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INTRODUCTION 
How to write a pretty boring introduction to a chapter made with various authors' 
contributions? That is easy: by pasting summaries of one contribution after another, 
shortened to the point where they lose their meaning. Therefore we, the Algebraic 
Thinking Working Group leaders, decided to avoid this tedious and pointless 
rewriting exercise, and instead wanted to present here the main outcomes which had 
sprung up during the group discussions1. 
Our first question was: on what can we work in a Working Group? After having read 
the contribution proposals, our first idea was to split the whole "algebraic thinking" 
theme into various domains related to the students' levels: Linear Algebra, Pre-
Algebra, Elementary Algebra etc. However we felt that by doing it this way, we 
would miss the point: working together is not just about communicating (scientific) 
facts between sub-domain specialists, and much less about trying to convert others to 
one's own faith. Rather, it should be an exchange about the pros and the cons of the 
different frameworks used in order to interpret the problems participants face, and a 
way to promote in-depth scientific cooperation. 
Moreover, many problems of miscomprehension tend to arise when discussing from 
different frameworks: sometimes different words are used to describe the same 
phenomenons, sometimes (more frequently) the same word (like "language" or 
"obstacle") is used with quite different meanings (which is worse). Therefore we 
decided that the working group sessions would be devoted to uncovering the possible 
misunderstandings about the various words or concepts the presenters were using. 
We then decided to organise presentations according to the predominance of two 
perspectives: the historical perspective and the semiotic perspective. 

                                           
1 Everyone in the group discussion could understand French, most spoke and understood better French than English, but 
some could not speak French. The situation was very similar for Spanish, except for one member who did not 
understand Spanish. Therefore, we unanimously decided that, given the circumstances, everybody would speak in the 
idiom, French or English, with which he or she felt most comfortable. This pragmatic decision improved the fluidity of 
the discussion dramatically as well as the possibility to discuss subtle and deep ideas. 
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It had been clear from the beginning that our aim was not to study either the history 
or the semiotics of mathematics for themselves. Actually, no group member is a 
specialist in these research domains. Instead, we conceived of historic and 
epistemologic studies on the one hand and semiotic and linguistic studies on the other 
as tools for research in mathematics education. 
It is interesting to note that the use of the words “semiotics,” “linguistics,” “history” 
or “epistemology” already raised thorny definition problems. 
Regarding "semiotics" and "linguistics" and the world "language": there is an 
immense variety of ways to represent mathematical objects or facts, and these 
representation systems (including the way representations are interpreted and 
transmitted) are described by a science called “semiotics” (see Drouhard & Teppo, 
2004). Charles S. Peirce can be considered the founder of semiotics, and Umberto 
Eco one of the prominent contemporary scientists in this field. Within this 
framework, the well-defined phrases “semiotic representations” and “semiotic 
representation systems” are used rather than the ambiguous ones “representations” 
and “ways to represent”. 
However, some particular semiotic representation systems show specific additional 
characteristics: this is the case for “natural languages” like English or Spanish ("the 
positive number which square is two" is written in the natural language English) and 
for “symbolic languages” (" 2 " is written in the symbolic language of algebra). 
These special semiotic representation systems are therefore described both by 
semiotics (being semiotic systems) and by linguistics (being languages) (Drouhard & 
Panizza, to appear a, b). Ferdinand de Saussure can be considered the founder of 
linguistics and Noam Chomsky one of the prominent scientists in this field. 
The problem with the word “language” is that its meaning differs very much 
according to the theoretical framework in question. Some linguists define a language 
as the set of sentences produced by a generative grammar2, (this is tipically the case 
with Chomsky and computer scientists). Other ("functionalist" linguists like Jakobson 
or semioticians like Eco) define language by its functions, in other words, by what it 
allows one to do (to transmit information or orders, to ask questions, to describe facts, 
to express ideas or feelings etc.). Thus, when speaking of "language" it is important 
never to forget to add "in the sense of” Chomsky or Eco, for instance. 
There is also a problem with the word "epistemology" which is used by scientists in 
different domains; firstly by those who study the philosophy of mathematics (for 
instance the nature of mathematical objects); but also, by some mathematics 
historians. Even Piagetian psychologists call their domain "genetic epistemology"! It 
is not a mere question of vocabulary, since there are passionate arguments 
surrounding the relationship between history and the philosophy of mathematics. All 
positions can be found in the scientific literature, including the extreme ones (i.e. that 

                                           
2 A generative grammar is basically a set of rewrite rules 

Working Group 6

632 CERME 4 (2005)



philosophy is a branch of history, or the opposite). Mathematics education is not 
immune from the controversy (if, for instance, we consider the notion of 
"epistemological obstacle"), never really being sure whether it is history, philosophy, 
both or neither. The aim of our discussion group was not to take a position on this 
debate, but rather to shed light on the risk of misunderstanding and the necessity on 
being clear about what we are referring to when speaking of "epistemology." 
EPISTEMOLOGY AND HISTORY 
Often, the group discussions turned to epistemological considerations of algebra. 
Some members objected to the notion of the validity of the recapitulation principle 
(i.e. that ontogenesis recapitulates phylogenesis). Although the question had been 
discussed in the past (see e.g. Furinghetti and Radford, 2002; Radford, 1997) the 
members felt that it was important to deal with this question in order to better grasp 
the role of the history of algebra as a means to explain the difficulties that students 
encounter when they learn algebra. In this context, some members mentioned the idea 
of epistemological obstacles. By definition, epistemological obstacles (in the sense of 
Brousseau, 1983) are those which are intrinsic to knowledge (as opposed to 
ontogenetic, didactic and cultural obstacles). In the course of the discussion, doubts 
were raised concerning this concept of knowledge. The opposition between 
epistemological and cultural obstacles was related to the problematic idea that 
mathematical knowledge could have a kind of intrinsic kernel, independent of the 
cultural context from which such knowledge arises and evolves (Radford, ibid.). The 
discussion stressed the importance of being careful with the notion of epistemological 
obstacle and taking into account the cultural context in which a notion appears. For 
instance, it was argued, using Araya Chacón’s example of negative numbers, that, for 
ancient Chinese mathematicians, negative numbers were very ‘natural’ and that the 
question is rather to see the cultural conditions that made those numbers thinkable. 
The Chinese episteme rested on the cultural idea of opposites (yin-yang) while the 
Greek episteme was based on a non-symmetrical opposition between being and non-
being. 
Moreover, when the cultural context changes, problems and difficulties change too: 
this is one of the reasons that led us to decide that the recapitulation principle had 
little relevance.  
The discussion then focused on the value of the history of mathematics for 
mathematics education. Some members argued that the fact that the recapitulation 
principle is not valid does not mean that the history of mathematics loses its 
relevance in the educational realm. The problem is to determine which kinds of 
historical studies are suitable for mathematics education. 
G.T. Bagni’s paper explicitly tackles this problem, stressing that different uses of 
history imply different epistemological assumptions, and arguing that a social and 
cultural account of the history of mathematics better fits the needs of research on the 
didactics of mathematics. 
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The history of mathematics, it was contended, can shed some light on the conceptual 
development of mathematics, but in order to do so, it has to be conceived in non-
essentialist ways (i.e. in ways that do not assume that mathematics evolve according 
to a supposedly internal teleology). History has to attend to the cultural settings in 
which mathematics evolve, and to see those settings not as mere picturesque and 
charming backgrounds but as integral parts of conceptual developments. This 
perspective is not without its own difficulties. For one thing, it requires us to revisit 
the ampler problem of knowledge formation and cognition. 
The historical-cultural theoretical framework presented by L. Radford was discussed 
in the group. This framework is an attempt to go beyond the classical way of 
conceiving the role of history and culture in mathematics education −a way that can 
be summarized as follows: (1) it sees history as a sequence of events disconnected 
from their cultural settings without paying attention to the cognitive-epistemic 
dimension (i.e. what makes mathematical ideas possible at certain periods) and (2) it 
sees culture as a descriptive background with no organic ties to the cognitive domain.  
Thus Radford’s position is to consider the cognitive dimension of historical 
developments and to consider simmetrically the cultural dimension of cognitive 
developments. This theoretical framework leads to a relationship between 
ontogenesis and phylogenesis different from the recapitulationist one. 
The depths of this problem were illustrated through the emergence of new non-
rationalist epistemologies, such as cultural, feminist and post-modernist 
epistemologies, each one opening different routes through which to conceive 
knowledge and knowledge production. One concrete example was the following. In 
the research conducted by Radford and his students on algebraic generalizations (see 
the work presented by Radford, Bardini and Sabena at this Conference) or on 
equations (e.g. Radford, 2002), an important role is given not only to symbols, but 
also to social interaction, gestures, language and artifacts in the emergence of 
algebraic thinking. The role of gestures or the rhythm of actions, for instance, does 
not have a significant role to play in rationalist epistemologies (even in Piaget’s 
genetic epistemology where kinesthetic actions fade away as soon as the sensori-
motor stage is supposedly completed). However, in a different epistemology −one 
that conceives cognition not only as involving the mental dimension of the mind but 
also as including gestures, rhythm, perception, etc.− new forms of knowledge 
production are considered and cognition is cast in different terms. 
The cultural-historical theoretical framework is based on the premise that each act of 
knowing is imbricated in the history of the object of knowledge and the cultural sense 
of knowing in which the act of knowing occurs. The theoretical framework 
acknoweldges the following fundamental limitation in the use of history for didactic 
purposes. In empirical studies, it is possible (even if not always easy) to have access 
to the complex learning processes of contemporary students (e.g. their culturally 
situated sources such as textbooks, classroom discourse, written material).  In the 
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study of past mathematicians’ discoveries, there is no other available source than 
written texts. 
HISTORICAL DATA 
This serious problem was analysed firstly from the point of view of the selection of 
historical data when dealing with a new account of the history of algebraic notation, 
as raised by Bagni. We considered the difficulties that we have to deal with in our 
research due to the fact that our main source of historical data is ancient mathematical 
texts. If we do not conceive the history of mathematics as the discovery of eternal 
mathematical objects and truths, and if we think that the system of signs used to write 
a mathematical text is not a means to expressing those eternal mathematical objects 
and truths—but rather an essential component of the construction of mathematical 
objects—we cannot rely on the translation of ancient mathematical texts to modern 
concepts and systems of signs. For instance, we cannot use Witmer’s translation of 
Viète to study the history of algebraic notation, because Witmer translates the 
relevant parts of Viète’s text into modern algebraic language. 
Dealing with the original texts is not an easy task for those of us who are researchers 
on the didactics of mathematics and not professional historians of mathematics, but 
we have to take care to at least be aware of the transformations made to the original 
texts in the editions we use. 
Next we had a second look at the use of written texts, taking into account the risk of 
anachronism.  It is especially important to keep in mind that, when looking at ancient 
mathematical texts, we cannot project our modern concepts on them. Besides taking 
into account the cultural and social dimensions that differ through time and place, if 
we use Freudenthal’s historical phenomenology, we know that what is relevant to 
didactics is to analyse which phenomena where organised by concepts that we can 
see as historical precursors to modern concepts. In this sense, we considered that if 
we track the history of “integer numbers” back to ancient times, for instance back to 
Diophantos’ or al- Khwārizmī’s texts (See Puig, 2004), what we can find is algebraic 
expressions in which there are quantities that are being subtracted from other 
quantities. There are not positive and negative quantities, but quantities that are being 
added to others (additive quantities) and quantities that are being subtracted from 
others, and the latter cannot be conceived on their own but only as being subtracted 
from others. Thus, al-Khwārizmī may even go so far as to speak of “minus thing” 
when he is explaining the sign rules, but he is always referring to a situation in which 
that thing is being subtracted from something 

When you say ten minus thing by ten and thing, you say ten by ten, a hundred, and minus 
thing by ten, ten “subtractive” things, and thing by ten, ten “additive” things, and minus 
thing by thing, “subtractive” treasure; therefore, the product is a hundred dirhams minus one 
treasure. (Rosen, 1881, p. 17 of the text in Arabic) 

However, as the subtractive quantities are conceived as something that has been 
subtracted from something, an expression in which there is a subtractive quantity 
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represents a quantity with a defect, a quantity in which something is lacking. 
Diophantos’ sign system expresses this way of conceiving the subtractive in an 
especially explicit way, as in his sign system all the additive quantities are written 
together, juxtaposed in a sequence one after another, and all the subtractive quantities 
are written afterwards, also juxtaposed, preceded by the word leipsis (what is 
lacking). Thus, the algebraic expression 

  x3 − 3x2 + 3x −1 
is written as 

 Κ
ϒα ς γ Λ ∆ϒ γ Μ

o

α  (Tannery, 1893, vol. I, p. 434, l. 10), 
an abbreviation of “cubos 1 arithmos 3 what is lacking dynamis 3 monas (units) 1,” 
in which the expressions corresponding to x3 and 3x are juxtaposed on one side, and 
x2 and 1 on the other, separated by the abbreviation for “what is lacking” (Greek 
letters lambda and iota). 
Thus, the main phenomena that are organized in al- Khwārizmī and Diophantos are 
the phenomena of “the subtractive,” “what is subtracted (from a quantity)” or “what 
is lacking (to a quantity)”. 
Examples from Diophantos, al-Khwārizmī, Viète, Chuquet and Bombelli’s algebraic 
expressions give us the opportunity to further discuss Nesselman’s frequently quoted 
three stages in the evolution of algebraic language: rhetorical, syncopated, and 
symbolic (See Section 3 of Puig and Rojano, 2004). It was pointed out that in this 
case it is also worth looking at the literality of Nesselman’s text. Nesselman’s 
characterization of syncopated algebra stresses that syncopated algebra is algebra in 
which the exposition is also of a rhetorical nature “but for certain frequently recurring 
concepts and operations it uses consistent abbreviations instead of complete words” 
(Nesselmann, 1842, p. 302). What is really important from Nesselman’s point of 
view is the rhetorical nature of the exposition, and not the use of signs that are mere 
abbreviations of words. That is the reason why in this stage Nesselmann places not 
only Diophantos, but even Viète “although in his writings Viète had already shown 
the seed of modern algebra, which nevertheless only germinated some time after 
him” (Nesselmann, 1842, p. 302). For example, Viète writes “A quad – B in A 2, 
æquetur Z plano” for the equation that we write: x2 - 2bx = c, using abbreviations like 
“quad,” the abbreviation of “quadratum (square),” instead of using numbers (2, in this 
case). Viète is using letters to represent quantities, but this is not enough to 
characterize his sign system as symbolic from Nesselman’s point of view. For him, 
the fundamental feature of symbolic language is not the mere fact of the existence of 
letters to represent quantities or of signs foreign to ordinary language to represent 
operations but the fact that one can operate with this sign system without having to 
resort to translating it into ordinary language. In Nesselmann’s own words: “We can 
perform an algebraic calculation from start to finish in a wholly understandable way 
without using a single written word […] (Nesselmann, 1842, p. 302). 
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“Symbolic,” in Nesselmann’s sense, means then the possibility of calculating on the 
level of the expressions without resorting to the level of content. We also discussed 
what “calculating on the level of the expressions” really means. It was pointed out 
that Chuquet’s and Bombelli’s idea of using numbers instead of abbreviations of 
words to stand for “thing” or “root,” “square” (or “census” in Latin Medieval texts, 
and “treasures” in Arab Medieval texts), “cube,” etc. was crucial because rules for 
transformations like “a thing by a square is a cube,” that are grounded on the level of 
content, could be replaced by arithmetical equalities like 1 + 2 = 3, that are 
meaningful even if we do not resort to the level of content (the relations among the 
type of quantities involved). In this sense, one has the possibility of calculating on the 
level of the expressions with the current symbolic language of algebra. 
SEMIOTIC AND LINGUISTIC ASPECTS 
During the conference, some contributors presented studies which could be clearly 
seen through semiotical lenses (see for instance Novotná & Sarrazy and the question 
of the spontaneous non-linguistic schemas done by the children) or through 
linguistical lenses (see for instance the tipically linguistical concept of "deictic" in 
Radford et al.). We found many different points of interest according to the 
linguistic/semiotics axis. 
On the one hand, the different works presented within this theoretical frame allowed 
us to approach it from different perspectives and with increasing levels of generality. 
On the other hand, this framework offered a complementary perspective for the 
analyses of other works presented within other theoretical frames. 
The discussions that sustained our analyses can be included in three main lines: 
1. Algebraic thinking is not always associated with the use of the present algebraic 

symbolism. 
2. Very different contexts may favour the development of algebraic symbolism. 
3. It is important to make a clear distinction between one- and two-dimensional 

symbolic writings. 
1) Algebraic thinking is not always associated with the use of modern algebraic 
symbolism. 

This sentence was interpreted in two ways, in accordance with mathematical 
education literature: neither does the use of modern algebraic symbolism always 
involve algebraic thinking; nor does algebraic thinking always involve the use of the 
modern algebraic symbolism. Various contributions were discussed in the WG 
according to these interpretations of the use of modern algebraic symbolism. 
The difficulties in understanding the complex relationship between algebraic writings 
and algebraic thinking was also enlightened with the analysis offered by Puig from 
the historical perspective (see previously in this text the points concerning the 
negative quantities and the "minus sign" in algebraic expressions, and Nesselman’s 

Working Group 6

CERME 4 (2005) 637



own criteria for clasifying the evolution of algebraic language; see also Radford 
(1995)). 
2) Very different contexts may support the development of algebraic symbolism 

This dimension was especially centred on the analysis of different situations 
supporting the construction of algebraic symbolism. Lins and Kaput (2004) stressed 
an emphasis on what students can do as opposed to the perspectives centred on 
highlighting difficulties or characterising errors. Several contributions  involving the 
first perspective were discussed. Various authors showed different contexts which 
could gradually lead the students towards algebraic symbolism. 

 
The paper of Radford and al. led us to a discussion of the role of students’ gestures 
and language: what they actually do, do not do, say or do not say as objects of 
analysis in their construction of algebraic representations. In this context, the use of 
“deictics” in relation to students’ interactions was especially taken into account.  In 
particular, the role of perception in the use of deictics was suggested as an instrument 
for analyzing the “point of view” in the subject-object and student-students 
relationship. 
All this discussion led us to consider the enunciative theories as frames that can 
contribute to interpreting students’ mathematical speech. Different works by Radford 
can be mentioned in this direction. In Radford (2000, 2002) he demonstrates–through 
several analyses of the students’ language in class—several functions language plays 
in the construction of algebraic generality (for example the deictics function and the 
generative function). A theoretical line is offered by Duval, who established different 
components of the sense of a proposition, founded on the fact that a proposition is 
posed in an enunciation context (Duval, 1995). 
3) Distinction between one- and two-dimensional symbolic writings 

A word alphabetically written is read from left to right (or from right to left in Arabic 
or Hebraic writings); in any case, in just one direction (from beginning to end). On 
the contrary, algebraic writing is bi-dimensional: not just the succession of letters and 
symbols is relevant but their relative vertical placement too (Drouhard, 1992). 

It is the case for fractions: (higher than the current line)
(lower than the current line)   but also for powers: 

(current position&size)(higher&smaller). The vertical reading order may be top-down (as 
in fractions) or down-top, as in: ⌡⌠

a

    b
  f (x) dx . Moreover, Kirshner (1989) showed  that 

for algebraic writings, horizontal spacing is relevant too (although redundant), as in 
"2×4+3" (wider horizontal space around the "+" mark than around the "×" mark). 
During the session discussions, Puig noted that the origin of bi-dimensional writings 
(which already appear in Greek notation, see above) could be found in the use of 
schemes, tables and drawings (obviously bidimensional) from the earlier times of 
mathematics. Bidimensional writing, he added, is technically difficult when passing 
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from paper-and-pencil to print characters or keyboards: this is the case for calculators 
or spreadsheets (one must type 2^3 to obtain 23). 
As time has gone on, there has been pressure to "linearise" writings, essentially for 
printing reasons. A lot of examples can be found in Cajori (1928, 1993). For instance 
the "vinculum" upper straight line was used to express the aggregation of terms, 
equivalent to our modern parentheses; nowadays this vinculum is used only with 
fractions and roots. However, with typewriters, even fractions and roots became 
difficult to write and there was a tendency to replace  " ax+b " by "√(ax+b)". It is 
possible to think, Puig pointed out, that the failure of the Gottlob Frege's 
Begriffschrift (Ideography, 1879) may rely on the intensive use of two dimensions in 
the symbolism he proposed; actually only few of Frege's unidimensional notations 
remain, like "¬", "╞ "or "├". The situation reverted dramatically with word 
processors; and maybe we would use Begriffschrift notations on an everyday basis if 
Frege could have used LATEX to write his articles! 
During the session discussions, Drouhard stressed the analogy between mathematical 
writings and Chinese ideograms. Firstly, some ideograms use two dimensions, like 
mathematical writings. For instance: the ideogram for shuāng: 

which is "two birds in the right hand": "pair".  

