. In these 
cases the frequentist method helped in improving their strategy. However, in no cases 
did it lead to a change to the mathematically correct strategy. This is almost certainly 
due to the fact that the mathematical expectations of the strategies are only slightly 
different (Table 1) and would require a much greater number of trials, or the use of 
computer simulation for these differences to become apparent. Furthermore, while 
the frequentist approach can lead to correct solutions, or, in this case to an improved 
strategy for some, as Borovcnik and Peard (1997) point out, this does not necessarily 
lead to or improve any understanding of the situation.  

Theoretical Analysis of Question 1 

Most of the students attempted a theoretical solution and were able to get to the first 
stage of computing that the expectation on the first throw is 3.5 x 5 = 17.5. Four 
students were able to continue a path of finding the expected score of each die under 
different strategies using compound probabilities, and of these, two arrived at a 
correct solution. This was a more difficult problem than any they would have 
encountered in the unit and it was not expected that many would be able to complete 
a full solution.  

Discussion. The difficulties in applying basic probability theory to compound 
situations to compound situations are well documented (Fishbein et al., 1991; Peard, 
1995). In this situation, nearly all students were capable of applying the basic theory 
to the first throw (a simple probability computation), but few were able to proceed 
with the analysis of the compound situation. 

Question 2 
Intuitive Strategy  

The responses to this with expected scores (computed by the author) for each option, 
are shown in Table 2. 
Table 2 
Intuitive Choice for Question 2 
__________________________________________________________ 
Option    Number Expected Score 
 __________________________________________________________ 
1. Hold the 1, 2, 3.    18  11.89 
2. Hold the pair of “2”s  11  4.39 
3. No difference     1 
___________________________________________________________ 

Discussion. Although more students intuitively chose the mathematically correct 
Option 1, 12 others (40%) failed to do so. In this situation the expectations are vastly 
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different (Table 2) and it might be expected that a greater proportion of these students 
with some background in probability would be able to make the correct choice 
intuitively from the information. Many of those choosing Option 2 demonstrated 
some limited intuition in that they correctly reasoned that the probability of getting at 
least one “2” on the throw of three die was quite high and considerably greater than 
getting at least one “4” on the throw of two dice. Furthermore, they reasoned, Option 
2 had more ways of scoring something. However, they failed to take into account the 
much higher scores of Option 1 and to recognise intuitively that the product of 
probability and score, expectation, would be much greater. Again, these results 
confirm those of Question 1 when it comes to the intuition of compound 
probabilities. 

The Frequentist Approach  

As a result of experimentation, it became apparent fairly quickly that Option 1 has the 
greater expectation. All those who selected this stayed with their choice, while all 
those that selected Option 2 changed as a result of the experimental results. 

Discussion. In this case the frequentist approach clearly enabled the selection of the 
correct option as the mathematical expectations of the two options were greatly 
different.  However, once again, while the frequentist approach lead to a correct 
solution, in following class discussions there was no evidence that it lead to the 
correct theoretical solution. 

Theoretical Analysis of Question 2 

Of those who attempted a theoretical solution, most were able to compute the 
expectation for Option 1 using either binomial probabilities or by enumerating all 
outcomes to conclude that the probability of at least one “4” was 0.31 and that of a “4 
and 5” was 0.056 (though two failed to recognize that a 5, 4 gave the same result as 4, 
5). From this eight students correctly computed the correct expectation of 11.89, and 
six of these students completed the more complex computations for Option 2 
(expectation 4.39) using binomial probabilities. 

Discussion. The use of the binomial theorem proved to be a valuable strategy for 
many students. Given the mathematical background of most of the students entering 
the unit, this is evidence of a good deal of success in the unit objectives. Prior 
experience enabled them to recognize the suitability of the strategy to the situation (It 
should be noted that these students had not done the algebraic development or proof 
of the binomial distribution, but had been taught only its application using Excel). 
Even though only six students were able to perform a complete analysis, it is 
encouraging that students with relatively little prior mathematical and algebraic 
background were able to do so. 
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Conclusions and Implications 
Firstly, these two questions would be considered as fairly “advanced” applications of 
stochastic reasoning. The fact that they can be attempted with some degree of success 
by a significant proportion of students with limited mathematical background is 
evidence of a good deal of achievement. However, the results of the study confirm 
those reported elsewhere in the literature regarding the difficulties in teaching 
probability. In both questions intuitive ideas proved unreliable. In Question 1 where 
expectations were not greatly different, frequentist methods did not yield  reliable 
results, whereas in Question 2 where the greatly different expectations were obtained, 
the frequentist approach did not help understanding of the situation. The results to 
both questions highlighted that compound probability is an inherently difficult topic 
for which there is little natural intuition. Nevertheless, it is contended that all three 
aspects of probability must be included in a comprehensive and practical unit in the 
subject. To this effect, the implications of the study are that the employment of games 
of chance and skill such as the dice game Yahtzee and the analysis of its strategies 
are effective methods of increasing student awareness of these difficulties and of 
developing the use of mathematical expectation in decision making. 

In particular, the results of Question 1 highlight the danger of reliance on intuition 
even when the subjects have some theoretical background. A theoretical analysis of 
the situation based on axiomatic probability was necessary to show the fallacy of the 
intuitive response to “hold 4’s” on the first throw based on knowledge of the mean of 
3.5. In this situation a frequentist approach did not produce reliable results. 

The results of Question 2 also highlight the need for an axiomatic analysis. Even 
when the frequentist approach yields reliable results, it does not necessarily lead to an 
understanding of the situation. It is contended from the results of this research that 
many students with relatively weak algebraic and overall mathematical abilities are 
nevertheless able to use appropriate software to perform meaningful analyses of 
binomial probabilities in simple situations. The implication is that courses in 
elementary probability may well be able to include Binomial and Poisson probability 
applications without extensive theoretical backgrounds. 
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Abstract: This work presents findings about the influence of deterministic thinking in 
the probability curriculum given in Spanish Secondary School textbooks (ages 12-
16). This influence is studied in two different fields: the analysis of the underlying 
models of intervention and the definitions of randomness proposed in the textbooks. 
The methodological strategy used is content analysis, with a sample of four Spanish 
publishing houses, including five books for each publisher. This content analysis is 
based on a theoretical proposal that clarifies the influence of teachers' 
epistemological conceptions of their professional development to construct their body 
of professional knowledge. 
 

1. Introduction 
From the beginnings of the nineties there have been different reform proposals for 
changing how probability is presented in Spain's mathematics curriculum. The 
introduction of these new curricula affects the knowledge about probability, and the 
teaching and learning perspective. These reform proposals are associated with a 
constructivist point of view   they introduce a new perspective for interpreting how a 
student learns and a new role for the teacher and student in the teaching and learning 
process. But teachers do not motivate the learning process blindly as workers. They 
interpret and apply the official curriculum with their own personal criteria, in which 
they empathize their conceptions (Carrillo, 2000). 

We use the term “conceptions” in reference to a general mental structure that includes 
“beliefs, concepts, meanings, rules, mental images and preferences, conscious or 
unconscious” (Thompson, 1992, p. 132). From a constructivist perspective, 
conceptions are at the same time “tools” to interpret reality and move in it, and 
“barriers” to the adoption of other perspectives (Porlán, Rivero and Martín del Pozo, 
1997). There is a clear relationship between teachers' conceptions and their 
experiences during the development of the teaching and learning process. In fact, this 
relationship makes the conceptions' evolution more difficult (Carpenter and others, 
1999). 

The difficulty of the evolution of teachers' conceptions refers to teachers' experience 
and to their knowledge of the discipline of probability. In particular, Fischbein and 
Schnarch (1997) establish that changes in people's conceptions are not easily 
produced, affirming the robustness in the conceptual field. Cuesta (2004) argues that 
a change in teachers' conceptions is constrained by a simplified vision of the teaching 
and learning process and by an absolutist conception of knowledge. Research has 
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indicated that the relationship between teachers' conceptions of the nature of science 
and their classroom practice is complex, and it is mediated and constrained by other 
factors. These include pressure to cover content, classroom management and 
organizational principles, students' abilities and motivation, institutional constraints 
and teaching experience (Bell, Lederman and Adb-El-Khalick, 2000). This idea 
reaffirms Shulmans' key point, confirming that knowing how to teach particular ideas 
in science effectively is not solely a pædagogical question; it is also impacted by the 
nature of the subject matter. Firstly, because different ideas in science, and their 
relationship to other ideas the students may know, present different opportunities for 
the design of teaching and learning activities. Secondly, because teachers intending to 
make complex science more accessible to their students might actually tend to 
distortion and over-simplification (Barnett and Hodson, 2001). 

Summing up, the reforms of the Spanish curriculum propose a change in the nature of 
pædagogical knowledge from absolutist to constructivist perspectives. In order to 
study the influence of absolutist perspectives on the probability teaching and learning 
process, it is necessary to introduce a theoretical proposal that will help one 
understand the complexity of the influences of teacher's conceptions in this process.  

2. Teachers' Professional Knowledge about Probability: Hypotheses of 
Progression 

The theoretical proposal introduced is Teachers' Professional Knowledge, defined as 
“the ensemble of all the knowledge and experiences that a teacher has and uses in 
the development of his or her educational work, and that is constructed from the 
beginning of his or her teacher education until the end of his or her professional 
career” (Wamba, 2001, p. 11). 

One of the fields comprising Teachers' Professional Knowledge is the 
metadisciplinary field—i.e., knowledge about the nature of the knowledge. The 
perspectives considered in this investigation about the nature of science are 
epistemological and ontological, which have implications for teachers' decisions 
about what and how they must teach. One of these epistemological and ontological 
perspectives considered is scientific determinism.  

Scientific determinism refers to a doctrine of the world's structure in which any 
outcome can be rationally predicted, to any desired degree of precision, as long as 
one has a precise enough description of past outcomes together with all nature's laws 
(Popper, 1996). This perspective reinforces the necessity of knowing nature's laws to 
predict the possibility of a determined outcome. In this sense, scientific determinism 
can be included in an positivist epistemological perspective that encompasses an 
absolutist vision of truth and knowledge.  

From an ontologically deterministic point of view, everything has a determined cause 
and a determined effect. In order to analyse effects and causes, Descartes proposed an 
analytical method that consisted in the decomposition of a study object into its parts; 
this method is termed reductionism. He proposed the reduction of all physical 
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phenomena to exact mathematical relationships, and suggested the idea of certainty in 
scientific knowledge. People have rationalized processes in seeking this certainty that 
conforms to scientific laws and knowledge, developing a hypothetical-deductive or 
an empirical-inductive method. 

A hypothetical-deductive method suggests the existence of an external and closed 
body of knowledge that is determined by its parts which are hierarchically structured 
by a cause and effect relationship. Teachers constrained by this conception think 
there is a unique and real body of knowledge that must be transmitted in a linear, 
fragmented, hierarchical manner coherent with this hypothetical-deductive method. 
These conceptions support a traditional didactic model of intervention in the 
teaching and learning process (Porlán and Rivero, 1998). Teachers do not reflect 
about what and how they must teach, because this is externally determined by 
mathematical tradition. But, when they begin to reflect about the efficacy of this 
teaching and learning process, they also argue about this rationalist and deterministic 
conception of science and the necessity to change their teaching. 

The aims of this teaching are to deduce strategies to calculate probability. The 
conceptual notions introduced to facilitate these calculations are random experiments 
whose outcomes form a field of knowledge following the Laplace rule (Serradó, 
2003). This classical Laplacian tendency is presented to the students in a linear, 
fragmented, and hierarchic structure based on the teacher's theoretical explanations. 
The predominance of the teacher's' work implies reducing students' tasks to solving 
individual pen and paper activities of theory application to calculate probabilities in 
the random games' context. 

We consider that teachers may be included in another model, termed the innovation 
model, when they consider the student''s active role in the teaching and learning 
process. Teachers having this tendency do not change their rationalist, absolutist, and 
determinist conception of science; they only rethink how they can teach. Underlying 
the consideration of “how to teach” there is an empirical-inductive perspective. This 
means that the teacher thinks that observation allows the truth to be discovered and 
objective knowledge to be created through the application of the inductive process 
(Serradó, 2003). 

If the teacher believes that individuals use trial and error routines or orderly 
systematic approaches to observe, experiment, and collect facts that could support 
future decisions, then he or she fits a technological model. Studies on this model, 
also denoted the product-process perspective, affirm that the teachers'' conceptions 
affect in turn the students' conceptions of the nature of science, and influence the 
teachers' behaviour and the atmosphere in the classroom (Mellado, 1997). The aim of 
teaching is to induce strategies to calculate probabilities. The content introduced 
consists of random experiments, whose outcomes are used as a tool to calculate 
probability considered as the ultimate stable tendency of the frequencies (Azcárate, 
Cardeñoso and Serradó, 2003). The methodological framework proposed is an 
inductive tendency to construct meanings, with a closed series of theoretical 

Working Group 5

CERME 4 (2005) 561



presentations and activities mainly designed by the teacher to evaluate primary 
students' intuitions, exploring randomness, the characteristics of probability, and 
theoretical generalizations.  The planned process could allow students to overcome 
their conceptual errors, fallacies, and paradoxes related to the comprehension of 
probability. 

In contraposition to this tendency, if the teacher believes that knowledge is obtained 
directly by experience, contact with ideas, and the phenomena of everyday life, then 
the teacher's tendency fits a spontaneous model. School-level knowledge is a 
flexible open product that arises from the necessities expressed by the students. 
Teachers included in this tendency think that knowledge is determined directly by 
observation, which acts externally without intervening with reality. The lack of 
verification and formalization of knowledge makes its discovery relative to each 
individual, and not collectively determined. 

This is an unsystematic organization of activities to explore the properties of random 
experiments, outcomes, and probabilities, using all kinds of available resources such 
as random number generators or computer simulations. This organization is planned 
in conjunction with students' expectations, but without considering their conceptions. 
This process can reinforce the use of heuristics and biases when students explain the 
meaning of probability. 

From this perspective, knowledge is relative to each individual of the scientific 
community, i.e., relative to the observer. Relativism is based on the principle that 
science is a social and historically conditioned activity. Science is not understood as 
existing in a closed system, both because of its multiple, tentative, and variable 
content, and because of its method, which is plural and dynamic (Faerna, 1997). 
From a constructivist perspective, knowledge can only be constructed by an aptitude 
for reflection, in which knowledge is itself observed and becomes a fact of 
knowledge (Morin, 1994). 

Morin's words translated to the school ambit mean that teacher and student search for 
the truth. Both are the subject and object of this search; both must observe and be 
observed; both criticize and are criticized. Teaching-and-learning is a social process 
of communication between actors — communication that causes the negotiation of 
meanings, and the progressive transfer of control and responsibility for the teaching 
and learning process to the students (Jorba, 1998). 

The aim of this model is to construct the meaning of chance, randomness, and the 
notion of probability. Students cooperate to solve problems related with natural and 
social random phenomena; while the teacher acts as a mediator helping students to 
plan and generalize the solution. In this process, students must overcome obstacles to 
solve the problems, in a process of knowledge reconstruction. 

The adoption of this theoretical proposal based on Professional Knowledge allows 
one to understand the relationships between the nature of science and the different 
tendencies in the teaching and learning process, from the perspective of teacher 
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intervention. Professional Knowledge is a system of ideas with different levels of 
particularization and articulation that is always under reorganization in an open and 
irreversible process. These different levels imply more information and another 
concept of the nature of science and pædagogical content that allows a progress 
hypothesis of Professional Knowledge to be introduced that gives meaning to the 
evolution of the models of intervention.  

This table presents a set of indicators of the categories with which to analyse the 
content of Spanish textbooks, and to draw conclusions regarding the tendencies in the 
nature of the underlying knowledge. 

Models Traditional Technological Spontaneous Investigative 

Aims Deduce 
calculation 
strategies  

Induce 
strategies to 
calculate 

Explore 
properties 

Construct 
notions 

Contents Random exp., 
outcome, 
Laplace rule 

Random exp., outcome, Laplace 
rule, frequency stability 

Phenomenon, 
chance, 
randomness, 
probability 

Method/ 
activities 

Linear 
explanations/ 
pen and paper 

Closed 
sequences  

Unsystematic 
organization / 
exploration 

Problem solving 
overcoming 
obstacles 

Context Random games Games, 
computer 
simulations 

Natural, social 
phenomenon 

 

3. Research Method 
Theoretical proposals establish tendencies in which determinism influences the aims, 
the contents, and the methods developed by teachers. Azcárate, Serradó and 
Cardeñoso (2004a) conclude that the textbooks provide the knowledge of probability, 
and the strategies that facilitate the planning and development of teaching. A first 
approach to the study of the influence of deterministic thinking on the teaching and 
learning process could be to make a content analysis of the textbooks. The inclusion 
of this influence in the study of the nature of pædagogical content and of the nature 
assigned to probability in Spanish Secondary Education textbooks (ages from 12 to 
16) only has meaning in an overall study of “the treatment of chance”.  

The samples used are the textbooks of four Spanish publishing houses: Bruño, 
Santillana, McGraw Hill, and Guadiel. The textbooks which comprise the curricular 
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project of each publishing house are those for the first, second, third, and fourth 
(option A and B) years. 

Previous work about the “the treatment of chance in textbooks” (Serradó, 2003) 
contributed information about the structure of the units (Serradó and Azcárate, 2003), 
the description of the probabilistic content (Azcárate, Cardeñoso and Serradó, 2003), 
and the obstacles to the construction of the knowledge of probability (Azcárate, 
Serradó and Cardeñoso, 2004). The methodological strategy used in order to clarify 
this nature is content analysis, referring to two levels — what is manifest or apparent, 
and what is latent or underlying. 

