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RESEARCH ON GEOMETRICAL THINKING 
 

Angel Gutierrez, Universidad de Valencia, Spain 
Alain Kuzniak, Université Paris VII, France 

Rudolf Straesser, Luleatekuriska Universitet, Sweden 
 
The CERME-4-Working Group on Geometrical Thinking was a rather small group of 
about a dozen persons interested in Geometry and its teaching and learning from 
primary education to secondary education and teacher training. In all, seven papers 
were accepted before the conference and served as a basis for intensive discussions. 
Continuing the work at the CERME-3-conference (for a report on this work see 
http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG7/TG7_introduct
ion_cerme3.html, the Working Group started with the presentation of a special 
framework for Geometry and its teaching and learning by looking into geometrical 
paradigms. This framework was already presented at the CERME-3 conference (see 
the “geometrical approaches in the paper of Kuzniak and Rauscher). This description 
was meant to give some common ground for the discussions in the group. After this 
introductory session, the Working Group focussed on primary education. Papers from 
Italian colleagues gave an excellent opportunity to look deeply into geometrical 
concepts held by young students (see the papers by Medici et al. and Marchini et al.), 
but also into the role of specific tools for the teaching and learning of Geometry at 
that age level (see the paper by Vighi). Naturally, this debate also included Geometry 
teaching and learning at secondary level, what gradually brought us into issues more 
linked to the Geometry curriculum for grades 5 and above. Hamiti and Xhevdet 
presented ideas for the implementation of a new Geometry curriculum in the recent 
new primary school curriculum in Kosovo, showing the way current theoretical 
frameworks and approaches for teaching Geometry have influenced the curriculum 
development and replaced the traditional Geometry curriculum in Kosovo. The paper 
by Jones et al. gave a description of geometrical reasoning in Chinese and Japanese 
classroom (mainly from the perspective of teachers), but also trying to be specific 
about students’ geometrical thinking. The analysis of students’ reasoning went nicely 
together with the paper by Markopoulos and Potari. In addition to this, the paper from 
Greece also opened a window on spatial Geometry by analysing dynamic 
transformations of solids.  
The second part of the paper by Kuzniak and Rauscher rounded off the travel through 
Geometry and its teaching and learning by analysing problems and potentials of 
Geometry in in-service teacher training. At the end of the seven sessions, the 
Working Group even had time for a general closing debate and the preparation of 
ideas for the report of the group in the final plenary at CERME-4 and this summary. 
For detailed information on the individual papers the reader is nevertheless directed 
to these papers. 
Looking back on the discussions of the Working Group during the last session, we 
came up with four major issues: For research, it was obvious that existing 
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frameworks (like the ones from Piaget or the famous van-Hiele-levels) are helpful to 
analyse only some aspects of the variety of data in research on geometry teaching and 
learning. Additional research categories are needed and new local theories are needed 
to better analyse and understand the data collected in recent empirical studies. At 
present, we are not in a position to offer a unified theory to completely cover the 
richness and diversity of the data on the teaching and learning of Geometry. 
Theoretical innovations visible in the work of Kuzniak and Rauscher as well as 
Markopoulos and Potari are only indications of this trend, while the paper of Vighi 
(by looking into a simple artefact like squared paper) reminds us of the importance of 
the tools (and their use) for the teaching and learning of Geometry. 
If one wants change in teaching Geometry, for instance because of the necessity of 
defining an adequate curriculum, one faces a dilemma closely linked to the 
epistemology of the knowledge to be taught. By its very "nature", Geometry is 
organised around wide conceptual networks with far-reaching relations inside the 
area, but also implying links to other mathematical and extra-mathematical areas, 
especially cultural ones. In contrast to this, school teaching usually oversimplifies 
such wide networks, particularly in the Geometry lessons. This seems to be at least 
one reason for the poor learning often occurring in our classrooms. Some of the 
papers linked to this Working Group can also be read as examples of more open 
approaches to teaching and learning Geometry. 
Implications for the educational policy are most obvious, but the Working Group 
wants to especially mention one issue here: Textbooks are crucial instruments of 
teaching and learning. According to the research results available now, they are the 
most important teaching and learning tool even in the age of new technologies like 
computers and software, especially Dynamic Geometry Software (DGS). 
Nevertheless, textbooks available at present seldom meet the expectations of the 
members of the WG - both on choice of content and variety of teaching approaches. 
Finally, the Working Group looked into teacher training. The participants took for 
granted that there is an urgent need for training future and practicing teachers with 
respect to Geometry taught at school. The situation for Geometry seems to be 
particularly difficult because of the poor knowledge of the teaching force within this 
mathematical area - and additional training should include both content, i.e. 
Geometry as a sub-domain of Mathematics, as well as the "Didactics" of Geometry, 
for instance the theoretical background supporting the organisation of Geometry 
curricula and specific suggestions and innovations why, how and what to teach in 
Geometry lessons. 
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DEVELOPING GEOMETRICAL REASONING IN THE 
CLASSROOM: LEARNING FROM HIGHLY EXPERIENCED 

TEACHERS FROM CHINA AND JAPAN 
 

Liping Ding, University of Southampton, United Kingdom 

Taro Fujita, University of Glasgow, United Kingdom 

Keith Jones, University of Southampton, United Kingdom 

 

Abstract: Mathematics education has been the subject of considerable international 
comparative research, mostly focussed on pupil achievement but also examining 
teaching methods, curricula, and so on. In all this, and perhaps unsurprisingly, the 
role of teachers has emerged as a key influence on pupil learning. Given that the 
development of pupils’ capability in geometrical reasoning continues to be an issue 
of considerable international concern, this paper reports an analysis of lower 
secondary school lesson suggestions prepared by highly experienced “expert 
teachers” from China and Japan, countries selected because they represent some 
interesting similarities and contrasts. The paper also gives background to these 
lesson suggestions in terms of the educational context in which they are presented. 

 

Introduction 
The (recently renamed) Trends in International Mathematics and Science Study 
(TIMSS) is continuing to investigate pupil achievement, the mathematics curricula, 
teaching methods, and so on, across almost 50 countries around the world (see, for 
example, Mullis et al, 2000). Overall, the results to date of TIMSS suggest that there 
are significant similarities between the mathematics curricula across countries, 
especially in terms of topics specified, if not in overall curricular design (Schmidt et 
al, 1997; Valverde et al, 2002). Yet these broad correspondences of grade level and 
content become differences if examined more closely; both in the range of content 
addressed at a particular grade level and in particular developmental sequences 
where common content is addressed over several grade levels. 

In terms of geometry teaching, while analysis of TIMSS data continues, a detailed 
comparative study of geometry specifications (Hoyles, Foxman and Küchemann, 
2002), though covering fewer countries than TIMSS, found considerable variation in 
current approaches to the design of the school geometry curriculum. Thus, for 
example, the study found, a ‘realistic’ or practical approach apparent in Holland, 
while a theoretical approach is most evident in France and Japan. The study 
concludes by noting “there is evidence of a state of flux in the geometry curriculum, 
with most countries looking to change” (op cit p. 121). 
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As part of TIMSS, or related to it, a number of projects have examined the teaching 
methods that teachers (typically) use in various countries and, related to this, how 
teachers structure their lessons (see, for example, Shimizu, 2002; Stigler and Hiebert, 
1999). To date there has been little comparative work specifically on how teachers 
structure mathematics lessons to develop geometrical reasoning. This is despite the 
issue of geometry teaching being of considerable international concern, especially its 
role in developing students’ powers of reasoning (Mammana and Villani, 1998; 
Royal Society, 2001). 

The analysis presented in this paper compares suggestions from highly experienced 
“expert teachers” for geometry lessons for lower secondary school classes in China 
and Japan, countries taken in alphabetic order and selected as they represent an 
interesting comparison (see methodology section for more on the choice of 
countries). The paper also analyses the range of influences that impinge on the way 
lessons are likely to be structured in the selected countries. 

Comparative research on geometry teaching 
Internationally, on average, it seems that the Grade 8 (UK Year 9) curriculum 
specifies greatest coverage of topics in fractions and measurement (see Mullis et al, 
2000, chapter 5). Very few students internationally are given a major emphasis in 
geometry (three percent, on average), with, it seems, Tunisia the only country where 
20 percent or more of the students are in classes that emphasise geometry over other 
areas of the mathematics curriculum. In terms of what is actually taught, teachers in 
the TIMSS survey report a range of instructional coverage across topics in geometry. 
For example, the topic “Simple two dimensional geometry – angles on a straight line, 
parallel lines, triangles and quadrilaterals” is reportedly taught to 95 percent of 
students (on average), while “visualization of three-dimensional shapes” is taught to 
only 57 percent, on average (with a variation across countries from 7 - 99%). 
Another geometrical topic that shows a large variation across countries is “symmetry 
and transformations”, varying from being taught to 11% to 98% of Grade 8 students. 
According to their teachers, most students in Grade 8 receive moderate emphasis on 
geometry. On average internationally, by the end of their eighth grade, it seems that 
22 percent of students are yet to be taught 50 percent or more of the geometry topics 
listed in the TIMSS survey (the list being generated by comparing curricula across 
countries. 

Overall, and perhaps unsurprisingly, the role of the teacher emerges as a key 
influence on pupil learning. The latest TIMSS research related to the way teachers 
structure their lessons, the TIMSS 1999 Video Study (Hiebert et al, 2003), covered 
seven countries, including a number where students scored highly on the TIMSS 
achievement tests. This study found that some general features of Grade 8 
mathematics lessons (including geometry lessons) were shared across the seven 
countries studied. For example, lessons were generally organised to include some 
public whole-class work and some private student work, the latter being mostly 
individual but with some involving small groups. Most lessons included some review 
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of previous content as well as some attention to new content and, in the majority of 
cases, made use of a textbook or worksheet of some kind. 

Notwithstanding these shared general features, the study reports discernible variation 
across the countries studies. Distinctions included how new content was introduced, 
the coherence across mathematical problems and within their presentation (ie the 
interrelation, both implicit and explicit, of the mathematical components of the 
lesson), the number and form of topics covered, the procedural complexity of the 
mathematical problems tackled, and classroom practices regarding individual student 
work and homework in class (although the report is not detailed enough to say 
anything specific about geometry lessons). 

Overall, as Hiebert et al (2003, p149-50) emphasise, the video study found that the 
countries that show high levels of student achievement in the TIMSS achievement 
tests do not all employ teaching methods that combine and emphasise features in the 
same way. As they conclude:  

“The results of this study make it clear that an international comparison of teaching, 
even among mostly high-achieving countries, cannot, by itself, yield a clear answer to 
the question of which method of mathematics teaching may be best to implement in a 
given country”. 

Hiebert et al (2003, p150) 

This confirms that further research is needed to shed light on how teachers might 
best structure their lessons to develop geometrical reasoning. 