Then again, ideograms just note "ideas" and not sounds; therefore they are 
pronounced totally differently according to the idiom. For instance: 

"Thus, although the number one is "yi" in Mandarin, "yat" in Cantonese and "tsit" in 
Hokkien, they derive from a common ancient Chinese word and still share an identical 
character ("_")"3 

It is the same for mathematical writings: you will pronounce the same writing 
"2x+3": "dos equis más tres," "deux x plus trois" or "two x plus three" etc. according 
to your mother tongue. From this point of view, it is possible to consider that 
mathematical writing is, by far, the most widespread written language in the world. 
Mathematical writings, however, are not ideograms (even if they are close relatives); 
in particular they are characterized by a virtually infinite possiblity to combine, like: 

1010101010…

, which is not the case of ideograms. 
CONCLUSION 
A last theoretical point was presented in order to sum up some fragmented remarks. It 
is a model of knowledge called "paradigmatic perspective," which was briefly 
presented at the previous CERME conference in Bellaria (Drouhard & Panizza, 
2003b).  This is not the place to describe it in detail (see Drouhard & Panizza, 2003a, 
2005, Panizza & Drouhard, 2003, Sackur et al., 2005, Bagni, to appear). We will just 

                                           
3 Source: http://www.answers.com/topic/chinese-language 
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recall that the organisation of the knowledge to be taught, called "epistemographical 
model," consists in: Conceptual knowledge, Semiotic and Linguistic knowledge, 
Instrumental knowledge, knowledge of the rules of the mathematical game and 
knowledge that allows for identification of domains. This general framework allowed 
us: 

• To focus on the importance of semiotic analysis (Peirce) in some presentations 
(e.g. Novotná & Sarrazy) 

• To better analyse the knowledge involved in other presentations (e.g. about the 
pre-requisite knowledge needed at the beginning of university by De 
Vleeschouwer, or on difficulties with matrixes by Viola) 

• To avoid looking at history from just one aspect of knowledge: in this case 
there is a risk of remaining at an either superficial or biased level. On the 
contrary, it is really fascinating to observe and analyse how semiotic progress 
(like the invention of notations for variables or parameters) is related to 
instrumental progress (more convenient notations permit one to better solve 
more problems) and to conceptual progress (see also Duval, 1988). 

This last point provided yet another occasion to fruitfully intertweave discussions on 
history, as well as semiotic and epistemological issues. 
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DIFFICULTIES FOUND BY THE STUDENTS DURING  
THE STUDY OF SUBSTRACTION OF INTEGER NUMBERS 

 
Andrea María Araya Chacón, Université Toulouse III- France & Costa Rica 

 
Abstract: The objective of the investigation presented is to determine the possible 
causes of the students’ difficulties during the study of subtraction of integers. 
Considering as principal reference certain elements of the Theory of the Didactic 
Transposition, the results are formulated in terms of the evolution of the “scholarly 
knowledge”(historical note) and its transformations to become a school content 
according to the programs of study and some textbooks of upper secondary school in 
France (knowledge to be taught). This previous work is useful to contextualize and 
finally analyze the knowledge taught in two classes of fifth grade, explaining the 
difficulties found by the students.  
Keywords: Algebraic thinking, students' difficulties, subtraction of integers. 
 
1. INTRODUCTION 
The purpose of this document is to share the analysis made in order to determine the 
possible causes of the difficulties that the students have during the study of the 
subtraction of integer numbers. It begins with a brief description of some previous 
works that justify the elaboration in conjunction with the experience considered. 
Then the conceptual reference in which the analysis is placed will be exposed. After 
this, the methodology used is presented coherently with the transformations suffered 
by the “scholarly knowledge” to the “knowledge to be taught” and to the “taught 
knowledge”. 
Following this exposition, the results show some indicators that help identifying the 
categories of errors that the students may more commonly commit, besides the four 
difficulties and their possible causes. 
Finally, the conclusions and one annotation regarding the procedure used by certain 
university students that show another point of view are exposed. 
2. PRELIMINARIES AND JUSTIFICATION 
The topic of the integer numbers has been of interest for the specialists in the area of 
Mathematics and Mathematics Education, due to its particular delay in being 
accepted as a mathematical object (about 1500 years) and for the difficulties of the 
professors for building situations of teaching, and of the students for being competent 
in them. 
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G. Schubring (1986) has worked about the ruptures of the mathematical status of the 
negative numbers, doing an analysis of certain textbooks between 1750 and 1850 in 
three European countries: France, Germany and England. In the first one, the 
calculations of the negative quantities is adequate, even though, the negative numbers 
preserve an ambiguous status.  
George Glaeser (1981) proposes a study of the epistemology of the integer numbers. 
He details 10 obstacles to his mathematical acceptance, from the contributions of 
authors ranking from Diofanto to Hankel.  
In a more recent study in Spain, Bruno and Martiñón (1995-1996) discuss the 
dimensions in which the comprehension of the integer numbers can be established. 
Among the results, it is pointed out that a student can be able to solve correctly a 
problem applying the subtraction, without understanding why this mathematical 
operation might be used. 
This last result, the suggestion of Glaeser to study the actual consequences of the 
obstacles that he proposes, and the ambiguity of the treatment in textbooks reported 
by Schubring may justify performing the research, with the goal of defining a 
tentative inventory of the difficulties found by 49 students of fifth class, and their 
possible causes. 
3. CONCEPTUAL REFERENCE 
3.1 Didactic Transposition. Didactic Contract. Ostension Contract 
Chevallard (1991), has shown that the “knowledge to be taught” cannot be considered 
a reduction of a more complex knowledge, resulting from a “scholarly knowledge”. It 
is necessary that a learning content, after being designated as “knowledge to be 
taught”, suffers some adaptive transformations that should turn it apt as an objective 
of teaching; that is, it has to pass through a process of Didactic Transposition 
(Chevallard 1991). 
As part of the transposition process, the ancient/new dialectic adds two faces to the 
object. In one side, its character of novelty is necessary to satisfy and justify the 
rising of the new content in one situation. On the other side, its ancient character 
guarantees the recognition of certain elements previously learned by the students; that 
is, it authorizes an identification that restores it in the panorama of the ancient 
understandings. 
The process of didactic transposition also determines the paper of the teacher and the 
student. This distinction is recognized at least in two forms: first because the educator 
possesses “more knowledge” than students and secondly because he/she is able to 
anticipate what the students may know. Thus two registers of epistemological acts or 
two “ways of knowledge” are defined: one is what the educator may teach and the 
way of doing it, the other one is what students may know and how it may be learned. 
So, in this way, each character can be identified with a role to follow and establish a 
relationship (generally implicit) between what each one is responsible of doing in 

Working Group 6

644 CERME 4 (2005)



 

front of the other one. This relationship is called the didactic contract (Brousseau, 
1986). 
Brousseau brings one definition of the contract of “ostention” as a part of the didactic 
contract. His definition affirms that the professor “shows” an object or a property and 
the student accepts seeing it as a representative of a class of objects. He thus might 
recognize the elements of this class of objects in other circumstances. This implies 
that the “ostention” of the solution of a particular problem is supposed to give the 
necessary tools for solving the exercises thatwill follow it, grading the level of 
application. 
3.2 Mathematical Organizations. Didactic Organizations 
Chevallard (1999) places the mathematical activity and its study in the group of 
human activities and of social institutions, as a way to describe it with a unique 
model briefed under the name of praxeology. 
Among its fundamental elements, we find the idea of “type of tasks”, synonym of 
“action”, that supposes the definition of a precise object to which apply that action. 
The idea of “technique”, as the way of performing a task; the “technology”, referring 
principally to the rational justification that ensures the validity of the technique, and 
the notion of “theory” as the discourse that justifies and explains the technology. We 
call specific praxeology or specific mathematical organization the block formed by a 
type of tasks, the correspondent technique, the technology and the respective theory. 
The didactic organizations are understood as a group of types of tasks, techniques, 
technologies and theories, used for the concrete study in a specific institution. These 
organizations can be constructed by what Chevallard has called the moments of study 
or didactic moments and that can be considered as dimensions or situations that 
succeed regularly in a didactic process.  
The first moment is named the moment of the first encounter and corresponds to the 
first near drawing to the object of study. It is followed by the moment of exploration 
of the type of tasks and the elaboration of a technique. Then comes the constitution of 
the theoretical-technological environment, that supports the forth moment, the work 
of the technique, necessary to improve the dominion of it and explore its 
achievements. The institutionalization moment appears when it has to be cleared out 
what the students may know about the constructed mathematic organization. There is, 
finally, the moment of the evaluation.  
It is important to notate that the presence of these moments in a didactic process is 
not certain nor chronologic. In certain occasions, they are not present or they succeed 
in a simultaneous way. 
4. METHODOLOGY 
In order to reach the general objective of determining the origin or the possible 
causes of the difficulties that the students have during the study of the subtraction of 
integer numbers, the research has been divided in three parts. In the first part, a 
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bibliographical research has been done, where elements were selected in order to 
create a description of the evolution of the mathematical object, the subtraction of 
integers. Next, from the criteria extracted from the Theory of the Didactic 
Transposition, the notions of praxeologies, were analyzed the programs of instruction 
and the French textbooks, of the most significant improvements, of the years  1950, 
60, 71, 78, 85 and the current. 
In the second part, two classes of fifth grade of one school in Toulouse were selected. 
The first one, G1, with 28 pupils, in charge of the teacher P1, with more than 35 years 
of teaching experience. The second one, G2, with 28 pupils also, guided by a teacher 
(P2) with about 15 years of experience. In each one of them four observations were 
audio-recorded and transcipted in their whole. Using the same criteria that in the 
previous stage, the interpreted data in the observations were described and analyzed, 
in this way analyzing, the current transposition. 
In the last part, work was done with four students from each class, a couple (woman-
man) with high academic performance and another one with medium-low academic 
performance, according to the criteria of the teachers. 
Starting from the revision of the notebooks, written evaluations and considering the 
applied didactic and mathematical organizations, a guide was elaborated with the 
semi-directed interviews to the couple of students. Each one was audio-recorded. 
From the interpretation of the collected data in these interviews, a list of the most 
common errors was created, forming categories with them with the respective 
indicator for their identification, living also, the possible causes. From these 
indicators a test was built and was applied in an anonym way to the students that 
attended both classes that day (49 in total). 

The Figure 1, summerized the methodolody used 
 

Criteria of analysis getting from the Didactica Transposition 
Descripton and  analysis  in  terms  of  mathematical  and 
didactic organizations about the knowledge to be taught

          Historic  
  evolution  of the
 intergers numbers

              Evolution of the 
            substraction of the 
          intergers numbers as 
            erudite knowledge

              Study of the 
             substraction of 
          intergers in two fifth 
              grade classes

ERUDITE KNOWLEDGE KNOWLEDGE TO BE TAUGHT TAUGHT KNOWLEDGE

      ° Bibliographical researc h     ° Bibliographical researc h in the study 
      programs and textbooks

 ° Observation audio-recorded

First Stage Second Stage

     Students’
       errors

- Tyes of errors
- Indicators
- Possible causes

Elaboration
 of the 
  

TEST
(aplication)

REFERENCE COTEXT FOR

Third Stage

 
Figure 1: Outline of methodology reference 

“Difficulty for the students”, was defined as a recurrent error, defining it thus: if it 
was detected in at least 25% of the students that answered the question of the first 

Working Group 6

646 CERME 4 (2005)



 

part and at least a 40% for the items of the second part. This is due to the open or 
closed character of the question. In this paper the results and conclusions 
corresponding to the third part are presented. 
5. RESULTS 
The results corresponding to the third part of the investigation are the indicators built 
as analysis criteria of the test, the difficulties of the students related to the subtraction 
of integer numbers, and the possible causes that are read from the analysis. 
The indicators can be classified in two types: in a first kind the relative to the 
mathematical and didactic organizations where the students participate, and that we 
consider them as possible sources of errors; in a second kind the description of such 
errors. 
The rule of subtraction studied in both classes was: in order to subtract two integers 
numbers, the opposite of the second is added to the first one; that is, a – b = a + (–b). 
This involves during the beginning of the study, a stage of “re-write” of the 
expression (that allow us to appeal to a “known” equivalent expression) and another 
of “simplification”. For example, in the expression   

We will take this difference into account when we present the indicators of the 
second type. In square brackets is indicated the percentage of students in which their 
developments of the test, the described indicator is found. 
Indicators of the first kind  

1. The equivalence c + b = a ↔ a – b = c is not immediate (evident) for the 
students [44] 

2. Such the teachers as the students use the numeric straight line in order to 
“better explain” themselves 

3. Given that the integer numbers are seen as natural numbers with a sign before 
them, the students have difficulty distinguishing between negative numbers 
and the ones that are subtracted [59] 

4. In order to find the distance between two numbers a subtraction of the bigger 
one minus the smaller one (always positive) is done, but in order to find the 
difference between two numbers, the first given number is subtracted from the 
second one. [8] 

5. The use of other writing of a number, without justification of its validity, can 
provoke errors during the calculation. [9] 

(+5) – (+8) = (+5) + (–8) = (–3) 

Stage of re-write 

Stage of simplification 
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As mentioned during the previous results, P1 promotes the re-writing of the numbers 
in order to simplify the calculations. For example, the procedure of E11 as an answer 
to the question of the quiz: 

 
But some students do not develop as well, methods 
of cross-check and as clause of the contract, seek 
to apply also, the re-writing of numbers to simplify 
expressions that involve the subtraction For 
example the development of E13 during an 
exercise for the interview. 
Indicators of the second kind 
Stage of re-writing 

A. The student do not applies correctly the properties of subtraction of integer 
numbers (not commutativity, not associativity) [43]  
For example, the answer given by E22 for the first exercise of calculation of 
the test: 

 
The subtraction is not commutative nor associative. E22 
writes (+7)–((–20)+(–5)) = (+7)–(–25) = (+7) + (+25), 
disappearing the “–” before (+7). 

 
B. Changing all the signs that indicate an 

operation, even if these indicate an addition 
[15] 
It is the case in which a subtraction is 
changed by an addition. For example the 
procedure proposed by a student of G1 
during the quiz, 
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C. When subtracting two negative numbers, find “two minus signs” following 
each other, so just one is left [15] 
We interpret this error as a result of the interviews to two students of G2. For 
example, for the first calculation a student writes: 

 
D. Add a negative number, equals to add 

the opposite [13] 
It is the case of the procedure of a 
student of G1, 

 

Indicators of simplification   
E. In order to subtract two integers of different 

signs, subtract the absolute value of the bigger 
one, minus the absolute value of the smaller 
one and left the sign of the one farther from 
zero [28] 
For example, the student E12, in a quiz applied by P1, wrote : Subtract two 
integer numbers of different sign, subtract and leave the sign of the number 
farther from zero. 

F. In order to subtract two integers of equal sign, 
subtract the absolute value of the bigger one, 
minus the value of the smaller one and leave the 
common sign. [2] 
Though we also can consider that the sign of the 
number farther from zero is kept. For example, in 
the procedure of E14 that is presented. 

G. In order to subtract two integer numbers of the same sign , add the 
numbers[28] 
For example in the last two lines of the 
procedure of a student in a quiz applied by 
P1 

 
The test applied to the two observed classes was analyzed according to these 
indicators. According to the operationalization of “difficulty”, we obtain that the 
errors of the kind A, E and G are difficulties for the students, because they are 
presented at least in a 25%. 
The possible cause of the difficulty A, relapse in that during the study of the 
mathematical organizations, there was not a work that took into account the 
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properties of the addition of two integers and the reasons why those are not extensive 
to the subtraction. Falls in the students the responsibility of making the integration of 
the properties for each operation about the integers and apply them to simplify 
expressions. 
The difficulties E and G are product of an inadequate domain of the rules used to add 
integers. Moreover, these are destabilized by the rule of subtraction. 
From the results of the second part, we interpret as valid hypothesis number 1 and 
number 3, of the indicators of the first kind. When comparing the incorrect answers 
by class, we obtain a separation of 28% that we explain thus: the scarce errors in G1 
are explained by the confusion when interpreting the minus sign of the subtraction as 
the minus sign of the negative number. While in G2, we can foresee that they 
increase and has more variety as a result of the equivalences (– +x = –x, – –x = +x, 
…; element not present in G1), because the students tend to answer, using the 
procedure of calculation. 
6. CONCLUSIONS 
A more wide analysis realized in the investigation, indicates that certain difficulties 
found, do not depend upon the didactic choices of the teachers, they look like 
common to the students of both classes. The hypothesis 1 and 3 can be re-formulated 
in terms of what Brousseau calls obstacles of didactic origin, because only depend 
upon one selection of one project of the educational system, that consists in studying 
the addition before the subtraction. 
The errors that are present in a primordial manner in a class, can be consequence of 
the lack of a protagonist role of the students in the moment of exploration, 
development and work of the technique; because finally, are the teachers who 
enunciate the rule of calculation. 
In a theoretical way, and knowing that it does not exist a “correct way to teach”, since 
it is a complex process subject to the participants, we suggest a work that considers 
the treatment of the errors during the lessons. That is, not only correcting them in an 
oral or written way, o even worst, ignore them; but taking them into account when 
these rise and proposing exercises or questions that in an intentional way make them 
to appear. For example, propose to the students an incorrect procedure of an exercise 
and that they find the errors or explain the possible reasonings that take to it. 
When proposing to five university students the simplification of an algebraic 
addition, we note that, referred to what we know of the effects of the advance of the 
didactic time, the new knowledge generally replaces the old one. This is the case, 
when applying the law of signs in order to simplify the subtraction or addition of 
integer numbers. For example in the expression 4 – (–6), the reasoning “minus 
multiplied by minus is plus, then 4 + 6”, shows a mix of the notions relative to the 
addition, subtraction and multiplication, where the more general “absorbs” the more 
specific and weak ones, more if the original sense is altered and apparently not 
understood.  
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The probability that such phenomenon of absorption of more particular knowledge in 
the future, appears to be high, so we consider necessary that the study of them (first 
meeting) has to be significant or at least enough so it will not loose the original sense 
in the future (or know which is the change). From such restlessness arise the 
questions: ¿what are some of the possible knowledge to teach that have the risk of 
being replaced for other more general knowledge?, ¿what will be situations that can 
be built to give sense and mathematical justifications to such knowledge? 
7. BIBLIOGRAPHY 
Briand J. and Chevalier M.C.: 1995, Les enjeux didactiques dans l’enseignement des 

mathématiques, Hatier, Paris. 
Brousseau G.: 1998, Théorie des situations didactique, La pensée sauvage, Paris  
Bruno A.; Martiñón, A.: 1995-1996, ‘Les nombres négatifs dans l’abstrait, dans le 
contexte et sur la droite’, Petit X, 42, 59-78. 
Chevallard Y.: 1991, La transposition Didactique, 2nd ed., La pensée sauvage, Paris. 
Chevallard, Y.: 1999, ‘L’analyse des pratiques enseignantes en théorie 

anthropologique du didactique’, Recherches en didactique des mathématiques, 19 
(2), 221-266. 

Glaeser, G.: 1981, ‘Epistémologie des nombres relatifs’, Recherches en didactique 
des mathématiques, 2 (3), 303-346. 

Schubring, G.: 1986, ‘Ruptures dans le statut mathématique des nombres négatifs’, 
Petit X, 12, 5-32. 