The latent content analysis can inform us about the underlying conceptions of the 
textbooks' authors, whos used their professional knowledge about probability in 
writing their textbooks. In order to develop this latent content analysis, the following 
theoretical proposal is necessary: that the teachers' epistemological conceptions 
influence their professional development in constructing their professional 
knowledge. 

4. Determinism in Textbooks 
In this communication, the results presented are those related to the influence of 
determinism on the introduction of randomness. Textbooks do not include any 
section presenting the meaning of randomness: they only include a brief explanation 
and activities related to random experiments. Focusing the investigation on random 
experiments, we developed this study at two levels. Firstly, the description of how 
this notion is included in the textbooks, and secondly, the analysis of the definitions, 
examples, and activities that are presented. 

In all the textbooks, there is a closed section that is found in the other textbooks of 
the same publishing with no real attempt at reorganization,  but simply rephrased 
with more or less similar words and examples. Also, it is closed because there is no 
relationship between this section and the others, such as probability. This is not an 
isolated fact. all the textbooks have a structure in which each concept is developed in 
a closed, independent section. 

All the books of the sample present the deterministic and random experiments in the 
same section. The Bruño and Guadiel textbooks present first the definition of a 
deterministic experiment and then the definition of a random experiment. McGraw 
Hill and Guadiel present these concepts in the opposite order. Perhaps this means that 
the comprehension of one concept must be complemented by the comprehension of 
the other. For example, Santillana (4ºA, pp. 264) defines a deterministic experiment 
as: “An experiment is deterministic if it is possible to predict the result”. And, in 
contraposition, a random experiment is defined as: “An experiment is random when it 
is impossible to predict the result”. 

These two definitions are antagonistic. The random experiment is defined as a 
negation of the deterministic one. Therefore, it makes sense to reflect as to whether 
the textbook is really presenting a definition of random experiment or if it is actually 
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defining a non-deterministic one. The conclusion is that textbooks make random and 
non-deterministic experiments isomorphic. 

The possibility of establishing this erroneous isomorphism lies in the use of the words 
“possible” and “impossible”. The word “possible” means the possibility of 
determining one of an infinity of results. And the word “impossible” means that no 
one of these infinite results can be predicted by theory. Both refer to uncertainty in 
determining this “possibility” and “impossibility” to explain this contingency with 
deterministic laws. It is in this contingency where Chance is present. Chance reflects 
the ignorance of the individual as a thinking observer of reality. This ignorance may 
be related to the impossibility of knowing exactly the initial conditions of the 
phenomenon under study (Wagensberg, 1998). 

The concept of Chance as ignorance can be found in such sentences as: “In daily life, 
we find many situations of uncertainty. In a football match between a first division 
team and another of the third division, the first division team will probably win, but 
we can not affirm that — we are not sure of it” (Santillana, 2º, pp. 254). 

As in the definition there is no reference to initial conditions or to the presence of 
Chance, the comprehension of the meaning of these random experiments is reduced 
to knowing what is not determined. To solve this problem, the Guadiel textbook (4º, 
pp. 232) defines random experiments by including the concept of chance: “Random 
experiments are the ones whose result depends on chance and can not be calculated 
previously”. Or the Bruño textbook (3º, pp. 266), which solves the problems 
introduced by the conditions of the experiment as: “We denote by random 
phenomena those phenomena which when occurring under the same conditions can 
have different results”. 

Only the books of the Bruño publishing house present the definition of random 
phenomenon. This word emphasises the existence of an external observer who knows 
both the initial conditions and the results. And he or she applies the laws of nature to 
determine whether the experiment is deterministic, from a deterministic point of 
view. The McGraw Hill books complement the definition of random experiment with 
some examples of random phenomena. 

“But it is not necessary to appeal to games to find random phenomena. So, for 
example, when a couple wants to have a baby they do not know in advance its sex: 
chance is responsible for joining the chromosomes…” (McGraw Hill, 2º pp. 249). 

 

The textbooks also include a series of exercises to help students understand the 
difference between these notions. The Bruño and Santillana textbooks include only 
pen and paper exercises to distinguish between deterministic and random 
experiments. For example: “Show which of the following experiments are random: 
(a) Mixing coffee and sugar, (b) casting two dice and noting down the sum, (c) 
playing cards, (d) tossing three coins and noting the results” (Santillana, 2º pp. 254). 
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The Guadiel and McGraw Hill textbooks also include exercises to observe the 
properties of random experiments: “Take a die and cast it 30 times, noting down the 
sides  that appear. Without casting it again, which side do you think is going to 
appear? Throw the die and observe what happens”. (McGraw Hill, 1º pp. 239). 

All the deterministic examples and activities presented in the textbooks refer to 
physical and chemical experiments. In order to determine if these experiments are 
deterministic or not, the students must know some laws of science. If a student is 
ignorant of one of these laws, he or she can confuse a random with a deterministic 
experiment. Most of the examples of random experiments are games of chance 
obtained with random number generators, such as dice or coins. The students 
determine that these experiments are random because the causes are unknown and a 
product of chance. Underlying this impossibility of predicting the causes there resides 
a deterministic principle. 

5. Conclusions  
In conclusion, the presentation of randomness in textbooks is influenced by 
deterministic principles, such as the reduction of its study to the introduction of 
random experiments. These random experiments are defined by contrasting them to 
deterministic ones. This definition introduces an erroneous isomorphism between 
random and non-deterministic experiments. Underlying this definition is a 
comprehension of uncertainty which gives epistemological meaning to the concept of 
chance. In order to decide whether an experiment is deterministic or random, the 
students must apply a law of nature l or conclude that they do not know the causes, 
both actions being influenced by a deterministic principle. 

Previous studies (Serradó and Azcárate, 2003) establish the existence of two 
tendencies in textbook structure. That of Bruño and Santillana belongsn to a 
traditional tendency with a linear, hierarchical, deductive style of presenting the 
theoretical content. Some application exercises complement this theoretical content. 
The students do not need to apply any resources to solve these exercises — they only 
need their pre-existing ideas about the experiment. The McGraw Hill and Guadiel 
textbooks present a closed structure of exploration activities, theoretical conclusions, 
and validation activities. These books correspond to a technological tendency. Their 
theoretical framework  suggests that the epistemological and ontological concepts of 
the authors of these two textbooks were influenced by deterministic principles. 
Furthermore, when teachers select one of these books to use in the classroom, they 
are expressing agreement with this structure. Perhaps they are not reflecting about the 
influence of determinism, but they are thinking about the coherence of the book with 
what they think must be taught and how, as determined by mathematics tradition 
(Azcárate, Serradó and Cardeñoso, 2004a). 

If we want teachers' conceptions about randomness to evolve, it will be necessary for 
them to overcome the constricting use of textbooks as their main source of 
information. And Spanish textbooks should include a widee variety of examples of 
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random experiments. Indeed, developing these examples would be an interesting 
research project. 

Appendix 
Bruño 3º: Miñano, A. and Ródenas, J.A.: 1998, Matemáticas 3º, Editorial Bruño, 
Madrid, Spain. 

Guadiel 4º: Fuster, M. and others: 1996, Matemáticas, 4 (B), Guadiel-Grupo Edebé, 
Sevilla, Spain. 

McGraw Hill 1º: Pancorbo, L and others: 1995, Matemáticas 1, McGraw-
Hill/Interamericana de España, Madrid, España. 

McGraw Hill 1º: Becerra, Mª. V. and others: 1996, Matemáticas 2, McGraw-
Hill/Interamericana de España, Madrid, España. 

Santillana 2º: Almodóvar, and others: 1999, Matemáticas. Curso 2º ESO, Grupo 
Santillana Ediciones, Madrid, España. 

Santillana 4º: Almodóvar, J.A., Gil, J. and Nortes, A.: 1998: Matemáticas Opción A. 
Curso 4º ESO, Grupo Santillana Ediciones, Madrid, España. 
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PROBLAB GOES TO SCHOOL: DESIGN, TEACHING, AND 
LEARNING OF PROBABILITY WITH MULTI-AGENT 

INTERACTIVE COMPUTER MODELS 
Dor Abrahamson, Northwestern University, Evanston, IL, USA 

Uri Wilensky, Northwestern University, Evanston, IL, USA 
 
Abstract: ProbLab, an experimental middle-school unit in probability and statistics, 
includes a suite of computer-based interactive models authored in NetLogo (Wilensky, 
1999). We explain the rationale of two of the models, Stochastic Patchwork and Sample 
Stalagmite, and their potential as learning supports, e.g., the temporal–spatial 
metaphor: sequences of stochastic events (occurring over time) are grouped as arrays 
(laid out in space) that afford proportional judgment. We present classroom episodes 
that demonstrate how the Law of Large Numbers (many samples) can be mapped onto 
the classroom social space (many students) as a means of facilitating discussion and 
data sharing and contextualizing the content. We conclude that it is effective to embed 
the Law of Large Social Numbers into designs for collaborative learning of probability 
and statistics. 

 

Introduction 
The mathematics domain of probability has been long regarded as challenging for 
students of all ages (von Mises, 1981, Hacking, 1975, 2001; Konold, 1994; Biehler, 
1995; Maher, Speiser, Friel, & Konold, 1998; Gigerenzer, 1998; Liu & Thompson, 
2002). At the Center for Connected Learning and Computer-Based Modeling at 
Northwestern University, we are creating software and computer-based activities to help 
students learn probability. Specifically, based on our previous research on students’ 
challenges in understanding probability (“Connected Probability,” Wilensky, 1993, 
1995, 1997), we have designed a group of curricular models in the domain of 
probability. Our interactive models are written in NetLogo (Wilensky, 1999) and 
incorporate interface features that allow students to run probability experiments under 
different parameter settings. A strength of NetLogo is that it affords simulating many 
random events concurrently because it uses parallel processing (it is ‘multi-agent’). 
Also, students can examine and even modify the code in which the models are 
programmed, partly because NetLogo code—its primitives and syntax—was specifically 
designed to be easier to read and learn as compared to other computer languages (see 
also Papert, 1980, on Logo). The NetLogo “models library” includes models from a 
range of scientific and mathematical domains. Some of these models are grouped around 
classroom curricular units. One of these groups is ProbLab (Abrahamson & Wilensky, 
2002). This paper introduces ProbLab, focusing primarily on “Stochastic Patchwork” 
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and “Sample Stalagmite,” two of several models currently in ProbLab.1 We present and 
analyze data from implementations in urban middle-school classrooms in which we 
investigated dimensions of collaborative activity design around essentially individual 
work with the simulations and vis-à-vis the specific content (for inherently collaborative 
designs, see, for example, S.A.M.P.L.E.R., Abrahamson & Wilensky, 2004). 

Computer Models as Learning Environments for the Domain of Probability 
We are committed to help students ground mathematical content in meaningful 
experiences (e.g., Wilensky, 1993, 1997; Freudenthal, 1986; Gigerenzer, 1998; 
Abrahamson, 2004), and our lesson plans encourage a social construction of 
knowledge in the classroom milieu (see Brousseau, 1997). In designing the ProbLab 
models, we have endeavored to make probability an approachable domain for 
middle- and high-school students. We submit that students’ biggest challenge with 
the domain of probability is not so much that the conceptual constructs per se are 
difficult but that the domain is difficult as seen through the lens of traditional 
mathematical representations. Specifically, probabilistic processes occur over time, 
and learners are challenged by the epistemological tension between, on the one hand, 
individual outcomes, e.g., this flipping of a coin or this sample of coin flips, and, on 
the other hand, phenomena as global events, e.g., the overall chance of the coin 
falling on ‘heads’ (Liu & Thompson, 2002; Hacking, 2001). In ProbLab, we are 
attempting to create models that allow students to move between and connect such 
individual (micro-) and global (macro-) outcomes (see also Abrahamson & Wilensky, 
2003; Papert, 1996). 

Stochastic Patchwork  
An important aspect of students’ connecting to the domain of probability through 
working in technology-based learning environments is that students ground in 
probability simulations the ideas inherent both in symbolical formats of the domain and 
in formulae for calculating and communicating findings from probability experiments. 
For instance, students should experience the meaning of a “.7” notation in probability 
distribution functions or experimental outcomes. One objective of this paper is to present 
and discuss a type of representation that may enhance students’ bridging between, on the 
one hand, simple probabilistic events, e.g., flipping coins, and, on the other hand, the 
corresponding formal representation, e.g., an overall “.7” chance of falling on ‘heads’ 
(for a biased coin). Specifically, these bridging representations may help students ground 
an understanding of probability—what it means to say that a probabilistic mechanism 
has a .7 chance of generating a favored event—in perceptual judgments of spatial 
proportion (Resnick, 1992), i.e. seeing that .7 of an outcome array is red (see Figure 1). 

                                                 
1 All ProbLab models are available for free download at http://ccl.northwestern.edu/ see also 
http://ccl.northwestern.edu/curriculum/ProbLab/ for more models, further discussion, and a complete 
list of our publications on design-based research, theory of learning, and equity. 
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Figure 1. ProbLab: Stochastic Patchwork. Parameters are set so each square in the 
graphics-window “mosaic” (total of 17^2 = 289 squares) has an independent .7 (or 70%) 
chance of being red on each trial. Therefore, on each trial, the mosaic has approximately 
.7 red squares, and after several hundred trials the histogram shows a normal distribution 

converging on .7. 
 

The ProbLab model Stochastic Patchwork (see Figure 1, above) is a bridging tool 
(Abrahamson, 2004) between time-based probabilistic events and space-based 
perceptual judgments. The probabilistic element in this model is a square “coin” that 
has a red “side” and a green “side.” Instead of flipping this single coin many times, 
we flip many clones of this coin all at once. The crux of this model is that if a single 
coin has a .7 chance of falling on red, then the aggregate of a sufficiently-large 
sample of these coins that flip all at once will approximate a .7 redness, i.e. most of 
the time about .7 of the squares will be red. The objective of students’ interacting 
with the model is that they understand how the model works and explore the effect of 
modifying parameter settings—the size of the population and/or the bias of the 
coin/square—on the sample space (size and appearance) and on the dynamics of the 
emerging distributions. 
Because the Stochastic Patchwork model simulates a probabilistic experiment, outcomes 
vary, yet after a sufficiently large number of successive iterations in the experiment the 
outcome distribution approximates a normal distribution converging on a .7 probability 
as the mean, as displayed in a histogram that is part of the model (see Figure 1, above). 
We have found that students as young as 10-years old working with ProbLab models 
interpreted experimental results using both enumeration-based strategies (counting red 
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and green squares in samples) and multiplicative strategies (inferring proportions in 
populations by eyeballing red/green ratios in samples). 

Sample Stalagmite 
The ProbLab model Sample Stalagmite helps students understand histograms of 
probabilistic outcome distributions by building the histograms from the outcomes 
themselves. The model simulates the random generation of blocks of red/green 
squares and their accumulation into columns according to the number of red squares 
in each, e.g., 0 red squares, 1 red square, 2 red squares, etc. Figure 2a, below, shows 
the entire combinatorial sample space of sixteen “4-blocks” (2-by-2 arrays of 
squares). Figure 2b, below, shows the partial combinatorial sample space of five-
hundred-and-twelve “9-blocks” (3-by-3 arrays of squares). The model’s name comes 
from the dynamics of the visualization: the blocks descend along the columns to 
build a structure resembling a stalagmite (see, in Figure 2b, below, the descending 9-
block marked by an ellipse). 

 
a.       b. 

Figure 2. The NetLogo ProbLab model Sample Stalagmite: two fragments from the 
graphics window in the model’s interface under different conditions of running the 

probabilistic experiment.  
Sample Stalagmite accompanies students’ combinatorial analysis of all possible 9-
blocks (see our publications on the combinations tower). In this model, 9-blocks are 
generated randomly. That is, at every run through the procedures, one of the 512 
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possible arrays pops up on top of the graphics window and falls down a histogram 
“chute” -- its corresponding column. For instance, if there are 2 red squares in the 
sample, the sample will fall down the ‘2’ column (see falling 9-block in the Figure 
2b, on the previous page). The model can be set either to keep duplicates or to reject 
them (in Figure 2 duplicates were rejected). So Sample Stalagmite takes the 
combinatorial space of the 9-blocks and re-positions it as a sample space. That is, 
each of the 512 arrays has the same chance (likelihood) of being generated on each 
trial. 
The histogramed combinatorial sample space is designed as a visualization bridge for 
students to ground a sense of the likelihood of an event in combinatorial analysis and 
proportional judgment. For instance (see Figure 2b), students, who are comparing the 
column with 9-blocks that have exactly 4 red squares with the column of 9-blocks 
that have exactly 3 red squares, literally see that the subgroup of 4-red is more 
numerous and taller -- it occupies more space within the histogram as compared to 
the subgroup of 3-red squares. This increased commonality is related directly to the 
fact that there are more possible 4-red combinations (126) as compared to 3-red 
combinations (84). Also, the shape of the stalagmite remains roughly the same 
whether we keep duplicates or reject them. This visual resemblance demonstrates that 
combinatorial analysis (theoretical probability) anticipates relative frequencies in 
empirical-probability experiments. 
 

 
Figure 3. Fragment from NetLogo ProbLab model Sample Stalagmite. 

As the simulation searches for all items of a sample space, an accompanying graph 
(see Figure 3, above) plots the number of discovered samples against the number of 
attempts. This graph invariably shapes out logarithmically. The graph is designed to 
support inquiry into advanced aspects of probability: Why is it that all searches for 
the combinatorial sample space of all 9-blocks invariably take on this shape?; Why 
does it take over 3000 trials to find 512 items?; Is this 6:1 ratio between trials and 
items significant?; Will this ratio repeat over experimental runs?: If not, why not?; 
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Will this ratio repeat for a sample space of size 16 (4-blocks)?; What other 
phenomena in the world might give rise to a graph of this shape?; How should we 
call this graph? These questions are nontrivial, especially when cast in terms of 
moving between agent and aggregate perspectives: If each specific combination is 
equally likely to be sampled on each turn, why is it that “the last ones are always left 
behind for so long?” 