Aims and theoretical framework 
The principal aims of the research project, an initial analysis from which is reported 
in this paper, are two-fold: 

• To determine the influences on the way geometry lessons might be taught in 
the selected countries; 

• To analyse selected suggestions from highly experienced “expert teachers” in 
these selected countries – suggestions that regular teachers might use as a 
guide to structuring geometry lessons for lower secondary school students. 

At the time of writing the authors are considering a range of theoretical notions with 
a view to determining which may be appropriate. For the purposes of the analysis 
presented below, the approach to analysing the lessons is derived in part from the 
study of textbook ‘lessons’ by Valverde et al (2002) – see next section for more on 
this. 

Research methodology 
The countries selected for study are China and Japan, chosen because they represent 
some interesting similarities and contrasts. Both countries have National Curricula 
for mathematics that covers geometry, amongst other mathematical topics. Yet, for 
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teachers in the two countries there are different traditions and different ways in 
which they have responded to international developments over the years. 

In terms of the influences on teaching, the sources of primary data selected for 
analysis in this research include: 

• Government guidelines and other official documents 

• Guidance documents and /or books for teachers 

The specific sources of data providing suggested lessons are as follows: 

• China: the data are mainly from the national teaching references (The 
Compulsory Education Nine-Year Secondary School Mathematical 
References, 1995-1996) and a popular teaching reference, Master teachers’ 
lessons records (Lower secondary school mathematics), 1992. Such items are 
currently in widespread use by secondary school mathematics teachers 
throughout China.  

• Japan: the data are suggested lesson plans by experienced teachers and 
university researchers (each with more than 10 years experiences, in general). 
The plans include information on the aims of lessons, problems for students, 
suggested activities for both teachers and students, time allocations, etc.  

The analysis of the lesson suggestions is framed by the following procedure, derived 
in part from the study of textbook ‘lessons’ by Valverde et al (2002, Appendix A): 

• Division of the suggested lesson into ‘blocks’ in terms of content, focus, and 
purpose; 

• Identification of key features of geometry teaching, especially that focusing on 
the development of geometrical reasoning. 

The analysis of the range of influences on lesson structure is based on a review of the 
literature. 

Analysis 
China: As a country with an extensive teaching tradition, teaching practices in China 
continue to be influenced by the ideas of Confucius (551-479 BCE) and by texts 
written in subsequent centuries. For example, the distinctive character of 
Confucianism in respect of learning is to ask questions constantly and to review 
previous knowledge frequently. In terms of mathematics teaching, the Arithmetic of 
Nine Chapters, a classic Chinese mathematics work of the Tang dynasty (618-907 
CE), has greatly affected mathematics teaching and learning in China over centuries. 
This text lays down rules for solving problems and a sequencing of questions, 
answers and principles that continue to play an important role in the instructional 
model of teaching in China (An et al., 2002, p 106). Traditionally, therefore, 
questioning is a key part in mathematics learning and teachers are likely to use good 
questions in motivating students to explore new problems. In addition, as Ashmore 
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and Zhen (1997) demonstrate, review and conclusion are indispensable in classroom 
lessons in China 

As is common in education, National Standard Examinations plays a critical role in 
school mathematics curriculum (Chongqing [China] Conference, 2002). Thus, 
according to Li (2002), mathematics teachers are likely to carefully select a 
considerable quality of exercises as one of their main teaching strategies. 
Consequently, completing exercises is a major feature of mathematics lessons. In 
addition, national textbooks are an essential teaching and learning resource. Teachers 
usually plan lessons by referring to such textbooks. The current textbooks in 
Shanghai, for instance, are arranged as a “spiral” curriculum, with new theorems, 
rules and formulae appearing in each unit. Consequently, mathematical terms and 
methods, which have already been taught, have to be frequently repeated through 
review, conclusion and exercises made by teachers in the lessons. Subsequently, new 
knowledge often follows introduction or experiment and this usually requires 
students to review previous knowledge. Given the above, mathematics lessons in 
China are likely to comprise the following segments: 

1. Introduction/review/experiment (about 5 minutes) 

2. The teaching of new content (about 25 minutes) 

3. Exercises on the content introduced (about 10 minutes) 

4. Homework assignment (about 5 minutes) 

The case study below is a lesson record of a lesson from what, in China, is referred to 
as a “master teacher” (the teacher has more than 30 years teaching experience). 

Lesson on ‘Corresponding Angles, Alternate Angles, Interior Angles at the same side of a 
line’; grade 7, students aged 13-14, school in SiChuan Province, in south-west of China 
(Li, 1992, translated by Ding, 2004).    

Objectives of teaching and learning of this lesson: 
1. To clearly understand the concepts of corresponding angles, alternative angles and 

interior angles at the same side of a line. 
2. To correctly recognise these angles in complex figures; 
3. To be fully prepared for further studying about the properties of parallel lines 
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Introduction (+/- 5 minutes):  

Discuss the location relationship of three lines on a plane 

Focus on a figure in which two unparallel lines are crossed by the third line and review the concepts of vertically 

opposite angles and neighbour complementary angles; 

 
Teaching new knowledge (+/- 20 minutes): 

1) Teach the concepts of ‘Corresponding Angles, 

Alternate Angles, Interior Angles at the same side of a 

line’ through observing figures: 

 

2) Complete the diagram as follows: 

 

Conclusion (+/- 5 minutes): 

1) Review the concepts of the three types of angles learned in this lesson; 

2) Use hands to present the different angles (See pictures below). 

  
a b 

l 

Figure 1 

l 

a b 

Figure 2 

a 

b l 

Figure 3 

 

 

 
The name of angles 
 

Basic figures The characters of 
location 

One side of the 
angles on the same 
cross line  

The other side of the 
angles (which side of 
the cross line are 
they?) 
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The same direction 
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Figure 4 
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 Picture 1 Picture 2  

Exercises (+/- 10 minutes): 

a)  To recognise corresponding angles, alternate angles and interior 

angles at the same side of a line in figure 7;  

b)  To discuss whether a pair of alternate angles is equal and the sum of 

degree of a pair of interior angles at the same side of a line is 180°, 

when a pair of corresponding angles is equal? Why? 
 

 

Japan: The way teachers structure their lessons in Japan is influenced by the 
specification of the mathematics curriculum, the design of textbooks, the occurrence 
of ‘Lesson Studies’, and research into the learning and teaching of mathematics. 
‘Lesson study’, practiced in Japan for the last several decades, is one of the most 
common forms of professional development for Japanese teachers and involves 
teachers working in small teams collaboratively crafting lesson plans through a cycle 
of planning, teaching and reviewing (Yoshida, 1999). Through this process, Japanese 
teachers have collaboratively developed a view about ‘good lessons of mathematics’.  

Research in the learning and teaching of mathematics that has influenced how 
teachers structure lessons includes the “Open-ended approach” in which ‘the teacher 
gives the students a problem situation in which the solutions or answers are not 
necessary determined in only one way’ (Sawada, 1997, p. 23). Considering the 
influences described above, in summary, Japanese teachers tend to structure 
mathematics lessons as follows (as also described in other research, including, for 
example, Stigler and Hiebert, 1999, pp.79-80): 

1. Presenting the problem(s) for the day: 
a) The problem(s) selected is/are designed to make students engage in 

mathematical activity in a challenging (or sometimes open-ended) situation 
b) Reviews of the previous lessons are sometimes included before the 

problem(s) 

2. Development of the problem(s): 
a) Students work the problem(s) individually or in groups 
b) Discussion and presentations of solutions are often included 
c) Teachers clarify and/or extend the mathematical thinking of the students 
d) New problems, usually related to the problems for the day, are sometimes 

introduced 

 

 

  

D  

A 

E 

B  C  
1 

2  3 

4 

Figure 7 
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3. Highlighting and summarising the main point(s): 
a) Students’ ideas are often used, and sometimes students are asked to explain 

their solutions 
b) The solutions of the problem(s) are summarised by the teacher 
c) By the end of the lesson, students would grasp mathematical concepts and 

deepen their mathematical thinking (often main goals of the lesson) 

The case study presented below is a lesson record taken from Haneda (2002): 

Perpendicular bisectors of segments; students aged 12-13 (Haneda, 2002, p. 38, translated 
by Fujita, 2004). 

Year 7 (students 
12~13) 

The lesson on perpendicular bisectors of segments 

Aim of the 
lesson 

By the end of the lesson, students will be able to a) grasp the meaning of perpendicular 

bisectors of segments, and b) grasp the method of the construction, and be able to 

construct perpendicular bisectors of segments 

Segment Description 

1 : Introduction Introducing problem 1 
Problem 1: Let us fold a parallelogram ABCD so that C will fall on A, and consider how 

to draw the folded line. 

a) Solution: drawing the perpendicular bisector of AC 
b) Solution: taking the intersection P of AC and BD, and drawing a perpendicular line to 

AC 
Undertaking the construction by students 

 Notes for teachers 

- Give paper parallelograms and worksheet 

- Encourage students to try various ways of solutions 

- It is expected that students would notice the solutions a) or b) by looking at the facts that 

APC, 180 degree, is bisected when they actually fold paper parallelograms 

- In addition to the solutions a) and b), it is expected that students would use congruent 

quadrilaterals or angle bisectors which they have learnt to draw the line. 

A

B C

D

P

a)
A

B C

D

P

b)
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Introducing similar problems 
Problem 2: Also consider how to draw folded lines in the following case 

 

Undertaking the constructions by students 

2: Development 

Notes for teachers 

- Give worksheet for students 

- Give further tasks to students who finished the three problems 

- It is expected that students would use the construction of angle bisectors 

Summary  
Knowing the lines which students drew are perpendicular bisectors of the segments 

Clarifying how to draw perpendicular bisectors of segments 

3: Summary 

Notes for teachers 

- Explain clearly and precisely the words such as the mid-point or perpendicular bisectors  

- Clarify the simplest methods of the construction 

Discussion 
In each of the countries, the lesson structure followed the pattern expected for that 
country, something not altogether surprising given the evidence from existing 
research. Thus, in the lesson from China, new content is introduced and a 
considerable number of short tasks and questions are included in each segment of the 
lesson. In the lesson from Japan, the three-part structure is followed with a problem 
introduced in the first part and developed in the second before the main teacher 
explanation is given in the third. 

As was found in the TIMSS video studies (Stigler and Hiebert, 1999; Hiebert et al, 
2003), notwithstanding these shared general features, there is variation across the 
countries studied. For example, there is some variation in how new content is 
introduced – in the Chinese lesson through the teacher asking many questions, in the 
Japanese lesson through the teacher posing fewer, but perhaps more substantial, 
problems. Variation occurred, as in the TIMSS video studies, in the coherence of the 
lesson (ie the interrelation, both implicit and explicit, of the mathematical 
components of the lesson) and the procedural complexity of the mathematical 

A

B

C D

E

2. Fold the shape so that B falls on E 

A

B C

D

1. Fold the shape so that C falls on P 

P

3. Fold the shape so that P falls on Q 

A

B

C

P Q
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problems tackled. There was also variation in the type of individual student work and 
the sort of homework set (if any). 