Working Group 6

CERME 4 (2005) 651



INEQUALITIES AND EQUATIONS: HISTORY AND DIDACTICS 
 

Giorgio T. Bagni, University of Udine, IItaly 
 

Abstract: The historical development of equations and inequalities is examined, in 
order to underline their very different roles in various socio-cultural contexts. From 
the educational point of view, historical differences must be adequately taken into 
account: as a matter of fact, a forced analogy between equations and inequalities, in 
procedural sense, would cause some dangerous phenomena. 
Keywords: Algebraic language, Equations, Historico-cultural epistemology, History 
of mathematics, Inequalities 
 
1. INTRODUCTION: ALGEBRAIC EQUATIONS AND INEQUALITIES 
Frequently, from the educational point of view, algebraic inequalities are introduced 
to pupils after algebraic equations, and the solving techniques are strictly compared; 
nevertheless, in classroom practice, techniques for equation solving, when applied to 
inequalities, lead sometimes to wrong results: so didactic connections between 
equations and inequalities are not simple to be stated (a number of papers can be 
found; for instance: Linchevski & Sfard, 1991 and 1992; Fischbein & Barash, 1993; 
Tsamir, Tirosh & Almog, 1998). Some experimental studies by L. Bazzini and P. 
Tsamir (2002) clearly pointed out several meaningful situations. 
Let us note that the word equation, in English, denotes the mathematical statement of 
an equality. For instance, by writing “x+2 = 5” (equation) we state that the x+2 is 
equal to 5: and this is true if and only if x = 3 (solution of the considered equation). 
Of course we can consider an equality also without a proper equation, e.g. without an 
unknown: when we write, for instance, “2+7 = 9” we state that the sum of the 
numbers 2 and 7 is equal to 9 (frequently a statement of an equality that is true for all 
values of a variable, e.g. “2x+7x = 9x”, is indicated by the word identity) and this is 
true. From the logical point of view, “2+7 = 9” is a sentence that expresses a 
proposition with the truth value “true”; “x+2 = 5” is not a sentence: it does not 
express a proposition, but a condition regarding the values which may be assigned to 
the variable involved (Bell & Machover, 1977, p. 12) and it will assume a truth value, 
either “true” or “false”, depending on which number is assigned to x as a value. 
Let us now consider the inequality “x+2 < 5”: by that we state that x+2 is less than 5 
and this is true if and only if x < 3. In several languages the word inequality can 
assume two different versions, so it is translated by two different words: for instance, 
in French, these words are inégalité (in Italian: disuguaglianza) and inéquation 
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(disequazione).1 With reference to these words, the mentioned difference would be 
summarised as follows: an inéquation is the mathematical statement of an inégalité. 
Both from a logical point of view and from an educational point of view, there is a 
great difference between an inequality like “x+2 < 3” and an inequality like 1+2 < 5: 
their epistemological status is clearly different. 
We shall denote the first inequality by the term inéquation, the second by inégalité. 
2. HISTORY AND DIDACTICS: DIFFERENT THEORETICAL 

PERSPECTIVES 
Our work will take into account some references from the history of Algebra. As 
several studies have pointed out, the historical approach can play a valuable role in 
mathematics teaching and learning and it is a major issue of the research in 
mathematics education, with reference to all school levels (Heiede, 1996). 
The use of the history into education links psychological learning processes with 
historical-epistemological issues (Radford, Boero & Vasco, 2000, p. 162) and this 
link is ensured by epistemology (Moreno & Waldegg, 1993). Concerning the features 
of interactions between history and educational practice, a wide range of views can 
be examined. Different levels can be considered with reference to teaching-learning 
processes: a first is related to anecdotes presentation (and it can be useful in order to 
strengthen pupils’ conviction: Radford, 1997); higher levels bring out metacognitive 
and multidisciplinary possibilities. Let us consider the following representation: 

 
(where some well known terms by Y. Chevallard are employed). Of course this is just 
a schematic outline: for instance, the passage from the savoir savant to the savoir 
enseigné is not simple. However two sets of connections must be analysed: 
• connections (1) between mathematical contents and historical references; 
• connections (2) between mathematical contents linked to historical references and 

knowledge presented to pupils in classroom (after the transposition didactique). 
Different uses of the history into didactics do not reflect just practical educational 
issues: they imply different epistemological assumptions (Radford, 1997 and 2003). 
For instance, the selection of historical data to be presented in classroom practice is 

                                                 
1 Sometimes, in English, an inequation denotes a statement that two quantities or expressions are 
not the same, or do not represent the same value (written by a crossed-out equal sign: x ≠ y). 
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epistemologically relevant: this selection reflects some epistemological choices by 
the teacher, too. Important problems are related to the interpretation of historical data: 
this is frequently based upon our cultural institutions and beliefs (Gadamer, 1975). 
Frequently the role of the history into didactics is considered from an introductory 
point of view2: sometimes a parallelism between the historical development and the 
cognitive growth is assumed (since E. Haeckel’s “law of recapitulation”, 1874; see: 
Piaget & Garcia, 1989). As a matter of fact, a new concept is often encountered by 
mathematicians in operative stages, for instance in problem solving activities, and it 
will be theoretically framed many years or several centuries later (Furinghetti & 
Radford, 2002); a parallel evolution can be pointed out in the educational field: often 
the first contact with a new notion takes place in operative stages (Sfard, 1991; see 
the discussion in: Radford, 1997): in fact, pupils’ reactions are sometimes rather 
similar to reactions noted in mathematicians in history (Tall & Vinner, 1981) and 
such correspondence would be an important tool for mathematics teachers. 
The mentioned parallelism would require a theoretical framework: as a matter of fact, 
it leads to epistemological issues. A major issue is related to the interpretation of 
history: for instance, is it correct to present the history as a path that, by unavoidable 
mistakes, obstacles overcoming and critical reprises, finally leads to our modern 
theories? What is the role played by social and cultural factors that influenced 
historical periods? Mathematical contents deal with non-mathematical context, too, 
and knowledge must be understood in terms of cultural institutions (Bagni, 2004). 
According to the “epistemological obstacles” perspective by G. Brousseau, one of the 
most important goals of historical studies is finding problems and systems of 
constraints (situations fondamentales) that must be analysed in order to understand 
existing knowledge, whose discovery is connected to the solution of such problems 
(Brousseau, 1983; Radford, Boero & Vasco 2000, p. 163). Obstacles are subdivided 
into epistemological, ontogenetic, didactic and cultural ones (Brousseau, 1989) and 
this subdivision points out that the sphere of the knowledge is considered isolate from 
other spheres. This perspective is characterised by other important assumptions 
(Radford, 1997): the reappearance in teaching-learning processes, nowadays, of the 
same obstacles encountered by mathematicians in the history; and the exclusive, 
isolated approach of the pupil to the knowledge, without taking into account social 
interactions with other pupils and teachers. 
With reference to the above-presented schematic picture, we can summarise 
epistemological assumptions as follows: 

(1) knowledge exists and represents the best solution of relevant problems; 
 epistemological obstacles recur either in history or in educational practice; 

                                                 
2 Teachers can be induced to apply historical knowledge to classroom practice according to a naïve 
approach (as noted in Radford, 1997): for instance the educational introduction of a topic would 
take place just by the ordered presentation of all the historical references related with it. 
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(2) the sphere of knowledge is separated from educational and cultural spheres;  
pupils approach knowledge individually. 

The crucial point is the following (Gadamer, 1975): is it possible, nowadays, to see 
historical events without the influence of our modern conceptions? As a matter of 
fact, we can explicitly accept the presence of our modern point of view: in other 
words, we can take into account that, when we look at the past, we connect two 
cultures that are “different [but] they are not incommensurable” (Radford, Boero & 
Vasco, 2000, p. 165). Concerning the nature of mathematics, “the historical approach 
encourages and enables us to regard mathematics not as a static product, with a priori 
existence, but as an intellectual process; not as a complete structure dissociated from 
the world, but as an on-going activity of individuals” (Grugnetti & Rogers, 2000, p. 
45; see also the “voices and echoes” perspective: Boero & Al. 1997). 
According to the socio-cultural perspective by L. Radford, knowledge is linked to 
activities of individuals and, as we above noted, this is strictly related to cultural 
institutions; knowledge is not built individually, but into a wider social context 
(Radford, Boero & Vasco, 2000, p. 164). The role played by the history must be 
interpreted with reference to different socio-cultural situations (Radford, 2003) and it 
gives us the opportunity for a deep critical study of considered historical periods. 
With reference to the above-presented picture, we can summarize two different 
epistemological assumptions from the previous ones as follows: 

(1) knowledge is related to actions required in order to solve problems; problems 
are solved within the socio-cultural contexts of the considered periods; 

(2) knowledge is socially constructed; cultural institutions and beliefs of their own 
culture influence pupils. 

3. THE SELECTION OF HISTORICAL DATA: THE HISTORY OF 
ALGEBRAIC NOTATION 

We previously stated that the selection of historical data is epistemologically relevant 
to the historical introduction of a concept. A classical example (Radford, 1996 and 
1997) is relevant to our research. 
In 1842, G.H.F. Nesselmann characterised three main stages in the historical 
development of algebraic notation (see: Serfati, 1997): 
 
 

Rhetorical Algebra 
(Egyptians, Babylonians etc.) 

Syncopated Algebra 
(Pacioli, Cardan etc.) 

Symbolic Algebra 
(Descartes etc.) 

(from) Words 

 
(to) Symbols 
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(concerning rhetorical algebra, original Nesselman’s approach would be referred to 
Arabs: the interpretation of Babylonian mathematical texts is not so ancient). 
This sequence can suggest a progressive elimination of non-mathematical verbal 
expressions: mathematical objects would be “purified by taking away all their insane 
physical substance” (Radford, 1997, p. 28); it suggests the existence of a definitive 
algebraic language, so that the historical development is the progressive approaching 
to our modern, pure expression. But this traditional summary can be considered as a 
full expression of the history of algebraic language? Important steps are still missing: 
for instance, we must remember the Greek “Geometric Algebra” (this denomination 
was given by H.G. Zeuthen, with reference to the 2nd Book of Eulclid’s Elements) 
and the symbolism introduced by Diophantus of Alexandria (3rd-4th centuries). 
Roots of the “Geometric Algebra” are related to 
Eudoxus of Cnidus (408-355 B.C.) who 
introduced the notion of a magnitude standing 
for entities such as line segments, areas, 
volumes (Kline, 1972, p. 48). No quantitative 
values were assigned to such magnitudes (so 
Eudoxian ideas avoid irrational numbers as 
numbers) and this allowed Greeks to give 
general results: the figure is referred to the 4th 
Proposition of the 2nd Books of Elements. 
Nowadays this proposition is expressed by: 
(a+b)2 = a2+b2+2ab, but in Elements only the 
picture gives the proof of this statement. 

 
 

 
 

(Rondelli, G.: 1693, Euclidis 
Elementa, Longo, Bologna, p. 80) 

 
Six centuries later, Diophantus of Alexandria introduced an algebraic symbolism, and 
this is “one of Diophantus’ major steps” (Kline, 1972, p. 139).3 This symbolism is 
complicated and it is not complete (the main difference between Diophantine 
symbolism and our modern algebraic notation is the lack of symbols for operations 
and relations: Boyer, 1985, p. 202); Diophantine Algebra has been called syncopated 
(see: Boyer, 1985, p. 201; Kline, 1972, p. 140), but if we compare Diophantus’ 
syncopation and, for instance, Cardan’s one we realise that they are very different: 
Diophantus obtained fundamental achievements (Greek Algebra “no longer was 
restricted to the first three powers or dimensions”: Boyer, 1985, p. 202), while 
European syncopated Algebra (15th-16th centuries) seems to be “a mere technical 
strategy that the limitations of writing and the lacks of printing in past times imposed 
on the diligent scribes that had to copy manuscripts by hand” (Radford, 1997, p. 29). 

                                                 
3 Some Diophantine symbols appear in a collection of problems probably antedating Diophantus’ 
Arithmetica (as noted in: Boyer, 1985, p. 204; Robbins, 1929). 
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If we rewrite our summary taking into account those new elements, we have: 
 
 

Rhetorical Algebra (Egyptians, Babylonians etc.) 
Greek “Geometric Algebra” 

Diophantus of Alexandria 
Syncopated Algebra (Pacioli, Cardan etc.) 

Symbolic Algebra (Descartes etc.) 

Words 
Pictures 

Incomplete symbolism (?) 
Abbreviated words (?) 

Symbols 
 

So how can we describe the history of Algebra only in the sense of a progressive 
“purification”, if we consider Geometric Algebra and Diophantine symbols? 
4. FROM HISTORY TO DIDACTICS: EQUATIONS AND INEQUALITIES 
Previous discussion underlines that algebraic processes have not been expressed by 
symbols for a long time, but the evolution of algebraic notation does not reflect just 
the progressive elimination of “insane physical substance” (Radford, 1997, p. 28). 
Several elements must be taken into account: for instance, it is important to point out 
that mathematical expression was initially oral. More generally, relevant non-
mathematical elements must be considered: the development of western mathematical 
symbolism is to be framed into the correct cultural context, towards a systematization 
of human expression. 
Historical evolution is complex: for instance, G. Lakoff and R. Núñez note: “It may 
be hard to believe, but for two millennia, up to the 16th century, mathematicians got 
by without a symbol for equality” (Lakoff & Núñez, 2000, p. 376). Of course the role 
of “=” cannot be considered too simple: “Even an idea as apparently simple as 
equality involves considerable cognitive complexity. […] An understanding of what 
“=” means requires a cognitive analysis of the mathematical ideas involved” (Lakoff 
& Núñez, 2000, p. 377; Arzarello, 2000). In the first paragraph we noted several 
differences between equalities and equations, and other important differences can be 
mentioned (see: Lakoff & Núñez, 2000, p. 376). 
Let us now sketch some historical references regarding equation and inequalities. 
The history of equations is rich and different mathematical cultures in many part of 
the world dealt with processes that can be related to equations; in the Renaissance, 
the so-called Regola d’Algebra (algebraic rule) was the process for arithmetic 
problem solving based upon the resolution of an algebraic equation (Franci & Toti 
Rigatelli, 1979, p. 7). 

Working Group 6

CERME 4 (2005) 657



 
As we shall see, the history of inequalities is 
not so rich. Ancient inequalities, too, were 
expressed by verbal registers; it is important to 
underline that an inequality (see the picture, 
referred to a geometric inequality dealing with 
21st Proposition of the 1st Book of Elements) is 
often only the expression of an inégalité. 
Some inequalities in the proper sense of 
inéquation can be related to the development 
of the Calculus, e.g. to majorizing/minorizing 
(see: Hairer & Wanner, 1996).4 Let us now 
consider some texts published in 19th century; 
two treatises by P. Ruffini (1765-1822) were 
included in the 3rd-5th parts of Corso di 
Matematiche (Modena, Italy, 1806 and 1808). 

 
 

 

(Tartaglia, N., 1569: Euclide 
Megarense, Bariletto, Venezia, p. 27) 

Let us propose some quotations: 
• in the 3rd vol. (Algebra), p. 24, a property of 

equivalence for equations is explicitly stated: 
“Given the equation A–B–C = –D+E, we can 
carry the terms from the first to the second 
member and from the second to the first 
member, and we shall have: D–E = –A+B+C” 
(the translation is ours); it is important to 
underline that in the considered treatise no 
similar properties are stated with reference to 
inequalities; 

• in the 3rd vol., p. 146, inequalities are proposed 
and solved in order to express some particular 
conditions for the solutions of some given 
equations. Frequently examples deal with 
similar conditions (in the 5th vol., Appendice 
all’Algebra, too): so inequalities are often 
combined to equations and to simultaneous 
equations in order to express some conditions. 

 

 

                                                 
4 We cannot forget the well known statement by J. Dieudonné in the Préface of his Calcul 
infinitesimal (Hermann, Paris 1980): “En d’autres termes, le Calcul infinitésimal, tel qu’il se 
présente dans ce livre est l’apprentissage de maniement des inégalités bien plus que des égalités, et 
on pourrait le résumer en trois mots: majorer, minorer, approcher”. 
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Moreover, an interesting quotation can be considered with reference to the 20th 
century. P. Odifreddi writes: “A contribution by von Neumann was the solution, in 
1937, of a problem posed by L. Walras in 1874. […] He noted that a model must be 
expressed by inequalities (as we usually do nowadays) and must not be expressed just 
by equations (as mathematicians were accustomed to do in that period), then he found 
a solution by Brouwer’s theorem”.5 
So we can point out an interesting historical asymmetry: mathematicians usually 
expressed the problem to be solved by equations (Franci & Toti Rigatelli, 1979, p. 7); 
then, by inequalities (in the proper sense of inéquation), they expressed some 
conditions for the solutions of the considered equations. Moreover, in the history, the 
resolution of an inequality (inéquation) has been often obtained by solving an 
equation that practically replaced the assigned inequality. Social and cultural contexts 
must be taken into account: frequently the “practical solution” has been considered 
the main result to be obtained, much more important than the “field of possibilities”. 
So a meaningful social importance has been attributed to the process by which the 
solution can be obtained (see the use of practical methods in order to improve the 
precision of the solutions: Hairer & Wanner, 1996). 
5. FINAL REFLECTIONS 
Although recently the autonomous role of inequalities (in the sense of inéquation, 
too) has been educationally recognised, in classroom practice there is still an 
operative dependence, a relevant “subordination”. For instance, an inequality 
characterises a subset of the set of real numbers, frequently an infinite subset, a 
segment or a half-line. Main features of these subset are sometimes their “boundary 
points” (for instance, the ends of the segment): and they can be obtained by solving 
the equation obtained by replacing “<” with “=” in the given inequality. 
Important metaphors (related to Arithmetics) are based upon “physical segments”: for 
instance, we can propose the correspondence of a number with a distance that “can be 
measured by placing physical segments of unit length end-to-end and counting them” 
(Lakoff & Núñez, 2000, p. 68). Moreover: “When we move in a straight line from 
one place to another, the path of our motion forms a physical segment […]. There is a 
simple relationship between a path of motion and a physical segment. The origin of 
the motion corresponds to one end of a physical segment, the endpoint of the motion 
corresponds to the other end of the physical segment; and the path of motion 
corresponds to the rest of the physical segment” (Lakoff & Núñez, 2000, pp. 71-72). 
So in the framework of the embodied cognition the physical description of a segment 
(and of an half-line) has its origin in an end of the segment and its endpoint in the 
other end (in the case of an half-line, it goes on indefinitely): this underlines once 
again the importance of mentioned “boundary points”. 
Frequently the first step (and, in many cases, it is the main step) of the resolution of 
an algebraic inequality (inéquation) is the resolution of an equation: as a matter of 

                                                 
5 Quotation from the website www.matematicamente.it/articoli; the translation is ours. 
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fact, in order to solve a(x) < b(x) we must solve the equation a(x) = b(x). So a forced 
but sometimes improper educational analogy can be considered, besides the historical 
asymmetry. This can cause some dangerous phenomena, in procedural sense: in order 
to avoid breaks between sense and denotation of algebraic expressions, L. Bazzini 
and P. Tsamir suggest a functional approach, an integrated introduction of equations 
and inequalities based upon the concept of function (Bazzini & Tsamir, 2002). The 
use of historical references, correctly considered in their own contexts, can help us to 
present the different roles and to underline the procedural differences between 
equations and inequalities. 
Let us finally note that the 2nd order knowledge (we make reference to: Drouhard & 
Panizza, 2003) is relevant to the correct educational presentation of equations and 
inequalities. For instance, concerning the semiotic representation, the forced analogy 
between algebraic equations and inequalities, implicitly considered in their sequential 
presentation, can be referred also to employed representation registers: as a matter of 
fact, symbolic registers can suggest similar operative approaches to f(x) = g(x) and to 
f(x) < g(x). So the use of non-symbolic registers (for instance the visual register, 
directly involved in the functional approach) can be useful; of course the co-
ordination of employed register is a very important point (Duval, 1995). 
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PUPIL’S AUTONOMOUS STUDYING: 
FROM AN EPISTEMOLOGICAL ANALYSIS TOWARDS  

THE CONSTRUCTION OF A DIAGNOSIS 
 

Duchet Pierre, CNRS, UMR combinatoire et optimisation, Paris, France 
Erdogan Abdulkadir, Equipe DIDIREM, Université Paris-7, France 