Classroom Research 
For this particular study, we investigated a potential mapping between the 
distribution of experimental outcomes and the “distribution” of students in the 
classroom. The rationale is that just as a single student can take enough samples so 
that the shape of the outcome distribution stabilizes, so all students can each take 
fewer samples that do not stabilize unless all students pool their samples. 
Specifically, we explored whether such a students-to-samples mapping could be 
leveraged so as to stimulate inquiry-based classroom discussion. 
We chose a design-based research framework (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003) so as better to investigate student early knowledge and difficulty in 
the domain of probability and statistics as well as to develop classroom learning 
supports that embrace this early knowledge and address these difficulties. Through 
iterated studies that began with individual students and focus groups and continued 
with classroom implementations, we are progressively modifying our computer-
based models in response to feedback from students and teachers. Such collaboration 
between designers, programmers, researchers, students, and teachers, we find, is 
fruitful towards creating equitable and effective learning tools that may effect 
immediate changes in many students’ mathematical inclination and content 
knowledge. This report focuses on data from a single implementation along this 
design-research continuum. 
Twenty-six 8th-grade students in a highly diverse urban school participated in an 
implementation of ProbLab over two weeks (half the time spent in a computer lab). 
Each student worked on an individual computer. Students used printed activity guides 
that moved from structured introductions to student-initiated experiments, and they 
could also modify the underlying code of the model. The researchers–facilitators and 
teacher moved between students for on-the-fly interviews. Each lesson included a 
classroom discussion. Due to the limited number of available computers, we split the 
students into two groups. This inadvertent staggering of the implementation proved 
fortuitous in that it allowed us an extra round of improvements. We videotaped all 
lessons both with a roaming and a classroom-spanning camera. We selected and 
transcribed discussion episodes to investigate how best to support students’ making 
sense of their experiments as they move between their personal findings and 
classroom pooled findings. 
Results and Discussion 

Analysis of classroom discussion suggests that students are intrigued and 
stimulated by their interaction with the models. Following, we present two data 
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examples. In both examples, students discuss with a facilitator outcomes from a 
probability experiment in Sample Stalagmite. The sampling of red or green squares 
had been framed as a “competition” between the two colors. Students had been asked 
to set the probability of red at 50%, to run the model ten times, and report their 
findings in terms of the ratio of red and green “wins.” In the first example, the 
facilitator is working only with two students, and in the second example the entire 
classroom is discussing their results. Note that, whereas in the first example (two 
students) students must conjecture as to the outcomes of large numbers of trials, in 
the second example (classroom) students’ pooled outcomes allow for a cogent 
empirical finding.  
Data Example #1: “On-the-fly” interview between a facilitator and two students. 

Reuven (researcher): What’s happening here? 
Student1: …more green than blue. I think the green is going to win.  
R: What’s the chance that green will win? 
Student1: 50–50. 
R: Right. Is it possible that you do this experiment 100 times and green will 

win every time? 
Student1: If it’s like once every f… 
R: …if it’s 50–50. Let’s say the probability is 50%. Is it possible for the green 

to win every time? 
Students1+2: No. I don’t think it is. 
R: Would it be possible for green to win if you do it…once? 
Student1: Yes. 
R: Would it be possible for green to win if you do it twice? 
Student1: Yes. 
R: Would it be possible for green to win five times? 
Student1: No. 
R: Wait, so what about 3 or 4? Where’s the cutoff?  
Student1: It’s rare. 
R: Aha! It’s rare, ok. But if I were to flip a coin a 1000 times, is it possible that 

it will always come out ‘heads’? 
Student1: Yeah. 
Student2: It will be like a miracle. 
R: It will be like a miracle, but is it possible? 
Student2: No. 
Student1: Yes it is! 
R: Why is it not possible? 
Student1: Because it’s a 50–50 chance. 
Student2: Well, maybe if you do it 1000 that will be your ‘50,’ and then if you 

do it another thousand, that will be your other 50. [Both laugh] 
Data Example #2: In a classroom summary discussion, Toby had been remonstrating 
that “there’s something wrong with the computer.” 
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Toby: The probability is 50–50 [in the setting of the model], so they [the 
red/green outcomes] should be really close to each other, as in like it would 
be 4 red and 6 greens. But that’s not we had—we had like 2 red and 8 
greens. So they were pretty far away from each other. 

Dor (researcher): That is pretty far away. Were you having this all the time? 
Toby: Yeah, the greens kept on winning. 
Mogu: [He had worked closely with Toby] Most of the time. 
Dor: [addressing classroom] Hands up whoever had the greens winning most 

of the time. [about half of the class] Ok, now hands up whoever had the 
reds winning. [the other half of the class] Does that make sense? 

Toby: Yeah. [Dor proceeds to elicit outcomes and plot them as a distribution] 
Thus, classroom discussions allowed students to share unanticipated findings from 
their individual experiments and re-interpret and reconcile these findings through the 
lens of classroom sample distributions. We concluded that probability-related 
simulation-based classroom activities can be designed so as to leverage and explore 
the randomness that is intrinsic to the content through collaborative discussion-based 
inquiry. When students each take a limited number of random samples, they are 
stimulated by their individual “wrong” outcomes to compare and compile their 
results as a cross-student sample-mean distribution. We have named the 
contextualization of the central-limit theorem in collaborative inquiry “The Law of 
Large Social Numbers.” 
A promising finding is that many students appeared eager to modify the computer 
procedures. These students wished to individualize the appearance of their 
experimental environment. In particular, the students wanted to change the colors of 
objects on the screen. In terms of programming, this may appear as a small step, yet 
we believe that the act of “looking under the hood” is critical—it constitutes an easy 
entrance activity that allays any student apprehension of programming and creates 
personal precedents and a strong sense of appropriation and accomplishment. 
In future studies, we will focus on: (a) understanding the conditions that best support 
students in linking concrete and computer-based objects; (b) the affect of printed 
activity guides in terms of creating shared classroom understandings and vocabulary, 
stimulating explorative inquiry, and facilitating opportunities for teacher attention to 
individual students; (c) whether more students with little if any programming 
experience could be drawn to modifying the computer procedures underlying the 
models and how such work may inform their content  learning; and (d) developing a 
more comprehensive articulation of student understanding of the interplay of 
determinism (the settings of the computer model) and randomness (the specific 
outcomes) and how this interplay informs student cognition of the central limit 
theorem. 

 

*Acknowledgement: The design research described in this paper was supported in 
part by the National Science Foundation under Grant No. REC-0126227. The 

Working Group 5

CERME 4 (2005) 577



 

opinions expressed in this paper are those of the authors and do not necessarily reflect 
the views of NSF. 
 
References: 
Abrahamson, D. (2004). Keeping meaning in proportion: The multiplication table as 

a case of pedagogical bridging tools. Unpublished doctoral dissertation, 
Northwestern University, Evanston, IL. 

Abrahamson, D. & Wilensky, U. (2002). ProbLab. The Center for Connected 
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 
http://ccl.northwestern.edu/curriculum/ProbLab/  

Abrahamson, D. & Wilensky, U. (2003). The quest of the bell curve: A 
constructionist approach to learning statistics through designing computer-based 
probability experiments. Proceedings of the Third Conference of the European 
Society for Research in Mathematics Education, Bellaria, Italy, Feb. 28 – March 
3, 2003. http://ccl.northwestern.edu/cm/papers/bellcurve/ 

Abrahamson, D. & Wilensky, U. (2004). S.A.M.P.L.E.R.: Collaborative interactive 
computer-based statistics learning environment. Proceedings of the 10th 
International Congress on Mathematical Education, Copenhagen, July 4 – 11, 
2004. http://ccl.northwestern.edu/papers/Abrahamson_Wilensky_ICME10.pdf 

Biehler, R. (1995). Probabilistic thinking, statistical reasoning, and the search of 
causes. Newsletter of the international study group for research on learning 
probability and statistics, 8(1). (Accessed December 12, 2002). 
http://seamonkey.ed.asu.edu/~behrens/teach/intstdgrp.probstat.jan95.html 

Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, 
M. Cooper, R. Sutherland, & V. Warfield, Eds. & Trans.). Boston: Kluwer 
Academic Publishers. 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design 
experiments in educational research. Educational Researcher 32(1), 9 – 13. 

Freudenthal, H. (1983). Didactical phenomenology of mathematical structure. 
Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Gigerenzer, G. (1998). Ecological intelligence: An adaptation for frequencies. In D. 
D. Cummins & C. Allen (Eds.), The evolution of mind (pp. 9 – 29). Oxford: 
Oxford University Press. 

Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University 
Press. 

Hacking, I. (2001). An introduction to probability and inductive logic. Cambridge, 
UK: Cambridge Press. 

Konold, C. (1994). Understanding probability and statistical inference through 
resampling. In L. Brunelli & G. Cicchitelli (Eds.), Proceedings of the First 

Working Group 5

578 CERME 4 (2005)



 

Scientific Meeting of the International Association for Statistical Education (pp. 
199 – 211). Perugia, Italy: Università di Perugia. 

Liu, Y., & Thompson, P. (2002). Randomness: Rethinking the foundation of 
probability. In D. Mewborn, P. Sztajn, E. White, H. Wiegel, R. Bryant, and K. 
Nooney (Eds.), Proceedings of the Twenty Fourth Annual Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education, Athens, GA, October 26-29, 2002: Vol. 3 (pp. 1331–1334). Columbus, 
OH: Eric Clearinghouse for Science, Mathematics, and Environmental Education. 

Maher, C.A., Speiser, R., Friel, S., & Konold, C. (1998). Learning to reason 
probabilistically. Proceedings of the twentieth annual conference of the North 
American group for the Psychology of Mathematics Education  (pp. 82 – 87). 
Raleigh, NC. 

Papert, S. (1980). Mindstorms. NY: Basic Books. 

Papert, S. (1996). An exploration in the space of mathematics educations. 
International Journal of Computers for Mathematical Learning, 1(1), 95 –123. 

Resnick, L. B. (1992). From protoquantities to operators: Building mathematical 
competence on a foundation of everyday knowledge. In G. Leinhardt, R. Putnam 
& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 373 
– 429). Hillsdale, NJ: Lawrence Erlbaum. 

von Mises, R. (1981). Probability, statistics, and truth (J. Neyman, D. Scholl, & R. 
Rabinowitsch, Trans.). Dover Publications. (Original work published in 1928). 

Wilensky, U. (1993). Connected mathematics—Building concrete relationships with 
mathematical knowledge. Doctoral thesis, M.I.T. 

Wilensky, U. (1995). Paradox, programming and learning probability. Journal of 
Mathematical Behavior. 14(2), 231 – 280. 

Wilensky, U. (1997). What is normal anyway?: Therapy for epistemological anxiety. 
Educational Studies in Mathematics 33(2) 171 – 202. 

Wilensky, U. (1999). NetLogo. Evanston, IL. Center for Connected Learning and  
Computer Based Modeling, Northwestern University. ccl.northwestern.edu/netlogo. 
 

Working Group 5

CERME 4 (2005) 579



STRENGTHS AND WEAKNESSES IN STUDENTS’ PROJECT 
WORK IN EXPLORATORY DATA ANALYSIS 

  
Rolf Biehler,   University of Kassel, Germany 

 
 

Abstract:  The paper will point out features and shortcomings of about 60 project reports 
students (future teachers) submitted in a course on “Elementary Stochastics”. Find-
ings from analysing first generation reports were used for developing a “project 
guide”. The analysis of the second generation reports points to further requirements 
for guiding students and for assessing their work. 

1. Introduction 
Project work as part of the assessment in a statistics course is an opportunity for 
students to develop and document their statistical thinking (Wild & Pfannkuch, 
1999). Projects are often suggested as part of school curricula in statistics. However, 
how can teachers organize and assess project work if they have never done project 
work in statistical data analysis themselves? 

Mathematics teacher education at universities in Germany consists of three 
strands: mathematics, mathematics education, and pedagogy. Mathematics and 
mathematics education are taught in different courses but ideally their contents are 
related. At the University of Kassel, a course “Elementary Stochastics” is compulsory 
for primary and secondary teachers. The semester long course comprises 4 hours lec-
ture and 2 hours laboratory work per week. The students can take the course with and 
without examination. The number of students choosing the examination option varies 
from 30 to 50 per semester. It is the only course on stochastics for these students. In 
addition, they can take a seminar on the didactics of stochastics. Since the year 2001, 
I restructured the course giving more emphasis on exploring data, modelling, and 
simulation (Biehler, 2003). The software Fathom has been used as a student tool for 
data analysis and stochastic simulation. Since 2002, the students are required to sub-
mit a project report as part of the assessment in the course. This has to be an individ-
ual work but they are encouraged to discuss with classmates. This type of require-
ment is unique in our mathematics department and the students have not many ex-
periences in writing such reports. 

As data base to be used in the projects we used a complex data set with 540 
cases and about 50 variables that is based on a questionnaire concerning media use 
and leisure time of 540 11grade high school students: the so-called Muffins data (for 
details, see Biehler, 2003). The data are so rich that more than hundred different pro-
ject themes have been done with this single data set. We give examples later. 

The Muffins data had also been used during the course. We require the students 
to submit a “topic for investigation” related to this data set. The topic has to include 

580 CERME 4 (2005)



 

several subquestions that can presumably be (partially) answered by means of analys-
ing the Muffins data set. Essentially the statistical methods to be used are measures of 
centre and spread, box plots, histograms and bar charts, and scatter plots. The analy-
sis and display of distributions was required as well as a statistical group compari-
sons. We have not covered methods of analysing the relationship of two quantitative 
variables in the last two courses. However, students can work on this by reducing the 
problem to comparing distributions of a second variable for different levels of a first 
explanatory variable. They recode the first numeric variable into several categories 
such as very low, low, medium, high, and very high or use a separation into four 
equal-sized groups according to the quartiles. Students’ can compare the distributions 
of the second numeric variable for the 4 or 5 levels of the recoded first variable. 

In the first generation, the students were prepared for the project work by the fol-
lowing components. They had got homework assignments with smaller data analysis 
tasks, the lecture and the laboratory sessions included longer examples of data analy-
sis, which were orally presented and discussed. The students were then asked to do an 
analysis, write a report, and submit a first draft of their project report. We gave de-
tailed feed-back on the first draft and required them to submit a second final report. 
From an analysis of the short-comings of the first generation final reports, we devel-
oped and handed out a guideline for doing statistical projects and for report writing, 
briefly called the project guide. Equipped with this improved material, students of the 
second generation had to submit only one report that counted as the final one. The 
length of the reports should be 8 pages of text plus graphs and tables. 

The second generation reports were analyzed in a master thesis and selectively 
compared to the first generation reports(Heckl, 2004). As a result new recommenda-
tions and tools for writing project reports will be developed for a third generation. We 
got 30 first generation reports and 33 second generation reports. A project could in-
volve one or two students. Currently, 50 third generation reports are in the process of 
being assessed. 

2. Topics and questions from the students’ projects 
The following titles are examples of students “topics for investigation”:  
 

1) “The relation between body mass index and use of TV” 
2) “The influence of having a job on leisure-time activities” 
3) “Sex differences in sleeping times of females and males” 
4) “Computer use and homework“ 
5) “Reading“ 
6) “Jobbing“ 
7) “Sports Club“ 
8) “Newspaper reading” 
9) “Shopping and strolling through towns“ 
10) “Sex differences in leisure time activities” 
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Sometimes the title itself contains already a “research question” such as in the 
first three ones. Many titles, however, just contain a “research domain”. Students 
structure such a “research domain” in very different ways. For instance, one student 
broke “Jobbing” (6) into the following partial questions: How many hours do stu-
dents work for a job? What is the influence of jobbing on living in affluence of the 
students? (Are women disadvantaged? Do students finance expensive devices and 
equipment by themselves? Is jobbing done for ‘la dolce vita’?) Where do jobbing 
students get the time for jobbing from? (Less helping at home? Do they do less 
homework with the result and worse grades? What about sleeping time and time for 
music and sports?). This is an excellent example where a question was developed 
from an authentic subject matter motivation and interest. The richness of the data set 
allowed different paths through the same topic. For example, the student who chose 
project (2) discussed for instance, how jobbing affected leisure-time activities that 
cost money. The data included two variables on the frequency of going into discos 
and into pubs respectively. Differences in the distribution of these variables between 
those who had a job and those who don’t were analyzed. But no information was 
available on how much money the students had at their disposal and how they spend 
it. This limitation of the data was critically reflected when the student summarized 
her findings. 

We consider these two as good examples. At the other extreme, the student who 
took “Newspaper reading”(8) just made 8 group comparisons of males and females 
with regard to the eight variables that are part of the data set and correspond to inter-
est in different columns of a newspaper (politics, local news, sports etc.). This is an 
example of a project type where students just picked out a subset of variables on 
which they schematically did group comparisons. Subject matter aspects are not ex-
cluded but were not the driving force and were treated superficially.  

3. Structure of report writing and statistical thinking 
Wild and Pfannkuch (1999) developed a process model for statistical thinking. 

Their general framework is the PPDAC cycle: problem →plan → data → analysis → 
conclusions. The authors have refined this framework in various ways. This frame-
work is helpful for structuring the process of data analysis as well as for structuring a 
project report. The projects our students had to do differ in one important aspect from 
the usual PPDAC cycle: The Muffins data were already given. Instead of planning 
the collection of new data that fit to the question, students were asked to select from 
the available variables to fit their questions and - if applicable - to point out in which 
sense the available data were not sufficient or adequate for answering their questions. 