Concluding comment 
What this study has not been able to ascertain as yet are what the implications might 
be for student achievement in geometry in the countries under consideration. This is 
as an area for future research. Further research also needs to focus on what teachers 
actually do in lessons and whether, if, or how, they may make use of the advice that 
is available on how they might structure their geometry lessons. 
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ON THE GEOMETRICAL THINKING OF PRE-SERVICE 
SCHOOL TEACHERS 

 
Alain Kuzniak, Université de Paris VII, France 

Jean-Claude Rauscher, IUFM d’Alsace, Strasbourg 
 
Abstract: We present a classification of geometrical approaches used by pre-service 
schoolteachers. The analysis is based on the notion of geometrical paradigms and 
levels of argumentation. Even if it is focused on a particular population, this study 
can be used to evaluate the long-term effects of education in geometry. 

 

To assess the long-term effects of mathematics’ education is an important issue in 
didactics, which is often left aside, though its social impact is fundamental. 
Difficulties in measuring such effects probably explain the lack of studies. In a way, 
primary school teachers’ training can give, as we shall see, information for assessing 
the long-term impact of education. The future teachers have to be ready to teach a 
subject that they often stopped using for several years. It becomes justifiable to test 
them and work with them on mathematical subjects that they will have to present to 
their pupils. 

We focus our study on the case of elementary geometry and we examine only two 
particular questions here. How do students with initial studies on various subjects 
react when they are faced with elementary geometrical exercises? What can we learn 
from their reactions about the knowledge and conceptions of geometry they retain 
from their schooling? 

What this study is not 
Since the early 80ies and in different countries, numerous studies have evaluated the 
teachers’ mathematics level based upon the belief that the higher the level, the better 
the teaching. With respect to geometry, content knowledge among elementary school 
teachers appears low (Hershkowitz and Vinner, 1984, Carayol, 1983) due to various 
reasons (Niss, 1998), such as syllabus content variations and teachers’ initial studies. 
Most researches use Van Hiele levels to assess reasoning abilities in geometry 
(Swaford and Ali, 1997). This use of the Van Hiele theory can surprise, it describes 
geometrical thinking development among pupils and not for adults like teachers who 
have achieved their development. But again, these studies show that schoolteachers 
seem to master only low levels (Hershkowitz, 1984 and Mayberry quoted by 
Swaford, 1997). Our aim is not to add another study to this subject but to build 
teachers’ training devices based upon this assessment. 

What this study tries to be 
Beside the content knowledge, another way of thinking about teachers’ training is to 
define the kind of knowledge of mathematics which is necessary for teaching (Ball 
and Ali, 2001). In this area we encountered studies which aim to change belief and 
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practice of mathematics: for example, Leikin (2003) presents a research-development 
based upon different ways of solving problems, Houdement and Kuzniak (2001) use 
short situations to provoke students’ beliefs. Steinbring (1998) insists on the necessity 
of epistemological knowledge for teachers and in France the accent is put on 
didactical knowledge with a lot of homological situations as described in the book 
Concertum (Copirelem, 2003), which presents 10 years of pre-service schoolteacher 
training in this country. 
We situate our approach in this trend of research. But to be effective, we need to go 
deeper in the understanding and the interpretation of pre-service teachers’ difficulties. 
In France, graduate students from any university (three years of study) are accepted 
in the teachers training institutes (IUFM) after a first selection. During one year, these 
students prepare for a competitive examination. The mathematical examination part is 
composed of classical mathematical questions and also of questions about the 
teaching of mathematics in primary school (study of pupils’ errors, comparative 
analysis of textbooks). The successful candidates receive a theoretical and practical 
education during one year (the “second year”) in all the subjects of the primary 
school; they receive a salary and are almost sure to become effective primary school 
teachers the following year. 

A training device that offers elements of answers 
Within the setting of the “first year” teachers’ training, an original training device 
(Kuzniak A. and Rauscher JC, 2003) gives us the basis for answers to the former 
questions. This device tries to make students sensitive to the variety of approaches to 
geometry and to the difficulties that this variety creates for their future teaching. 
First, the students have to solve geometrical exercises and write the doubts and 
difficulties they encountered during the resolution. Then, they look at solutions and 
opinions that their peers wrote. They then review their initial answers to the 
exercises. We worked with eight groups of students during these four last years, but 
in this paper we speak only of two groups: 57 students, 19 with degree in science, 23 
in Literature (French or foreign languages) and 15 in Art or Physical Training 
The training takes into account the actual student’s personal Geometrical Working 
Space, then it aims at changing it through activities. The choice of exercises and the 
analysis of students’ productions is based on a theoretical framework, which we have 
presented at the Cerme-3-conference (Kuzniak and Houdement, 2003). This 
framework contains an epistemological dimension which is based on geometrical 
paradigms: the hypothesis is that there exist various meanings of the word 
“geometry” which cover different geometrical approaches. This variety creates an 
obstacle and a source of didactical misunderstanding. The framework is completed by 
a cognitive point of view that allows us to describe students’ level of argumentation. 

The variety of geometrical approaches 
School, and more generally compulsory education, offers the pupils several 
"mathematical worlds". Among these, the "geometrical world" has the basic 
characteristic of making an abstraction close to reality. So, the geometrical figure, 
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totally determined by its definition, is confronted by a drawing, which in turn, is the 
basis for the definition. This partly explains why pupils and students have so many 
difficulties understanding geometry. This also creates very ambiguous situations 
where the problem of coexistence or play between two possible paradigms appears.  
We distinguished: 
-Natural Geometry (Geometry I), which has reality and the sensitive world for source 
of validation. In this Geometry, an assertion is justifiable by using arguments based 
upon experiment and deduction. The confusion between model and reality is great 
and all arguments are allowed to justify an assertion and convince. 
-Natural Axiomatic Geometry, whose archetype is classic Euclidean Geometry. This 
Geometry (Geometry II) is built on one model close to reality. But once the axioms 
are fixed, demonstrations have to be inside the system of axioms to be valid. 
To these two approaches, it is necessary to add Formal Axiomatic Geometry 
(Geometry III) which is little present in compulsory schooling but which is the 
implicit reference of teachers' trainers. Usually, they are mathematicians who have 
studied mathematics in university, which is very influenced by this formal and logical 
approach.  
These various approaches (and this is one originality of our point of view) are not 
ranked: their horizons are different and so the nature and the handling of problems 
are changing. 
The chosen exercise1. 
To make the students react, we chose problems where play exists between both 
Geometries. In all the proposed exercises, a drawing is given but its role is 
ambiguous, which raises the question of the existence of an appropriate working 
space to solve the problem. Let us detail this point on the problem of «Charlotte and 
Marie». 
 

1.Why can we assert that the 

quadrilateral OELM is a rhombus? 

 

2.Marie maintains that OELM is a 

square. Charlotte is sure that it is not 

true. 

Who is right? 

  

The drawing, proposed for the problem, looks like a square but its status in the 
problem is not clear. It looks like a sketch with dimension: codes are on the sides of 
                                                 

1 On top of the « first year » preservice schoolteachers, we gave this exercice to pupils from 14 to 18, to inservice 
schoolteachers, to preservice and inservice highschoolteachers. In Chile, we gave the problem to students wishing to 
become teacher. 
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the quadrangle and indicate their equality, measurements appear on the drawing. But 
what is the origin of these dimensions? Are they made on a pre-existent figure or are 
they, especially for the diagonal, the fruit of calculation? The length of the diagonal 
[ME] is given in the nearest tenth of a cm (5,6 cm), which can lead us to interpret it 
as a real measurement. But, the problem comes from a textbook for the last year of 
secondary school and that leads us to see it as theoretical measurement which better 
corresponds to the usual didactic contract in this kind of class. 
Is the drawing a first datum, a real object, which the problem suggests studying or 
does it result from a construction whose conditions are given in a text? In this case, is 
the practical realization important or is it only a support to help reasoning? 
The text of a problem usually allows us to answer these questions and to determine 
the status of the represented object: this in turn orients us towards a precise 
geometrical paradigm. But, the wording in this problem gives no such indications as a 
student points out: “there are no texts for the wording, only a drawing that can 
deceive”. “The quadrangle is a rhombus” seems to be the only fact taken for granted. 
To know if the quadrangle is a square or not is left to the pupil, who can situate and 
solve the problem in Geometry I or in Geometry II. 
Finally, who is right? Charlotte or Marie? A classic way to handle this kind of 
exercise is to use Pythagoras' theorem, which doesn’t require the real measurement of 
the angle. But even there, the ambiguity of the choice of the working space reappears. 
For our purpose, we shall introduce two forms of Pythagoras' theorem, the classic 
one, an abstracted form, with real numbers and equalities: 
 

If the triangle ABC is right in B then AB² + BC² = AC² 
 
and the other one, a practical form, which uses approximate numbers and, in a less 
common way, approximate figures 
 

If the triangle ABC is « almost » right in B then AB ² + BC ²≈AC ² 

 

The first form leads to a work in Geometry, which deviates from data of experiment 
by arguing in the numeric setting. The second formulation appears rather as an 
advanced form of Geometry I. 
If we situate ourselves in Geometry II by using the abstracted form of Pythagoras' 
theorem, then we can argue, as one student suggests, giving reason to Charlotte: 

We know that if OEM is right in O then we have OE ² + OM ² = ME ² 
We verify 4 ² + 4 ² = 5,6 ² and 32�31,26. Thus, OEM is not a right triangle. 

If we use the practical Pythagoras' theorem in the measured setting then we shall 
rather follow the reasoning proposed by another student who concludes: 

Marie is righ:t OELM is a square because 32 ≈5,6². 

In fact, it would be necessary to conclude that OELM is "almost" a square. But, for 
lack of an adapted language, students cannot play on these various distinctions. They 
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are at the same time faced with an epistemological and didactical misunderstanding. 
To us, the interplay between Geometry I and Geometry II can explain and work on 
this problem. 

Cognitive dimension and reasoning structure 
A first analysis of students' answers and reactions to the exercises which we gave 
them shows that besides paradigms it is also necessary to consider levels of 
argumentation to describe more precisely the students’ geometrical thinking. Students 
give lines of arguments in very variable structures. We based our analysis on the Van 
Hiele theory. As noted above, this theory is interested in the development of 
geometrical thinking. But, students are adults who use sophisticated reasoning 
outside mathematics: before their entrance in the Institute, numerous students studied 
abstract subjects and are able to argue in their domain. 
On the other hand, authors like Duval have criticized “the naiveté” of the Van Hiele 
Theory from a cognitive point of view. We don’t enter in this discussion but we 
freely use Van Hiele levels outside his theory to give us good benchmarks about the 
levels of the mathematical thinking of the students. In fact, it gives us a different 
view, maybe more easily recognisable, on intuition, experiment and deduction. We 
speak rather of levels of argumentation. The observation of students’ levels of 
observation is getting interesting: They can argue about the nature of a figure by 
“accumulating” reasons, they can also develop a demonstration based on a necessary 
and sufficient condition. 
So, all the students’ productions are analyzed thanks to a double approach, which 
incorporates geometrical paradigms and levels of argumentation. The last contact our 
students had with geometry before entering the training institute took place in 
secondary school or at university where they learnt Geometry II or III. In the primary 
school, Geometry I is predominant. 