 
Abstract: Seeking viable didactic projects to help the learning process, we focus on 
the difficulties encountered by pupils when studying mathematics in an autonomous 
mode. Even establishing a diagnosis for such difficulties is a problem. We use here 
an epistemological concept, named “mathematical site”, to describe the field of 
objects and relations which are relevant during the studying process. By integrating 
the “site” in our research at the theoretical and experimental level, we want to 
develop a didactic model for a diagnosis. 
Keywords: studying process, diagnostic approach, mathematical site, algebraic-
functional framework, curriculum of the secondary cycle, epistemological and 
didactic analysis 
 
1. INTRODUCTION 
The personal work or autonomous studying in mathematics that the pupil must do 
during “physical” absence of a teacher has an important place in learning this 
discipline. From Bachelard (1949) until the first formulations of the concept of a 
student-learner by Chevallard (1988, 1995) for the didactics, the studying activity is 
always supposed to be inevitable for the learning and a particular position is assigned 
to the pupil in this activity. When Bachelard, more than one half-century ago, treated 
"the rational pupil", he defined this activity as “the studying of the composition of the 
knowledge.” According to him, the pupil who studies "by repeating" this 
composition, makes “his own being". As for Chevallard (Chevallard, 1988; 
Chevallard, Bosch & Gascón, 1997), he considers the student as an acting subject, 
who takes part in teaching process and defines the studying as the missing link 
between teaching and learning. 
Nowadays, we face an expansion of the systems concerning the studying process. 
Many new teaching systems were set up at the secondary school level in France 
(“modular” teaching, personal framed work, individualized aid), and, additionally, 
numerous organizations propose help outside the school (particular lesson, helping 
forums to the exercises on Internet etc.). 
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These systems can be interpreted only as the result of a need. And their disputed 
effects on the learning show that pupil’s autonomous studying poses serious problems 
(Erdogan, 2001; Mathéron & Noirfalise, 2002). 
The causes could be several and might be the objects of several researches. For 
instance, one can consider that pupils nowadays do not work hard or that they have 
lost the will of work a long time ago and that the school continues to deny this reality 
because it is not able to do anything. 
Our hypothesis is that the success of the studying in autonomous mode is strongly 
related to the nature of the work expected and to the pupil’s real possibilities with 
respect to this work. We think in particular that it is necessary to identify the actions 
we expect from a pupil, to understand as for as possible the difficulties he/she 
encounters and to analyze the cognitive and didactic conditions of their appearance. 
In other words, the construction of a diagnosis is the most important task for us in the 
problem of the autonomous studying. 
Our aim in this paper consists in developing a didactic model adapted for the 
diagnosis. We use here an epistemological concept, the “mathematical site” to 
describe the field of objects and relations which are relevant during the studying 
process. Our model integrates the site both for theoretical and experimental purposes. 
The concept of a “mathematical site" as organizer of a diagnosis 
From epistemological and historical point of view, it is not possible to consider the 
mathematical objects as isolated and developed independently (see for instance 
Giusti, 1999). Each object has to be studied in narrow relations with other and any 
situation is to be related to other situations. Actually, to any specific question can be 
assigned a paradigmatic location in some “site” of relevant objects and relations.  
This "mathematical site" seen as an organized unit of knowledge, may be more 
precisely defined as follows. 
The field of the mathematical items whose studying appears relevant – or is supposed 
such - for the understanding of a given scientific object O can be considered as a 
network of objects and relations, the mathematical site of O. Some of these objects 
and relations are visible, others are hidden. For any subject in position of a student, 
the mathematical site arises in the shape of a field of significance, investigation and 
experiment, a sufficiently stable field which confers on his studying a reliable 
reference. 
On purpose to use the site for establishing a diagnosis, we conceive an 
epistemological and didactic analysis on two complementary levels: 

At the first level, we analyse the ecologic conditions of objects and relations with 
respect to a given institution (Artaud, 1988). At the second level, we are concerned 
with the part of the site which is relevant, a priori, for didactic situations. 
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We claim that, on the basis of a comparison between what is revealed by the 
preceding analyses, a diagnosis can be so elaborated to explain the difficulties 
encountered by the pupils in actual situations of autonomous studying. 

2. METHODOLOGY OF ANALYSIS AND DATA 
We are interested by pupil’s autonomous studying of the 10th grade class (15-16 old 
pupils, entering high schools in France) within the "algebraic-functional" framework. 
We observed a class of a school located in a suburb of Paris, considered as “good” in 
the educational circles, especially for its scientific teaching. According to the teacher, 
the class is quite motivated in mathematics and shows constant progress. Besides, 
two thirds of the class wishes to choose the scientific class for the year to come. 
Following the guide-lines described above, we begin by carrying out an analysis of 
the curriculum, to which most textbooks refer, throughout the secondary level 
teaching what concerns the main objects that are relevant for the studying of a 
particular object. We are focusing both on the introduction and the developments of 
these objects as mathematical notions, and on the semantic relations between these. 
Then we seek to delimitate and to organize the mathematical site corresponding to 
our questioned framework. Finally, we analyse an actual situation of autonomous 
studying (study of the variations of a function of the second degree) in the moment of 
an examination. This moment appears important to us. We regard it as the indirect 
witness of conditions of studying in the institution. The pupils are supposed to work 
individually for being ready to examination and the professor is supposed to satisfy 
mathematical and didactic conditions for this preparation. 
3. ANALYSIS OF TEACHING CONTENTS AND ITS CORRELATION WITH 

THE CORRESPONDING MATHEMATICAL SITE  
The "algebraic-functional" framework of the 10th grade class 
Equations and “inequations” (= problematic inequalities) are principal objects of this 
framework and take a large part in mathematical contents of the secondary cycle. At 
this level, the teaching of mathematics tries to develop pupils’ capacities concerning 
the translation of data in equation and the solution of equations or inequations as 
basic mathematical capacities but also as transverse capacities. At the 10th grade 
level, the studying of equations and inequations relies on two pillars: On one hand, 
algebraic calculations, studied since the secondary school, should become reliable 
before entry in precalculus courses (French basic “Analyse”) of the 11th grade; on the 
other hand, with the studying of non linear functions, the framework of equations and 
inequations is widened and reveals new dimensions. 
The “algebraic-functional” framework at the 10th grade should then be based, in 
theory, on a great number of objects and relations: its studying starts from the earliest 
secondary school and goes on after the 10th grade. 
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As our goal here is limited to show how we build our model, we will only consider 
five concepts as object: equation, order, function, algebraic expression and variation. 
By the way, we will not examine here the concept of a number and avoid the 
questions relative to numerical calculations whose analysis reveals a high complexity. 
At the secondary school 
The curriculum of mathematics at the secondary school in France is composed of 
three parts: geometrical studies, numerical studies, organization and management of 
data-functions. The acquisition of algebraic language and its employment appears as 
one of the three objectives of numerical studies. In fact, we can formulate the aims of 
these numerical studies as (a) acquisition of numbers (operations and representations) 
on one hand (b) acquisition and use of algebraic language on the other hand. 
The concept of an algebraic expression 
Initiation in algebraic expressions starts as of the 6th class under the name of "literal 
expressions". This introduction continues in 7th class with the distributive law of the 
multiplication with respect to the addition. Indeed this knowledge is to be considered 
as basic and essential for the algebraic solving of equations. The algebraic calculation 
with the meaning of writing transformation starts to develop in the 8th class 
(development/reduction of expressions, order properties relative to the addition and 
multiplication). Suggested work is articulated on two axes: 

- Use of literal expressions for numerical calculations 
- Use of literal calculation in the setting in equation and the solution of various problems.  

Factorizations with the help of a common factor and remarkable identities occur in 
the curriculum of the 9th grade. 
The concept of an equation 
Introduction to equation solving also starts in the beginning of the 6th class, with the 
guess of the value of a missing data. In the 7th class, this introduction continues with 
an important goal: to understand an equation as a problematic equality concerning a 
number (pupils check the veracity of the equation by testing several values of the 
variables) This goal vanishes in the 8th class: at this level, the objective is the ability 
of formulating a problem with an equation, and of resolving so a class of problems 
leading to linear equations. Solving an equation of the form AB=0, where A and B 
are polynomials of degree 1, is in the curriculum of the 9th class, while the easiest 
cases of binomial equations will appear later, in the 10th class. 
We thus note a simultaneous and "naturalized" introduction of algebraic expressions, 
and of equations in the 6th class, and an increasing complexity in next grades. In the 
later classes of the secondary school, techniques on algebraic expressions and 
equation algebraic solving develop at the same time. 
The concept of an order 
Ordering appears in the first years of the secondary school in the form of comparison 
of numbers and evaluation of magnitudes. The algebraic study starts in the 8th class 
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with the effect on the order of additive operators and multiplicative ones when 
positive. In the 9thclass, negative multipliers appear and, at the same time the solving 
of simple inequations by the use of the representation of the solutions on a graduated 
line. No introduction to the very concept of an inequation appears in the curriculum: 
the knowledge concerning the comparison of numbers involved in equations is not 
presented as an answer to a problem. 
It should be noticed that the objects to be compared are more and more general from 
the 6th grade until the 9th: integers, non negative decimals, relative decimals, ... Then, 
the question of the comparison of the letters which refer to numbers evolves and 
becomes comparison of algebraic expressions and of functional expressions in the 
10th class. 

The concepts “function" and "variation" 
In the first years of the secondary school, the curriculum envisages an implicit use of 
the concept of a function. In the 6th class for instance, the calculation of areas and 
perimeters involve expressions such as "according to", "is related to». It is in the 9th 
class that the pupils discover the concept of a function, with the sense of a 
"mapping", a systematic process that associate to any element of a given unit another 
element of another unit. The study at this level is limited to linear functions and is 
mainly based on the idea of proportionality met in the preceding classes when 
"organizing and managing data-functions". 
The curriculum stresses that with the introduction of functions, the letters take a new 
statute: used in earlier classes in reference to sizes, then used to indicate unknown 
and/or indefinite values, they become "variables". 
However, no specific knowledge is associated to this denomination and, before the 
10th grade the word "variation" only occurs in case of linear functions. Thus, the 
interplay between "function" and "variation of a variable" does not appear like a 
relation of conceptual nature: the concept of a function, as invested throughout the 
secondary school is highly numerical and limited to calculations. The concept works 
as an intermediary between "function" and "formula" and the sense corresponds 
mostly to the idea of an "algorithm". 
In other side, the resolution of equations and inequations at the secondary school 
tends to be purely algebraic, namely with the factorization method which mainly 
consists in recognizing an algebraic pattern. No connection appears between 
algebraic and functional frameworks, a connection that would give a relevant field to 
the pupils of the 10th class. 
Consequently, "objects/concepts" we consider as relevant for the autonomous 
studying in the 10th class within the "algebraic-functional" framework never seem 
really met by pupils. For some "good pupils", some connections are made between 
these objects but only under the form of a “meta-knowledge”. 
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In the 10th class 
The curriculum of the 10th class is divided into three big chapters: “Statistics”, 
“Calculations and Functions”, “Geometry”. The part "calculation and functions" 
deals with the study of the sets of numbers, that of the functions and the algebraic 
calculations. According to the writers of the curriculum, numerical and algebraic 
calculations should not constitute a matter of systematic revision but are to be treated 
through various sections. "In particular, they will be treated in close connection with 
the study of the functions" 
In this way, by joining together under only one title the functions and the algebraic 
calculations, the curriculum of the 10th class seems to put an end to the previous 
distinction of the secondary school between "numerical works" and "functions". It is 
probably with this objective that the curriculum lists capacities concerning the 
algebraic calculation under the title of "function and algebraic expression"; 

- To recognize the form of an algebraic expression (addition, product, square, difference in 
two squares)  

- To identify the sequence of the functions leading of x to f(x) when f is given by a formula. 
- To recognize various writings of the same expression and to choose the form most adapted 

to the requested work (reduced form, factorized form ...) 
- To modify an expression, to develop, to reduce, according to the aim. 

We see that the word “algebraic expression” starts to be used and the curriculum 
defines new objectives concerning its use. The algebraic study of the functions and 
the work on the algebraic expressions seem at the same time to be developed and to 
be introduced. Let us remind that the same phenomenon appeared at the secondary 
school for "literal calculation" and "equation solving". In other terms, it seems that no 
situation is needed to introduce the concepts themselves, but that the point is to 
develop tools presumed to be necessary to install precise techniques. 
The part "function" of the curriculum is composed of the following sections: the 
qualitative study of the functions, increasing and decreasing functions, maximum and 
minimum of a function on an interval, functions of reference (x2, 1/x) and linear 
functions. The emphasis is particularly laid on the various aspects under which a 
function appears: graphs, numerical, qualitative. The curriculum takes also into 
account possible difficulties concerning the understanding of the concept of a 
variable and the notation f. 
What concerns equations and inequations, the curriculum asks for the use of an array 
of signs to solve an inequation or to determine the sign of a function on an interval. It 
also asks for the combination of two different modes of resolution; 

"For the same problem, we will combine the contributions of the graphic mode and of the 
algebraic resolution. We will specify the advantages and the limits of these various modes of 
resolution" 

For this combination, more explanations are found in the text accompanying the 
curriculum: 
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"A pupil having to solve an equation as (x - 2)² = 9 perceives rather easily that the 
equality is well checked for x = 5 and he is then satisfied to give this unique solution; he 
has even often some reserves to apply any technique making it possible to lead to the 
whole of the solutions. The chart of function x a (x – 2)2 which highlights well the 
existence of two solutions will encourage to exceed the first reasoning...   

Another example is the use of the chart of function x a x2 + 3x – 10 to conjecture that 2 is 
a solution of the equation x² + 3x - 10 = 0; calculation enables to check easily that it is 
well the case; it remains to pre-empt factorization a little and to check that (x - 2) (x +5) is 
a possible writing for the expression x² + 3x -10 as well, leading so to the solution of the 
equation x² + 3x - 10 = 0 

These examples show how the point of view of the functions can enrich the reflection on 
equation solving. These remarks apply even more to inequation solving, since the set of 
solutions is almost never reduced to a single value. 

So, to solve the equation f(x) = k on a given interval I, the pupil has to localize first 
the x-coordinates of the intersection points of the chart of the function with the line 
y=k, in order to conjecture that they are possible solutions of the equation. Then, he 
rewrites the equation as f(x)-k=0, factorizes this new expression using the conjectured 
values results and solves it by applying the cancellation law. Similarly, for the 
inequation f(x) ≤ g(x), one has to solve the equation f(x) - g(x) = 0, according to the 
above - described technique, to determine the sign of each factor, then to draw an 
array and, observing the sign rules, to determine finally the sign of f(x)-g(x). 
We see that this technique, originated at the secondary school, is rather powerful. 
Mainly based on an algebraic justification, the technique requires no specific work on 
the algebraic expressions in general, and no study of the functions. In this way, the 
variations of functions and their algebraic properties are not to be studied whereas 
they constitute one of the objectives of the curriculum! 
Actually, the technique proposed by the curriculum poses several problems. We 
should mention for instance that in case of inequations whose set of solution is empty 
or is the whole set of real numbers. In those cases, the technique, based upon 
factorization and sign arrays, becomes impracticable: it is advisable to study the 
variations of the functions or to make some appropriate algebraic reasoning. In other 
words, a work of algebraic or functional type would be necessary, whereas it is 
dodged in favour of a single technique. 
The site corresponding to the “algebraic-functional” framework of the 10th class 
We propose here a diagram of the site relative to this field. In this diagram, when 
related by an arrow, x y (in this order) the objects x and y are meant to occur 
together in some praxeologic system, with a higher degree of generality for y than for 
x: the arrow x y marks a relevance relation and should be read as “y is relevant to 
support the understanding of x”. 
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Typically, this is a transitive relation: consequently, we drew only those arrows, 
which cannot easily be refined. 

 
                                                          Increasing Praxeologic levels 

 
   
        Objects        Techniques                         Concepts (1)                       Concepts (2)                   Concepts (3) 

 
 Fig-1: Diagram of the “site” relative to the “algebraic - functional” field of the 10th class 

Beside the problematic objects themselves, the above diagram shows some of the 
techniques usually attached to them and presents also the main concepts, i.e. the 
relative theoretical tools. For the sake of clarity, what concerns concepts, we 
distinguish three main degrees of depth, although, from a rigorous epistemological 
point of view, no strict delimitation could be made. 
Accordingly to the analysis we presented above, we can identify among the 
"relevance relations" (marked by arrows on the diagram) the ones which are 
sustained by the didactic contract, and many others, which are de facto excluded 
from the didactic process. 
4. ANALYSIS OF AN ACTUAL SITUATION OF AUTONOMOUS 

STUDYING 
The situation chosen is the study of variations of a second degree function on a given 
interval. The moment of pupils' autonomous studying is that of an examination. The 
precise mathematical situation corresponds to the first question of the examination 
and consists in studying the variations of the function f(x)=4-(2x-8)² on the interval 

[;4[ +∞ .  
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Let us study in first how the pupils encounter the object “variation of a function”, 
starting with the curricular aspect. 
The curriculum envisages initially a "qualitative" general study of the functions 
(definition, variations, chart). Further is presented the question of studying the 
variation of a function, i.e. deciding whether the function is increasing or decreasing 
on a given interval. Capacities defined by the curriculum give place to two quite 
distinct types of activities: 

- to describe the behaviour of a function defined by a curve, with an appropriate 
terminology or with the use of a variation-array,. 

- to draw a chart compatible with a variation-array.  

The effect of the behaviour of a function on the order of the image values, mentioned 
in the comments, seems in the curriculum the only property which can be used as a 
tool for solving problems: 

"The fact will be underlined that an increasing function preserves the order, while a 
decreasing function reverses the order; a formal definition is expected here". 

Then, what concerns the functions of reference (x² and 1/x), the curriculum requires 
"To determine the variations and to represent the functions graphically" without 
specifying how to obtain the variations. 
In order to show that a function is monotone increasing/decreasing on an interval, we 
know that the first technique consists in applying the definition, at the same time on a 
descriptive level (to specify the goal) and on an operational level (to check the 
answer): a function is increasing (respectively decreasing) on an interval I, if for all 
real numbers a, b in I such as a<b, then f(a)<f(b) (respectively f(a)> f(b)). According 
to this technique, it would initially be necessary to choose, if not given, the intervals 
where the function is increasing (or decreasing) and then to determine the order of 
f(a) and f(b), a being lower than b, what can be done according to different algebraic 
treatments. 
Another way of determining the variation of a function is to see the function as a 
combination of other functions whose variations are known. 
Now let us examine our situation of autonomous studying when according to the 
technique requested in our class. After the examination, the teacher was presenting 
the technique as follows: 

"…That is to say a and b are two real numbers such as 4≤ a<b. Then 8≤ 2a<2b and 0≤ 2a-
8<2b-8 thus 2a-8 and 2b-8 are two positive numbers, arranged in the ascending order. As 
the square function is increasing on [0;+∞[, we can write;  
(2a-8)²<(2b-8)² ⇔ -(2a-8)² >-(2b-8)² ⇔ 4-(2a-8)² >4-(2b-8)² thus f(a)>f(b) 
Conclusion: for all a and b of [;4[ +∞  such as 4≤ a<b, f(a)>f(b) thus the function   
f(x)=4-(2x-8)² is decreasing on the interval [;4[ +∞     

It is clearly seen that the core of this technique is the reference to the square 
function, of which the growing becomes the decisive criterion when comparing the 
squares of two numbers. But we must note that such a reference is not self evident: 
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the comparison rule appears initially in a "natural" way in the context of numerical 
calculations, but the use of this rule as a tool for the situation would require to take 
into account the growth of the square function, hence a passage to the "functional 
register" which, here, has been skipped. 
Actually, the problem is that the requested technique is a mixture of two different 
techniques: algebraic and functional. The pupils who are working in the algebraic 
register, are asked to pass to the functional register in order to obtain a justification 
which cannot exist with no knowledge on the composition of functions or, for the 
least, with no knowledge on the change of variable. 
While the algebraic calculations warrant the building scheme of the function            
x--> 4-(2x-8)², the variation of the square function intervenes in a non dispensable 
way for the technique realization and constitutes the very object of the didactic 
contract: it is precisely this type of use of the square function which constitutes the 
didactic project of the teacher and the aim of the curriculum.   
Now let us try to locate on the diagram of the site the relations which the didactic 
contract establishes in connection with the object of knowing "variation of a 
function". 