We suggested that students structure their report into 3 parts: (1) Introduction (2) 
Analysis (3) Summary and Conclusions. 

The (1) Introduction is to describe the development from problem to plan of 
analysis including the selection of variables. The students were required to formulate 
hypotheses and qualitative expectations. The (2) Analysis should not only present re-
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sults but also let the reader participate in the process of interactive data analysis. Here 
we follow the recommendation of Wolf (1989) that a report especially in EDA should 
contain possible hypotheses, alternative analyses and alternative conclusions accord-
ing to a principle of disclosure and transparency that is important for such a type of 
exploratory analysis. A justification of results cannot be completely separated from 
the process how they were gained. In this sense our students were encouraged to re-
port on discoveries they had not expected and on ideas they came across during the 
process of analysis. This does not mean that they should present a protocol of the se-
quence of their actions but already something that was filtered through a process of 
data synthesis. The (3) Summary and Conclusions should contain a more concise 
summary of the most important findings. 

Both generations of project reports we got had severe limitations with regard to 
introduction and summary. There were extreme cases without any introduction and 
summary. For instance, a student chose the topic “What is the difference between 
males and females with regard to time watching TV”. In the data set there were about 
5 variables related to TV. The student chose one after the other and did a group com-
parison between males and females for all 5 variables and ended with the last com-
parison without any synthesis of findings. In the “project guide” we pointed out how 
important an introduction is for attracting a reader and for elaborating a question. We 
got improved results in the second generation. Whereas 83% of the first generation 
reports contained an introduction, it was a full 100% in the second generation. Also 
the quality of the introductions improved as the following table is pointing out. 

 
 First genera-

tion 
Second genera-
tion 

Proportion of reports with an introduction, 
where… 

%  % 

topic is explained and discussed  28 55 
selection of variables and research plan are pre-
sented 

32 76 

 
Table 1 Features of introductions of the reports 

Nevertheless, we do not think that we have yet reached a satisfactory level of 
quality. 

Writing a summary was also a problem for our students. I call the two extremes 
of summaries we got “the journalist summary” and “everything is repeated sum-
mary”. In the first extreme only qualitative results were reported such as “girls tend to 
help more with the housework than boys do”. At the other extreme students just re-
peated all details of all graphs without daring to select and summarize most important 
information. 

Our analysis underlined that report writing as such introduced a lot of new re-
quirements from our students that are different from the competence needed for doing 
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statistical data analysis. Jambu (1991) coined the term “data synthesis” for the proc-
ess, where the results of an exploration have to be ordered, compared, assessed ac-
cording to importance, refined and presented to a potential audience in a convincing 
way. Data synthesis involves preparing an act of communication that may need spe-
cific means of communication, such as graphs and convincing arguments that antici-
pate possible criticism. This partly corresponds to the last step of Wild & 
Pfannkuch’s PPDAC cycle: Drawing conclusions. 

Being able to concentration on the most essential and a good “style” of presenta-
tion is important but on the other hand the meagre contents of journalist summaries 
have to be avoided. 

4. Weaknesses in students’ project reports and recommendations for 
improvements 

The guide for doing projects in the second generation was set up after we had 
analyzed the first generation of reports (Heckl, 2004). Our “project guide” contains 
the following “attention topics (1) Graphs and Tables (2) Interactive and experimen-
tal working style, group comparison, style of writing. The following aspects were 
listed under “1 Graphs and Tables” 
 

1) Setting up multiple graphs: use same scales, use adequate juxtapositions of 
graphs, number graphs for referencing in the text, do not add too many sum-
mary values in a graph, use numerical summary tables in parallel to graphs); 

2) Reading off information from the box plot: checking whether outliers in the box 
plot may be just indications of long tails or whether there are specific causes, 
check for exact relative frequencies (middle box has only approximately 50% 
of the data points), use the concept of density for describing structure in box 
plots); 

3) Histograms: use relative frequency for group comparisons, be aware that inter-
vals are open at the right end, and choose one or more reasonable bin widths 
for class intervals); 

4) Percentile plot: compare to other distribution displays and look for specificities 
that can be seen in this plot; in comparison of distributions: check whether a 
statistical variable is generally statistically larger than a second variable). 

5) Group comparisons of two categorical variables: choice of adequate bar charts 
with proportions relative to the subgroups not to the whole group, more ade-
quate summaries than just comparing bar by bar); 

6) Multiple graphs: Awareness of the relative strengths and weaknesses of the 
available graphs such as the histogram, the box plot, and the percentile plot. 

Under the heading of “2 Working style etc.”, the following problems are dis-
cussed: How to formulate a statistical problem and to plan an analysis, how to write 
an interesting introduction, how to choose better summary statistics for better com-
munication, how to work interactively (being inspired from one analysis and then go-

Working Group 5

584 CERME 4 (2005)



 

ing a step further and raise new questions), comparison of groups, distinguishing de-
scription and interpretation, avoid misinterpretations such as too easy causal explana-
tions instead of just distribution differences, synthesis of results, understandable writ-
ing. 

Whereas the problems related to graphs and tables (1, above) did largely im-
prove in the second generation of reports, the problems related to working style (2, 
above) largely remained. Although the written guide was relatively short other parts 
of the course discussed these problems and took into account the results we have re-
ported on elsewhere (Biehler, 1997, 2001). 

From the analysis of the second generation reports by Heckl (2004) the follow-
ing recommendations can be made. 

(1) Students need to study a prototypical project report, where the underlying 
general aspects of the concrete report are made explicit. We think that a two column 
presentation is valuable, one column with the text of the report and a second column 
with comments that point out for which general principle the current text is an exam-
ple. We had also put good students’ reports from an earlier generation on the web, but 
many students seem not to grasp intuitively the quality features of such reports. 

(2) We think of “analysis of a single distribution” and “group comparison” as in-
tegrated and networked competencies. Students find the integration of the individual 
graphs and methods into a cognitive competence module difficult. A detailed guid-
ance and prototype for each of these two basic competence modules is necessary, 
containing check lists and hints how to relate graphs etc. 

(3) Summary and introduction writing should be guided by showing a variety of 
solutions for these parts of the report in order to communicate a “feeling” of quality. 
Formal elements of writing a scientific report (on whatever subject) are often not fa-
miliar. 

(4) Limitations of data analysis and the risk of haphazard conclusions should be 
pointed out. Carefully weighing and presenting evidence is a virtue of a data analyst 
that has to be cultivated. On the other hand an exploratory spirit and attitude in col-
lecting or selecting data and in interactive data analysis has also to be cultivated. Stu-
dents have to be made aware of the need of this role change. 

Students differ largely with regard to this latter problem area and it is most un-
clear, how we can get improvements in this respect. 

5. A prototypical module: Analysis of statistical distributions 
In this section, I try to give very concrete details with regard to the competence 

module “analysis of one distribution” we have in mind. 
From the project reports we learned that even analysing univariate data was 

more difficult for students than we expected. Of course, all students can produce the 
standard displays such as histograms and box plots and rephrase what can be easily 
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seen in these displays, but this is not very satisfactory. We have still to clarify what 
we should consider as good or excellent analyses of univariate data and how we can 
grade students’ written interpretations. 

Let us take the variable Time_Homework from the Muffins data set as an exam-
ple: The 11graders (16 or 17 years old students) had to tell how many hours per week 
they devote to doing homework. What are components of student competencies in 
this context? 

We can pose very closed questions such as: What is the mean? What is the pro-
portion of students working more than x hours per week? From the perspective of 
EDA we would ask: How are the values distributed? And we would have some ex-
pectations and should be open to unexpected behaviour of the data. 

 

(A)”Estimating” a distribution 
This means developing expectations about the distribution of a variable by 

means of using context knowledge. For instance, we could reason as follows:  
(a) 0.5 up to 2 hours on average for each of the five workdays seems to a reasonable range for 

doing homework. This means that most of the data will vary between 2.5 and 10 hours per week. I 
expect a small proportion outside this interval. Maybe 5% less than 2.5 and maybe 10% more than 
10 hours (I know that there is always a subgroup of hard-working students. An average or a typical 
value is difficult to estimate, if it is 1.5 hours per day, then we get 7.5 as a mean for the whole 
week.  

(b) I expect the distribution to be skewed to the right (from knowledge of other leisure time 
variables), and I expect popular values at multiples of 5 because student tend to round to the nearest 
5. 

Whereas the aspects listed under (a) refer to context knowledge, (b) shows the 
statistical expert who uses analogies to other statistical variables for developing ex-
pectations. Estimating a distribution activates context knowledge and sets an expecta-
tion, a perspective from which the data are seen and to which actual data can be com-
pared. With a context-based expectation an external reference point is created that 
may help students interpret their findings. 

 (B) Combining information from various distribution graphs 
The tools students had at their disposal are the following graphs: histogram (with 

adaptable bin width), dot plot, box plot, percentile plot. It was possible to enhance 
graphs by statistical summary values that are definable by the formula editor of 
Fathom, such as median and mean. Statistical (summary) values can also be dis-
played in a summary table. I try illustrating what we recommend by a detailed proto-
typical example. 

(1) Use basic displays.  
a) Use the box plot and the default histogram as a starting point; use the 

same axes and arrange the 2 graphs exactly vertically in order to improve 
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comparisons; add a summary table with the values of the box plot and the 
“count” of the variable, which shows the number of non-missing values 
for this variable. 

b) Check differences and commonalities between box plot and histogram: Do 
they indicate the same type of distribution (symmetrical, skewed)? Is the 
density information in the box plot and the histogram compatible with 
each other? Does the histogram add further structure such as bimodality or 
popular values? How do box plot outliers show up in the histogram? 

c) Add the mean to the summary table and if useful also to the plots and try 
to explain large differences between median and mean from properties of 
the distribution 

(2) Refining frequency information beyond standard displays. If the data contain 
ties or the sample size is not very large: Check how well the overall frequency infor-
mation of the box plot is true (should always be approximately 25%). Use more fine-
graded histograms and percentile plots and check whether they reveal more interest-
ing structure to you.  

(3) Expected and unexpected features. Compare the results to your initial expec-
tations. What did you expect, what is unexpected? Do additional analyses according 
to your expectations if necessary (For instance calculate the proportions of those with 
homework above 10 hours that you expected to be about 10% before starting the data 
analysis). Are there unexpected interesting features in the distribution that deserve 
further study? If possible try to find out more about subgroups and specific causes 
that might have influenced the variable displayed in the histogram. 

(4) Summary and interpretation.  
a) Select those distributional aspects that you find most important. Do you 

think that communicating selected frequency information is important? 
Will a recoding of the data into 3 or 4 categories give interesting informa-
tion?  

b) Relate your results to external reference information. Try to give a deep 
contextual interpretation of the results. You must not just rephrase results 
by using words from the context. 

The result of (1a) is shown in Fig. 1. Matching the axes and exact juxtaposition 
was missing in many first and second generation reports. Students also often tried to 
estimate the summary values from the display, or to get the numerical values from 
plotting all the summary values into one display hereby making it overcrowded. (1b): 
box plot and histogram show a distribution skewed to the right. The density informa-
tion in both displays is compatible. The histogram shows some bimodality with a 
peak in the interval [10,12). Whether the bimodality is an artefact of the data collec-
tion or of this specific data display or an indication of two discernable subgroups 
could be something for further investigations. The outliers show up similarly in both 
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displays. The outlying values seem to indicate a long tail rather then being largely 
separated from the other data. 

 

 
Fig. 1 Graphs from a distribution analysis using Fathom 

(1c) The mean is 1 hour higher than the median. This corresponds well to the 
graphical skewness we can notice. 

(2) Fine-grained histogram, histograms with different starting values and percen-
tile plot do not provide more interesting structure (the plots are omitted here). We 
exemplarily check the box plot frequencies and get 61 % for the “middle half” (the 
grey box including the border points). In Fathom we can use a specific formula or a 
formula with placeholders. The latter will always display correct frequencies when 
we change the variable in the summary table. 

 
Summary TableMuffins

Time_Homework 0.60787992
0.60787992

S1 = 
Time_Homework Time_Homework( )Q3≤ Time_Homework Time_Homework( )Q1≥and( )count

Time_Homework( )count

S2 = 
? ( )Q3≤ ? ( )Q1≥and( )count

( )count
 

Fig. 2 Additional frequency information about (data as in Fig. 1) 
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This recommendation was introduced because students tend to “translate” the 
statement: The quartiles are 3 and 8 into “the middle 50% of the values are lying be-
tween 3 and 8.” 

(3) Compared to our expectation the centre is lower, there are even students who 
do no homework at all, but also see a much larger upward tail than was expected, 
with values up to 20. The percentage of those who work less than 2.5 hours is 14.4% 
that is much more than expected, but we see from the graphs that many work 2 hours, 
and the percentage for less than 2 hours per week is 7%. 8.5% of the students do 
work more than 10 hours. 

 (4a,b) In addition to the box plot the following categorization can be intelligible. 
Very low (less than 2.5), medium low ([2.5, 5]), medium ((5,10]), high (above 10). 
This is related to an external frame of reference (How much per day on average) and 
this categorization gives the above result. Due to the unequal bin widths, the shape of 
the distribution changed.  
 
 

0.10

0.20

0.30

0.40

Time_HW
highlow mediummedium low

( )proportion

Muffins Bar Chart

 
 

Fig. 3 Additional display for the frequency information (data as in Fig. 1) 
 

6. Summary and future plans 
Our work on analysing students’ projects, developing a new project guide, and 

developing an assessment scheme is still in progress. I showed some details and ex-
amples in this paper. A very complex module is the module on group comparison that 
will be discussed elsewhere. Moreover, style of interpretation and of relating the con-
text to the statistical question is highly variable between the students. Another aspect 
is the formal structure, the sequence of questions in a report. In a next step, we will 
try to develop a representation for this aspect. We plan to do a more complete analy-
sis by means of using the software atlas-ti, which will help us to categorize parts of 
the project reports and make more easy comparisons between them. 
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Istituto per le Tecnologie Didattiche- CNR di Genova 
 

Abstract 
This paper reports on a long term experiment concerning the introduction of 7

th
 grade pupils to the 

concept of randomness. Pupils are involved in activities with Lego robots, and in the joint 

enterprise of writing an Encyclopaedia. The main lines of the experiment are provided, together 

with experimental data, highlighting how some specific elements of the chosen educational 

approach influenced the evolution of pupils’ mastery of the concept of randomness. 

1. Introduction 

The research we are presenting has been developed in the framework of the Weblabs
1
 

project, which focuses on “new ways of representing and expressing mathematical 

and scientific knowledge in european communities of young learners”. The teams 

involved in the project focused on a variety of scientific concepts, developing and 

testing specific educational approaches based on ad hoc designed technological tools; 

in particular, our team focused on the concept of “randomness”.  

The tools used are based on the programming environment ToonTalk (Kahn 2004), 

and on a computer supported collaborative environment. Moreover, our team was in 

charge of designing and testing Lego RCX robots, interpreted as advanced 

technological artefacts embedding knowledge concerning randomness. In a sense, a 

key assumption is that technological artefacts, such as Lego robots and ToonTalk 

programs, can be considered as reifications of randomness-related concepts.  

In this paper we focus, and discuss, on two main findings concerning the influence of 

the educational approach employed by us on how pupils learnt about randomness. 

The first one regards the students’ capability to substitute each different random 

generator in a given physical device; the second one concerns the students’ capability 

to differentiate random from not-random sub-elements in a system. 

2. Theoretical framework 

What is randomness? What is a random phenomenon? Given a phenomenon how can 

we judge if it is random or not? 

These questions are still open, in the sense that there is not yet a universally accepted 

definition of randomness. In fact mathematical probability is a quite recent subject, 

and historians chose 1654 as a convenient landmark for its birth, due to the contents 

of the correspondence of Pascal and Fermat regarding games of chance  (Volchan, 

2002). Furthermore its first universally accepted axiomatisation was proposed by 

Kolmogorov in 1933. Humans have however been coping with randomness for 

thousands of years, for instance in games of chance, thus it is only its mathematical 

formalizations that are relatively new. The peculiarity of mathematical formalizations 

of randomness is that they are based either on common sense, or on key ideas derived 

                                                 
1
 We acknowledge the support European Union. Grant IST-2001-32200, for the project “WebLabs: 

new representational infrastructures for e-learning” (see http://www.weblabs.eu.com/). 
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from various scientific contexts. In fact we can find interpretations, and related 

attempts at formalizations, of the word random as: unpredictable, lawless, 

incomputable, uncompressible, not deterministic, etc. Any of such characterisation 

can be ascribed to the idea of randomness, and contributed to define its key aspects, 

as shown by the historical evolution of the definitions of randomness.  

According to this brief historical sketch, it is not surprising that the learning of the 

concept of randomness (and the related concept of probability) may be difficult, as 

witnessed by related research literature (Pratt 1998, Wilensky 1993, and Truran 

2001). In particular we may focus on the following key educational issues. 

Issue 1. A variety of meanings derived from a variety of experiences  

The learning of the concept of randomness may be hindered by contrasting views 

derived from different experiences or from socio-cultural biases. Actually Nisbett 

(1983) points out the sensitivity of children’s response to the situation, and Pratt 

remarks that “at a low grain size, we see notions of randomness as disconnected 

pieces of knowledge, with different resources generated by changes in settings” 

(Pratt, 1998). This suggests a need of reflecting on different experiences in order to 

connect them and build an integrated idea of randomness. 