Towards a classification of students' answers 
From the answers given by the students, we can sketch a classification which takes 
into account the nature of the geometrical paradigm, which is favored in the 
resolution. We have also identified four kinds of answers to the “Charlotte and 
Marie” problem. This allows us to bring out four main types of approaches. 
We represent these four types by GII, GIprop, GIperc, and GIexp. We shall clarify 
the meaning of these abbreviations farther. Every time, we shall give a typical answer 
of the studied population. 
First, answers using theorems are common among two groups of students, GII and 
GIprop. 
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GII In this case, the answers are close to this one [Et A] 

1) OELM is a rhombus because its successive sides are equal. 
2) If OELM is a square, then MEL is a right-angled triangle L. According to the Pythagoras' 
theorem we would have ME² = ML² + LE²   ML² + LE² = 16 + 16 = 32 
      ME² = 5,6² = 31,36 
Thus, angle ELM is not a right angle.  
Consequently, OELM is not a square and it is Charlotte who is right.  

The classic Pythagoras' theorem is applied inside the world of abstract figures and 
numbers without considering the real appearance of the object. Only information 
which is given by words and signals (code of segments, indications on the dimension 
of the lengths), is used, and Pythagoras' theorem is applied in its entire formal rigor. 
To prove that the quadrangle is a rhombus (four sides of the same length) and to 
show that it is not a square (contraposition of Pythagoras' theorem), students use 
minimal and sufficient properties. We shall consider this population as being inside 
GeometryII. For some students, the lack of a look, even retrospective, at the drawing 
already indicates a geometrical conception of type Geometry III. 
GIprop. This population groups together students who apply the practical 
Pythagoras' Theorem, in fact, to be rigorous, the converse. 
They give an answer similar to this one [Et B]: 

1°) OELM is a rhombus, for OE=OM=ML=LE and a rhombus has four sides of the same length. 
2°) Marie is right because all the sides of the quadrangle have the same length and there is at least 
a right angle. We can verify it by Pythagoras' theorem. ML² +LE² =ME ² 
                             4 ² + 4 ² = 16+16=32 
                            ME = 32 = 4 2 � 5,6 thus MLE=90 ° 
 
This student did not forget properties. She has the necessary knowledge to justify her 
answer. She applies the practical Pythagoras' Theorem in a form which we almost 
never see in schoolpupils (according to a similar study with pupils) but which appears 
several years later. Properties are used as tools to produce new information about the 
geometrical objects, which are seen as real objects. 
In that case, the students recognize the importance of the drawing and of the 
measurements’ approximation. The practical Pythagoras' theorem appears as a tool of 
Geometry I. We have designated this population as GIprop to insist on the fact that 
individuals of this group use properties to argue. The question whether these students 
can play with the differences between Geometry I and Geometry II or if their horizon 
remains only technological. 
An addition to these answers, here are those of the students who did not use 
Pythagoras' theorem and that we place a priori in Geometry I. 
GIexp. We group together students who use their measuring and drawing tools to 
arrive at an answer. They are situated in the experimental world of Geometry I. 
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Generally, this type of students concludes that Marie is right. But, it is not always the 
case: a student, using his compass, verifies that the vertices of the quadrangle are not 
cocyclics and he can assert that OELM is not a square. 
Here is a response, which is based on the findings with instruments. [Et C] 

1°) OELM is a rhombus, for its diagonals cut themselves in their middle (measuring) by forming 
right angles (using a set square). 
Remark: the student built the second diagonal on the figure. 
2°) Marie is right. It is a square, for besides being a rhombus, OELM has its angles right (set 
square). 
 
GIper. In this last category, we group together students whose answers are based on 
perception: Their interpretation of the drawing is the basis for their answer. They do 
not give us any information about their tools of investigation. [Et D] 
 
1°) Four sides of the quadrangle are parallel between them and of the same length OE=ML and 
OM=EL. According to the definition of a rhombus, we can say that diagonals have the same middle 
point and are perpendicular between each other. 
2°) Marie is right; OELM is also square because its sides form a right angle. 

A look at reasoning difficulties 
The previous productions are logically rather coherent and do not contain too many 
reasoning errors and formulation problems. But naturally, it is not always the case 
and as noted above, we proceeded to an analysis of the proofs and reasoning structure 
based on levels of argumentation inspired by Van Hiele levels. 
We classify in level 1 productions, which enumerate a non-minimal list of quadrangle 
properties to justify assertions. In level 2, we place productions, which evoke a 
correct relation of inclusion between square set and rhombus set. In level 3, we set 
productions that use minimal and sufficient information to justify assertions. 
This analysis allows us to separate two categories of students. In the first one, widely 
illustrated by our previous examples, students have solid knowledge concerning the 
figures’ properties and use level 3 reasoning. The students of the second category 
argue with an accumulation of properties and show not very sound knowledge of the 
geometrical properties. Here are two examples illustrating this second group. [Et E] 
 
1°) The quadrilateral OELM is a rhombus. This one has the characteristics of such a figure: 4 sides 
are equal; the diagonals cut themselves in their midpoint and form a right angle. 
2°) Both girls are right; OELM is a square, for it has 4 equal sides and 4 right angles. It is also a 
rhombus, even if this figure, which is a rhombus, was not necessarily constructed using right 
angles. 
 
This student justifies her first answer by enumerating a list of properties of 
rhombuses. Thus, we classify her production at level 1. The properties employed are 
partially justified through visual or instrumented indications. This student considers 
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the figure in its material reality and her approach of the problem comes within 
Geometry I. 
The answer to the second question "both girls are right" occurs frequently enough. 
Its justification shows that the statement "Charlotte is sure that it is not true" is 
wrongly interpreted as “Charlotte asserts that it is a rhombus "concealing the 
assertion" It is not a square". The student focuses on the question of the link between 
squares and rhombuses. It is a classic question (but not asked here) and the student 
knows how to answer. That shows that she has level 2 knowledge corresponding to 
the classification of figures. 
With this student, we meet a rather frequent profile. [Et F] 
 
1°) Four sides of the quadrangle are parallel between each other and of the same length OE=ML 
and OM=EL 
Definition of the rhombus: we can say that diagonals have the same midpoint and are 
perpendicular. 
2°) Marie is right, OELM is also a square because sides are all of the same length: 
OE=ML=EL=OM=4cm. 
Let us remember that the square is also a rhombus but which has the peculiarity of having all sides 
with the same length (thus forming right angles) and having diagonals of the same length. 
 
The employed syntax could refer to level 3: some partially correct implications are 
evoked. But the body of knowledge is not very reliable. In particular, we find here a 
rather frequent “pupil’s theorem”: any quadrangle having four equal sides is a square. 
We are clearly within Geometry I where visual indications are used to support 
reasoning. 

Conclusion 
What remains of geometrical learning when all else is forgotten? Our observations 
allow us to sketch a typology of geometrical approaches by the students some years 
after they have stopped studying elementary geometry. 
First, we distinguish a set of students with sound knowledge on the figures’ 
properties organized in an orderly and coherent set. These students are not necessarily 
situated in the same geometrical paradigm. Some have an approach referring clearly 
to Geometry II. Very often, these students have studied higher-level math and 
science. Others, contrary to the previous group, apply their knowledge to work in 
Geometry I, they are sensitive to the estimate of results within the measured setting. 
In another group, we place students who do not give priority to deductive reasoning 
based on organized properties. We can here distinguish two approaches, the first one 
based only on visual indications while the second uses results obtained thanks to the 
instruments of construction and measuring. Students’ levels of understanding and 
memorization of the bases of the elementary geometry differ greatly. 
We find again students’ levels described in former studies with respect to geometry, 
but our approach allows us to separate difficulties coming within reasoning or within 
a different geometrical belief. It seems that students keep the practical use of 
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Geometry: they forget the dimension geared towards reasoning about ideal forms 
which is yet favored in the French education. 
Is it possible to change students within the setting of teachers' training? Are their 
positions fixed or on the contrary, malleable? The approach, which we have just 
developed, allows to tackle and revisit these questions in a finer way by taking into 
account the variety of students’ geometrical thinking. 
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Annexe 
Students’ Answers in french 

[Et A] 1 ) OELM est un losange car ses côtés successifs sont égaux deux à deux.  
2 ) Si OELM est un carré, alors MEL est un triangle rectangle en L. Selon le théorème de 
Pythagore on aurait alors, ME2 = ML2 + LE2    ML2 + LE2 = 16 + 16 = 32 
     ME2 = 5,62 = 31,36 
L'angle ELM n'est donc pas un angle droit.  
Par conséquent, OELM n'est pas un carré et c'est Charlotte qui a raison.  
 
[Et B] 1°) OELM est un losange car OE=OM=ML=LE et un losange a ses 4 côtés de même 
longueur. 
2°) Marie a raison car tous les côtés du quadrilatère ont la même longueur et il y a au moins un 
angle droit. On peut le vérifier par le théorème de Pythagore . ML²+LE²=ME² 
                             4²+4²=16+16=32 
                            ME= 32 = 4 2 � 5,6 donc MLE=90° 
 
[Et C] 1°) OELM est un losange car ses diagonales se coupent en leur milieu (mesure) en formant 
des angles droits (avec l'équerre). 
Remarque : l'étudiant a construit la deuxième diagonale sur la figure. 
2°) Marie a raison. C'est un carré, puisque en plus d'être un losange, OELM a ses angles droits 
(équerre). 
 

[Et D] 1°) Quatre côtés du quadrilatère sont parallèles entre eux et de la même longueur OE=ML 
et OM=EL. Selon la définition d'un losange, nous pouvons dire que les diagonales ont le même 
milieu et sont perpendiculaires entre elles. 
2°) Marie a raison; OELM est aussi carré parce que ses côtés forment un angle droit. 
 
[Et E] 1°) Le quadrilatère OELM est un losange. Celui-ci répond aux caractéristiques d'une telle 
figure : les 4 côtés sont égaux ; les diagonales se coupent en leur milieu et forment un angle droit.. 
2°) Les deux filles ont raison,  OELM est un carré car il a 4 côtés  égaux et 4 angles droits. Il est 
aussi un losange, même si cette figure qu'est le losange ne se construit pas forcément avec des 
angles droits.  
 