 
The relations offered to pupils' work in class appear in the site map as three new links 
which are far from being the most relevant. With other words, these relations appear 
only like "artificial" links, of solely didactic nature. 
5. CONCLUSION 
Our analysis around the concept "of a mathematical site" shows that the matter 
studied is presented at the pupils in a split up form, with fragmented objects and 
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relations. The difference between the relations identified on the site and those created 
by work in class, attests that the relevant objects are evacuated from the scene, they 
do not form part of the objects to be taught on this level. In particular, the means for 
the validation of the techniques taught in the class are excluded from the process of 
teaching on this level; such a lack would explain impossibility for the pupils of 
controlling the procedures they follow during their autonomous study. 
The analysis of the pupils’ exams’ papers confirms this impossibility. Only one pupil 
(out of 33) succeeded in making this exercise. Most pupils seemed to know that they 
must use anyway the growth of the square function but did not guess where and how. 
Apparently, they obeyed only the institutional request. Moreover, the teacher, 
reconfirming the request, allotted 0.5 point (out of 1) to any pupil who mentioned, in 
one way or another, the growth of the square function, even when no coherence with 
the rest of the answer could be detected. 
Thus the institutional constraints on the didactic contract are such that the study in 
autonomous mode becomes inaccessible to the pupils and highly difficult to integrate 
into the didactic project of the teacher. 
This conclusion leads us to raise further questions concerning the autonomous part 
of the process of studying. In particular, it seems essential to us to reconsider the 
role of the studying activity and its organization, to develop in class a genuine 
"culture de l'étude". 
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AN EXPERIENCE WITH PARABOLAS 

Rosana Nogueira de Lima, PUC/SP, Brasil 

Vera Helena Giusti de Souza, PUC/SP, Brasil  

Abstract: In this paper we present an experience with mathematics teachers, using the 
computer as a tool and a dynamic software to study the parabola under two different 
points of view: canonical and developed, the first one unknown to the teachers and 
the second one, part of their previous knowledge. Having as theoretical framework 
Hoyles´ ideas and Fischbein´s aspects of mathematical knowledge, our intention was 
to analyse the changes the new approach would cause in the old one and whether the 
teachers would use it in their classroom. We have concluded that the teachers remain 
making interactions between intuitive and algorithmic aspects of the new content and 
we claim that they will not use it in their classroom. 

 
Introduction 

Working on a known subject, under a new point of view, using the computer as 
a tool and a dynamic software, we had the intention to observe if the study of a new 
approach would contribute to the teachers’ knowledge and would cause a change in 
their practice. 

We have started from the following hypothesis: the teacher will not develop a 
certain content in the classroom unless he believes his own knowledge is enough to 
teach this content and if he has given mathematical meaning to it. 

According to Hoyles (1999), mathematical meaning comes from connections 
between old and new facts. The planned use of software must propitiate these 
connections and not simply add up new contents. 

According to Fischbein (1993), mathematical knowledge comes from the 
interaction between its intuitive, algorithmic and formal aspects. 
 
Methodology 

We have used for this experience two open activities whose aim is the study of 
the parabola, which were developed by CREEM (1992) to be studied using the 
software FONCTION. They have been adapted and published by a group of teachers 
from PUC/SP (SILVA, 2001). In the first of these activities, one studies the role of 
the parameters on the canonical form (f(x) = a(x - u)2 + v). In the second one, the role 
of the coefficients on the developed form (f(x) = ax2 + bx + c). In both, the subject is 
stimulated to act, observe, realise, reflect, make conjectures and validate them with 
the aid of the dynamic software. 
 1
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The computer tool has been chosen to facilitate visualisation and allow the 
subject to make conjectures validate them by means of a lot more examples than in a 
paper and pencil environment. The FONCTION graphic interface allows dynamic 
access to function parameters and/or coefficients change on one hand and 
visualisation of the corresponding graph modification on the other. 

This investigation described here was made with mathematics teachers from São 
Paulo´s public schools who participate in the research project “Mathematical 
thinking: research and teaching core”, whose co-ordinators are Dr. Saddo Ag 
Almouloud and Dr. Tânia Maria Mendonça Campos. 
 
The activities 

In the activity with the study of canonical form (activity 1), the quick 
visualisation made easy by the software intend to show how parameter a variation 
alters the parabola concavity, while parameters u and v variation provoke translation. 
Subjects may see yet u and v as vertex co-ordinates. 

In the activity with the study of the developed form (activity 2) we can see how 
coefficients a, b and c modify the graph. Computer helps subjects to realise that: 
coefficient c variation provokes vertical translations, while b leads to a rigid 
movement with vertices describing a new parabola. The a variation provokes a non-
rigid movement.  

By observing the graph it is possible to relate both forms, canonical and 
developed. By means of algebraic development one may obtain generic expressions 
for u and v as functions of a, b and c. 
 
Workshops 

We had observed three teachers from the group. Two of them (C. and O.) have 
worked in pairs and the other (A.), individually. Neither one knew parabola canonical 
algebraic form although all of them were familiarised with the developed one. 
 
Activity 1 
Parameter a

With the help of a dynamic software subjects realised that a>0 implies concavity 
up and a<0, concavity down and parabola “opens” and “closes”. C. says: “I thought 
this movement (opening and closing) was linked to x value and it is not.” As C. has 
not felt necessity to formally validate this statement (formal aspect) (or at least has 
not expressed it), we may say that for him observation and experimentation are 
enough to accepting a conjecture (intuitive aspect). 

 

 2
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Parameter u
In questions involving parameter a variation, u and v remained equal zero and 

subjects have not connected them with the vertex co-ordinates, although they have 
obtained them by looking at the graph. 

The variation of u parameter made easy by the software dynamics has allowed 
the perception (intuitive aspect), by subjects, of u as the vertex abscise, but they have 
only given vertex co-ordinates by means of u and v after the researcher intervention. 
Apparently they have not perceived that that parabola have not deformed because a 
value was constant and this leads us to say that their attention is just on u parameter, 
without making connections with a. 
Parameter v

Observing the parabola movement when parameter v varies has finally allowed 
subjects to perceive that u and v are the vertex co-ordinates (intuitive aspect). C. 
starts to press u key instead of v one and when he sees the “wrong movement” 
(intuitive aspect)on the screen, quickly corrects himself. This leads us to say that C. 
has learned the differences between movements provoked by u and v, although he has 
not used the word translation to describe any of them. O. does not do algebraic 
calculus (algorithmic aspect) to determine vertex co-ordinates because he has learned 
they are in evidence in the algebraic expression of canonical form (algorithmic 
aspect). 
 
Activity 2 

To complete the table at the beginning of activity 2 (see annexe 2) all three 
subjects have used the graph to determine vertex co-ordinates and expressions given 
by the software to get each canonical form. O. mumbles something about “… how is 
it possible?” (intuitive aspect) meaning the algebraic manipulation for the passage 
from developed form to canonical one but do not goes on in his idea (algorithmic 
aspect). He seems pretty satisfied with the results made easy by the computer. 
 
Parameter a

They do not have difficulties in understanding this parameter as been the same 
one in canonical form. 
Parameter c

Subjects did observe the movement c parameter variation provoke: O. claims it 
is a translation in the vertical axe; A., just as a movement. 
Parameter b

In answering the question “When a and c values are fixed and b varies which 
movement describes parabola’s graph?”, A. says: “The parabola walks, changes the 

 3
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quadrant, changes the vertex, but has the same aperture”. O. says: “Look, it is a 
rotation!”. C.: “It describes a parabola with concavity in the opposite direction and 
vertex in (0, c)”. 

To complete the table at the end of activity 2, all three of them take the 
canonical form and u and v values from the software. 

In a general way, none of them has demonstrated any preoccupation with formal 
validity for statements they have formulated (formal aspect), looking pretty satisfied 
with intuitive and algorithmic aspects of the new facts presented to them. 
 
Theoretical framework 

According to Hoyles (1999), 
“Mathematical meanings derive from connections – intramathematical connections 

which link new mathematical knowledge with old, shaping it into a part of the 
mathematical system; and extra-mathematical meaning derived from contexts and 
settings which may include the experiential world.” (Hoyles, 1999.) 

Looking for mathematical meaning on the study of parabolas, we have proposed 
two activities aiming to work on it under two different points of view, a known one 
(developed form) and a new one (canonical form), which subjects have declared not 
to know yet. The software dynamics was a chosen factor with the intention of 
promoting connections between old and new mathematical knowledge. 

According to Fischbein (1993), mathematical knowledge has three aspects: 
formal, algorithmic and intuitive, and a subject must be apt to do constant and 
dynamic interaction between them. 

The formal aspect is due to axioms, definitions and theorems and it is essential 
because 

“Axioms, definitions, theorems and proofs have to penetrate as active components 
in the reasoning process. They have to be invented or learned, organized, checked, and 
used actively by the students.” (Fischbein, 1993.) 

This aspect by itself is not enough since it does not give necessary background 
for individuals to dominate resolution procedures, which constitute the unavoidable 
algorithmic aspect inasmuch as 

“We need skills and not only understanding, and skills can be acquired only by 
practical, systematic training. ... Mathematical reasoning cannot be reduced to a system 
of solving procedures. ... Solving procedures that are not supported by a formal, explicit 
justification are forgotten sooner or later.” (Fischbein, 1993.) 

Nevertheless, we must not ignore the intuitive aspect that is related to intuitive 
cognition, understanding and solution, because intuitive interpretations are 
profoundly rooted in individual experience and they can cause a coercive action. 

 4
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“... Intuitions may play a facilitating role in the instructional process, but, very 
often contradictions may appear: Intuition may become obstacles - epistemological 
obstacles (Bachelard) - in the learning, solving, or invention processes.” (Fischbein, 
1993.) 
Related to the use of computer 

 “We have shown that technology can change pupils’ experience of 
mathematics but with several provisos: the users of the technology, (teachers and 
students), must appreciate what they wish to accomplish and how the technology 
might help them; the technology itself must be carefully integrated into the 
curriculum and not simply added on to it, and most crucial of all, the focus of all the 
activity is kept unswervingly on mathematical knowledge and not on the hardware or 
software.” (Hoyles, 1999.) 

 

Conclusions 
In the activity concerned with canonical form, subjects did connected it with the 

developed one regarding a parameter, after they visually acknowledged that parabola 
concavity changes due to its variation. The software was an essential tool for this 
observation, more than that; it acted as the formal aspect (instead of intuitive). 

Concerning vertex co-ordinates, we can say that a new knowledge was added to 
the old ones but not necessarily related to them since, once more, just the visual 
aspects were enough for subjects. 

Although subjects were involved in the solution of activity 1, expressions as 
“Wonderful!” (A.); “One doesn’t need to do; one already knows. The vertex is  
(u, v)” (O.); “I thought this movement (parabola opening and closing) was related to 
x value and is really independent of it” (C.) show us that they do not see the needing 
of a certain formalism (formal aspect) to explain what they have acknowledged and 
that visualisation made easy by the software is just enough (intuitive aspect). 

A. did another important connection between the new knowledge and the old 
one when he decided to solve a second degree equation, presented to him in canonical 
form, without using the more usual development of the square and subsequent 
Baskara’s formula (algorithmic aspect): 

0  
4
21 - 

2
5 - x

2

=⎟
⎠
⎞

⎜
⎝
⎛          

4
21  

2
5 - x

2

=⎟
⎠
⎞

⎜
⎝
⎛      

4
21  

2
5 - x ±=        

4
21  

2
5  x ±= . 

We may say that, to A., the example is sufficient and he does not look for any 
kind of formal justification for the algorithm above (formal aspect). 

The algorithmic aspect was not explored by subjects as well when they needed 
to transform canonical form into developed one or vice-versa, as they have used the 
software given data. 
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Summing up, as conclusion, we can say that the use of dynamic software was 
decisive factor to subjects to “perceive” (intuitive aspect) the role played by 
parameters and/or coefficients variation onto the parabola’s graph. Besides, we could 
comprehend that for the observed subjects “formal validation” (formal aspect) is not 
necessary when they “see” (intuitive aspect) certain facts on the screen. 

We then understand that these subjects do not merge parabola canonical form 
into their practice, since they apparently did not do interrelations between formal, 
intuitive and algorithmic aspects of this mathematical knowledge. 

For further research, we highly suggest that researchers look for ways to make 
subjects to accept and promote the necessity of formal aspects “acting as active 
components in the reasoning process” (Fischbein, 1993). We also recommend formal 
aspects to be strongly interrelated to intuitive and algorithmic aspects all the way 
during any learning and teaching situation. 
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Annexe 1 - Activity 1 
 

• Let us work with 2nd degree canonical form ( , with a, u and v real 
numbers, a ≠ 0). 

 v u) -a(x  y 2 +=

I. 

1. Choose values for a, u and v in such a way that . What are they? 2 x f(x) =

2. Observe the parabola.  
3. Change a value to obtain other parabolas. 
4. For a > 0, observe parabola movement when a value increases. Describe this 

movement. 
5. For a > 0, observe parabola movement when a value decreases. Describe this 

movement. 
6. Describe what happens when a < 0 varies. 
7. Represent on paper, in the same co-ordinate axes, three parabolas. In each case, 

write down parameter a value and vertex co-ordinates. 

8. Get, with software, the graph of 
2

x  f(x)
2

= . Draw this graph. 

a =    Vertex co-ordinates: 

9.  Get, with software, the graph of 
3

x-  f(x)
2

= . Draw this graph. 

a =      Vertex co-ordinates: 
II.  
1. Choose values for a, u and v in such a way that f(x) = 2(x-1)2. What are they? 
2. Observe parabola. 
3. Change u values many times to obtain new parabolas (parabola movement is 

called horizontal translation). 
4. In each situation, observe parabola and its algebraic expression. 
5. Represent, on paper, three different situations. Write down, in each case, u values, 

algebraic expressions and vertex co-ordinates. 
III. 
1. Choose values for a, u and v in such a way that f(x) = 2(x-1)2 + 1. What are they? 
2. Observe parabola. 
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3. Change v values many times to obtain new parabolas (parabola movement is 
called vertical translation). 

4. In each situation, observe parabola and its algebraic expression. 
5. Represent, on paper, three different situations. Write down, in each case, v values, 

algebraic expressions and vertex co-ordinates. 
IV. In each case, determine vertex co-ordinates. 

(a) . ( ) 3  1 x 3  f(x) 2 ++=

(b) ( )
2
1 - 3 -x 2-  f(x) 2=  

(c) 4.     v; 
2
3- u    4;  a ===  

(d) 2-     v;
3
1 u    ;

2
1  a === . 

V. Relate u and v with vertex co-ordinates. 
 
Annexe 2 - Activity 2 
 

• Let us work with the 2nd degree developed form (y = ax2 + bx + c, with a, b and c 
real numbers, a ≠ 0). 

1. Choose a, b and c in such a way that . What are they? 1 2x  -  x f(x) 2 +=

2. Observe parabola.  
3. Determine parabola’s vertex co-ordinates. 
4. Get canonical form f(x) = a(x – u)2 + v. What are a, u and v values? 
5. Complete the table. 

Function Vertex 
abscise x 

Vertex 
ordinate y 

u v Canonical form 

f(x) = x2 – 2x - 3      

f(x) = 2x2 – 4x + 5      

f(x) = -x2 + 5x - 1      

6. From ax2 + bx + c = a(x – u)2 + v we can get  u and v as functions of a, b and c. 
Developing second member of the equation we get: 
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bx + c = (-2au)x + (au2 + v). 
By Polynomial Identity Principle we obtain 

b = -2au   and   c = au2 + v. 
Determine, from these two equalities, expressions for u and v as functions of a, b e c. 
(Remember: ∆ = b2 – 4ac.) 
7. Using these expressions, test your answers for item 3. 
8.  Given f(x) = 2x2 – 5x + 3: 

(a) determine parabola vertex co-ordinates; 
(b) give an algebraic expression for the function, in canonical form; 
(c) determine the points where parabola intersects the co-ordinate axes; 
(d) draw function graph. 

9.  Let us use software to observe coefficients a, b and c role on parabolas´ graph 
configuration and position. 

Choose a parabola: _______________________________________ 
(a) When a and b values are fixed and c varies which movement describes parabola’s 

graph? 
(b) When c and b values are fixed and a varies which movement describes parabola’s 

graph? 
(c) When a and c values are fixed and b varies which movement describes parabola’s 

graph? (Try to follow vertex movement.) 
10. Complete the table. 

Canonical form 
f(x) = a(x – u)2 + v 

Developed form 
f(x) = ax2 + bx + c 

Factored form 
f(x) = a(x – x’)(x – x”) 

  f(x) = 2(x – 1)(x + 3) 

 f(x) = x2 – 4x - 5  

f(x) = 2(x – 5/4)2 + 1/8   
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PERCEPTUAL SEMIOSIS AND THE MICROGENESIS OF 
ALGEBRAIC GENERALIZATIONS1 

 
Luis Radford, Université Laurentienne, Canada 

Caroline Bardini, Université Laurentienne, Canada 
Cristina Sabena, Università di Torino, Italy 

 
Abstract: This paper deals with the problem of algebraic generalizations of elementary 
geometric-numeric patterns. It focuses on understanding the role played by the various 
semiotic systems mobilized by students in the progressive process of perceptual 
apprehension of a pattern and its generalization. The microgenetic analysis of the 
mathematical activity of two small groups of students in a Grade 9 class shows how 
making recourse to semiotic resources, such as gestures, language, and rhythm, allows 
the students to objectify different aspects of their spatial-temporal mathematical 
experience. The analysis also shows some connections between the syntax of the 
students’ algebraic formulas and the semiotic means of objectification through which 
the formulas were forged, thereby shedding some light on the meaning of students’ 
algebraic expressions. 
Keywords: generalization, gestures, meaning, objectification, rhythm, semiotics, 
semiotic-cultural approach, signs, syntax. 
 
INTRODUCTION AND THEORETICAL FRAMEWORK 
Resorting to a small number of characters to form an expression, algebraic symbolism 
allows us to convey an idea that, usually, in natural language, may take one or several 
lines. Algebraic symbolism does not possess the rich arsenal of resources such as 
adverbs, adjectives and noun complements that play a crucial role in written and oral 
languages. Instead, it offers to its users a precision and succinctness governed by a few 
syntactic rules. However, the ability to grasp how this precision and succinctness works 
often becomes difficult for students of different ages, as is reflected by the large amount 
of research devoted to the understanding of students’ errors (see e.g. Matz, 1980; Kaput 
and J. Sims-Knight, 1983). Regardless of their theoretical orientation, the research 
results agree on this: algebraic syntax is not transparent. 

                                                 
1 This paper is a result of a research program funded by the Social Sciences and Humanities Research Council of Canada 
(SSHRC/CRSH). 
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In our previous research, we have focused on the investigation of the meaning with 
which students endow elementary algebraic expressions. Our research has been 
encompassed by a semiotic-cultural perspective that rests on the idea that learning is 
accomplished through the use of diverse semiotic systems. Indeed, even accurate 
discourse is unable to lead students directly to the object of learning, for learning is 
entailed by meaning and interpretation. Thus, to learn to generalize geometric-numeric 
patterns amounts to learning to see and to interpret a finite number (usually very few) of 
concrete objects or signs in a different way. To learn to generalize means to “notice” 
(Mason, 1996) something that goes beyond what is actually seen. Ontogenetically 
speaking, this act of noticing unfolds in a gradual process in the course of which the 
object to be seen emerges progressively. This process of noticing we have termed a 
process of objectification. To make something apparent (which is the etymological sense 
of objectification) learners and teachers make recourse to signs and artefacts of different 
sorts (mathematical symbols, graphs, words, gestures, calculators, and so on). These 
artefacts and signs used to objectify knowledge we call semiotic means of objectification 
(Radford, 2003). 
One of the basic principles of our methodological approach to the investigation of the 
students’ algebraic generalizations can be stated as follows. Our comprehension of the 
meaning with which the students endow their algebraic expressions can be deepened by 
investigating the semiotic means of objectification to which the students have recourse 
in their attempt to accomplish their generalizations. 
This methodological principle is interwoven with the theoretical tenet of our research 
approach mentioned above, namely, that learning is essentially a social process of 
objectification mediated by a multi-systemic semiotic activity. 
In previous works we have discussed the prominent role of gestures and language in  
students’ processes of knowledge objectification. We have provided evidence of the key 
role of deictic activity, both at the level of gestures (like in pointing) and at the level of 
language (e.g. when students use terms such as this and that)2. In more precise terms, in 
our study of students’ semiotic mechanisms through which the mathematical structure of 
a pattern is revealed, we have found a rich process of objectification in which the 
mathematical structure of the pattern is ostensibly asserted by gestures and linguistic key 
terms (Radford 2002, 2003). 
Often, the students’ objectification of the conceptual categories required in the 
generalization of patterns takes the form of a process of perceptual semiosis, i.e. a 
process relying on a use of signs dialectically entangled with the way that concrete 
                                                 
2 By deictic activity we mean the activity embedded in social communicative processes where actions (e.g. pointing 
gestures), linguistic units (e.g. ‘top’, ‘bottom’), etc. allow one to refer to the objects in the universe of discourse.  It is the 
contextual circumstances which determine their referents. As such, deictic terms depend heavily on the context (see 
Nyckees 1998, p. 242 ff.) and have a particular function in dialogical processes. 
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objects become perceived by the students. In this paper we want to deepen our analyses 
in order to better understand the students’ processes of perceptual semiosis. We are 
interested in understanding the dialectical relationships between the various semiotic 
systems mobilized by the students in making sense of generality as expressed through 
algebraic symbolism. We will focus on the work of two small groups of 3 students each, 
during a regular Grade 9 mathematics lesson. In the next section, we describe the task 
and some elements of the mathematical lesson and of our methodology. 