Issue 2. Too much emphasis on determinism can be counter productive in schools  

Fischbein’s research highlighted how school’s emphasis on causality and 

determinism may have a counter productive result (Fischbein 1975, p.73):  

“This is why the intuition of chance remains outside of intellectual development, 

and does not benefit sufficiently from the development of operational schemas of 

thought, which instead are harnessed solely to the services of deductive 

reasoning”. 

In other words, we can argue that there is a need to put emphasis on indeterminism 

and randomness, in order to develop intuitions of chance. Moreover, Fischbein 

suggests: “in order to create new correct probabilistic intuitions the learner must be 

actively involved in a process of performing chance experiments, of guessing 

outcomes and evaluating chances, of confronting individual and mass results, a priori 

calculated predictions, etc. New correct and powerful probabilistic intuitions cannot 

be produced by merely practicing probabilistic formulae. The same holds for 

geometry and for every branch of mathematics.” (Fischbein, 1983, p.12). 

Issue 3. Needs of theoretical reflection 

But, even if certain ad hoc designed experiences may help the development of 

intuitions, this does not guarantee the development of underlying mathematical ideas 

and structures, as commented by Pratt (1998, p. 44):  

“[…] schools might adopt a pedagogy in which children play games in order to 

experience randomness and build on this informal knowledge, though as I 

observed in earlier sections such approaches do not necessarily offer a very high 

chance that the children will attend to the mathematical structures within the 

game.” 

Konold (Konold, 1995, pg. 209) argues that simulations offer us a way of testing our 
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theories, not replacing them, and that theories should remain the primary focus:  

“My own belief is that this approach has a chance of leaving untouched the 

informal notions students bring into the classroom. The approach I have used is to 

encourage students to articulate their informal theories, to make predictions from 

them, and to use the results of simulation to motivate alternative explanations.” 

Konold argues (idbid, p.184) also that:  

“Typically, people dichotomize, seeing phenomena as “wholly random” .... or as 

deterministic. .... The kinds of constructions made by the interviewees, the 

negotiation of meaning for randomness, probability and distributions, are the 

kinds of bridges necessary to a less dichotomized view.” 

These observations suggested to us the need to develop an educational approach 

based also on pupils’ social construction of a knowledge concerning randomness 

shared by the class. We argue that a useful way towards this goal is to guide and help 

the pupils, individually and/or as a group,  in verbalizing and communicating their 

evolving knowledge in some steps of the teaching-learning process.  

Issue 4 The mediating role of technologies 

A wide body of literature exists concerning the mediation role of technologies in 

relation to the learning of mathematical concepts (Noss & Hoyles, 1996; Bottino 

2001).  Research such as that conducted by Pratt (2002) and by Wilensky (1993), 

suggests that microworlds can be fruitfully employed as means for achieving 

educational goals related to probability. Moreover, Papert suggests a way of 

empowering the idea of probability by setting up activities that include sample space 

manipulation, and employing probability (and randomness) as a strategy for problem 

solving in contexts involving computers and programmable robots (Papert 2000).  

Our research is based on the idea of using different microworlds as sources of a 

variety of meanings that must be integrated in order to build the concept of 

randomness, crucial for understanding probability. We believe that such meanings 

can be integrated by setting up activities where different microworlds can be 

compared and connected by focusing on their random aspects. In particular, we use 

two specific microworlds: the first one is physical and tangible (Lego RCX), the 

other one (ToonTalk) is virtual and embedded in the computer.      

3. The Activity Sequence implemented and experienced  

3.1. Basic hypotheses 

Coherently with the presented theoretical framework, we chose some working 

hypotheses, functional to the aims of the research. We assumed the importance of: 

-  developing an investigative atmosphere, giving the students situations to explore;  

- focusing pupils’ attention and reflection on the distinction between random 

phenomena and non-random phenomena; 

- fostering pupils’ capability to assume different standpoints in order to observe, or 

reflect upon, a given random-related phenomenon, object, or fact; 

- pupils’ involvement in a variety of experiences involving different kinds of 

microworlds (in a wide sense), in order to characterize the concept of randomness; 

Working Group 5

CERME 4 (2005) 593



- setting up comparison activities between the different experiences, stressing 

analogies and differences; 

One of the educational aims is that each pupil builds a possible unifying model, to be 

used to describe different random phenomena. 

3.2. The design 

The designed approach to randomness relies on the exploration of some key concepts 

(eg. predictability, unpredictability, fairness, unfairness, determinism,  

indeterminism, etc.), and of some key properties of random phenomena (eg. the 

properties of random walks, the independence of events from their history, etc.). The 

selected concepts and aspects of randomness are explored in three main phases:  

Randomness Small Talks: a collection and analysis of sentences, talks, previous 

experiences made by the students, directly or indirectly, where the random concept 

emerges in some way. 

Phenomenological approach to randomness: based on the manipulation and 

reflection on the nature and functioning of  ad hoc designed RCX LEGO robots.  

Toward mathematization: some ad hoc designed computer microworlds, based on 

ToonTalk, are used to introduce a formal language and mathematical formalization.  

In each phase, pupils are required to write individual and collective reports on the 

activities. In particular the class is engaged in the joint enterprise of building a shared 

Encyclopaedia of randomness. The items of the produced encyclopaedia (and their 

contents) are derived from the class experiences and from individual and group 

reports, and are meant to represent the shared culture of the class (Cerulli & Mariotti, 

2003). The general methodology is that of negotiating the contents of the 

encyclopaedia by means of class mathematical discussions (Bartolini Bussi, 1996). 

Items in the Encyclopaedia are thought of as evolving entities, and in practice they 

are revised and updated periodically by the class along with the experiments. 

3.3. The experimentsl setting 

The experiment is a long term one (2 years, the second of which is in progress), and 

involves pupils from different european sites participating in several activities for 

each of the described phases. In this paper we deal only with some activities of the 

first two phases, which took place in the first year, and concentrate on the data 

concerning a group of pupils situated in Italy.  

We worked with a class of 23 pupils (7
th

 grade, 12-13 year old) in a compulsory 

school near Milan (Italy). The experiment has been included in the science and maths 

curriculum of this class, as set out by local autonomy rules on experimentsl activity. 

The class was provided with a portable computer and internet connection, and could 

occasionally also use 10 computers in the computer laboratory of the school. In total 

19 sessions were set up, 13 of which lasted 110 minutes, the remaining ones varied 

from 25 to 55 minutes, and the last 6 were dedicated to the second phase of the 

activity sequence. Such a phase consists of several activities involving Lego robots. 

For each of the 3 employed robots, we set up a session of 110 minutes with practical 

tasks involving the robot, and a 110 minute session consisting of a class discussion 

Working Group 5

594 CERME 4 (2005)



aiming at updating the Randomness Encyclopaedia.  

3.4. The  context and the submitted tasks 

3.4.1. First Phase 

In the first phase (called “Randomness Small Talks”) pupils are asked to present 

examples of events related to randomness (Fig.1), and to discuss their random or non-

random nature (Fig.1, Task B). Similar activities are then submitted concerning 

examples of predictable and unpredictable events, and concerning a study of games, 

proposed by pupils, in terms of randomness and predictability.  

Task A: Randomness. Have you ever heard phrases containing the expressions "by chance" or 

"randomly"? Write these phrases.. 

Task B: Randomness. We need to agree on the meanings we attribute to the adjectives "random" 

(or "by chance") and "not random" (or "not by chance")
2
. Write an individual text describing a 

"random" situation and a "not random" one, use the following schema: 

WRITE: examples of "random" situations
3
 

INCLUDE: drawings and/or pictures that you find relevant 

EXPLAIN: why you think such situations are random ones 

WRITE: examples of "non random" situations 

In class we are going to discuss your texts in order to reach shared meanings for the expressions 

"random" and "not random". 

Fig. 1: The first two tasks submitted to pupils in order to introduce the theme of randomness and to 

distinguish between random and non-random events. In the Italian text, we use the expressions “per 

caso” and “a caso”, respectively for by chance and randomly. 

The first phase ends with a final task in which pupils are required to write a collective 

class report concerning the meanings of the words “random”, “non-random”, 

“predictable”, and “unpredictable”. They produce the first items of the class 

Randomness Encyclopaedia, where the contents of the items are socially negotiated 

and are then structured according to a given template (Fig.2).   

Title of encyclopaedia item: 

Meanings: 

Examples: 

Synonyms and contraries: 

Related Weblabspaedia items: 

Curiosities / Anecdotes / Miscellanea / History: 

Fig. 2: Template for Encyclopaedia items. 

3.4.2. Second phase 

The employed robots have been built by us on an ad hoc basis, and have different 

levels of transparency, manipulability, and interactivity, as far as their random 

components are concerned. The first robot that we presented to pupils, the ShakerBot, 

can be driven by a user by means of a special device, the shaker: when the device is 

shaken, the robot executes a walk, which can be random or not, depending on how 

                                                 
2
 The Italian word casualmente means either random or by chance, depending on the context.  

3
 The Italian situazioni, which we translated with situations, stands also for contexts and for facts. 
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the user moves the shaker. In this case the source of randomness consists of the user 

together with the shaker. In the second robot, the Drunk Bot, the source of 

randomness consists of a mechanical device that is part of the robot, as we will better 

describe below. In these two robots the devices that are the source of randomness can 

be easily observed, manipulated and modified, thanks to the properties of their LEGO 

components. The last robot that we used, the Sweeper Bot, is programmed to move 

randomly by means of a standard computer random function, which is its source of 

randomness. In this case its random component is hidden, it is a black box, but it can 

be used to study the properties of the random walks it produces.  

In this paper we focus only on the activities that involved the Drunk Bot (Fig. 3). This 

robot is a vehicle that can execute only two kinds of movements: step forward, and 

step backward. A special component of the robot, is a random generator ( that we 

called “Roller”), consisting basically of a slide, a pin, a marble, and two sensors (Fig. 

3). At each step, the robot “decides” to move backward or forward, according to the 

sensor hit by the marble in the roller device. In a sense, the robot simulates the walk 

of a drunk man who is not able to decide whether to go forward or backward. The 

resulting movement is a one dimensional random walk. 

Fig. 3: On the right, the Drunk Bot is free to move on a lane, leaving a coloured trace thanks to a 

pen. The Roller device consists of a transparent component of the robot which is explained by the 

left picture. A marble slides down and hits a pin, then it may go left or right (randomly), thus hitting 

sensor 1 or sensor 2. The Drunk Bot moves a step backward or forward according to the hit sensor. 

The task proposed to the pupils requires them to produce and justify conjectures 

concerning the positions of the robot, after a while. For example:  “where is it going 

to be?” ; “Is it going to be close to, or far from the starting point?”:  “Does it move 

forward or backward more?”. The task is developed in the form of class observations 

and discussion; the focus of the discussion is guided by the teacher by means of 

posing questions. 

At the end of the second phase, a final Randomness Small Talks is set up, in which 

pupils are explicitly required to analyse the Lego robots, and to classify them in terms 

of being random or not random, predictable or unpredictable. The conclusion of the 

activity is the updating of the Randomness Encyclopaedia. In particular, the teacher 

brings into class a poster containing all the encyclopaedia items previously developed 

by the class, and containing photographs of each Lego robot. Pupils are asked to 

Sensor 1 Sensor 2 
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update the poster, indicating, for each LEGO robot, if it can be included as an 

example for either the “random” or the “non-random” encyclopaedia item. 

4. Results and discussion 

In the following we present and discuss some results gathered from the data collected 

during the Initial Small Talks, and highlighting some aspects of pupils’ knowledge 

related to randomness that evolved throughout the experiments. Consequently we will 

show evidence of this evolution, by presenting data from the Final Small Talks, and 

highlighting how the employed educational approach fostered such evolution.   

4.1 Some indications from the initial Randomness Small Talks 

In all the examples proposed by pupils the main actor is a human one, and in most of 

the cases such an actor is the pupil herself/himself. We find for instance pupils 

proposing examples of random situations such as “I chose a jacket randomly. 

(without thinking)” and “I found a coin by chance (luck)”. In such examples, the pupil 

is a constituent part of the considered random phenomenon. In these cases it may be 

difficult, for the pupil, to assume an external standpoint, which could result in a 

difficulty in understanding the complexity of random phenomena. As a consequence 

we believe that there is a need to consider situations where the pupils are not the main 

actors of the involved random phenomena. A situation of this kind is suggested by the 

following example proposed by Ciufciuf (one of our pupils):  “We are chosen 

randomly to be examined”. In this case the main actor is “the teacher” who 

participates in the “random” phenomenon of choosing the pupil to be examined. The 

difficulties of changing stand point is demonstrated by the following excerpt of a text 

written by a pupil (Vale) reporting a class discussion concerning the random nature of 

the considered situation: 

“Ciufciuf said that for us pupils the sentence could be random, because we don’t 

know who will be chosen for interrogation, while for the teacher it is not random 

because she can decide who she is going to interrogate. […] Not everyone was 

convinced so the teacher asked us to elaborate with other examples…”. 

Ciufciuf attempts to analyse the phenomenon by assuming two different standpoints, 

but this attitude remains isolated and the rest of the class does not follow his position. 

Here we observe that at each step of the proposed activity sequence, pupils are 

required to discuss the nature of the considered phenomena, trying to reach a shared 

position in terms of classifying the phenomena as random or non random.  

4.2 Some indications from the final Randomness Small Talks: 

In this part of our experiment the employed Lego RCX robots were pre-built tools, 

whose peculiar characteristic was their “transparency” for the users. This 

transparency allowed pupils to investigate the different components of the robots, and 

their specific functions, providing a rich source for reflecting on randomness, as 

shown by the examples provided in what follows.  

4.2.1. Is the Drunk Bot random or not? 

During the final Randomness Small Talks, pupils are asked to discuss the 

random/non-random nature of the Lego robots, in order to reach an agreement to be 
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expressed in the form of an encyclopaedia item. In particular they discuss the 

random/non-random nature of the Drunk Bot. In the following we are going to 

analyse some key steps of that class discussion. 

4.2.2. Step 1 - The Drunk Bot is not random! 

The episode begins with the teacher asking pupils to express their opinion (numbers 

indicate the chronological order of the excerpts within the class discussion): 

1. T:  What   about the drunk one? (meaning “is it random or not?”) 

5. C1:  so, the drunk one, from   our   point of view   moves   randomly, but   from   

its  point of view  it  does   not…does   not go randomly…  

6. Many voices, we can hear many different opinions! 

First of all, we observe that C1 seems to be able to judge the situation changing 

standpoint. In fact she talks both of “our point of view” and “the robot’s point of 

view”. Such a shift of standpoint, enables her to question the nature of the drunk bot 

assuming a position which starts a rich and meaningful discussion among pupils, that 

lasts about 15 minutes, in which different opinions are expressed, and the functioning 

of the robot is  discussed. Below we highlight some interesting passages.  

4.2.3. Step 2 - The Drunk Bot is like a special elevator 

To clarify her position, and convince her pals, C1 presents an interesting example:  

112. C1:  The Drunk Bot is like a sort of elevator where there are 100 buttons, but 

we do not know to which floor each button corresponds [...] and we just push a 

random button. 

114. C1:  for me it is random, because….one button is like any other, but it is not 

random for the elevator because it knows which floor to go. 

C1 is comparing the Drunk Bot with a special elevator, with no inscription on the 

buttons; such an elevator moves randomly from the point of view of a user, but from 

its point of view it does not move random. However, such an explanation is not 

enough to convince C1’s friends, and the discussion goes on.  

4.2.4. Step 3 - Using different random generators 

We observe that C1 associates a random phenomenon, related to the Drunk bot, to 

another random phenomenon, related to an elevator, showing an ability to connect 

and compare different random generators. This we believe to be a positive result, 

because literature on the subject had shown that pupils may have difficulties in 

interpreting different random phenomena as all representing randomness. Rather they 

may tend to interpret them as totally disconnected phenomena.  

We found some more data on this issue. In fact one of the pupils recalls a special 

situation in which the class substituted, with a coin, the special random generator of 

the Drunk Bot. The movements of the Robot were still the same then, but the 

direction to be taken was chosen by means of throwing a coin, instead of using the 

Roller system of the robot, which depends on the movements of a marble. 

136. C2: what about when we used the coin? 

137. C1: it [Drunk Bot] moved randomly! 

This excerpt witnesses again the pupils ability to make connections between different 
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random phenomena, moreover it suggests to us that the study of a unique random 

phenomenon (the movements of the Drunk Bot), which is driven by different random 

generators (either the coin or the Roller, or other system) can help pupils to  interpret 

different random generators under the same idea of randomness. In other words, we 

start from different random generators, and we use them as interchangeable parts of a 

unique random phenomenon; this provides pupils with a natural connection between 

the different random generators.  

4.2.5. Step 4 - The Drunk Bot is a mixed thing 

The discussion started by C1 ends up with a pupil, C3 clarifying C1’s ideas:  

166. C3:  [...] C1 means to say that [...] where the ball goes is random, while the 

movement done by the robot is not random, but however it is dictated by the 

movement of the ball, which is random 

167. C3:  it is a random thing that we move non randomly 

168. C4:  it is a mixed thing 

In other words pupils are able to distinguish which element of the Drunk Bot are 

random and which are not; they are able to decompose the phenomenon into a 

random part and into a non random part, which we again consider to be a meaningful 

result in terms of the ability to individuate randomness in given phenomena.  

5. Conclusions 

The analysed data suggests that the ability of changing standpoints and also taking 

external standpoints, can give insights into the complexity of random phenomena. In 

particular it may allow the pupil to individuate the random and non random 

components of a complex phenomena on the one hand, and on the other hand to 

compare different phenomena by comparing their random components. We believe 

that the attitude, and capability, to consider different standpoints, can be (as in our 

case) fostered by proposing pupils activities involving physical microworlds, which 

are external from the pupil, allowing a detachment from the phenomenon.   