[Et F] 1°) Les 4 côtés du quadrilatère sont parallèles entre eux et de même longueur OE=ML et 
OM=EL 
Définition même du losange, de ce fait on peut dire que les diagonales ont même milieu et sont 
perpendiculaires entre elles. 
2°) Marie a raison, OELM est aussi un carré car les côtés sont tous de même longueur : 
OE=ML=EL=OM=4cm. 
Rappelons que le carré est aussi un losange mais qui a comme particularité d’avoir tous ses côtés 
de même longueur (donc forment des angles droits) et d’avoir ses diagonales de même longueur. 
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GEOMETRICAL PRE-CONCEPTIONS OF 8 YEARS OLD 
PUPILS(*) 

 
Carlo Marchini, University of Parma, Italy 
Maria Gabriela Rinaldi, University of Parma, Italy 

 
Abstract: In an experimental study about isosceles triangles, we observed pupils' 
solution strategies revealing different naive approaches to the problem of measure 
in geometry. Our experiment discovered phenomena that should be taken into 
account in teaching Geometry. 

 

The research 
Our research group studied the influence of the drawing "orientation" (Cooper, 1998) 
in the perception of "isoscelity" of triangles, cf. (Marchini et al., 2002), collaborating 
with Martin Cooper. The same test as used in Italy and Australia. In Italy the 
research was performed in 6 (third grade) classes of primary school, involving 105 
pupils. The authors of this paper and L. Grugnetti elaborated the materials and the 
modalities of the experiment, in connection with M. Cooper. 
The involved primary schools were from different places in Northern Italy (Viadana, 
Parma, Cattolica); in each of the three schools we chose a couple of parallel classes 
(with the same mathematics teacher) in which geometrical contents had never been 
treated before. This condition made us sure that we could observe some geometrical 
pupils' pre-conceptions, independent from schooling. 
 

The choice of a couple of classes 
instead of a single class was necessary 
to reveal the influence of learning 
upon the establishment of pupils' 
mental images1: we introduced the 
notion of isosceles triangle in two 
different orientations, "roof" (A) and  
"flag" (B)2, cf. fig. 1. The tests were 
done at the same time in the two 
classes of the same couple to prevent 
possible exchange of information among pupils. The total pupils' numbers 
participating to the experiment were 49 for A training, and 56 for B 
training. The choice of introducing isoscelity for triangles as the condition 
of equality of length of (at least) two sides was due to an Italian school 
tradition in which measure of angles is introduced later than measure of 
lengths and to the etymology of the word. 
(*) Work done in the framework of activities of Parma Local Unity for Research on Mathematics Education. 
1 We use "mental image" as in (Fischbein, 1993): «a sensorial representation of an object»; in our opinion the establishment 
of a mental image is the first step in geometry since «the geometry deals with mental entities (the so- called geometrical 
figures), which possess simultaneously conceptual and figural characters ». It is noteworthy that in op.cit., the first example 
is an isosceles triangle drawn like triangle A in fig. 1. 

 2 
The words "roof" and "flag" were not used in the experiment; here they stand for references to the triangles A 

and B, respectively, in fig. 1.

fig.1  
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fig. 2 
We decided to avoid the technical word congruence, because we thought 
that the meaning of this word requires a secondary intuition (Fischbein, 
1987). The results of the Italian experiment can not be directly compared 
with those from Australia, where isoscelity is specified as a condition of 
equality of (at least) two angles. The experiment gave unexpected results 
and, as a by-product, we observed de visu the existence of strong pre-
conceptions about the triangle and the measuring. 
The sessions of the experiment 
We did the experiment in the primary school of Viadana (1997 November 
12th and November 21st), involving two classes: III C (15 pupils) and III 
D (20 pupils). The experiment was structured in two sessions: the first one 
composed of two steps for the learning and another for the testing; the 
second session divided in a first step for testing and a second one for 
written interviews. 
 

Working Group 7

CERME 4 (2005) 749



We warned teachers to not discuss the test nor to present geometric topics 
between the two sessions. The first session lasted one hour, the second one 
approximately forty minutes. 
In this paper we will focus on what we directly observed in Viadana. The 
same experiment was later performed in other schools (Parma 1997 
December 12th and 19th; Cattolica 1998 January 23rd and 30th) in the same 
way, except for the written interview, since in the first experiment we had 
obtained uninteresting results. The researchers who performed the 
experiment in other schools confirmed the presence of the same relevant 
behaviour of pupils. In order to motivate pupils, we introduced the 
experiment as a contest among different classes of the third grade. We 
began the first step of session 1 by drawing triangles on the blackboard, in 
IIIC "roof" triangles and in IIID "flag" triangles, respectively, taking a few 
minutes only for this activity; this time was also devoted to establish a 
glossary (triangle, side, isosceles triangle). We can place this activity at 
Van Hiele levels 1 and 2, cf. (Van Hiele, 1986). We chose to use a very 
poor geometrical language only containing the words "triangle", "side", and 
"isosceles", in order to avoid interference with possible physical models. 
In the second step we submitted a training booklet containing 10 triangles 
in the "roof" position (III C), and in the "flag" position (III D); the training 
booklets presented the same triangles, in the same order: 5 of them were 
isosceles and the other 5 were not. The booklets used in each class differed 
only for the triangles orientation, consistent with the respective 
presentations given on the blackboard. We specified in each case if the 
triangles were isosceles or not. Because of the novelty and complexity of 
the word "isosceles", our verbal presentation tried to facilitate 
interiorization in the sense of (Sfard, 1991) of the geometrical term and its 
related concept by slowly telling: "isosceles", "isoscel...", "iso...", "i...", and 
waiting for the pupils to complete the word. We expected that a progressive 
devolution to pupils of the repetition of the word "isosceles" would have 
succeeded in creating their own correct mental images. 
At the third step, we gave a test booklet, the same for the two classes, in 
which on each right page there was one of the 20 triangles of fig. 2 (no. 1, 
2, 4, 5, 7, 10, 14, 15, 17, and 19 are isosceles), and on each left page a 
question with double-choice answers ("isosceles" or "not isosceles") to be 
checked. The test lasted less than 10 minutes and we allowed pupils to use 
only a pencil. 
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In the second session (November 21, 1997) we directly submitted the same 
test with the same methodology and made written interviews, asking pupils 
if the task had been easy or difficult. 
Dimensions, orientations and triangles succession were established with M. 
Cooper, who presented the same booklets to Australian pupils. The lengths 
of triangles sides vary from 8 to 12 centimetres approximately and the 
differences between the lengths of two sides are small enough to not be 
easily perceived and therefore to require some measuring strategies from 
pupils. 
Results and statistical analysis of the experiment 
The paper (Marchini et al. 2002) reports and comments the average results 
of the experiment. On the basis of results we classified questions in "very 
easy" (with success rate � 75%), "easy" (with success rate � 50% and < 
75%) and "difficult" (if the success rate is < 50%). According to this 
classification, questions 2, 5, 7, 8, 9, 11, 12, 13, 14, 16, 18 came out as 
"very easy"; questions 3, 6 as "easy", and the remaining questions 1, 4, 10, 
15, 17, 19 and 20 came out as "difficult". The underlined numbers stand for 
isosceles triangles, so it is evident that isoscelity is difficult to recognize in 
spite of the embodied cognition of the balance metaphor (Nùñez et al., 
1999). 
The global highest rate of correct answers was obtained in Q9, the lowest 
in Q1. It is noteworthy that Q3 was "easy" for A pupils, and "difficult" for 
B pupils. The most difficult question was Q1 for both trainings and the 
easiest ones were Q9 for "roof pupils" and Q7 for "flag pupils". The fact 
that the results in Q7, presenting a typical isosceles triangle in "roof" 
position, was better for "flag pupils" in both sessions was unexpected. 
Another interesting feature is that in all "difficult" questions, except for 
Q20, the "flag" training gave best results. 
Amongst the first sixteen questions only four of them came out as 
"difficult", and in the remaining four questions, three of them were 
"difficult". We suspect that the test had made pupils tired. The isosceles 
triangles 2, 5, 7, 14 have horizontal or vertical axis of symmetry and this 
configuration appeared to be closer to pupils' mental images. Wrong 
answers relative to isosceles triangles 1, 4, 10, 15, 17, 19 seem to be due to 
their "strange" position, corroborating the hypotesis of the entire research, 
i.e. that the drawing orientation affects the perception. 
In the second session the average achievements improved, particularly for 
the B training. The increments of average values required a deeper 
analysis: they should be grounded on the longer persistency of pupils' 
attention to the test in the second session than in the first one, as
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researchers pointed out. A second hypothesis is that training was good 
enough to establish the learning. This hypothesis is supported by: 
 

• the time between the two tests, 
• the absence of comments on the first test and of teaching of 

geometrical contents in the meanwhile, 
• (and mainly) the short time devoted to the test (15 seconds for  

turning the page, looking at the drawing and answering each 
question) prevented the possibility that, in the second test, pupils 
relied on their own recalling of the test. 

 
Therefore, the existence of an improvement of results seems noteworthy 
even without a statistical relevance. 
 
In order to investigate with statistical tools if the answers to the first test 
had affected the results of the second one, we used the Larher's crédibilité 
(believableness) of implication index, (Larher, 1991; Gras & Larher, 1993), 

cf. fig. 3. This index is 
a probabilistic 
measure (ranging 
from 0 to 1) of 
the implication of two 
attributes. The use of 
this index is possible 
since the results of the 
two sessions were 
given as two sets of 
data, expressed with 0 
or 1, and therefore 
they may be viewed 
as characteristic 

functions of subsets or attributes. The values of the index varied between 
69.35% (Q9) and 99.88% (Q6): we interpret these values as a corroboration 
of the fact that the first attempt influenced the second one and that the 
activity helped pupils to obtain a sufficient learning about isosceles 
triangles. We could not assess the persistence of this kind of learning with a 
third instance of the test due to the treatment of geometry topics in the 
school curricula. 
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Global 

 

A train- 
ing 

 

B 
training 

 

Pupils' number 
 

105 
 

49 
 

56 
 

Viadana experiment 
 

35 
 

15 
 

20 
 

Answers 
 

98.81% 
 

98.72% 
 

98.88% 
 

Viadana experiment 
 

99.43% 
 

98.83% 
 

99.88% 
 

Correct answers 
 

64.53% 
 

64.39% 
 

64.65% 
 

Viadana experiment 
 

64.21% 
 

65.67% 
 

63.13% 
 

1st test correct answers 
 

63.29% 
 

63.66% 
 

62.98% 
 

Viadana experiment 
 

61.99% 
 

63.82% 
 

60.65% 
 

2nd test correct answers 
 

65.82% 
 

65.12% 
 

66.31% 
 

Viadana experiment 
 

66.57% 
 

67.67% 
 

65.75% 

 

Results and comments on the Viadana experiment 
Table 1 contains some 
statistical results relative to 
the Viadana experiment (in 
italics), compared with the 
achievements of the whole 
research in order to prove that 
Viadana sub-sample is 
coherent with the whole 
sample. The average values 
we observed are not far from 
averages of the whole 
experiment: the "flag" training 
got a lower success rate in 
each instance, while the "roof" 
training was better. Thanks to 
"roof" pupils the result of the 
second test was higher than 
the total average; for the same 
session pupils  
improvements were comparable for 
both trainings, with a greater value 
for "flag" pupils. 