METHODOLOGY 
The data reported here comes from a 5-year longitudinal study, collected during 
classroom activities. The activities are part of the regular school teaching lessons, as 
framed by the Ontario provincial Curriculum of Mathematics. In these activities, the 
students spend a substantial period working together in small groups of 3 or 4. At some 
points, the teacher (who interacts continuously with the different groups during the small 
group-work phase) conducts a general discussion allowing the students to expose, 
confront and discuss their different solutions. In addition to collecting written material, 
tests and activity sheets, we have three or four video-cameras each filming one group of 
students. Subsequently, transcriptions of the video-tapes are produced. Video-recorded 
material and transcriptions allow us to identify salient short passages that are then 
analyzed using techniques of qualitative research in terms of the students’ use of 
semiotic resources (details in Radford, 2000). 
The mathematical problem on which we will focus here was the first one of a three-
problem math lesson. This problem dealt with the study of an elementary geometric 
sequence (see Figure 1). The students were required to continue the sequence up to 
Figure 5 and then to find out the number of circles on figures number 10 and number 
100. Subsequently they were asked to write a message indicating how to find out the 
number of circles in any figure (figure quelconque, in the original French), and then to 
write an algebraic formula for the number of circles in figure number n. 

 
Figure 1 

In the next section, we discuss two examples of perceptual semiosis and the role played 
by the latter in the students’ elaboration of their algebraic formulas. While one of the 
processes of perceptual semiosis led to the formula “(n+1) + (n+2)”, the second process 
led to the formula “n×2+3”. As we shall see, the study of the microgenesis of students’ 
generalizations provides us with rich information about the meaning of students’ 
algebraic symbolism. It will become apparent that the students’ apprehension of the 
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pattern and the building of generality are underpinned by a complex articulation of 
written signs, words and gestures.  
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PROCESSES OF PERCEPTUAL SEMIOSIS 
First example: 
The first group is formed by three students, Doug (left), Alice (center), and Mireille 
(right)3. After drawing figures 4 and 5, Doug says: 
“So we just add another thing, like that” (when he utters the last word he makes a 

sequence of gestures). 

 
Since the word ‘thing’ does not have a clear referent, Doug immediately adds the 
expression “like that”. Interestingly, the deictic ‘that’ does not refer to something 
concrete on the sheet where the figures have been drawn, but to something else, 
something that is ostensibly shown by a rhythmic sequence of six gestures iconically 
suggesting inclined lines (see Figure 2). Doug’s ostensible mechanism serves two 
purposes: (1) to orient the process of perceptual semiosis in a certain direction (here, 
emphasizing the last two circles on each row), and (2) to convey a sense of generality 
through the rhythm of the gestures. In fact, the six diagonals virtually drawn by Doug 
with his rhythmic gestures not only refer to the last two circles diagonally disposed at 
the end of each figure but also express the idea of something that spatial-temporally 
continues further and further. 
When solving the problem of finding the number of circles in figure number 10, the 
regularity of the pattern is reformulated: what was previously perceived as a unique 
object (the couple of two circles) is now atomised (two separated circles). While 
drawing figures 5 and 6 did not require knowing the number of circles in each of these 
figures, this knowledge became essential for solving the next question that the students 
solved by computation. 
This atomisation is then soon refined by Alice, who suggests another way of expressing 
the regularity, based on another perception of the figures. Now the figures are seen as 
divided into two rows: 

                                                 
3 Names have been changed for deontological reasons.  

 
Figure 2. Excerpt of Doug’s sequence of rhythmic gestures.  
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1. Alice: No, you just have to always add one on the top and one on the bottom 
(inclining her head towards the right when she says “bottom”). 

2. Doug: Umm. OK. So it’s ... [...] How many... How many circles will figure number 
ten have? 

3. Alice: OK. It would be (pointing with her finger the rows of figure 2) eleven on the 
top and then...and then... twelve on the bottom. 

Alice mobilises two semiotic resources to objectify her perception of the figures and, by 
the same token, to refine her understanding of the regularity of the pattern. When talking 
in general terms (“you (...) always”, line 1), the distinction between the two rows is 
made by the inclination of her head, meant to clearly distinguish the circle added on the 
top from the one added on the bottom. Later on, when tackling the problem for figure 
number 10 (line 3), the distinction between rows is made by pointing at the top row of 
figure 2. This figure indeed provides the students with a metaphoric way of talking 
meaningfully about figure 10; it is a concrete support for them to imagine figure 10. 
The shift towards Alice’s perception of the figure (i.e. in two rows) is not problematic 
for Doug, who soon agrees with her point of view (“Umm. OK”, line 2). This point of 
view allows the students to easily find the number of circles in figure number 10, as well 
as the ones in figure number 100. 
When asked to write a message in French, describing how to explain to another student 
what she/he should do in order to find the number of the circles in any figure, Doug 
says: 
4. Doug: Each... For each figure… You take the number of the figure...of the...of the... 

The number of the figure (balancing nervously back and forth on his chair) […] 
(then, without balancing anymore he says) let’s say that the figure’s number is 
three. You would say one plus three for the top row (moving his pencil in the air 
from left to right) and two plus three... […] No, plus two for the bottom row 
(pointing with his finger at one of the figures) and plus one (pointing directly to one 
of the figures) for the top row. On …of the number... the figure (stressing the words 
“on” and “of” by pointing his finger towards the table). 

Doug does not seem to be comfortable dealing with the problem of “any figure”. He is 
not comfortable in this layer of generality and expresses himself hesitantly, moving on 
his chair nervously. After the early unsuccessful attempts, Doug abandons this path to 
generality and uses figure 3 as a crutch. The concreteness of figure 3 allows him to 
express the general intended computations. As soon as he finishes explaining the 
computations based on figure 3, the reference to a particular figure fades away (Doug 
even says “no”, as if he were making a mistake). In actual fact, he is not talking about 
figure 3 specifically. In Kantian terms, the counting process undertaken on figure 3 
serves as a way to objectify the schema of counting. Doug’s effort shows us at least this: 
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the presence of the general is made apparent by its absence at the discursive level: “plus 
two” and “plus three” do not have an explicit linguistic referent and the gesture in the air 
signifies that the referent is not located on the drawn figures either. By omitting to name 
the referent, the referent becomes general. 
Although Doug’ utterance evokes a certain “struggle” (Doug has some troubles, at the 
end, to make his sentence coherent by trying to include the reference to the figure 
again), the written message in plain French is quite clear: 

“# de fig +1 pour la rangée du haut et # de la fig +2 pour le bas. 
Additionne les deux pour le total”4. 

The written message tells us more than the sole description of the procedure that one has 
to perform in order to find out the number of circles in any figure. It also states the 
geometrical meaning of the operations, intimately related to the students’ perception of 
the figure into two rows. The need to refer to the geometrical meaning can also be found 
elsewhere in their answers, more specifically when the students answer the second and 
third questions: “23 circles (11 on the top, 12 on the bottom)” and “203 circles (101 on 
the top, 102 on the bottom),” respectively. 
The algebraic formula that they provide at the end of the problem (i.e. “(n+1)+(n+2)”) 
still follows the course of this geometrical explanation, where the brackets delimitate the 
computations made on the two rows of the figure. Brackets are organizers of the way in 
which the formula tells us the story of the students’ mathematical experience. 
Second example: 
The group is formed by three students: Jay, Mimi (sitting side by side) and Rita (sitting 
in front of them). The students begin counting the number of circles in the figures, 
realizing that the number of circles in the figures increase by two each time. Then, their 
attention focuses on the geometrical structure of the figures:  
1. Mimi: (Talking about figure 4) So, yeah, you have five on top (she points to the 

sheet, sketching a horizontal line with her hand) and six on the... (she points to the 
sheet, making anther horizontal gesture, lower that the previous one). 

2. Jay: Why you’re putting... oh yeah yeah yeah, there will be eleven, I think. 
3. Rita: Yep. 
4. Mimi: But you must go six on the bottom … and five on the top. 
The spatial deictics “top” and “bottom” (lines 1 and 4) used by Mimi offer her group-
mates a particular way to apprehend the figures in the ongoing process of perceptual 
semiosis. Jay’s utterance (line 2) reminds us that, despite what is often thought, 
perceiving is not a simple and direct process. In line 4, Mimi insists on the geometric 
structure of the terms of the sequence. Her intervention amounts to shifting from blunt 

                                                 
4 Transl: “# of fig +1 for the top row, and # of the fig +2 for the bottom. Add the two to get the total”. 
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counting to a scheme of counting. To notice this 
scheme is the first step towards the general. 
Mimi’s spatial deictics are accompanied by two 
corresponding gestures. These gestures 
accomplish a twofold role: they depict the spatial 
position of the rows in an iconic way and also 
clarify the reference of the uttered words. 
The students’ work was interrupted by an 
announcement made to the class about a 
forthcoming social activity. While Mimi and Rita 
paid attention to the announcement, Jay kept on 
working, writing 23 and 203 as the answers for 
the question concerning the number of circles in 
figures 10 and 100. At this point, the 
announcement was finished and the girls returned 
to the task and asked Jay for an explanation: 
 
5. Mimi: (Talking to Jay) I just want to know 

how you figured it out. 
6. Jay: Ok. Figure 4 has five on top, right? (he 

points to the top row of figure 4). 
7. Mimi: Yeah… 

 
Line 6 

 

 
Line 8 

 
Line 11 

 
Line 11 

 
Line 12 

 
Line 12 
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8. Jay : (Continuing his sentence) and it has 6 
on the bottom (he points to the bottom row) 
[…]. 

9. Mimi: (She points to the circles while she 
counts) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. 
(Pause) […] Oh yeah. Figure 10 would have 
… 

10. Jay: 10 there would be like… 
11. Mimi: There would be eleven (she makes a quick gesture that points to the air) and 

there would be ten (same quick gesture but higher up) right? 
12. Jay: Eleven (similar gesture but with the whole hand on the paper) and twelve 

(same gesture but lower). 
13. Mimi: Eleven and twelve. So it would make twenty-three, yeah. 
14. Jay: [Figure] 100 would have one-hundred and one and one-hundred and two (same 

gestures as in line 12). 
15. Mimi: OK. Cool. Got it now. I just wanted to know how you got that. 
Developing Mimi’s initial idea, elaborated in lines 1 and 4, Jay here attains a structural 
apprehension of the figure through which he solves the problem for figures 10 and 100. 
Let us notice that, to explain his strategy (lines 6, 8), he refers first to figure 4. In line 7 
agreement is obtained. Moreover, in his explanation, he uses the same discourse genre as 
Mimi’s: a discourse genre that interweaves spatial deictics (top, bottom) and iconic and 
deictic gestures. In particular, by pointing gestures he touches the two horizontal rows in 
which figure 4 can be divided. Mimi then turns to figure 10 (end of line 9) and 
accompanies her utterance with gestures that keep certain specific aspects of those of 
Jay: the fact of having one gesture for each row. But whereas Jay’s gestures point 
materially to the rows of figure 4, Mimi’s are made in the air (line 11): indeed, figure 10 
is not in the perceptual field of the students, so new mechanisms of semiotic 
objectification have to be displayed. This, we suggest, is the role of gestures here. Of 
course, Mimi could have simply reached the answer using words. The fact that she did 
not, and that she used gestures is right to the point that we want to make here: gestures 
do not merely carry out intentions or information. They are key elements of the process 
of knowledge objectification. This point becomes even clearer when the students address 
the question of figure 100. The gestures are again made in the air, and this time at a 
higher elevation from the desk. 
In their path towards generality, students need to mobilize both language and gestures in 
a coordinated and efficient way. This coordination takes place in particular segments of 
the students’ mathematical activity where knowledge is objectified. These segments of 
mathematical activity characterized by the crucial coordination of various semiotic 
systems constitute what we have previously termed semiotic nodes (Radford et al. 2003). 

 
Line 14 

 
Line 14 

Figure 3. Some gestures occurring in the 
lines of the dialogue. 
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In this particular semiotic node, which goes from line 5 to 15, we see how the students 
merge the geometrical and numerical components of the problem: the former is taken in 
charge by gestures and the latter by words. 
We shall now discuss the part of the mathematical lesson where the students had to face 
the problem of writing a message to explain how to find out the number of circles for 
any figure (figure quelconque). 
16. Mimi: Add. Add three to the number of the figure! (pointing to the results 23 and 

203 on the paper). 
17. Jay: No! […]. 
18. Mimi: I mean like … I mean like … You know what I mean, like, for figure 1 […] 

(pointing to figure 1) it would be like one, one, plus three; this (pointing to figure 2) 
would be two, two, plus three; this (pointing to figure 3) would be three, three, plus 
three. 

As suggested by her gestures (line 16), Mimi seems to have observed that the number of 
circles in figures 10 and 100 ended with the digit 3 and considered it as a key to look for 
a general method, something which led her to a new apprehension of the figure. Jay does 
not understand (line 17). Mimi then explains the idea in more detail (line 18). Here, the 
gesture with which she pointed to each figure was made up of three indexical gestures. 
In the case of figure 1, she pointed successively to the top left circle, then the bottom left 
circle and finally she sketched a small triangle surrounding the three left circles on the 
right (see Figure 4). 
 
 

 

   
 

 

 

Figure 4. On the left, Mimi making the indexical gestures on figure 1 on the sheet. On the right, the 
new apprehension of the figures as a result of the process of perceptual semiosis. 

The process of perceptual semiosis leading to the new apprehension of the structure of 
the figures included not only gestures and words, but also rhythm. In fact, the 
expression “one, one, plus three” is uttered with the same cadence as the expressions 
“two, two, plus three” and “three, three, plus three”. We can detect, in this sentence, the 
embedding of two types of rhythm. The first one helps to make apparent a kind of 

« one, 
   one, 
   plus three » 

« two, 
   two, 
   plus three » 

« three, 
   three, 
   plus three » 
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regularity within each figure, and in conjunction with gestures and the meaning of 
words, organizes the way of counting. The second rhythm corresponds to the pause 
made between figures: “one, one, plus three” [pause] “two, two, plus three” [pause] 
“three, three, plus three”. The concatenation of these two rhythms conveys the idea of 
generality. It also opens new avenues to keep exploring the general. Thus, in the course 
of the classroom activity, it became apparent that the first two elements in the counting 
process were related to the number of the figure. 
In fact, keeping the numerical example of figure 10, the students soon after manage to 
express the regularity in natural language: 
19. Mimi: You double the number of the figure. 
20. Jay: 10+10 
21. Mimi: So it will be 20 dots +3. You double the number of the figure and you add 

three, right. So figure 25 will be 50...3. Right? That’s what it is. 
The message was finally refined as follows: 

 
 
 
 
 

The symbolic formula was: 
 
 
SYNTHESIS AND CONCLUSION 
Our microgenetic analysis of two small groups of students dealing with the 
generalization of patterns suggests the central role played by spatial deictics, gestures, 
and rhythm in perceptual semiosis, particularly in the students’ progressive processes of 
perceptual apprehension of a pattern and its generalization. The analysis also suggests 
some connections between the syntax of the students’ algebraic formulas and the 
students’ semiotic means of objectification. For instance, the spatial deictics ‘top’ and 
‘bottom’ impressed their mark in the syntax of the formula “(n+1)+(n+2)”. However, the 
connection may be even yet more subtle. Rhythm, for example, impressed its mark in 
the message produced by the second group of students, where it appeared under the form 
of a comma (see above). In the final symbolic formula “n×2 + 3” the comma has 
disappeared. Rhythm is nevertheless embedded in the symbolic expression: it constitutes 
one of the signifying elements of the students’ formula. In general, deictics, gestures, 
rhythm, and other semiotic means of objectification do not operate separately from each 
other. They belong to different semiotic systems whose coordination seems to be crucial 
in the students’ mathematical experience. This complex coordination of semiotic 
systems still remains largely unknown in the psychology of mathematics education. This 
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paper does not solve this research problem in its generality. It shows a few elements of it 
and suggests a research path to be explored. 
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MODEL OF A PROFESSOR’S DIDACTICAL ACTION IN 
MATHEMATICS EDUCATION  

PROFESSOR’S VARIABILITY AND STUDENTS’ ALGORITHMIC 
FLEXIBILITY IN SOLVING ARITHMETICAL PROBLEMS1 

 
Jarmila Novotná, Charles University in Prague, Czech Republic 

Bernard Sarrazy, DAEST, Université Victor Segalen Bordeaux 2, France 
 
Abstract: The paper deals with the issue of problem solving. This was a common 
theme of two independent projects, which complement each other. One study detects 
phenomena in graphical models of word problem assignments; the pre-algebraic 
features of models are discussed. The other gives these phenomena precision by an 
action model of the problem, focusing on the variability in word problems. Common 
aspects of both studies are presented. 
Keywords: problem solving, graphical models, variability of teachers, 
psychological perspective, theory of didactical situations, coding of word problem, 
reference language, model. 
 
1. INTRODUCTION 
In the paper we are presenting two studies originally executed as independent 
entities; both are dealing with the same topic: problem solving. The first one (J. 
Novotná) belongs more to the psychological perspective than the purely didactical 
one, although the didactical concern is not absent. The second one (B. Sarrazy) 
examines the effects of variability in the formulation of problem assignments on 
students’ flexibility when using taught algorithms in new situations; the research was 
developed in the framework of the theory of didactical situations starting from 
various results in the psychological domain. These two studies, although at the 
beginning carried out separately and on different levels of education, showed 
themselves to be perfectly complementary. The first one allows the detection of a set 
of phenomena, whereas the second one gives them precision through an action model 
of the problem focusing on the variability in word problems. We believe that 
connecting these two approaches allows us to open interesting perspectives for a 
better understanding of the role of problem solving in teaching and learning 
mathematics by giving precision to certain conditions of their use. 

                                                 
1 Acknowledgement: The research was partly supported by the project GAČR No. 406/02/0829 
Student-focused mathematics education. 
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2. MODELS OF WORD PROBLEM ASSIGNMENTS 
In this part of the article we investigate the ways that students are modelling word 
problem assignments when grasping the problems’ structure -see e.g. (Novotná, 
1999). The following terminology is used: Coding of word problem is the 
transformation of the word problem text into a suitable system (reference language) 
in which data, conditions and unknowns can be recorded in a more clearly organized 
and/or more economical form. The result of this process is called a model2 (in both 
cases – models taught by teachers or models as results of the inner need of the 
solver). The reference language contains basic symbols and rules for creating a 
model. There exist different reference languages for any one type of word problem. 
From a student's solution (Jakub, 13 years, individual experiment) 
Problem to be solved: Marie and Pavla each had some money but Marie had 10 
CZK more than Pavla. Pavla managed to double the amount of money she had and 
Marie added 20 CZK more to her original amount. They now found that both of 
them had the same amount. How many crowns did each of them have at the 
beginning? 
Jakub writes:                  Marie … by 10 more than                      + 20 
                                                                                                            = 
                                         Pavla                                                        . 2 
This record of the assignment did not allow him to find a suitable solving strategy. 
The experimenter recommends him to use the visualisation with the help of line 
segments, see (Novotná, 1998): 
Experimenter (E): Try to record the situation at the beginning. 
Jakub (J):                 Before      Pavla  
                                                                                   10 
                                                 Marie   
Experimenter E: And after the change? 
J starts to draw a new line segment. 
E: Would it not be better to record it in the same schema? 
After a short discussion, J's graphical representation is  

                         After    Pavla 
         10     20 

Marie 
J: Aha … I do not need to construct an equation! 