The second key indication we abstracted from the data is derived by observing that 

pupils actually individuated the random generator of the Drunk Bot, and 

hypothetically substituted it with another random generator. Such substitution was 

functional to the ongoing class discussion aimed at classifying the drunk bot in terms 

of being random or non random. The pupils conclude the discussion agreeing on 

considering the robot as a mixed entity, both random and non-random. In this passage 

we believe that a key role was played on the one hand by the request of classifying 

the robot, and on the other hand by the design rational underlying the random 

phenomena proposed in the activity sequence. In fact each proposed phenomenon has 

a random generator which some how dictates the behaviour of the other parts which 

are not actually random, as clearly explained by C1 in the reported class discussion. 

In this perspective, the random generator of a phenomenon, can be “taken out” and 

substituted with another random generator, taken from another phenomenon, as in the 

case of the coin used to “drive” the Drunk Bot. If that is the case, we argue that the 

fact that the two different random generators are employed as equivalent random 

components dictating a complex phenomenon, may foster the building of connections 
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between the meanings raising from the study of each of the two random generators. 

We plan to test this hypothesis in the rest of our experimentstion which will be based 

on computer microworlds that will be designed ad hoc following the principles we 

presented in this paper. 
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STUDENTS' MEANING-MAKING PROCESSES OF  
RANDOM PHENOMENA IN AN ICT-ENVIRONMENT 

Kjærand Iversen,    Agder University College, Norway 

Per Nilsson,  Växjö University, Sweden 
 

Abstract: This paper brings to a focus the different ways in which lower secondary 
students handle compound stochastic phenomena. The analysis is based on clinical 
interviews in which the participants explore different several-step problems in an 
ICT-environment. How the students understand the content within the situation is 
regarded from the perspective of how their understanding varies with their 
interpretation of the situation. A leakage strategy and a division strategy are 
identified as being of particular importance for several students in their meaning-
making processes. 

 

Background 
Peoples’ different ways of handling chance encounters has been the object of a great 
number of studies. Shaughnessy (1992) and Gilovich et al. (2002), among others, 
provide overviews of the field. Gilovich et al. focus mainly on the psychological 
approach towards heuristics and biases, whereas Shaughnessy also discusses some 
results linked to educational issues. Despite the extensive research on pupils’ 
encounters with probabilistic reasoning we claim that there is need for further 
investigation. In particular we wish to discuss issues of students’ dealing with 
probabilistic phenomena in an exploratory and interactive setting. 

The current paper focuses on students’ reasoning processes with respect to compound 
stochastic encounters, brought to the fore in a computer-based environment. More 
precisely, our concern is on how students, in an ICT-environment, explore and make 
use of different strategies when handling random processes, which can be divided 
into several steps. 

In the following part we will define and explore, in a more precise way, the stochastic 
phenomenon, which is of interest to us. 

Simple and compound stochastic phenomena 
Stochastic phenomena involve one or more stochastic objects (random generators). In 
contrast to deterministic phenomena, where there is only one outcome, several 
different outcomes are possible in a stochastic phenomenon.  
Stochastic objects are often put into action by an external force or mechanism, but it 
is the objects' inherent characteristics, such as form, symmetry, centre of gravity and 
so on that determine the probabilities for the possible outcomes. A simple stochastic 
phenomenon involves only one object and it is put into action only once. Throwing 
one die exemplifies this. If the phenomenon is not simple it is called compound. A 
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Figure 1. The maze in the Robot-problem in Green’s survey. 

simple series of throwing a die illustrates this concept. However, this paper focuses 
on a particular kind of compound stochastic phenomena where one object moves 
continuously from a start position to and end position, encountering one or several 
bifurcations along the paths. These phenomena we name one-object stochastic 
phenomena (OOSP). The robot problem used by Green (1983) illustrates this. 

In this situation a robot is walking into a maze. Sometimes the robot encounters a 
crossroad and the continuation is decided by a random mechanism. Finally the robot 
ends up in one of eight rooms. In Green’s survey the following question was asked: 
“In which room is the robot most likely to finish up, or are all rooms equally alike?”  

From an expert’s point of view this problem might be resolved by using the Product 
Law: If two events A and B are given then: )|P()P()P( ABABA ⋅=∩ . Using this law, 
a compound problem may be split up into sub-steps after which individual 
conditional probabilities may be multiplied. Stochastic situations where this 
procedure may be used are commonly called several-step problems.  

In an attempt to establish the issue of the current study, regarding students’ ways of 
encountering OOSP, we first present two prominent results from earlier research. 

Previous research 
As reported by Green (1983), the result in the robot problem was surprisingly poor 
for all participating students (age 11-16). Only 13% of the grade 10 students (age 15-
16) gave a correct response, even though these students had been working with tree 
diagrams and the product law of probability. 

Considering chance encounters, Fischbein (1975) emphasizes the role of intuitive 
reasoning. He distinguishes between primary intuitions as cognitive acquisitions, 
derived from individual experiences, without systematical instruction, and secondary 
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intuitions as formed by education and linked to formal knowledge. According to 
Fischbein, developing secondary intuitions can be seen as a process in which the 
student learns to make use of generative mental models. He exemplifies this line of 
reasoning with the structural potential in using the well-known tree diagram. In this 
connection, Fischbein et al. (1975) were using six different devices to explore 
students’ probabilistic intuitions. Their results were quite contrary to the results of 
Green’s study (as pointed out by Green). In an experimental environment (with 
manipulative materials) students were given problems similar to the robot problem. A 
majority of the students gave a correct response to most OOSP problems. In the last 
(see Figure 2b), it was only among the oldest students that a majority (more than 50% 
of the students) gave a correct response to the question. 
 

  

Figure 2.  Random devices used by Fischbein  
a) The five "two-dimensional" devices. When a marble is 
released from the top it passes through one ore more 
crossroads on its way down. 

b) Schema of a three-dimensional 
device. The marble has four options 
in the first; 3, 4, 5 or 6 in the second 
crossroad. 

 

The study by Fischbein et al. (1975) included pre-school children (age 5-7), and 
surprisingly two of the tasks (II and IV) were solved better by them than by the oldest 
students (age 13-14). The authors explain this as a result of education, claiming that 
schoolwork often seems to orient the child towards deterministic interpretations of 
phenomena. 

In the current study, correct or incorrect responses are not of particular interest. Our 
interest is directed towards a more qualitative analysis of students’ ways of dealing 
with OOSP, in order to better understand different kinds of responses given and 
strategies used. In particular, we focus on how students interpret the tasks, which 
problems they engage themselves in, and relate this to their articulated explanations 
and strategies. 

Theoretical considerations 
A long time ago Bruner (1968, p. 4) stated, 

“…when children give wrong answers it is not so often that they are wrong as they are 
answering another question…”  

The meaning of this statement is that, if we are going to understand students’ ways of 
encountering random phenomena we have to take into account the questions the 
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students are engaged in. If we are interested in learning objects we have to treat the 
learners individually and, from time to time, try to ascertain what each individual is 
trying to accomplish. For this purpose, Halldén (1988, p. 125) saw it fruitful to 
introduce a distinction between task and problem. He defines task as: 

“what is presented to the pupils by the teacher with the intention that they are to do 
something and/or that they are to learn something”,  

and problem as the learner’s personal interpretation of the task given. Viewing the 
activity from a normative perspective may restrict the analysis too much, and 
obstacles rather than possibilities might be considered. Instead, we consider it more 
fruitful to base the analysis on students’ interpretation of the situation at hand, in 
order to illuminate students’ strategies and learning potential. 

Adopting such a student oriented perspective, implies a necessity to reflect on 
contextual influences on learning. In accordance with a constructivist view, by 
context and contextual elements we refer to students’ personal constructions. That is, 
we consider context as a mental device, shaped by individual interpretations. If we let 
the conceptual context denote personal constructions of concepts, embedded in a 
study situation, and let the situational context denote interpretations of the setting in 
which learning occurs, and let the cultural context refer to constructions of discursive 
rules and patterns of behavior, we can talk of students’ ways of handling a learning 
situation as a problem of contextualization (Halldén, 1999; Nilsson, 2004). 

Halldén (1999) stresses that these different kinds of contexts are in play 
simultaneously as we are trying to solve a task but, depending on how we interpret 
the situation, by focusing on certain aspects, they get different priorities in the 
contextualization process. 

Considering situational contextualizations specifically, one could argue that an ICT 
environment offers interesting possibilities. It is an arena where the concrete and the 
abstract, or the informal and formal, can be related. This gives ample opportunities 
for the students to integrate pieces or fragments of knowledge. Pratt (1999, p. 61) 
writes: 

“Computers provide a medium for designing activities that build and integrate pieces of 
knowledge. A microworld may be able to integrate these fragments of knowledge by 
offering opportunities for their use, enabling the construction of meaning.”  

Difficulties in handling tasks presented in a study situation, and in acquiring new 
concepts and strategies, are thus seen as students´ difficulties in contextualizing the 
task in such a way that new information can be interpreted and new strategies worked 
out. The learners’ ability to discern which relevant parameters in a learning situation 
will be of crucial importance and also, their ability to evaluate different ways of 
viewing the world, that is, their abilities to differentiate between different 
contextualizations of a given task. Caravita and Halldén (1994, p. 106) express it the 
following way: 
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“Learning is then a process of decentering, in the Piagetian sense, rather than the acquisition 
of more embracing logical or conceptual systems replacing earlier less potent ones.” 

Due to limitations, we are not presenting any details regarding processes of 
decentering. Instead, we focus on strategies that appear in a computer-based 
environment, and how these strategies are related to the students’ different ways of 
posing the problem, i.e. their interpretation of the study situation and the learning 
material. 

Object of study 
The aim of the study is to describe students’ different ways of acting within a specific  
computer based environment called Flexitree. In particular we are interested in how 
students’ strategies appear when they explore OOSP-tasks. 

Flexitree 
The role of the Flexitree-environment is intended to be two-folded. First it just has 
the role of replacing a real device that would be difficult to build (e.g. Fischbein’s 
devices). Second it has the power to generate a lot of data in short time, which can be 
helpful in a frequentist approach to probability. 

In the software, the user may choose between several different Flexitrees  – setups in 
which marbles can move. At the start the marbles are at the top of the system. When 
pushing RELEASE the marbles move downwards. They may be temporarily stopped 
by pushing STOP and then released again by pushing CONTINUE. Finally they end 
up in one of several boxes at the bottom. A table and a diagram keep track of the 
number of marbles in each box. The implicit probability model in each crossroad can 

 
 

Figure 3. Screenshot with some "action" from Flexitree 7. 
             The other setups are shown as icons to the left. 
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be determined by the students. However, in this paper we only focus on setups in 
which the probability is one half for each path at each crossroad. 

Method 
Semi-structured interviews were used to collect the data. To our view, in agreement 
with Ginsburg (1981), standard tests or naturalistic observation would not give the in-
depth data needed to fulfill the aim of the study. Naturalistic observation seems not to 
be practical as the waiting time for useful spontaneous verbalizations might be quite 
long. Also, a written test is not suitable, Ginsburg (1981, p. 7) writes: 

“When the underlying cognitive processes are numerous and complex, standard tests may be 
ineffective or at least inefficient.... A small set of standard questions....will not suffice to 
capture the richness and complexity of the relevant cognitive structure.” 

The participants were students from lower secondary schools (age 14-16). They had 
some experience with several-step phenomena (but not much). The problems used, 
were expected to be quite challenging for the students. 

The students were sitting in front of a PC. The session started by the interviewer 
explaining the basic features of the software. Then the students were given some time 
to become familiar with the features of Flexitree. The implicit probability model was 
not explained to them. 

The screen-image was videotaped along with the sound by using a Televiewer. These 
data were then transferred to a PC. Both the transcript and the digitalized videos were 
used in the analyses. 

Data was collected in several iterations. Based on methodological and theoretical 
considerations, the setting and protocol for the interview were modified from step to 
step. This paper concerns the interviews from the first two iterations in the study with 
4 respectively 12 students. In iteration one, the students were individually 
interviewed. This setting seemed to make the students less willing to talk and they 
were also strongly influenced by the interviewer’s suggestions. Hence students were 
interviewed in pairs in iteration two. 

In each setup, the students were asked to focus on two tasks: 

T1: Are the probabilities for ending up in the different boxes equal or not? 
T2: What is the probability for ending up in one particular box?  

The students were asked to explain their answers. If the students seemed stuck, or 
were not making any progress, the researcher intervened with questions or 
suggestions. 

Results 
From the analysis of students’ exploration with Flexitree, several different strategies 
were identified. In this paper, we focus on two strategies where the students put quite 
different meaning to the crossroads. We have chosen to call them the leakage 
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strategy and the division strategy. In the following, we will explain those strategies 
further using two interviews for illustration. 

The leakage strategy 

Before entering setup 7, Oskar (grade 9, age 14) has tried setups 1, 2 and 4 (see 
Figure 3). In his previous activities most of his work has been based on guesses, 
which he has had difficulties to explain. However, taking into consideration 
frequency data in setup 1, he accepted that half of the balls go left and half of the 
balls go right in the crossroad? 

Setup 7 begins by asking Oskar to come up with a first hypothesis. His guess is that 
about 50% of the marbles will end up in B and 25% in A and C respectively. This 
response could be explained by reference to his previous contextualizations of setup 4 
and the frequencies encountered while working with this setup. 

Oskar then starts working with Flexitree. Observing some relative frequencies, he 
almost immediately starts to doubt his first guess. Continuing working with Flexitree 
for a while, he suggests that the probabilities for ending up in boxes A, B and C are 
1/6, 2/6 and 3/6 respectively. When the observer asks Oskar for an explanation, 
Oskar has difficulties in answering. The interviewer then tries to make Oskar focus 
on a sub-task, namely to explain the low amount of marbles, ending up in box A. In 
doing so, what we call the leakage strategy appears (R stands for researcher): 

O:  Because when they go ... because the probability for /marbles/ coming to A is quite small 
... because ... on their way ... there is only one path to A. And then ... on this path there 
are two paths that go like this [pointing to the two paths leading off the path to A]. 

R:  Mm. 
O:  And then it becomes less likely. 
R: Yes. 
O:  And then ... the marbles are disappearing so to speak.  
R: Yes. 
O:  So I can ... 
R:  Is it (the probability) lower or higher than one sixth? 
O:  Maybe it's one sixth. Now, at least, I think I understand why the chance is so small for A. 
R: Mm. There are fewer and fewer along that path? 
O:  Yes. There are holes in the path in some sense. 
R: Yes. 
O:  And then the marbles ... they fall off the steep slope and then go to B and C instead. 
R:  Yes. So, on the path downward they become fewer because some are dropping off? 
O:  Yes. Only a few continue downward. 

After the intervention Oskar is not trying to give an explanation to the probability 
estimate 1/6. Instead, our interpretation is that he considers the situation as a problem 
of explaining why so few marbles end up in box A. He tries to do so by focusing on 
what meaning the crossroads have for the marbles moving toward box A. However, 
what could be argued is that he seems to interpret these passages as leaking holes 
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rather than ordinary crossroads. If we, based on this, interpret Oskar’s idea of the 
rolling marbles as similar to what is described in Figure 4a, we understand the  

difficulties Oskar has in giving meaning to his probabilistic estimates. Even if he has 
noticed the importance of the crossroads, in this case his particular contextualization 
does not allow him to give a numerical meaning to them. 

The division strategy 

To illustrate the division strategy we will look at a pair of students from iteration 2. 
After playing a while with setup 2, Ole and Bjørn (grade 10, age 15) are asked to 
make a first suggestion about the probability for marbles ending up in B. Their 
response also included an explanation of their hypothesis.  

O: It is ... actually ... as much as ... I believe that there is ... there’s a fifty percent chance for 
marbles coming there [pointing at C].  

B: Yes, it’s fifty -fifty [pointing to the first crossing]  
O:  Yes, but it is also ... it is ... then it becomes almost a twenty-five percent chance for 

marbles coming to B and a fifty percent chance for them coming to C.  
B:  It must be twenty-five.  
O: I was about to say that there is because fifty is divided by two again. The chance is 

smaller for them coming to A and B, than there is for them coming to C. 
R: Ok. What is the chance for them coming to B? 
O: I believe it’s twenty-five. 

The students are aware of the fact that the probability is reduced in a crossroad and 
since two paths lead from a crossroad they choose to divide by two. The division 
strategy seems to be dynamic in the sense that the students follow the marbles from 
the top and towards the end, beginning with 100 percent and then using repeated 
division by two an appropriate number of times. (In the case above: 100% → 50% → 
25%). Their way of reasoning seems to involve aspects of idealization. Based on 
symmetrical features, the students view the distribution of marbles from a crossroad 
to be completely equal, that is, they model the crossroads as being a fifty-fifty 
chance, as shown in Figure 4b. 

 
a    b 

 

Figure 4.  Students’ different interpretation of a crossroad 
  a) A model of Oscar’s interpretation 

 b) A model of Ole’s and Bjørn’s interpretation 
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Discussion 
The aim of this paper has been to investigate strategies that become evident in 
students’ different ways of handling OOSP-tasks in an exploratory setting. From the 
variation in outcomes, it can be argued that the participants interpret the situation in 
different ways. The participants activate different contexts for interpretation in their 
meaning-making processes. Two main strategies are brought to the fore. The first has 
been described in terms of “holes in the way” and we called this approach the leakage 
strategy. The second strategy describes a situation in which the students interpret the 
task from a computational point of view, in terms of the mathematical operation of 
division. We have referred to this strategy as the division strategy. In our data this 
strategy was more frequently used by the students than the leakage strategy. 