Table 1 

 
For Viadana pupils questions 5, 7, 8, 9, 11, 12, 13, 14, 16 and 18 were 
"very easy"; questions 2, 3, 6, and 20 were "easy" and questions 1, 4, 10, 
15, 17, and 19 were "difficult". The easiest questions were Q18 globally, 
Q8 for "roof" training, with 100% of correct answers, and Q11 for "flag" 
pupils. The worst failures were Q1 globally and for "flag" pupils, and Q4 
for "roof" pupils. Compared to the entire experiment, in the Viadana 
environment, Q2 was "easy" instead of "very easy", and Q20 was "easy" 
instead of "difficult". The presence of better results for "flag" training on 
"difficult" questions was confirmed, except for Q10, as well as the better 
results in Q7. 
With reference to the three levels stated above, the test was "very easy" for 
3 pupils (A: 1, B: 2), "easy" for 31 pupils (A:14, B: 17) and "difficult" for 
one flag pupil. The minimum frequency of correct answers was 42.5% and 
the maximum was 82.5%, both obtained with B-training. 
Before the experiment we had asked the maths teacher to give us her 
assessment for each pupil. These teacher's assessments were compared with 
the results of our test and showed a higher dispersion, contrasting with the 
general homogeneity observed in the results of our test. A possible 
interpretation of this dissimilarity is relative to the nature of the learning we   
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induced by the training. Teacher's assessment collects a lot of information 
on the pupils (linguistic competencies, mathematical skills, diligence, ...). 
On the other side we tested one aspect only, recalling visual abilities and 
totally avoiding linguistic competencies: this can justify the similarity of 
achievements among pupils and the dissimilarity between test result and 
teacher's assessment. For instance, a pupil may be disadvantaged in his/her 
teacher assessment by scarce competences in subjects, e.g. linguistic ones, 
that do not require visual competences. 
The presence of the "roof" pre-conception in pupils clearly appeared during 
the test: we observed most of the children rotating the booklet or their head 
in order to place the triangle in the "roof" position comparing in this way 
the drawings with their archetype of triangle, (Medici et al., 1986); this also 
happened in the "flag" class. This pre-conception should be originated by 
the experience: the true roof might be an object representing in a better way 
the concept of isosceles triangle, in the sense of (Collins & Loftus, 1975). 
The perceptive difference (Arnheim, 1974) with the "roof" pre-conception 
seems to justify the presence of a flexible and dynamic learning structure, 
in the sense of (Singer, 2001). The presence of the "roof" triangle pre-
conception is confirmed by (Vighi, 2003a and 2003b), as a portion of a 
concept image (Tall & Vinner, 1981). In our opinion, the "roof" training 
supports an interiorization following rigid structures, as stated in (Singer, 
2001), by re-enforcing a preconception, that is probably why "flag" pupils 
got better results in the most difficult questions. 
The small difference in the length of the sides of triangles combined with 
the "strange" orientation of the proposed figures activated the pupils' pre- 
conceptions relative to measuring. We observed some pupils using the 
pencil and the fingers as compasses for comparing the lengths by 
"transportation" as painters do; in other cases, pupils preferred to "build" 
the compasses by using only the fingers even if their teacher had never 
used the "mechanical" compasses before in school. Another interesting 
pupils' strategy was to use fingers as a ruler for measuring: pupils 
"covered" the sides proceeding in jerks, in a sort of subdivision of the 
length, therefore in this case pupils used the "measure", and teachers had 
never introduced measure before. In some cases the same pupil used 
different strategies simultaneously, strengthening Vergnaud's statement that 
when a subject does not have the required competences, s/he uses different 
schemes at the same time (Vergnaud, 1990). 
Conclusion 
The whole experiment and the Viadana sessions too revealed that pupils 
reached the learning with short activities. We ascribe these results to the 
presence of pre-conceptions that help pupils in the learning; 
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therefore the teacher must recognize the pupils' pre-conceptions. Moreover 
the experiment revealed the intuitive embodied measure "tools", showing 
us how metric geometry takes root in geometrical pre- conceptions or 
knowledge ripened out of school. In our opinion the experiment stressed 
important pre-conceptions that teacher cannot neglect; this would be a 
starting point for the teacher that must legitimise pre-existing knowledge, 
or better beliefs, cf. (Marchini, 1999). 
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USING DYNAMIC TRANSFORMATIONS OF SOLIDS TO 
PROMOTE CHILDREN’S GEOMETRICAL REASONING 

Christos Markopoulos, University of Patras, Greece 

Despina Potari, University of Patras, Greece 

 

Abstract: This paper is part of a research project on the study of children’s thinking 
about geometrical solids in the context of dynamic transformations. The context of 
this study is defined by the mental transformations of an orthogonal parallelepiped. 
Twenty 6th grade children who had previously experienced dynamic transformations 
of physical models of geometrical solids in their classroom were clinically 
interviewed. The analysis of the data resulted in a modeling of children’s thinking 
and indicated a development from holistic to a relational consideration of 
geometrical solids. Moreover, there is evidence of the significant role played by the 
dynamic transformations in this development. 

 

A number of research studies have focused on children’s thinking on three 
dimensional solids. Most appear to be on the nets of solids (Mariotti, 1989; Potari & 
Spiliotopoulou, 1992), on their plane representations (Cooper & Sweller, 1989) and 
on constructions of the solids by unit cubes (Battista & Clements, 1996). This 
research studies children’s thinking about geometrical solids and their properties. The 
research on this domain exploits van Hiele theory (1986) and uses it as a way of 
interpreting and classifying children’s thinking using methods such as questionnaires, 
test or interviews (Lawrie, Pegg & Gutierrez, 2002; Pegg and Baker, 1999). For 
example, Pegg (1997) extended van Hiele’s work by highlighting the differentiation 
between Levels 2A and 2B in the case of three dimensional solids.  

The rationale of the study 
The studies mentioned above are mainly exploratory and do not indicate the 
conditions under which children’s thinking on three dimensional solids develops. In a 
research project, part of which we present here, we attempt to investigate the 
development of children’s thinking concerning geometrical solids in three different 
contexts. The first context involves children’s manipulations of physical materials of 
three dimensional geometrical models. The second is defined through children’s 
interactions in a computer-based environment and the last one is formed through 
children’s involvement in imaginative situations concerning dynamic transformations 
of the solids. These contexts are characterised by the dynamic manipulation of 
geometrical solids, a process where “the solid changes its form through the variation 
of some of its elements and the conservation of others” (Markopoulos & Potari, 
2000). This seems to be related to the concept of invariance which promotes intuitive 
reasoning (Otte, 1997). These contexts vary in the type of transformations which they 
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require through children’s actions. Thus, through these contexts the children move 
from physical to visual and finally to mental actions. 

We distinguish two main phases in the research process. The first concerns a 
classroom teaching experiment in three classrooms of the 4th grade and three of the 
6th grade in three different schools in Patras, Greece, along the same lines described 
by Cobb, Yackel and Wood (1992). In this phase dynamic materials were developed 
by the researchers and tasks based on these materials designed by the teachers in 
cooperation with the researchers. The whole experiment took 4-5 teaching periods for 
each class. In the last phase the children of the 6th grade were interviewed one by one 
for an hour on tasks referring to an imaginary dynamic transformation of a cube and 
of an orthogonal parallelepiped. The data from the two phases consisted of video 
recordings which have been transcribed. In this paper we focus on the data coming 
from the last phase. 

The whole philosophy of the project and some initial findings from interaction with a 
pair of children are presented in Markopoulos & Potari (1999), while the actual 
implementation of the dynamic environment in the mathematics classroom and the 
issues which emerged are discussed in Markopoulos & Potari (2000). 

In this paper, we extend our work by studying more systematically how the children 
who participated in our previous study think about geometrical solids and their 
properties in a context defined by the mental transformations of geometrical solids 
without the use of physical or computer manipulatives. This context is related to the 
children’s visualization process that involves the recall or the construction of the 
solid’s mental image, its representation and its appropriate transformation if 
necessary (Weatley, 1990). 

Methodology 
The research methodology is the clinical interview. The clinical research methods are 
based on the principles of constructivism and aim to investigate children’s 
conceptions. The researcher acts as a teacher interacting with the children while 
aiming to investigate their thinking. By reflecting on these interactions, the researcher 
tries to interpret the children’s actions and finally forms models-assumptions 
concerning their conceptions. These assumptions are evaluated and consequently 
either verified or revised. (Bell, 1993; Hunting, 1997). 

Participants: Twenty 6th grade children participated in this experiment. These 
children had already studied geometrical solids through the use of dynamic models in 
a classroom teaching experiment. These models were actual and computer-generated 
representations of geometrical solids and some of their properties could be varied 
dynamically (Markopoulos & Potari, 1999; 2000). In this environment the children 
faced tasks which involved the manipulation and the study of dynamic 
transformations of these models. 

The process: The children were interviewed individually for about an hour on a 
number of similar tasks to those they had faced in the classroom but this time without 
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any visual reference. Nevertheless, the context of the activity differed, as neither the 
dynamic models nor the dynamic computer representations were used. The context 
was defined by the use of the mental images that the children themselves constructed 
and manipulated. Although the tasks were not predefined, they had a common 
structure in each interview. In particular, the children were asked specifically: 

to imagine and describe an orthogonal parallelepiped 

to propose a mental dynamic transformation of the solid 

to focus on the mental dynamic transformation. 

A dynamic transformation of a geometrical solid involves three dimensions: the 
initial solid, the process of the transformation and the produced solid. The study of 
the dynamic transformations depends on which of these three dimensions is the focus 
of attention. The dynamic transformations that took place during the interviews had 
an orthogonal parallelepiped as the initial solid. The children were asked to transform 
this solid, mentally defining either the process of the transformation or the produced 
solid. 

Analysis of the data: The data consists of the twenty transcribed video recordings. 
Initial attempts to analyze the transcribed teaching experiments were made through 
the coding of the types of transformation performed by each child. Then, by 
scrutinizing the data line by line, we identified the children’s conceptions and we 
formed categories that describe the children’s thinking about geometrical solids. 
Finally, we re-examined the data for each child separately, looking for possible 
individual development in terms of the produced categories. 