This simple example illustrates the influence of an appropriately chosen reference 
language on the quality of grasping the text and on constructing a mathematical 

                                                 
2 Our use of the word model corresponds with the representation in (Pierce, 1987).  
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model of the word problem.3 In the example, two reference languages were used: 
verbal and graphical ones. 
The solver's choice of one of the reference languages is influenced by several factors: 
internal ones, e.g. by his/her previous experience, preferred information processing 
style, personal preferences, and external ones, mainly the demands of the teacher or 
school system. 
From the point of view of impulses for creating a model we distinguish three types: 
spontaneous independent model creation, externally managed model creation, and 
creation of a figure in the role of a signal (Novotná, 1999). In real life situations, it is 
rare to have to solve standard problems with the help of known solving algorithms. 
To prepare children for dealing with life situations in a successful way, the 
spontaneous case of model creation is crucial. 
The solver’s goal when creating a model is to get a better understanding of the 
problem structure (except in the cases when the reasons for model creation are fully 
external, e.g. teacher’s demands, no intrinsic motivation). A model can have different 
forms: from detailed rewriting of the assignment to more clearly organized forms, 
from a verbal description of the assigned conditions to their symbolic record. In this 
context we can speak of non-algebraic, pre-algebraic or algebraic model forms. In 
this perspective, a spontaneously created model can indicate the level of pre-
algebraic/algebraic thinking of its author. 
2.1 Our research 
The original aim of our experiment (Novotná, Kubínová, 1999) was to analyse and 
classify spontaneously created graphical models of word problems. The experiment 
was conducted with pupils from the 3rd (age 9-10) to 8th grades (age 14-15) in basic 
schools in both Prague and České Budějovice. The sample consisted of 25 3rd 
graders, 21 4th graders, 24 5th graders, 22 6th graders, 28 7th graders and  23 8th graders, 
all of them were from non-specialised classes. The word problem dealt with was a 
non-standard problem that is not presented in currently used Czech textbooks and the 
participating pupils have not solved similar ones before. It had the following 
structure: 
A packing case full of ceramic vases was delivered to a shop. In each case there were 
b boxes, each of the boxes contained k smaller boxes with p presentation packs in 
each of the smaller boxes, each presentation pack contained m parcels and in each 
parcel were v vases. How many vases were there altogether in the packing case?4 

                                                 
3 Duval (1995) states that without distinguishing between object and its representation it is not possible to understand 
mathematics. In order to separate object from its representation, the student must be able to represent a mathematical 
concept at least in two semiotic systems. Duval (1999) studies auxiliary representations as a tool that helps the solver  
understand formulations and reformulations in mathematics.   
4 The number of “unpacking levels” and the numbers labeled b, k, p, m, v were modified according to the age of solvers. 
For the 7th/8th grades, the mixed arithmetic-algebraic assignment was used (v/v and k were not substituted by numbers).  
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The traditional reference language in Czech schools used already at the primary level 
is a verbal one (Fig. 1a). The use of grahical models (Fig 1b) was the spontaneous 
decision of solvers. Spontaneously and independently created reference languages 
were used by solvers of 6th to 7th grades. The younger solvers tried to apply the verbal 
model copying the one presented by the teacher for other word problem types. Only 
one of the 3rd to 5th graders used any form of pictorial representation. The probable 
reason is that at this age, pictures are always connected with the real situation that 
they represent. The lack of pictures in the solutions indicates that children do not 
connect the word problem presented to them in school with real objects/situations or 
found the creation of diagrams for the problem too difficult. 
 

 

 
Fig. 1a Fig. 1b 

The larger amount of figures and schemes in the solutions of 6th graders and older 
students is connected with the use of teaching strategies supporting students’ 
development of the ability to visualise situations. There occured a rich variability in 
graphical models used spontaneously by individual students. Graphical models were 
of two main types: procedural and conceptual. We call a model: procedural when it 
clearly expresses the process in time how it is described in the assignment (Fig. 2a); 
conceptual when all pieces of information are recorded as a whole not showing the 
changes in time (Fig 2b). As to the shape similarity, both iconic (consisting of real 
shape record, Fig. 2b) and symbolic (keeps the structural similarity only, Fig. 2a) 
models were found. Students used various types of accompanying explanatory means 
(arrows, words, …, Fig. 2b). Big differences were identified also in the completeness 
of the records. 
 

 

Fig. 2a Fig. 2b 
When analyzing the use of assignment models in our sample of solutions of 6th to 8th 
graders we identified difference in the performances of the groups of students from 
different classes (taught by different teachers): Either the majority of students kept 
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using the externally managed model (mostly verbal, non-algebraic) or most of models 
were individualized spontaneously created models (of all three “algebraic levels”). 
Traditionally, the level of pre-algebraic/algebraic thinking is characterized by use of 
letters (or other symbols, e.g. ∗, �) when solving mathematical problems. Students’ 
ability to operate with algebraic symbols in a systematic way is often based on very 
formalistic knowledge and most often it is taught transmissively. Visualization is 
seldom used (Novotná, Kubínová, 2001). In the (spontaneous) use of individualized 
models, we can observe echoes of a conscious transition towards pre-
algebraic/algebraic thinking. There are several variables that might be considered as 
indicators of pre-algebraic/algebraic level of a model from which we present here 
those that are clearly present in the models in Fig. 1, 2: 
• Level of revealing the structure5: Higher for the model in Fig. 1b than in Fig. 1a. 
• Level of thinking in symbolic language6: Higher for the model in Fig. 2a than in 

Fig 2b. 
• Level of the reference language abstractness: Higher for the model in Fig. 2a 

(small lines in the model represent different real objects even if they have the 
same form – for the solver it is an abstract “universal” symbol) than in Fig. 2b (the 
solver tried to distinguish symbols for various real objects). 

2.2 Results 
As mentioned in (Malara, Navarra, 2001), “… the difficulties in the approach to 
algebra are rooted in the scarce attention paid to the relational or structural aspects of 
arithmetics which constitute the basis of elementary algebra. A longitudinal study of 
the use of different reference languages when solving word problems indicates that 
the spontaneously created models produced by students have pre-algebraic features. 
Referring to (Drouhard, 2001), it is closely related to the fact that “(students) have to 
learn how to read, write, understand, speak, and above all how to use this particular 
language in order to solve problems and to ‘think algebraically’ “. 
The individual differences in the form of graphical models could be explained by the 
internal students’ cognitive processes, (Novotná, 1999), (Novotná, Kubínová, 1999). 
By this approach we were not able to explain the striking difference “spontaneity 
versus copying” in the students groups. The psychological perspective did not offer 
any explanation of the observed fact. It was necessary to search for it outside the 
psychological approach. We found a suitable tool for the explanation in the scope of 
the Theory of didactical situations (Brousseau, 1997), namely in the notion of 
variability of teachers introduced by B. Sarrazy (Sarrazy, 2002). 
 
                                                 
5 (Arcavi, 1994): “Many students who manage to handle the algebraic techniques successfully, often fail to see algebra 
as a tool for understanding, expressing and communicating generalizations, for revealing structure, …” 
6 (Crawford, 2001): „… three broad indicators are defined as essentials to algebraic thinking: 
1. Ability to think in symbolic language, to understand algebra as generalized arithmetics and to understand algebra as 
study of mathematical structures. …” 
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 3. VARIABILITY OF TEACHERS 
To place the question studied by the second research it is necessary to return to an 
episode well known among French educationalists: In 1979, the researchers from 
IREM in Grenoble presented to students of 9-10 years the following problem: “On 
the boat, there are 26 sheep and 10 goats. What is the age of the captain?” More than 
three quarters of students used addition of numerical data from the assignment. This 
phenomenon is well known to educationalists as one of the apparent effects of the 
“didactical contract” (Brousseau, 1997; Chevallard, 1988; Sarrazy, 1995). But there 
remains one question and this is the explanation why, at the same level of 
competence, students from certain classes are more sensitive to the formal aspects of 
the problem assignment (answering that the age of the captain is 26) and that others 
are more flexible in the solving process - rejecting the validity of such problem type 
(answering: “It is impossible to find the answer to this question.”). 
3.1 Our field of interest 
Learning mathematics is not restricted to learning algorithms only but it is manifested 
by identifying conditions for their use in new situations: by this criterion it is possible 
to admit that the child learned something. But these conditions are not present in the 
algorithms itself and cannot be explicated by the teachers. This is one of the reasons 
why the “didactical contract” is in large part implicit: the teacher cannot tell students 
what he is expecting from them without relinquishing the ability to determine what 
the students learned (Brousseau, 1997). How could it be explained that certain 
students show that they are able to use the taught knowledge in new contexts, while 
others, although “knowing” the taught algorithms, are not able to re-contextualise 
their knowledge? If there is no satisfactory explicative model, these differences are 
attributed to the charisma of individuals, to their cognitive skills …, or simply to the 
mysterious mental properties for which teachers do not have any didactical tool for 
transforming them or letting them develop. The central hypothesis of our research is 
to consider these inter-individual differences of the sensibility on the didactical 
contract (measured by an index), as an effect of the teachers’ didactical variability in 
the domain of setting arithmetical problems. 
The obtained model is based on the following idea which can be formulated simply: 
the more the same form of didactical organisation presents the modalities of different 
realisations, the more uncertainty attached is added to this form. To satisfy the 
teacher’s expectations, such a student has to ‘examine’ the domain of validity of his 
knowledge much more than a student who is exposed to a strongly ritualised 
(repetitive) teaching and therefore a much reduced variability. In other words, a 
strongly ritualised teaching would allow the student to know in advance what he has 
to do and thus, to adopt a behaviour ad hoc (adapted). On the other hand, by the 
interruptions of introduced routines, a strong variability makes the following 
strategies futile (controversial): the students cannot rely only on the indicators of 
introduced routines (semantic indicators, triggers …) and therefore cannot either 
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anticipate or master the liaison of sequences which allow him to discover the 
behaviours expected by the teacher. This model was not refuted by our results. 
3.2 Theoretical model: degree of variability 
We will study the problem assignments invented by the teachers. 
We asked 7 teachers of the 4th year of elementary school (age of students 9-10), all 
with the same length of experience at this level, to write down 6 arithmetic problems 
(without consulting any documents such as textbooks): 3 with a solution requiring 
addition and the other 3 requiring subtraction. The problems were to be different 
from the point of view of their difficulty. The 42 obtained problems were analysed 
using the classification presented bellow. 
Consulting a certain number of researches allowed us to identify 14 variables; each of 
them could explain the small or larger difficulties of a problem. We grouped them 
into 3 categories: 
A. Numerical, grouping the variables which relate to the numerical values of the 

problem: the type of numerals used; presence of irrelevant data; 
B. Rhetorical, relating to the organisation forms of the presentation of the problem 

(story): organisation of the assignment of the problem: presence/absence of an 
semantic indicator in the assignment; theme of the assignment; presence/absence 
of a trigger in the assignment; syntagmatic organisation and temporal 
organisation; position of the question; vocabulary used; type of formulation: 
classic and written forms. 

C. Semantic-conceptual: This last cluster groups together at the same time, the 
variables connected with certain rhetorical aspects (the presence of a trigger in the 
question as for e.g. “altogether”) and certain logical-mathematical variables (the 
operation that should be used): type of the additive structure; nature of the 
unknown; correspondence between the syntagmatic order and the operative order; 
correspondence between the trigger and mathematical operator; correspondence 
between semantic indictor and mathematical operator. 

3.3 Results and conclusions 
The procedure for calculating the variety index for additive problems (IVa) consisted 
in counting, for  each of the 14 variables, the variations observed (Vo) over the 3 
problems as a whole in relation to the number of possible variations (Vp) (IVa = 
Vo/Vp). If we only calculated the sum of the variations (Vo) we would underestimate 
the value of the index in cases where certain variations are formally excluded by the 
choice made on other variables. The same calculation procedure was used to measure 
the variety index in relation to the subtractive problems (IVs). The arithmetic average 
of IVa and IVs was retained as the measure of variety index.  
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The 42 problems were assigned to 27 8-9-year-old students. We observed a strong 
correlation7 (r = -.97; s.; p. < .001) between the average of success in the problems 
solved by students and the variety index calculated for these problems. Thus, it can 
be affirmed that the higher the variety index, the more difficult and contrasted the 
problems (although this is not significant, we nonetheless observe a positive 
correlation between the dispersion of success and the variety index). In other words, 
teachers with a high variety index produce variations that have highly significant 
effects on the difficulty of the presentations of the problems. As a result, the variety 
index constitutes a faithful summary of the “ability” of the teachers to make relevant 
variations in the wording of the problem – indeed, variability greatly reduces the 
average score (by half), which shows that the pupils are responsive to the contract 
and that their success does not resist variation. We can thus assume that variability is 
a variable that might explain the phenomenon of responsiveness to the contract. 
The observed correlation (r = -.74; s.; p. < .05) between the values of the variety 
index of the 7 teachers and the average scores of the flexibility (formalism) degree 
allows us to validate our initial hypothesis: the more the teacher shows an important 
variability, the more the students show the flexibility in the solution; vice versa, the 
weaker the variability of the teacher, the more the students are formalists and rely 
more on the formal aspects of the assignment than on their comprehension when 
producing the answer. 
So, repetitive teaching can guide the students more easily to adapt themselves to the 
educational situations by determination of indicators (e.g. triggers) only to answer the 
situations; thus, students may adopt an appropriate behaviour without being in need 
to understand the meaning of the mathematic knowledge mobilised by the situation. 
A developed variability invalidates these strategies: the student cannot rely only on 
these indices any more, and correlatively, the student’s involvement is more 
probable. 
4. CONCLUDING REMARKS 
In our experiments presented in Part 1, the variability of teachers proved to be the 
variable explaining the significant differences in the number of spontaneously created 
models by students in some groups. It confirms our conviction that students’ results 
differ when they are asked to reproduce only the reference language presented by the 
teacher or when they get acquainted with several reference languages or may even 
use their own reference languages. In the last two cases their results are better. In 
addition to that, these cases support the development of the student’s personality, 
mainly his/her ability of critical analysis and consciousness of their responsibility for 
their own activity. 
Moreover, we believe that analysis of models created by students enables the teacher 
to help them in case that their effort to solve the problem correctly is not successful 

                                                 
7 The linear coefficient of Bravais-Pearson was used. 
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(mainly in determining the type of obstacles the student faced). This point is 
elaborated in more details in (Novotná, 2003). 
If the teacher decides to get his/her students acquainted with several types of 
reference languages, he should be aware that there are not only positive 
consequences, but also negative ones. One of the most important dangers is the 
increased uncertainty in less able students who, besides the uncertainty concerning 
their ability to solve the problem correctly they are also facing the uncertainty, which 
reference language enables them to solve the problem. 
One question remains to be examined in the following work: the origin of teachers’ 
variability. The theoretical framework currently worked on in DAEST (Laboratory of 
Didactics and Anthropology in the Teaching Sciences and Techniques in Bordeaux) 
promises to provide a consistent framework for examining such a question, which is 
understandably interesting primarily for teacher training. 
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Abstract: Secondary students’ difficulties with elementary algebra are well 
documented and discussed in the research literature. Since the mid nineties, new 
approaches have focus on the teaching of early algebra in primary school based on 
the assumption that it is useful to learn algebraic thinking in conjunction with 
arithmetic. The aim of the study introduced in this paper is the investigation of 
primary students’ thinking and solution processes with respect to algebraic problems 
in a classroom setting. Fourth graders working in pairs on a selection of tasks were 
videotaped to document their collaborative strategies, their concepts and thinking, 
followed by a semi-structured interview with each pair. Focus of the qualitative data 
analysis is their understanding of patterns, generalisations and their use of symbolic 
language. In this paper selected data from a pilot study conducted in June 2004 will 
be discussed. 
Keywords: early algebra, algebraic thinking, elementary algebra, algebra, qualitative 
research. 
 
BACKGROUND AND INTRODUCTION 
Since the 1970s many international studies highlighted the fact that many secondary 
students experience difficulties with beginning algebra (see e.g. BOOTH 1988; 
KIERAN 1992). 
 
With regard to these findings a variety of different approaches were pursued at 
reforming the teaching and learning of algebra, e.g. by integrating more problem 
solving tasks and tasks to improve arithmetic skills, “slower” teaching approaches, 
and the use of new technologies (FREIMAN & LEE, 2004). While research as well as 
curriculum based approaches showed various degrees of success, difficulties with 
learning algebra in secondary school remain an important topic in the research 
literature (MALLE 1993, WARREN 2003) as well as in classroom instruction. In the 
past decade, teacher educators and researchers in different countries argue that it is 
necessary to develop algebraic thinking already in primary school (e.g. WARREN 
2001). The central assumptions of corresponding international research are that pupils 
who developed algebraic thinking already in primary school have better arithmetic 
skills as well as a better understanding of underlying structures and rules, which it is 
hoped prevent the identified difficulties with the learning of algebra in secondary 
school. DOUGHERTY (2003) for example, who is conducting a long-term research 
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project in a primary lab school at the University of Hawaii where mathematics is 
taught algebraically since the first year of school, highlights the chance of providing 
young children with a wider view of mathematics at a stage of their cognitive 
development when they are able and motivated to learn these concepts very well. 
Most research studies on the teaching and learning of algebra however, have been 
conducted with secondary students at middle or high school level, frequently 
focussing on students difficulties and misconceptions, while little is known about 
primary students understanding of algebraic concepts and its effect on their learning 
of algebra in secondary school. 
THEORETICAL FRAMEWORK  
Early algebra, algebraic thinking or pre-algebra are terms used to describe a 
preliminary stage of elementary algebra prior to secondary school instruction. The 
idea is not to teach children formal algebra at a younger age, but to enhance special 
aspects of algebraic reasoning, which are supporting mathematical thinking beyond 
calculation skills at primary school level. 
To date, an exact definition of early algebra and its implications for the classroom 
does not seem to be possible. Recent publications discuss the relationship and 
transition between early algebra and arithmetic, but the question where arithmetic 
ends and early algebra begins is not yet resolved. According to MALARA and 
NAVARRA (2003) one difference is that algebraic thinking refers to the process, 
whereas arithmetic refers to the product, i.e. finding the answer. CARPENTER and LEVI 
(2000) in addition, identify two main aspects of early algebra: 1. generalising and 2. 
the use of symbols to represent and solve mathematical ideas and problems. 