When students are using the leakage strategy, aspects of random phenomena are 
taken into account in the reasoning process. The students seem to be aware of the fact 
that the probability is in some sense distributed, and that the marbles are distributed 
in a non-deterministic manner. However, it seems to be unclear to the students 
precisely how such phenomena work. As argued above, this seems to be due to the 
students being involved in a physical interpretation of the situation, similar to what 
we have modelled in Figure 4a. Compared to the robot problem, illustrated in Figure 
1, it would be interesting to further explore the leakage strategy. Based on our result 
it could be argued that proper answers would be more numerous, if the ways out to 
room 1-4 had been directed downwards instead of upwards. In such a representation 
of the problem, the crossroads may be interpreted as leaking holes and by that 
lowering the chance for marbles to end up in rooms 5-8. 

With the division strategy, the students saw a crossroad as a fifty-fifty percent 
chance. It could be argued that the students, in this case, in a direct way take into 
consideration the number of paths leaving a crossroad, that is, that they should divide 
by two. To gain even more information of such reasoning, it would be interesting to 
create a Flexitree situation, containing features similar to those of Fischbein’s 
pagoda, in which marbles encounter crossroads having three or more exits. 

Our results point to some important aspects of the teaching-learning environment. 
Firstly, teachers have to realize that a learning situation is not static. All students do 
not perceive the learning object in the way the teacher intends. Secondly, an analysis 
of students’ interpretations in general and in their choice of strategies in particular, 
may have a pedagogical potential in making teachers aware of the many possible 
routes that students’ activities may take, which, in turn, may improve their capability 
to intervene in such situations. 
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YOUNG CHILDREN’S EXPRESSIONS FOR THE  
LAW OF LARGE NUMBERS 

Efi Paparistodemou, University of Cyprus, Cyprus 

 

Abstract: The aim of this research is the design of a game to afford expressive power 
to children aged six to eight in the domain of probability. Particularly, this paper 
focuses on how young children express ideas for achieving a fair result by using a 
computer game. The computer game offered children the opportunity to make their 
own constructions of sample space and distribution. The children used spontaneously 
five distinct strategies to express the idea that their construction could only be judged 
with respect to a large number of trials. It is apparent that the game provided 
children the opportunity to express the idea that stability can come from increasing 
outcomes with different strategies. It can be said that young children’s expressions is 
evidence of several ‘situated abstractions’ for the law of large numbers. 

 
Introduction 
Tversky and Kahneman (1983) coined the phrase ‘the law of small numbers’ to 
characterize a commonly held yet erroneous belief that the properties of an unknown 
sample space can be directly assessed through a relatively small number of 
observations of its constituent elements. In her research on understanding the idea of 
randomness of primary grade children, kindergartners, 3rd graders and 
undergraduates, Metz (1998) claims that the law of small numbers typified these 
subjects’ strategies for predicting results of a random behaviour. Focusing on the 
issues of agency and control in probabilistic situations, she demonstrated that 
students assumed that they had more agency and control than they in fact had, and 
that their sampling strategies were informed by these incorrect assumptions.  She 
mentioned that in this strategy the participant believes he or she should somehow be 
able to implement the drawing process. For example, the order of marbles drawn 
accurately from a box reflects the proportion in colours in the unknown sample space. 

The above research falls broadly into the ‘misconceptions’ paradigm. In the field of 
understanding probability, misconceptions were defined by Tversky and Kahneman 
(1983) as failure to behave rationally. Tversky and Kahneman (1983) suggested that 
misconceptions stem from prior learning, either in the classroom or from their 
interaction in the physical and social world. Smith, diSessa and Rochelle (1993) 
proposed an alternative perspective that refutes the ‘misconception approach’ on 
empirical and methodological grounds: they argue that misconceptions are in fact 
context specific and not general. Moreover, they claim that misconceptions were 
elicited from people who were being asked to respond to questions outside their areas 
of competence and/or in the absence of appropriate tools to explore the questions. 
Smith, diSessa and Rochelle (1993) suggest that instead of searching for 
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misconceptions, researchers could possibly locate the principled knowledge 
underlying students’ responses and leverage this knowledge in suitable learning 
environments. Biehler (1991) argues for the potential role of the computer in 
supporting students’ understanding of central constructs in the domain of probability 
and statistics, for example in dealing with the law of large numbers (hence, L.L.N.). 
According to his view, computer support enables students to transcend their default 
‘law of small numbers’ heuristic and gain insight into properties of distributions. Pratt 
(2000) demonstrated the potential of computers for learning probability with 
understanding. His 10-and-11 year-old participants manipulated stochastic gadgets, 
representing everyday objects such as a die, a coin, a lottery machine, and a set of 
playing cards. Individual learners expressed their beliefs in symbolic (programming) 
form and articulated their beliefs, construct, and reconstruct probabilistic situations in 
the light of their experiences. In this study, Pratt (2000) used an approach in which 
children articulated their meanings for chance through their attempts to ‘mend’ 
possibly broken computer-based resources. 

My point of departure in the current study is that young students implicitly 
understand the L.L.N. and given appropriate tools, they will express these intuitions. 
The aim of the broader research of the present paper is to design such tools and 
evaluate their efficacy. I adopt Fischbein’s (1975) definition of intuitions as being 
based on knowledge from experience in order to get control over an action. In this 
study I also adopt the notion of situated abstraction (Noss, Hoyles, & Pozzi, 2002), 
defined as a conceptualisation of mathematical knowledge that is simultaneously 
situated and abstract. The process cannot be separated from the product; and this is 
part of the webbing idea’ (see Noss and Hoyles, 1996).  

In this paper, I present ‘snapshots’ of young children using a computer game and 
show how the game provided children opportunities to express that the stability of an 
outcome in random situations increases with the number of trials. 

 
Methodology 
A game was designed to afford children the opportunity to talk and think about 
probability and was built to allow a connection between local and global events1.  
The ‘lottery machine’ (c.f. Paparistodemou & Noss, 2004; see Figure 1) is a visible 
manipulable engine for the generation of random events. Using this game, children 
could directly manipulate its outcomes.  

                                           
1 A local event refers to the trial-by-trial variation and the global to the aggregate view of each 
single trial. Children can use local events to make sense of short-term behaviour of random 
phenomena, while global events are associated with long-term behaviour. Thus, whereas an 
individual outcome could be seen as a single trial in a stochastic experiment, the totality of these 
outcomes gave an aggregated view of the long-term probability of the total events  (c.f. Wilensky, 
1997 and Dave, 2000). 
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Figure 1. A screenshot of the game. 

The children could make changes in the ‘lottery machine’ in which a small white ball 
bounces and collides continually with a set of blue and red balls. As programmed 
initially, collisions with the red balls added one point to the red score and moved a 
‘space kid’ one step up the screen. In this way the lottery machine controlled the 
movement of a space kid. In contrast, collisions with the blue balls added one point to 
the blue score and moved a ‘space kid’ one step downwards. The link between the 
objects of the game was visible to the children, as the software provided a library of 
icons in the shape of stones which enabled the user to make rules that would connect 
one object to another (for more details see Paparistodemou & Noss, 2004). The 
children could change and manipulate a number of aspects to control the properties of 
the lottery machine: the number, the size, and/or the position of the balls.  

The ‘Space Kid’ game can be seen as a form of ‘random walk’. The random walk in 
the game involved a ‘space kid’, which moves upwards and downwards on a yellow 
line. These movements occurred one step at a time, in response to an outcome 
generated by the lottery machine. The existence of the two planets on the screen (the 
blue and the red above and below from the yellow line) was for the space kid not to 
move far away from the yellow line. The planets had the rule ‘when I touch the space 
kid the game to stop’. As a result, the game stopped each time the space kid reached 
them (for more details see Paparistodemou, 2004). 

The game was designed over three iterative cycles. Twenty-three children, aged 
between 6 and 8 years, were interviewed during the last iteration. The children 
interacted with the computer game individually between 4-6 half-hour sessions. The 
participants had no formal learning experience with probability. In the first task, 
students were asked to make the space kid move quite close around a centre line in 

Space  
kid Scorers 

Lottery machine 

Working Group 5

CERME 4 (2005) 613



order to construct a ‘fair sample space’.  Table 1 shows an outline of the tasks that 

were posed during the interviews. 
Table 1: An outline of the tasks 

 
Expressions of the law of large numbers 
The children expressed in a number of different ways the idea of having a large 
number of outcomes. The idea of the law of large numbers was expressed when 
children made judgments whether their own construction in the lottery machine was 
fair or not. Their expressions can be categorised into: 1. increasing the speed of the 
white ball, 2. adding more coloured balls in the sample space/distribution, 3. adding 
more white balls, 4. making the size of the white ball(s) bigger,  and 5. leaving the 
game to work for longer time. 

1. Increasing the speed of the white ball 
The idea of changing the speed of the white ball occurred when children had made a 
fair construction in the lottery machine, but could not get fairness in the game. Paul 
(6 10/12 years) explained: 

Paul: Let’s see… Oh! We have more blue scores. It moved down. Oh…I will change 
the speed of the white balls. I won’t watch the numbers. It will move too fast! 

 He takes the star (a tool of the software) and changes the speed of the white 
balls. 

Paul made the white ball move faster than before in order to demonstrate that his 
construction in the lottery machine worked, since he believed that, in the long term, 
his sample space was fair. 

On the 
screen 

Children could 
manipulate Goal Probes Tasks 

Space kid 

Lottery 
machine 

Bouncing ball  

One blue and 
one red ball 

Scorers of the 
balls 

Two planets 

Balls: 
number  
size  
speed  
 

arrangement in 
lottery machine 

Space kid: 
starting point 

The position of two 
planets 

Keep the 
space 
kid near 
the 
yellow 
line. 

How do children 
express their 
ideas about 
randomness, 
fairness?  

How do children 
judge their 
constructions? 

What will you change so 
that the space kid stays near 
the yellow line? Try it out! 

What happened? Why do 
you think this happened?  

If it doesn’t work, as you 
want it, what else can you 
change? 
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2. Adding more coloured balls 

Getting more points quickly was also expressed by adding more balls inside the 
sample space. For example, Simon (7 10/12 years) added more balls to his 
construction (R stands for researcher): 

Simon: It moved up now…equal numbers! Oh! Now it moved down…. Let’s see if it 
moves up. You know something. I will add some more balls.  

 He stops the game. 

 I will put these balls together…to communicate (he laughs).  

R: What do you think will happen? 

Simon: We are going to have a better result. 

Simon as a basic idea had a symmetric fair sample space with the same number of 
blue and red balls. He finally decided not to change the symmetrical idea of fairness, 
but to add where there was a blue ball, a red one and where there was a red ball, a 
blue one. This idea shows that Simon did not want to change the proportion or the 
structure of the balls in his lottery machine. This idea also shows that he expected 
that by adding balls to get bigger numbers his idea would work in the long-term. His 
action to increase the overall number of balls may be indicative of an implicit 
application of the law of large numbers. Adding more balls was a strategy that 
children used very often for constructing a fair sample space. This strategy was also 
very often combined with other strategies in which children generally expressed the 
idea of having more trials.  

3. Adding more white balls 
Adding more white balls was a strategy used by nineteen out of twenty-three children 
in order to make their construction work for ‘bigger’ numbers. Fiona’s (7 years) 
attempt to get bigger scores was to copy more white balls and make them to touch 
more easily the coloured balls. 

Fiona: It still doesn’t work! I think I have to make 
another change to the balls.  Another ball. 

R: Will it work with this change? 

Fiona: Yeah…the white balls move around and 
touch all these balls. Ok… and another thing 
(she copies more white balls)…that makes it 
work! Wand…wand…right! Let’s try it on. 
(see Figure 2) 

She starts the game.  
  Figure 2. Fiona’s construction of 

fairness to get ‘more points’. 

Fiona added more coloured balls into her construction and she also added more white 
balls. Fiona’s action can be seen as a situated abstraction of the idea that bigger 
outcomes made her construction more reliable. As she said, her construction would 
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work better by having more white balls that would make the scorers move more 
quickly. Fiona appears to recognise that her construction would be good if it would 
give a fair result in the long-term. She decided neither to change anything in the 
structure of the coloured balls nor to the proportion between the two colours of balls, 
but to judge her construction by generating bigger numbers and watching the global 
outcomes.  

4. Making the size of the white ball bigger 
Another change to the bouncing ball for getting more points is to change its size. 
Making the size of the white ball bigger makes the scorers to work more quickly on 
the screen. This was what Mathew (7 years) did when he wanted to get ‘many 
points’. 

Mathew: …I will do something else. (He stops the 
game). I will construct two white big balls. I 
will copy some more red balls, five as the 
blue ones. (see Figure 3). 

R: Now, we have 5 reds and 5 blues, how many 
points will they get? 

Mathew: Many points…they will get equal points. 

 
  Figure 3. Mathew’s fair 

construction to get ‘more 
points’. 

Mathew made changes to get bigger number scores by adding more red and blue 
balls, adding another white ball and making the size of the white balls bigger. 
Mathew’s statement implies that he is attempting to get equal numbers and there is a 
need to get large numbers in order to achieve this.  

5. Leaving the game running longer 
Another idea for getting bigger numbers in the game, is not by making any changes 
in the mechanism of the game, but by waiting the game to run for a longer time. 
Orestis (7 years) expressed such an idea about time. 

R: How did you arrange them? 

Orestis: I mixed them up. Now, they might get equal numbers. 

 He starts the game. 

R: Are they getting equal points? 

Orestis: Not yet. 

Orestis expressed the idea that time is needed to get equal points. His words ‘not yet’ 
are evidence that he needed time to wait for his construction to work. He implied that 
his construction must be judged in the long-term and he seemed to believe that time 
would take care of the (short-term) inequality. 

Working Group 5

616 CERME 4 (2005)



Discussion 
It is apparent that the game provided ways in which the children participating in this 
study could engage with the idea of getting ‘bigger numbers’. The game enabled 
children to increase the total outcomes by engineering more collisions between the 
white ball(s) and the red and blue ones. Also students leveraged their intuition for 
‘fairness’ as a mental grip on distribution. Thus, the game afforded students situated 
abstractions for the law of large numbers. 

In their constructions, children seemed to express a belief that probabilistic ideas, like 
fairness, e.g. equal likelihood, could only be tested in the long term. This may have 
resulted from the dual presence of the local events (the colliding balls) and the 
aggregate outcome (the movement of the space kid). This might add to Metz (1998) 
finding and it can be said that children by experiencing the game they understood that 
something that is unstable with a small number of outcomes becomes stable with a 
large number of trials. The children in this study seemed to express an intuition about 
stability of long-term trials, a shift of focus that the game promoted by looking at the 
aggregate outcomes of any construction.  

In this paper, I have described young children’s expressions for the idea of the law of 
large numbers (L.L.N.), which occurred while they built computational models of 
sample space and distribution. The study demonstrated that students have robust 
intuitions for the L.L.N., and that – given interactive learning environments – 
students can express these intuitions. This finding provides support to the general 
constructionist thesis (Papert, 1991) that engagement in the building of some 
external, shareable, and personally meaningful product is conducive to mathematics 
learning.  
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TOWARDS THE DESIGN OF TOOLS FOR THE 
ORGANIZATION OF THE STOCHASTIC 

Dave Pratt,  University of Warwick, United Kingdom 
Theodosia Prodromou  , University of Warwick, United Kingdom 
 

Abstract: This paper reports on one aspect of the ongoing doctoral research of the 
first named author. This study builds on prior work, which identified that students 
of age 11 years had sound intuitions for short-term randomness but had few tools 
for articulating patterns in longer-term randomness. This previous work did 
however identify the construction of new causal meanings for distribution when 
they interacted with a computer-based microworld. Through a design research 
methodology, we are building new microworlds that aspire to capture how 
students might use knowledge about the deterministic to explain probability 
distribution as an emergent phenomenon. In this paper, we report on some insights 
gained from early iterations and show how we have embodied these ideas into a 
new microworld, not yet tested with students. 

1. Emergent phenomena 
We begin by considering the relationship between our appreciation of the 
deterministic, of the stochastic and of emergence and consider how these 
transitions help or hinder the gradual evolution of the conception1 of distribution. 

Distribution can be seen as a structure with which students can understand all the 
aggregate features of data sets (Cobb, 1999). Features such as average and spread 
can be construed as parameters of a theoretical distribution or as emergent from 
numerous trials. When writers refer to distribution they often shift between these 
two meanings without making that shift explicit. In this sense, the relationship 
between these two construals is slippery, and yet perhaps that ambiguity is at the 
very heart of a deep appreciation of stochastics. 

Based on Wilensky’s work (1997), we define probability distribution as an 
emergent phenomenon (Prodromou, 2004). In this way, we hope to capture both 
the theoretical and emergent perspectives. The distribution would appear as the 
outcome from many random events and yet there is a sense of organisation 
represented by the theoretical parameters. 

In the service of making sense of the world, people appear to have an intrinsic 
desire to attribute meaning to what they observe, a search which leads, in turn, to 
organisation, the formation of patterns, the encoding of pictures, and 
simplification. Even complex dynamic systems are simplified into emergent 
phenomena – that is functional collectives which arise through the co-specifying 
activities of numerous micro agents. These sorts of phenomena might be further 
                                                 
1 By “evolution”, we wish to focus on an individual’s thinking-in-change (Noss & Hoyles, 1996) as s/he uses the 
tools that we are designing. Hence we refer to evolution with respect to an individual’s thinking and we refer to 
conception (rather than concept) to emphasise that particular person’s construction of the idea. 
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described as “bottom-up”, as emergent macrobehaviours emerge from behaviours 
and localised rules of individual agents. Discussions of emergent phenomena are 
often accompanied by such classic examples as the flocking of birds.  