Results 
The type of transformation: From the initial analysis of the transcribed interviews, 
two main types of transformation emerged. The first type (A) involved the dynamic 
transformation of the orthogonal parallelepiped through the modification of its 
properties. For the children who performed this kind of transformation, the 
transformation process was characterised by their specification of the modified 
property or properties and the degree of modification. In this case, only the first two 
dimensions of the transformation were considered. The geometrical elements that the 
children modified through the transformations were the salient ones such as the 
edges, the faces, the dimensions and the angles of the orthogonal parallelepiped. In 
the second type of transformation (B), the transformation process was characterised 
by the children’s reference to all three dimensions. The target solids were an 
orthogonal parallelepiped with two square faces and a cube. Although this type 
required the child to anticipate the specific modified properties, a process which is 
rather complex conceptually (Markopoulos & Potari, 1999; 2000), most of the 
children carried out this type of transformation (eighteen out of the twenty pupils). 
This tendency probably reflects the effect of the children’s experiences in the 
classroom with the manipulation of the dynamic models. However, as will be 
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illustrated below, the degree of awareness shown by the children regarding the 
modification involved in the transformation was not the same for all of them.  

The categories of conceptions: In relation to the children’s thinking about 
geometrical solids, four categories emerge. In the first category (C1) the children 
conceive of a solid as a total entity and are unable to identify its properties. Although 
the dynamic transformation of a solid involves the modification of its properties, the 
children studying the transformation identify the two solids holistically and limit their 
description to the name of each solid. 

The second category (C2) describes the children’s geometrical thinking based on 
comparisons between the modified properties. The solid is no longer considered as a 
total entity but is related to the properties which have been modified directly by the 
children during the transformation. For example, when modifying the edges of an 
orthogonal parallelepiped to get a cube they compare the two solids in reference to 
this particular property. 

In the third category (C3), the children correlate the properties of the solids. They 
also relate the properties that they have modified to the solid, though they do not 
seem to realize the role of the subsequent modification of the properties in the 
formation of the solid. For example, the modification of the length of the edges of an 
orthogonal parallelepiped results in changes to the area of its faces. Although the 
children identify the change in the faces, they do not relate these changes to the 
process of transforming the initial solid into a different one. 

In the fourth category (C4), the children seem to realize the role of the properties in 
the solid’s form and are led to make generalizations. They build relationships 
between the geometrical solids and their properties and between the solids 
themselves. For example, when transforming an orthogonal parallelepiped into a 
cube, the children relate the modifications made to the dimensions to the subsequent 
changes in the length of the edges, in the form and area of the faces and in the two 
solids. 

These four categories of geometrical thinking describe the children’s conceptions 
concerning the concept of geometrical solid through its dynamic transformation. 
They are presented in a developmental way and could be related to the Van Hieles 
level of geometrical thinking with regard to the discrimination between level 2A and 
2B that was proposed by Pegg (1997) and Lawrie, Pegg and Guiterez (2000). 

The development of geometrical thinking 

In table 1 we demonstrate the children’s conceptual development during the 
experiment with reference to the type(s) of transformation that each child performed. 
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Children St1 St2 St3 St4 St5 St6 St7 St8 St9 St10 

Types of 
transformation �, � �, � �, � �, � �, � B B, B B B B, B 

Category of 
thinking 

C1 – 
C2, 
C2 – 
C3 

C2 – 
C3, 
C3 – 
C4 

C2 – 
C4, 
C2 – 
C4 

C1 – 
C2, 
C2 – 
C4 

C2–
C3, C2 
– C4 

C1 – 
C3 

C1 –
C2, 
C1 –
C2 

C1 C2– 
C3 

C1 – 
C2, 
C1 

Children St11 St12 St13 St14 St15 St16 St17 St18 St19 St20 

Types of 
transformation A B, B B, B A, B B A, A B B B B 

Category of 
thinking 

C1 – 
C3 

C1 – 
C2, 
C2 

C1 – 
C2, 
C2 – 
C3 

C2 – 
C4, 
C2 – 
C4 

C2 –
C4 

C1, 
C1 

C1 –
C3 

C2 –
C4 

C2 – 
C3 

C2 –
C4 

Table 1: The children’s conceptual development 

The first row shows each individual child, while the second row details the types of 
transformation that each child experimented with. In the third row, the identified 
categories of conception are shown for each of the types of transformation. For 
example, St1’s thinking during the study of a type A transformation developed from 
the first category to the second (C1-C2), while during the second transformation his 
thinking developed from the second category to the third (C2-C3). We discuss below 
some representative cases in order to draw attention to some issues that emerged 
concerning conceptual development and the role of the transformations. 

Two children (St8 and St16) remained at a primitive level of geometrical thinking. 
For example, St8 could not evolve his reasoning beyond the first category (C1) since 
the form of the solid dominated in his conceptions. He also had difficulty in mentally 
transforming the initial solid and looked for a physical referent around him. Thus he 
constructed the mental representation of a physical model, a small box, and tried to 
transform it. In attempting to transform the initial solid into a cube, the child 
proposed a reduction in the length of the solid. When describing the transformation 
process, he focused on the modification of the external appearance of the solid: “to 
shrink it…”, “to squeeze it…”. When the teacher-researcher made identifying this 
modification the focus of the task, the child recognized the change of the one 
dimension at an intuitive level: "these two will go inside…". He also attempted, albeit 
unsuccessfully, to relate this change to the remaining faces. He seemed to recognise 
that the faces had to become squares but he could not justify his opinion. During the 
experiment the child identified the change in the form of the solid, but was at no 
point able to identify the faces or dimensions that varied. In conclusion, the student 
could not develop reasoning beyond a holistic consideration of the solid. 
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Three children (St7, St8 and St12) started by considering the solids in a holistic way 
and moved towards a recognition of the specific modified properties. For example, 
St7 used only one type of transformation (B) and reached the second category (C1-
C2). He wanted to transform an orthogonal parallelepiped into another one with two 
square faces. Initially, he approached the solid in a rather holistic way and focused on 
the modification of its form without taking into account the modification of any of its 
properties. He described the modification of the solid’s dimensions using expressions 
like: “I make it higher...”, “I will make it smaller and higher...”. Then, when he was 
asked to specify the changes that would be caused by this transformation, he 
developed his reasoning and referred to the alterations to the faces that would occur. 
He clarified his thinking by using a physical referent. The following dialogue shows 
the child’s attempts to mentally construct a cube from an orthogonal parallelepiped.  

St7: I will raise it, if it is possible, I will make it smaller otherwise it will look like an 
orthogonal parallelepiped. 

Researcher: But you don’t want it to look like an orthogonal parallelepiped, do you? 

St7: I want it to be a cube. 

R: And why do you have to make it smaller? How much smaller? 

St7: A little bit. [showing with his hands the transformation of the parallel faces to 
squares] 

R: Why is  that so ? 

St7: Because it will be higher as well, and if I make it small enough it will not be a 
square. 

R: Why so much? Why does it look like a square? 

St7: Yes, this way they will be two squares and then I will make it higher. [Showing 
the dimension of the height] 

The student rather intuitively related the cube to its square faces but he could not 
focus on their properties. His conceptual development was restricted to the 
identification of the specific modified properties (the faces) and to the consideration 
of the form of these properties. 

The conceptual development of a number of children reached the third category (C3). 
For example, during the experiment St13 proposed the transformation of the 
orthogonal parallelepiped into an orthogonal with two squared faces and a cube (B, 
B). The conceptual level demonstrated during the study of the first transformation 
developed from the first category to the second (C1-C2), whilst that demonstrated in 
relation to the second transformation developed from the second category to the third 
(C2-C3). The first mental transformation of the initial solid into an orthogonal 
parallelepiped was considered by the student in a rather intuitive way similar to St7. 
However, in his attempt to transform the solid into a cube, he started to consider the 
alterations resulting from the specific modified properties. One such alteration was 
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the change of the form of the faces to square. The child again used a physical 
referent, the dimensions of which were different, to justify his opinion regarding the 
transformation that caused its faces to become square. He proposed that the 
equivalent enlargement of the edges was a prerequisite for the change to the faces. 

Finally, a number of children reached the most advanced level of thinking about a 
geometrical solid.  St3 was the student whose thinking developed as far as the last 
category (C4) for both the transformations he performed (A, B). Initially, considering 
the transformation of the orthogonal parallelepiped through the modification of its 
angles, he focused on the specific modified angles, though he related these changes to 
the formation of the whole solid (category C2). At the next stage of the experiment he 
related the specific modified angles to the indirect change in the volume of the solid. 
The following dialogue demonstrates this development. 

St3: Two of its faces and its angles will be modified. 

R: Will anything else? 

St3: It will simply become oblique. 

R: What else will change? 

St3: Aha! Its volume will become smaller? 

R: Why do you believe that its volume becomes smaller? What do you change? 

St3: Its angles. 

R: How much do we have to change the angles? 

St3: As much as we want. It could go there (Using his palms, he represents an 
extreme transformation where the solid becomes flat) 

R: If it reaches there, will the solid exist? 

St3: It becomes flat? 

R: So, what will happen to the volume? 

St3: It will have no volume. It becomes a plane (figure).  

The justification for considering the reduction in volume as a result of the 
modification of the angles was based on the student’s experience in the classroom 
teaching experiment with the dynamic model of orthogonal parallelepiped, which 
allowed a gradual transformation of the solid into a series of different solids. The 
initial orthogonal parallelepiped became oblique and finally flat. As was emphasized 
in our previous work Markopoulos & Potari (2000), the students developed an 
intuitive appreciation of volume through the comparison of this series of solids using 
a dynamic physical model of an orthogonal parallelepiped during the classroom 
teaching experiment.  St3 seemed to transfer this kind of experience and adapt this 
approach to the case of mental transformations. 

Working Group 7

762 CERME 4 (2005)



The role of the dynamic transformation of solids is crucial in the development of 
children’s thinking concerning the geometrical solid. As the children focused on the 
process of the transformation, they seemed to become aware of the role of the 
specific and subsequently modified properties on the formation of the solid. The 
development of their thinking from a holistic consideration to an understanding of the 
abstract relationship between the properties and the solid involves two intermediate 
levels of thinking: initially, an intuitive understanding of the relationship between the 
specific modified properties and the solid and, subsequently, an awareness of the 
changes that the former cause to the solid during its transformation. The role of the 
dynamic transformation in the development of these two intermediate levels was 
significant. When focusing on the transformation process, the children started to 
become conscious of the relationship between the properties of the solid and the 
effect of their modifications. 

What is more, in the complex context of the mental manipulation of the solid, most of 
the children resorted to using a physical referent. The way it was used differed from 
child to child depending on their level of thinking. For example, the children who 
conceived of the solid in a rather holistic way used the physical referent as a 
prototypical resource in order to construct a mental image of the solid. The dynamic 
manipulation of this mental image was impossible as they could not focus on its 
properties. The children who could only relate the solid to its specific modified 
properties used this physical model in the creation of the mental image as well as in 
the process of transformation. The children who reached the third level of conceptual 
ability used the physical referent as an instrument in their attempt to communicate 
their thinking. Finally, the children whose thinking reached the most advanced level 
utilized the physical model to exemplify the transformation process and the 
relationship between the subsequently modified properties and the solid. It would 
appear that, the use of the concrete model does not necessarily imply primitive 
thinking but can act as an intuitive tool that in the process of transformation can 
possibly support abstractions and formalizations to geometry education (Meira, 
1998). 