“Young children are capable of making generalizations such as ‘when you add 0 to a 
number, the sum is always that number’ – ‘when you add three numbers, it does not matter 
which two you add first’ and constructing ways of representing them […]. These 
generalizations make powerful mathematical ideas accessible to students to solve problems 
and to deepen understanding.” (p. 2)  

Hence, one concern of primary mathematics is to develop insight in the structure and 
properties of our number system and of the operations. Researchers seem to agree 
that early algebra involves more than the generalisation of arithmetic structures. 
BLANTON (2004) for example describes an understanding of early algebra that 
involves generalised arithmetic, functional thinking and modelling, while ZEVEN-
BERGEN, DOLE and WRIGHT (2004) emphasise three main aspects of algebraic 
thinking: equality, change and generalisations. WARREN (2003) extends the under-
standing of early algebra by identifying four central aspects: 1. relationships between 
quantities, 2. group properties of operations, 3. relationships between the operations, 
4. relationships across the quantities. These are clearly linked to algebraic approaches 
and topics at secondary school level. However, the teaching and learning of algebra at 
secondary school level is traditionally based on the assumption that arithmetic has to 
be learned before the introduction of algebra because arithmetical understanding is 
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seen as the basis for the development of algebraic understanding. More recently, 
studies into early algebra suggest that students would benefit from learning algebraic 
thinking in conjunction with arithmetic. 
Comparing pupils algebraic reasoning in the earlier grades (year 4) with their 
reasoning in secondary school (year 7) concerning the commutative law, ANTHONY 
and WALSHAW (2002) found that leaving primary school, thinking remains for many 
students at a procedural level and that this restricts their ability to reason 
algebraically. WARREN (2001) conducted a study comparing pupils difficulties in 
primary and secondary school and showed that they go through the same types of 
difficulties with regard to the commutative law. She suggests that “it will be 
important for researchers to explore whether well-chosen examples and experiences 
in the primary school can facilitate this progression” i.e. “the transfer of 
understanding from arithmetic through generalised arithmetic to algebra” (WARREN 
& PIERCE 2004, 295). 
RESEARCH INTEREST 
With respect to acknowledging and starting the described transfer from arithmetic 
through generalised arithmetic to algebra at primary school level, two “meta-
questions” have been identified by the MERGA Special Interest Group “Early 
algebraic reasoning in the primary years” at the 27th Annual Conference of the 
Mathematics Education Research Group of Australasia in July 2004 chaired by T. 
COOPER & E. WARREN: 

 What exactly should be the focus of teaching and learning mathematics 
following this paradigm? 

 Which models and representations are effective and suitable in this context? 
These “meta-questions” guided the development of the specific research interest of 
the author which is to describe and better understand the processes, strategies and 
possible difficulties of early algebraic learning in a primary school setting.   
More specifically, the study in progress seeks to address the following research 
questions: 

1. How do primary students approach and solve algebraic tasks? Which processes 
and strategies can be identified? 

2. Which specific difficulties do they encounter? What are reasons for these 
difficulties? How can they be overcome? 

3. Which ideas and concepts of variable do pupils hold? 
METHODOLOGY 
The study in progress reported in this paper focuses on the work of a number of 
selected tasks addressing the following aspects of algebraic thinking and 
understanding identified in the research literature: generalisations, continuing and 
representing patterns, the use of symbolic language, and different aspects of variables 
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(variable as a certain unknown number and as a description for a general statement, 
see MALLE 1993). 
The design of the study includes a pilot study (conducted in June 2004) and a main 
study (to be conducted in March 2005). Both, pilot and main study follow a 
qualitative research paradigm focussing on the interpretative analysis of children’s 
early algebraic processes and concepts. The data collection involves videos of pupils 
while solving a range of algebraic tasks with a partner (both partners have a similar 
level of ability in mathematics) followed by a semi-structured interview with selected 
pairs which is also videotaped. 
Since it was one of the goals of the pilot study to develop an optimal design for the 
main study, at this stage details of the data collection and analysis entirely focus on 
the pilot study. 
Design of the Pilot Study 
A selection of algebraic tasks was given to the teacher of a grade 4 classroom (17 
students) in a primary school in a larger city in north-western Germany, who over a 
week (five lessons) asked the students to work in pairs on these tasks. Each day two 
groups were videotaped to ensure video-recordings of at least one episode (45 
minutes) per group. In addition, one of the two pairs was interviewed and asked to 
explain their solution processes and the difficulties they had encountered as well as to 
solve a similar task on the following day. These interviews lasted about 20 minutes.  
Comprehensive transcriptions with respect to either the full document or selected 
parts of the recording relevant to the specific research questions were made.  
The interpretative analysis of the data involves both – generating categories as well as 
being guided by categories identified in the literature (e.g. on different aspects of 
variables and student difficulties and misconceptions). 
Examples of Tasks Selected for the Pilot Study 
Another goal of the pilot study was to identify tasks that induce pupils to work and 
think algebraically and student interaction during the solution process.  
In the following three examples of the ten different types of tasks selected for the 
pilot study. Task 1 addresses translation processes and the use of symbolic language. 
The variable in this context refers to a certain unknown number. The term 
“calculation language” (German: Rechensprache) was already introduced in the class 
prior to the data collection as a term to describe symbolic language. The demands of 
task 2 relate to generalisations, the use of symbolic language and the understanding 
of variable as a description for a general statement. Task 3 focuses on recognising, 
continuing and representing patterns as well as generalisations. In addition to the card 
with the written task the students received a packet of counters. 
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Task 1 
Translate the following word problem into ‘calculation language’: I think of a number. I take 
my number times 2, add 7 and then subtract 9. The answer I get is 16. Which is my number?  
 
 

 

Task 2 
a) I have a number and I add zero. What happens to this number? 
b) I have a number and multiply it by one. What happens?   
c) Which of the following equations describes the statement in a) and which one belongs to b)? 

   1) x • 1 = 1 
   2) x • 1 = 0 
   3) x • 1 = x 
   4) x + 0 = 0 

5) x + 0 = x 
 
 
Task 3 
 

a)  ●   ●   ●   b)  ●   ●   ●   ● 
 ●   ●   ●        ●   ●   ●   ● 
 ●   ●   ●     
  
a) ●   ●   ●   ●   b) ●   ●   ●   ●   ● 
 ●   ●   ●   ●    ●   ●   ●   ●   ● 
 ●   ●   ●   ●     ●   ●   ●   ●   ● 
 ●   ●   ●   ●      
 
a) ●   ●   ●   ●   ●  b) ●   ●   ●   ●   ●   ● 
 ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ● 
 ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ● 
 ●   ●   ●   ●   ●   ●   ●   ●   ●   ●   ● 
 ●   ●   ●   ●   ●    
 

Arrange the counters in the patterns shown above. First arrange  the counters in pattern a) 
then in pattern b). What do you notice? Explain your observation and then arrange another 
pair and describe the structure. 

 
 

DATA ANALYSIS AND DISCUSSION OF INTERIM RESULTS FROM THE 
PILOT STUDY 
With respect to the presentation and discussion of first interim findings from the pilot 
study it should be noted that the text book used in the grade 4 class chosen for the 
pilot study includes tasks that are designed to foster the development of early 
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algebraic thinking. The teacher is a highly experienced and has been involved in 
several mathematics education research projects in collaboration with the university 
and contributes as an expert teacher to methods courses at the local university’s 
teacher training program. 
The initial analysis of the tasks that follow the format of task 1 suggests that 
simplifications seem not to be obvious to the children. In the task “I think of a 
number, I take it times 30, divide it by 30 and then subtract 7. The result I get is 13. 
Which is the number I was thinking of?” even the high achieving pupils did all the 
calculations to get the answer. Only one child respectively made an ironic comment 
that indicates her understanding that it was unnecessary to first multiply by and the 
divide by 30. 
Furthermore, general relationships were recognised when presented in a verbal form. 
With respect to task 2a) the immediate response of the observed children was “the 
number remains the same”. However, when symbolic language was used as in task 
2c) all students, including the high achievers, encountered difficulties. These 
difficulties primarily relate to the comprehension of symbolic language and the 
required translation processes. According to MALLE (1993) one can distinguish 
between different aspects of variables:  

 a variable as a certain unknown number (unknown) and variable as a 
description for a general statement (undefinite), 

 a mark for a place where one can put a number 
 a formal aspect (as a formal sign without meaning with which you do 

calculations). 
However, other authors additionally highlight further aspects of variables, e.g. 
variable as a statement about relationships between two quantities, functional and 
dynamical aspects. 
In general, the students did not experience problems with the first type of tasks 
mentioned above (task 1), i.e. recognising variables as certain unknown numbers or 
to write an x for such a number. But the use of variables to describe general rules or 
relationships (indefinite) did not appear to be obvious for them. They did not seem to 
understand that particular meaning of variable as their solution strategies indicate that 
they thought that the task was not solvable because they did not know  what to 
calculate (see e.g. in the following transcript (00:09:40), (00:12:35)).  
The transcript of the video-recording of two high achieving girls dealing with task 2 
(see below) suggests, that they are struggling with the different aspects of variables, 
especially with the aspect of variables as indefinites (versus unknowns) (see e.g. 
(00:03:35), (00:09:45), (00:12:00). (00:12:35) etc.). The following segment of the 
transcript starts immediately after the two students have read question 2a) “I have a 
number and I add zero. What happens to this number?”: 
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 (00:03:23): Leonie it remains the same. 
    Anne  the number remains the same, exactly 
    Leonie  wait … 
    Anne  no 
    Leonie  hm, oh 
(00:03:35)  Anne  x times zero, the result is zero 
   Leonie yes, I have a number, it can’t be zero, because you don’t know 

which one 
   Anne  no, now if we, if we now for example, it could also be 1792 
   Leonie and now times zero, then I still have two thousand four 

hundred nine something 

They immediately found the answer to question a), afterwards they tried to write the 
answer in symbolic form – which was their own idea and not required in the task – 
and continued their initial discussion. During working with this task they always 
came back to the aspect of variables as certain unknown numbers and tried to find a 
solution with numbers.  
(00:04:33) Anne shit, and add zero, the number remains the same 
 

(00:05:12) Anne you can…, you can write the corresponding equation as well, 
   write just, lets say, three pl…, write x plus zero equals zero 
   Leonie x plus zero equals zero, no, not zero, equals y. 
   Anne ok, just write any number instead of x, write three plus zero 

equals three.  
  Leonie no, I leave it now at that 
  Anne no 
  Leonie why 
  Anne that’s foolish 
  Leonie why that’s foolish, anyway you can’t calculate it 
 Anne no, because, hm, don’t know, somehow that’s wrong like this 
  Leonie hello?! 
  Anne yes, because then one can see, hm 
  Leonie then I make here now… [writes] 
  Anne because then you can see, that this number remains the same 
  Leonie yes, then we have to make it as an example 

The following segment documents the discussion of the two girls when they work on 
task 2c). 
 

 (00:09:27)  Anne I think, hm, x plus zero equals zero 
  and here again x plus zero equals zero 
  so this are [indicates on the paper which equations she thinks 

are corresponding to one another] 
Leonie no, wait, you don’t know what x is  

(00:09:40)  Anne I know 
 that’s why this task doesn’t mean anything to me 

Leonie do you know, do you know what x is? 
Anne no, I don’t know and that’s why this task doesn’t mean… 

(00:09:45) Leonie zero, x is zero, that’s for sure 
 look, x plus zero equals zero 
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Anne right 
(00:12:00) Anne which, which number is x? 

Leonie zero! 
Anne zero? 
Leonie yes, because it says x plus zero equals zero 

(00:12:25) Anne I’m going to ask Mrs. K. [the teacher], 
  I’m going to ask Mrs. K. what x is 

Leonie [whistles] 
(00:12:35) Anne or wait, we can easily calculate it 

Leonie we can’t calculate that. 
Anne zero divided by one equals… 
Leonie one divided by one equals one 

one times one is one 
(00:15:02) Leonie yes, five, I would take five 
  look, because you don’t know what the result is 

Anne yes, so, describe, so, everywhere where it belongs to a) we 
write a) behind it 

Leonie here is a), this is a) 
(00:16:14) Anne so, let’s say x here is zero, then it will be right 

Leonie hm, let’s make this now 
Anne which number actually means x?  
Leonie what? 

(00:16:33) Anne we calculate backwards, now 
  God, that’s also x 
  so, zero plus zero equals zero 

Leonie no, no, that’s plus 
 you have to forget these now, you have to forget these now 
 I would say this is this, because again you don’t know the   
result 

 Anne one divided by one equals one, therefore x is here one 
  hm, zero divided by one… 
(00:16:55) Leonie I would take x here as well [indicates the right side of the 

equal sign], because you don’t know the result 
  isn’t it? [to the person behind the camera] 

Leonie obviously had the idea to write x + 0 = x  for the first statement i.e. using an x 
on the right hand side of the equation and mentions this idea twice (see (00:15:02) 
and (00:16:55)). However, her partner, Anne, did not react to this suggestion because 
she was probably looking for a number as the answer. Hence, she was probably not 
satisfied with a symbolic term as a result. 
 Birte I don’t say anything 
 Leonie please!  
  you know how this works 
  you, you, you don’t know which number it is 
  they say, they just say I have a number 
 Anne but then, otherwise you can’t solve the question 
  I have a … 
 Leonie yes, the number there can even be zero 
(00:17:47)  Anne yes, it doesn’t matter 
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  every number to which you add zero remains the same, so it 
doesn’t matter what the results is 

 Leonie that’s right 
 Anne every number to which hm you add zero remains the same  
  and that’s why this belongs… 
 Leonie right, therefore every  
 Anne …belongs to… 
 Leonie therefore every  
 Anne ... [pattern] a 
 Leonie yes, so every equation. 

They finally agreed and expressed that all equations with x + 0 on the left hand side 
of the equal sign belong to statement a), because “every number to which you add 
zero remains the same, so it doesn’t matter what the results is”. 
Overall, the transcript segment of the pair interaction regarding task 2 above indicates 
four domains of difficulties related to the understanding of variables:  

 to recognise and understand that the symbol x can be used in order to 
describe general rules and relationships (and hence is not restricted to being 
used for a certain unknown number), 

 to accept a symbolic term as a result for a task, 
 to understand the meaning of ‘x can be every number’  
 to develop a concept of the equal sign that is not limited to the under-

standing that the equal sign means ‘give the answer’ 
These domains will be explored further in the main study. 
With regard to task 3 some students immediately realised that pattern b) could be 
generated simply by moving one row of pattern a) and using this row as a column in 
pattern b). They also discovered quickly that pattern a) always requires more counters 
than pattern b). While the number of counters was not asked in the task, some 
children calculated the number, because they wanted to know how many counters 
were needed. Some children stopped here, satisfied having found that for the pattern 
a) always one more counter than for pattern b) was needed. Others recognised further 
that the first shape is always a square and hence the number of counters is always a 
square number – “a number multiplied by itself”, while the term that describes 
pattern b) is characterised by the fact that the first factor is always one smaller and 
the second factor one larger while the total number is always one smaller. 
However, none of the children who participated in the pilot study in any way 
expressed insight in the general relationship n • n –1 = (n–1) • (n+1) during the work 
in class. Only during one of the subsequent interviews two girls (Anne and Leonie) 
discovered that relationship, but they were not sure whether it is true for all numbers.  
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FROM TABLES OF NUMBERS TO MATRICES:  
AN HISTORICAL APPROACH 

 
Fernanda Viola, Université Paul Sabatier, Toulouse, France 

 
Abstract: The present study focuses on the teaching and learning process of the 
concept of matrix in the transition between the secondary school and the university. 
In particular, two interesting aspects arise in the study of this concept: 

- The first aspect is the spatial disposition of their elements, which differs from the 
linear disposition usually used in primary and secondary school. 

- The second one is the notation associated with matrices, i.e., the usage of 
subscripts and superscripts, usage of other symbols, etc. 

As a first step in the study of these effects in the secondary school - university 
transition, I present in the an historical analysis of the concept in order to look at the 
evolution of the idea of matrix and the different notations used over its history. This 
analysis provides a basis to the identification of possible epistemological and 
ontogenetic obstacles in the learning of this concept. Another analysis consists in 
looking at the syllabuses and textbooks of secondary school and the textbooks usually 
used at the University in France. A comparison with the historical evolution is also 
presented. In a future study, I will analyse the instrumentality and the semioticity in 
the notation used in matrices. 
Keywords: matrix, high school – university transition, notation, instrumentality 
valence, historical approach. 
 
MOTIVATION (STARTING POINT)  
In observations carried out at the University, I focused on a classic task in first year 
undergraduate: 
For two square matrices A and B, proof that tr(AB)=tr(BA) where tr(A) is the trace 
of the matrix defined as the sum of the diagonal elements. 
To resolve this task, the students were faced to different kinds of difficulties (symbols 
handling problems, arrangement of elements in arrows and columns, identification of 
diagonal elements in the notation, etc.). In order to analyse the origin of these 
difficulties, I looked at the historical evolution of the idea of matrix. The beginnings 
of matrices and determinants arise from the study of systems of linear equations (but 
in different ways). 
SYSTEMS OF LINEAR EQUATIONS 
When one studies the evolution of the concept “matrix”, two aspects emerge in order 
to resolve a system of linear equations: matrix (as a table) and determinants. 
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FROM TABLES OF NUMBERS... 
 The Chinese and the 'counting board' (200 BC) 

The Nine Chapters on the Mathematical Art holds the first known example of a 
matrix as a table. For example: 

 

 

This table shows the coefficients of the system of three linear equations with three 
unknowns. 
Multiplying one column by an appropriate number and then subtracting this product 
as many time as possible from another column, the Chinese rewrite the table as: 

 

from which the solution can be found for the third unknown, followed by the second, 
and then the first via substitution. This method would not become well known until 
the early 19th Century. 
FIRST IDEAS ABOUT DETERMINANTS AND DIFFERENT NOTATIONS 

 Leibniz (1693): the system of equations 
 
10 + 11x +  12y = 0              “12” denotes the coefficient matrix element a12 
20 + 21x + 22y = 0  
30 + 31x + 32y  = 0  
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has a solution because  

012

201

120

102

021

210

3.  2.  1
3.  2.  1
3.  2.  1

3.  2.  1
3.  2.  1
3.  2.  1

=                       

which is exactly the condition that the coefficient matrix has determinant 0. 
 Cramer (1750): let the system of equations  

 
A1 = Z1z +Y1y                 Cramer uses the superscript to indicate the equation’s number 
A2 = Z2z + Y2y 
 
the solution is 

1221

1221

YZYZ
AZAZy

−
−

= 1221

1221

YZYZ
YAYAz

−
−

=  

 

 Method of Gaussian elimination: was used by Gauss in his work on the study of 
the orbit of the asteroid Pallas. Using observations of Pallas taken between 1803 and 
1809, Gauss obtained a system of six linear equations with six unknowns. Gauss 
provided a systematic method for solving such equations.  
... TO MATRICES 

 Sylvester (1850): uses the term "matrix" for the first time. He defined a matrix to 
be an oblong arrangement of terms and saw it as something which led to various 
determinants from square arrays contained within it. 
 

 Cayley (1855):  gives the first abstract definition of matrix and he extracts the idea 
of matrix of the determinant.  
He writes  
( )

M

...,'','',''

...,',','
                    

,...),,)(...,  ,   ,(,...,,

γβα
γβα
γβαζηξ zyx=

 

 

to represent the system 

M

...,''''''
...,'''

...,   

zyx
zyx

zyx

γβαζ
γβαη
γβαξ

++=
++=
++=

 

Here, he uses the subscript to indicate the 
unknown’s number 
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MATRICES IN THE SCHOOL 
Secondary school 
In secondary school in France, matrices do not play an important role. They are 
merely introduced as tables containing numbers. Their usage is related to the 
resolution of linear equation sets, and the notation employed is limited to matrices 
2x2 or 3x3 of the type: 









dc
ba

 

where the usage of indexes (superscripts and subscripts) is not necessary. 
- Matrices as instruments in the resolution of systems of linear equations. 

University 
- Matrices introduced as objects: formal definition, properties, operations... 
- At least two types of notations are used, which have different instrumentalities:  

ija : Example of its instrumentality valence: 
In statistics, the variance and covariance matrices content elements squared (in the 
diagonal) so use the another notation to bring some difficulties: 























=Σ

2
2

2
2

22
2
2

ppkp

jpjj

pj

sss

sss

sss

KK

MMM

LL

MMM

KK

 

j
ia : Example: 

Tensor is an important concept in physique and we can think the matrices as a tensor 
of exactly two dimensions. The tensor may have an arbitrary number of indices, each 
index ranges over the number of dimensions of space. 
In addition, a tensor with rank r+s may be of mixed type (r, s), consisting of r so-
called "contravariant" (upper) indices and s "covariant" (lower) indices. Note that the 
positions of the slots in which contravariant and covariant indices are placed are 
significant so, for example, sr

ta  is distinct from r
tsa .  

QUESTIONS TO ANALYSE 
- High school - university transition? Which semioticity and instrumentality can 

explain the choice of a notation rather the other one when resolve different kinds 
of problems? 

- Type of obstacles: epistemological, ontogenetic, didactical...? 
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METHODOLOGY 
- Implementation of a given task to Terminal ES students at the end of the 

academic year. 
- Implementation of the same task to some of the previous students once they 

become students of first year undergraduate (the selection criteria have to be 
determined) at the end of the first and second terms in the University. 
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