In more technical language, emergent behaviour is evident within a complex 
adaptive system, in which for reasons that are not fully understood, low level 
agents produce behaviour of a higher sophistication. Such phenomena are not 
deterministic, do not readily submit to analytic methods and cannot be strictly 
understood through means of analysis  

Emergent phenomena and artificial emergence open up a novel perspective on our 
interconnected world, indicating that they dominate our life, and will drive the 
fundamental questions that form our view of the world in the coming era.  

The study of emergent phenomena as complex systems is not just considered as a 
broad new field of science, but as a new framework, a dynamic, revolutionary way 
of experiencing scientific content. As Davis, B. and Simmt, E. (2003) note, “a 
different attitude is required for their study, one that makes it possible to attend to 
their ever-shifting characters and that enables researchers to regard such systems, 
all at once, as coherent unities, as collections of coherent unities, and (likely) as 
agents within grander unities” (p.140). An understanding of complex systems is 
increasingly becoming a core part of scientific knowledge and the adoption of this 
new perspective is essential to comprehend the world.  

We aim to find out how students understand distribution in a rule-governed 
system. As Johnson (2001) writes, emergent behaviours, like games, are all about 
living within the boundaries defined by rules, but also using that space to create 
something greater than the sums of its parts. Indeed, our research aim is to design a 
microworld setting in which we can observe students harnessing their deterministic 
causally-based thinking to imbue meaning to probability distribution as an 
emergent phenomenon. In this respect, distribution throws up some particular 
pedagogic challenges. The first challenge is to help students to construct through 
distribution an organising conceptual structure for thinking about variability 
located within a more general context of data sets (Petrosino et. al., 2003). The 
second challenge is to help students to discriminate and move smoothly between 
data as a series of random outcomes at the micro level and the shape of distribution 
as an emergent phenomenon at the macro level. 

Based on Wilensky’s work (1997) about connected mathematics and emergent 
phenomena, we see probability distribution, both discrete and continuous, as a 
dynamic and complex construct with a coherent personality (Prodromou, 2004). 
This personality self organizes out of many individual decisions (data) and a global 
order emerges out of uncoordinated local interactions over its duration. A pattern 
(probability distribution) emerges out of the anarchy of randomness. 

Trying to make sense of these emergent behaviours is in fact a challenging task 
(Resnick, 1991). It is noteworthy that the mind struggles to grasp emergent 
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phenomena successfully, because it boggles at this mix of stability and 
randomness. We see resonance between the tendency to adopt a centralised 
mindset when interpreting emergent phenomena and Piaget’s seminal work (1975, 
translated from original in 1951) that reported how the organism fails in the first 
place to apply operational thinking to the task of constructing meaning for random 
phenomena. Only much later do we, according to Piaget, operationalise 
randomness through the invention of probability. In this sense, Piaget offers us a 
first hint that we only begin to gain some mastery over the stochastic when we 
learn how to exploit our well-established appreciation of the deterministic. Pratt 
and Noss (2002) reported that students age 11 years articulated meanings for short-
term randomness that were pretty well consistent with those of experts. They were 
able to discuss randomness in terms of unpredictability, lack of control and 
fairness in much the same way as statistically aware adults might. Nevertheless, 
they had little or no language for discussing distribution or the Law of Large 
Numbers. In other words, their appreciation of the patterns that emerge in the 
longer term was not well developed. As his students worked with a domain of 
stochastic abstraction, Chance-Maker, they began to articulate new meanings for 
the longer term. These meanings were causally-based and situated. For example, 
the students would explain “the more trials, the more even the pie chart”. The 
study described in this paper builds on those ideas and as it attempts to clarify how 
students at one level let go of the deterministic whilst at the same time re-apply 
such ideas in new ways to construct probability distribution as an emergent 
phenomenon. 

Much depends of course on the design of the microworld, which must somehow 
offer us as researchers a window (Noss and Hoyles, 1996) on the evolution of such 
thinking. The microworlds must capture the student’s thinking process, or at least a 
meaningful element of it, by providing sufficient perturbation that we can observe 
as thinking-in-change. 

Our broad aim is to observe thinking about emergent distribution in relation to 
emergent tools. In this particular paper we try to illustrate how insights into 
thinking-in-change about distribution have informed one design element. 

2. Method 
The approach of the current ongoing study falls into the category of design 
experiments (Cobb et al, 2003), a methodology that is sensitising us to the complex 
learning ecology through iterative design of the microworld. As we work with 
students using successive iterations of the software, we are beginning to recognise 
the emergence of patterns in participants’ reasoning evoked by their interactions 
with the model. 

We conjectured that, if participants encounter emergence as letting go from 
determinism, they might think about distributions as complex adaptive systems and 
somehow harness meanings for the deterministic in making sense of emergent 
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behaviour. The challenge was, and remains, one of formulating a microworld 
design that embodies at each stage testable conjectures, based on our sensitised 
appreciation of students’ meanings as they shift between the micro and macro 
levels. 

We therefore presented the two levels, micro and macro, in separate projects. In 
the first project, we fore-grounded causality and in the second project we placed 
emphasis on emergent distribution. The students first experimented with the micro 
level project but even at that level they were encouraged to let go of determinism 
through the introduction of error in the determining variables. We have been busy 
developing a meaningful context in which the students would be able to articulate 
meanings at these two levels. We developed a basketball context. 

2.1 Micro level project 
In this paper, we wish to focus on insights gained during use of the macro level 
project and so we will deal rather superficially with the micro. At the micro level, 
the student was challenged to throw an on-screen ball into the basket. The student 
can alter the basket size as well as the speed and direction of the throw. 

The task directed attention of the student to causality (speed and angle of throw). 
Then the student was encouraged to let go of causality, by introducing an error 
factor in throws. This was a fairly natural step since it felt inappropriate that once a 
successful throw was discovered, the thrower would succeed every time (the world 
so far being completely determined). Once error had been introduced, the student 
was no longer completely in control and aspects of randomness had to be 
addressed. 

2.2 Macro level project 
Whereas at the micro-level 
the purpose of the task was to 
succeed in throwing the ball 
into the basket, at the macro-
level the students were asked 
to design the court and decide 
how far away the basket 
should be from the throwers, 
so a class of unknown 
children might find scoring 
neither too easy nor too 
difficult. The process of 
throwing was no longer under 
control of the student but was 
automated by the computer. 
This task sought to redirect 

attention towards the emergent distribution.  We hoped that the student would have 

Figure 1: The balls are drawn in black and are travelling in 
parabolic motion towards the basket. Some are got in and 
others are failed. The right hand sliders again allow the student 
to change the size or position of the basket. The left hand sliders 
enable the student to decide how many balls should be thrown 
and how many repetitions are carried out. 
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to let go of causality and consider the distribution of the throws. These ideas were 
incorporated into the macro level project (Figure 1), developed in NetLogo. 

 
 

At 
bot
h micro and macro levels, the students can base their decision from where to throw 
the balls into the basket, on various types of feedback, such as counters of goals, 
rate of goals, and three different types of graphs,   namely average rate of goals per 
trial, a histogram of goals against position of basketball throw, and successful-
shoots against trials (Figure 2). We focus on the work carried out by two girls, 
Kate and Anna, (aged between 17 and 18 years) as they engaged with the macro 
level, having already experienced throwing the ball into the basket at the micro-
level. We captured their on-screen activity on video-tape and transcribed those 
sections to generate plain accounts of the sessions.   Subsequently we analysed the 
transcriptions in attempts to account for the students’ actions and articulations. The 
excerpts in the next section are taken directly from transcriptions of the videotape. 
(‘Res’ refers to the first named author.) 

3. At the macro level 
The two girls chose to work initially with just one screen-child, thus replicating the 
one thrower situation from the micro-level project. However, they had not 
anticipated not being able to control the position of that child in the way that they 
had controlled their own position in the micro-level project. Each time the child 
threw a ball, it threw from a different place, making it difficult for them to 
determine success rates in relation to pre-determined positions. 

1. Kate: That rate is not very constant… because it is in random places, I think. 
2. Anna: We cannot judge because we have only one child… [long pause] …because   

he is only a child … and he doesn’t know how to play it. 
3. Kate: We have not got certain angle and speed. 
4. Anna: We cannot control the throw of the ball. 
5. Kate:  The rate is very very low so… the line is very down. Almost zero… It is very 

constant... it is not a straight line. 
6. Anna: Ehm…Can we exert any control? There must be a position from where they 

can score best… Can we find it by standing only on a certain position? 
7. Kate: …but we do not have a fixed shooting position. 

Figure 2: At macro level the students have access to a histogram of goals from each patch against 
position of basketball throw. 
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The only control that Anna and Kate might have exerted was through the position 
or size of the basket. The basket however is the end of the process, the result of 
throwing. Perhaps then they did not construct the basket position as a control. 
Instead, they were confused by the lack of any control over the position of throws 
of the unknown child, which were perhaps more readily constructed as inputs or 
parameters. 

This theme of lack of control was widened to encompass the situation as a whole. 
8. Res: Ok, so you cannot improve the scoring rate? 
9. Anna: Not really.   
10. Kate: You could but you can …randomly, you cannot plan to. It depends on the 

height they are really and how they throw the balls, and we don’t know how they 
throw the balls. 

11. Anna: It is like training different children every time and you don’t know how they 
react because they can really… The only thing you can do is to make the basket size 
bigger. 

12. Kate: We can make the basket bigger or move the basket, but the children don’t 
know that we can do that. 

13. Res: Can you improve the performance or control it in a way? 
14. Kate: Not really, because there are so many different positions… it is only a small 

number of people, but the same on different positions… so you don’t know where 
they are going to stand… unless you fix their positions...it’s by chance. 

15. Kate: It’ s a bit annoying really, because there are too many variables. Everything 
is… different every time...the people being standing in different places every 
time…and they have different heights every time… Everything happens by chance. 

The girls struggled to attend to all these variables, which function in parallel and 
interact independently at a low level. They were unable at this stage to perceive 
any underlying distribution nor to discriminate and make strong connections 
between micro and macro levels. Later though they called upon knowledge of bell-
curves to begin to recognise features of the distribution.  

16. Kate: That’s different than before. 
17. Anna: That’s weird. 
18. Researcher asks her to explain what she means. Anna shows with the cursor on the 

histogram. 
19. Anna: That’s the best position. That graph… the positions towards the middle are 

better than the ones to the other sides. 
20. Kate: Normal distribution. 
21. Res: Normal? 
22. Kate: Ehm… maybe different because we didn’t take too many trials. 
23. Anna: And because there are quite… always change… so it cannot be the same 

every time anyway. 
Kate emphasized the macro behaviour and regarded distribution as a coherent 
unity, but acknowledging at the same time that its behaviour is dependent on the 
number of trials. On the other hand, Anna linked the macro and micro levels, 
putting emphasis on the micro level.   

At one stage, the researcher asked the girls about the various types of graphs, and 
we see them interpreting features of the graphs.   
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24. Res: What about the three graphs? 
25. Anna: They are constant. The graphs are constant, straight lines… (referring to the 

successful shots and average rate of goals per trial graphs). 
26. The researcher asked about the goals for each patch graph. 
27. Anna: That makes sense really… that makes sense because the further away from the 

basket the harder it is to score, but afterwards… where it goes down are those who 
scored and the rest would be under the basket or nearly under the basket? 

Later, the girls noticed that the distribution can sometimes be skewed. 
28. Res: Ok, when do you think we have a skewed distribution? 
29. Anna: When you have few trials and few people, and then the distribution is 

skewed…. or few trials really… actually. 
30. They carry out 35 trials with 40 players/shooting positions. 
31. Kate: The distribution is not skewed now, but before it was. 
32. Res: You told me that with less trials we will have a skewed distribution, but we 

don’t have. Why? 
33. Kate: Maybe that one was by chance or… I do not know. 
34. Res: What do you mean “by chance”? 
35. They replicate the same simulation several times. 
36. Anna: Anyway, it always changes… 
37. Kate: Yes it is different every time and the rate is much higher than it was the last 

time… because the height is continually changing… so… I think it is just chance. 
Kate and Anna appeared not only to be recognising macro-level features but they 
were relating those features to how many throws were being used. The notion that 
“the more trials, the less skewed the distribution” was articulated and seen as 
something that by chance might not happen. Indeed this pattern was not seen as 
something that could be controlled. 

38. Res: What do you think affects the rate and the shape of the distribution? 
39. Anna: I don’t think it’ s controlled to be fair when you’ve got a bit number of trials 

and people… because the people are in different places every time… and they have 
different heights every time… so you can’t control it. 

Control seemed to seen in strict deterministic terms, even though they had perhaps 
begun to articulate earlier a sense of being in partial control of the distribution 
through the number of throws. It could be argued that this reliance on deterministic 
control is reinforced through using a computer, and there is some evidence to 
support that view. 

40. Res: You said it will be skewed by chance. Will it be skewed by chance? 
41. Anna: (laughing) It is probably not by chance, because you have programmed it and 

you have probably got some complicated formulas… that’s why it behaves like that. 
However, an alternative argument is that the use of a computer provokes 
deterministic meanings (cf Pratt, 1998) that we might be able to harness in a 
productive way in future iterations, much as, according to Piaget, the organism 
operationalises the stochastic at the stage of formal operations. 

4. Key design principles 
The episode taken from work with the macro-level project gave us some insights 
that have allowed us to generate some new conjectures, which we are currently 
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building into the next design of the emerging microworld. The students continued 
to see control as embedded in the action of throwing (lines 2-4, 6-7, 10-11, 14, 37) 
but nevertheless articulated ideas that from our perspective sounded like a form of 
stochastic control (lines 19-22, 24-27, 29-32). They recognised the bell-curve 
feature (lines 19-20) and abstracted the notion that “the more trials, the less skewed 
the distribution”. We would hope though that a more fine-grained appreciation of 
the nature of control at the macro-level might be constructed. We envisage that a 
more gradual letting go of deterministic control might allow the students to 
construct a relationship between the degree of control and the spread of the 
distribution. 

The macro-level project appeared to contain too much randomness, with too little 
control over how quickly that randomness was introduced (lines 15, 39). We 
conjecture that the use of two separate models (micro and macro) creates 
something of an obstacle to shifting between the two levels and so our next design 
will incorporate the two levels into a single project. 

As shown above, the notion of control, or lack of control, was crucial. We 
therefore plan to embody error in a consistent way across the new single project. 
Variables such as shooting position, speed and angle will all be fixed by default 
but with the option of adding error, which itself can be increased or decreased in 
size. Thus, a student may choose to have only one variable with error and they 
might choose to gradually increase that error before introducing a second variable 
with error. We believe that with this additional control over control students might 
be able to connect the deterministic to the stochastic in a more fine-grained way. 

Throughout their use of the micro and macro projects, the discussion about the 
histograms of goals from each patch seemed to involve the students in beginning to 
conceptualise probability distribution as an emergent phenomenon. In contrast, 
discussion about the other graphs was at best trivial and at worst a distraction from 
our research agenda (lines 25-27). We have realised that some of the graphs are 
more important in terms of making connections between the levels. We are 
therefore reducing the number of types of graphs to the most relevant ones but 
offering those graphs for any or all variables. 

To help users focus effectively on critical ideas, it is envisaged that students will 
be asked to select and look at a graph of any variable that is designed to 
incorporate an error element. In all of these cases, students can have access to a 
range of graphs. The default shows a graph of success ratio against time. Students 
can choose to see a histogram of number of successes against position of scoring, a 
histogram of frequency of successes against angle, speed or height. 

5. A form of stochastic control 
In the spirit of design research, we conclude by capturing our current state of 
understanding in a specification of the new design. In particular, insights into 
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thinking-in-change about distribution have informed one design element, as 
follows. 

A consistent approach across variables is implemented in a way that all variables 
are now controlled similarly. We illustrate that approach through Figure 3, which 
demonstrate the case of release angle and speed. In Figure 3, the release speed has 
no error and therefore the speed of throw will be entirely determined, never 
varying from throw to throw. In contrast, the user has chosen to incorporate error 
into the angle of throw. As a result, two new marks, in the form of arrows, have 
appeared either side of the slider button. These arrows can be moved independently 
of each other and of the slider button. 

We see this mechanism as an 
example of what Papert 
refers to as a quasi-concrete 
object (Turkle and Papert, 
1991), in the sense that the 
virtual objects can be 
manipulated in ways akin to 
how we learn about material 

objects through their use. We are in fact exploiting here an affordance of 
computational objects to facilitate an intuitive connection to abstract formalisms. 

We intend that by playing with the button and markers as illustrated in Figure 3, 
students will gain an intuitive feel for the role of average (the main slider button), 
spread (the arrow buttons) and skewness (the degree of symmetry between the two 
arrows in relation to the main slider button). Students will be able to compare the 
emergent distributions corresponding to increasing numbers of throws to the 
settings they have used for their throws. We conjecture students will gain a sense 
of what aspects of the distribution are directly influenced by their settings and 
which are not. We hope that they will in this way be able to differentiate between 
global features of distribution and local randomness. 

This approach throws up some interesting questions, which we will hope to be able 
to address in our analysis when the students use the new design in the next 
iteration. The students are using controls that determine features (average, spread 
and skewness) of the emergent distribution but do not entirely define it (the 
specific results are unpredictable). We wonder whether this is an acceptable 
resolution of the apparently paradoxical relationship between the determined and 
the stochastic. It seems that such a resolution is typically only within reach of 
experts who have constructed probability as a means of operationalising the 
stochastic. We see echoes of such a resolution in inferential methods, which 
separate the main effect from random error. 

 

Figure 3: When the error button is pressed, two marks appear 
either side of the slider button. These marks represent the size of 
the error. In this case, the release angle contains an error but the 
release speed is determined. The size and skewness of the error 
can be changed by moving the position of the two marks. 
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