Concluding remarks 
The study indicated that in the context of mental transformations children’s thinking 
concerning the three dimensional geometrical concept can develop from a holistic to 
a relational consideration but not necessarily in a linear order. Although not all the 
children reached an advanced level of thinking, the context of dynamic 
transformations promoted the development of most children’s geometrical thinking. 
There is also an indication that the children’s experience with dynamic 
transformations of physical models in a mathematics classroom environment can 
probably act as a means that can allow children to transfer experience from one 
context to the other (Evans, 1999). Moreover, the whole process of transformation 
can be considered as a metacognitive activity (Pandiscio & Orton, 1998) that can help 
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children to become aware of their actions, either physical or mental, and lead to a 
deeper understanding of the concept of geometrical solid. 
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Abstract: In this paper we present research carried out into the concepts of 
perimeter and area among fourth and fifth year Primary school pupils. The paper 
focuses on children’s pre-conceptions and spontaneous procedures. Researches show 
that the conflict perimeter-area is an epistemological obstacle causing difficulties in 
the comprehension of these important geometrical concepts. In fact it is only by 
recognising and understanding these that we can identify teaching strategies for 
overcoming the ‘perimeter-area conflict’. We present and discuss two worksheets 
aimed at revealing pupils’ reasoning and behaviour, especially unpredicted. We 
make a detailed analysis of how children completed the worksheets, and of 
subsequent individual interviews with them. 

 

Introduction 
In this work we discuss two worksheets concerning an experimental activity which is 
still currently in progress, inserted at the start of a Mathematics Laboratory Project 
(MLP). The activities supplemented traditional curricular teaching with different new 
activities, in terms of both methodology and contents. It is fundamental from the 
teaching point of view to observe strategies children use. This allows teachers and 
researchers to identify activities, which can help pupils to distinguish between the 
two concepts of perimeter and area. 

For our discussion it is necessary to solve a translation’s problem. In Italian two 
different words are used to translate the English word quantity. The first, quantità, is 
used as a sort of measure of something; it denotes numerousness in cases where 
natural numbers are used. The second Italian term grandezza emphasises qualitative 
aspects of the same mathematical entities. This paper focuses on the comparison 
between quantitative and qualitative aspects of lengths and  surfaces, so in order to 
distinguish the two concepts in the English translation we use  q-quantity for quantità 
and g-quantity for grandezza. 

                                                 
1 This work was carried out in the Local Research Unity in Mathematics Education, University of Parma, Italy. 
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Theoretical framework 
Great importance is given to the concepts of perimeter and area in geometry teaching 
in Italian primary schools. The concepts are introduced with pupils 9-11 years old, 
but usually only measuring work is done. Measuring length would be simplified by 
using a ruler, but no artefact (Bonotto, 1999) as simple as the ruler exists for the 
measurement of area, even for simple polygons. In our opinion the early introduction 
of measurement in geometry presents the risk of confusing a g-quantity with its 
measure (q-quantity), whereas it is in fact necessary to emphasise that an object has a 
length or a surface, even if these are not measured. Teaching research shows that it is 
essential to work on this aspect (Moreira Baltar, 1996-97): “Allowing pupils to 
discover that length is a property of objects, and can be considered apart from 
numerical considerations, requires specific preparation.” (Chamorro, 2002). The 
same observation can, of course, be made about surfaces. Work on g-quantity should 
precede work on q-quantity: “The two stages need to be distinguished, as two 
separate skills, each using a distinct level of abstraction, are needed for the two 
aims.” (Marchini, 1999). 

When a pupil “ ... has to differentiate on a physical object itself or on a geometrical 
representation, between the g-quantities in either one or two dimensions” (Jaquet, 
2000), an obstacle inevitably arises. This is the perimeter-area conflict. The research 
shows that younger children (6–8 years old) tend to identify the largest shape with 
the widest or highest (Montis et al., 2003) and older children perhaps add the 
measurements of width and height rather than multiplying them. This attitude can be 
ascribed to the pre-eminence of the additive conceptual camp (Vergnaud, 1990). 
Moreover “For a child it is an entirely new operation, perhaps even surprising; he 
knows how to add measurements of length, the sum of which is still a measurement 
of length, he now has to multiply two measurements of the same type to obtain 
another measurement of a completely different type.” (Jaquet, 2000). 

The contemporaneous presence of many shapes could be used to compare g-
quantities related to these shapes. We suggest that the learning of geometry is helped 
by working on comparison between two or perhaps more carefully chosen shapes. 
Moreover it may be that, before geometry had become institutionalised as a school 
topic, the pupil is able to compare the areas of two surfaces, for example by 
superimposing the sheets of paper on which they are drawn, but not be able to 
calculate the area. Similarly, he may be able to compare the lengths of two curved 
lines, but not be able to calculate the measures. Pupils’ normal school work on only 
one shape, instead, is a symptom that there is only the perimeter or area of this one 
shape to be measured, placing q-quantities before g-quantities. The consequence is 
that even if the question is about congruence of shapes, “Ascertaining equivalence … 
is carried out … translating the comparison into the field of numbers ...” (Chamorro, 
2001). At school, more attention is usually paid to q-quantities, mainly for reasons of 
time and availability of instruments. But in order to facilitate pupils’ understanding 
and not present them with unnecessary obstacles, it is important for the step to 
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measurement to be taken only in the next stage. Early introduction of formulae for 
measuring contributes to the formation of an obstacle 2 famous as “perimeter-area 
conflict”. 

Methodology 
To make a preliminary investigation of pupil’s spontaneous procedures, we gave 
them two individual worksheets. Worksheet A concerned comparison of perimeters, 
and worksheet B concerned comparison of areas, without referring to their 
measurements. These worksheets were distributed to pupils at the start of the activity 
of MLP, to four classes (9-10 years old) and two (10-11 years old), for a total of 130 
pupils3. The pupils in the fourth year had not yet been introduced to the concepts and 
were given first worksheet A and then worksheet B. The fifth year students were 
given first worksheet B, and then worksheet A, with necessary modifications. The 
second worksheet was given several days after the first. As shown in the next section, 
each worksheet contained pictures of 11 shapes. For worksheet B it was presumed 
that, as it usually happens, the children would understand the shapes as two 
dimensional, even though only the boundary was drawn. As the drawing of the 
boundaries of a two-dimensional shape can constitute an obstacle, we chose a 
context, which allowed differentiation between the one- dimensional and the two-
dimensional aspects in the same shape. The context is described below. We got pupils 
to work with shapes drawn on paper rather than on concrete objects for the following 
reasons: the high number of children involved, the need to find out each individual 
child’s own ideas without external influences and the need to have a written record of 
these ideas. Each pupil worked individually on an enlarged copy of each shape. All 
shapes were drawn on an A4 sheet of paper. The teacher gave no instructions apart 
from telling the pupils to do what was on the worksheet, so they were free to use any 
instrument they wanted. After the tasks, individual oral interviews were carried out 
and pupils asked to explain their choices, strategies and reasoning. The worksheets 
will be distributed again in another year’s time, as a long-term check, at the end of 
the project. 

Worksheets presentation 
The worksheets (in appendices) describe the problem of two shepherds, Mario and 
Pino, who have to build a fence to enclose their sheep. This context seemed suitable 
for an examination of ‘perimeter’ and ‘area’4. Worksheet A deals with determining a 
fence: the smallest possible quantity of barbed wire is to be used. Worksheet B deals 
with the greatest possible quantity of grass for the sheep to graze on.  

                                                 
2 Research reveals that the damages of this sort of teaching persist in secondary school students: if the shape is out of 
canonical geometric shapes, many students answer negatively to the question whether there is a measure of the length or 
of the area. (Grugnetti, Rizza, 2003). 
3 Istituto Comprensivo (Primary and Middle School) in Collecchio, Parma, Italy. We wish to thank the teachers in 
whose classes the pupils took part: A. Balestrieri, D. Bazzarini, E. Nocera, and M. Zanetti. 
4 Modern pupils do not usually have direct experience of sheep and fences, but they are usually familiar with them from   

stories. 
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In order to focus pupils’ attention on the drawings, the first question is about the 
fence itself: it is based on the concepts of closed or open lines.5 The question about 
safety is intentionally vague with the aim of investigating pre-conceptions. Pupils 
were asked to explain their choices. It was presumed that they would select as safest 
those fences, which prevent the sheep from escaping, and would thus exclude lines D 
and M, which are open. We used the representation normally used to show open 
lines; a possible gate is not drawn. When the unsafe fences have been excluded, nine 
shapes remain for comparison of perimeter and area. Most of the shapes are not easy 
to compare. The aim was not for the pupils to use intuition, which is often the case in 
introductions to the subject. We worked pupils to compare shapes precisely where 
comparison is not immediate. To simplify the task, the worksheets ask pupils to look 
at terns groups of shapes, which are intended to help them make meaningful 
comparison, and graded in increasing order of difficulty. Within each group of three, 
two of the shapes are easy to compare, while the comparison with the third requires 
pupils to identify suitable strategies. Overall, the pupils have to find suitable ways of 
comparing and possibly find measurement tools, and the activities are fairly complex. 
We predicted that pupils would use various methods: perceptive comparing (e.g. ‘you 
can see’ that B is smaller than A), superimposing shapes (e.g., if you put H over I it is 
clear that H has a larger area), dividing into equal pieces (equi-decomposability) (e.g. 
G can be transformed into A by cutting off and moving a piece) and measuring (e.g. 
the perimeter of F or H can be evaluated with a piece of string). It would be difficult 
for pupils to measure the perimeter of the shapes with curved boundary, even for 
older pupils who know how to approach the exercise with polygons. Shape H in 
particular is irregular and allows only estimates of measures. It is important to let 
primary school pupils realise this so that they do no grow up thinking that perimeter 
and area can only be measured when handy formulas are available. Another reason 
for using H in the exercise was because it is similar to a fence in reality, it also 
enabled pupils to think about perimeter and area without using calculations and 
formulae. Overall, various different comparison strategies are necessary; this is 
another reason for the complexity of the exercise. 

The next questions on the worksheet concern the possible existence of isoperimetric 
or equi-extended shapes. Lastly, pupils are asked to consider all the shapes and rank 
them in increasing order of perimeter or area. This last task is particularly complex, 
as it requires numerous comparisons and ordering of a set of nine members. Pupils 
are not used to dealing with such numerous sets. 

Results and analysis 
The experiment yielded both quantitative data (the percentage of correct replies) and 

qualitative data (reasoning, pre-conceptions etc.). We follow the numbering scheme 

of the worksheets. 
                                                 
5 This question appears on the first worksheet pupil’s meet, either in worksheet A as illustrated or on worksheet B. 
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Worksheet A 
1) Concept of open vs. closed 

We predicted that the first question would not be problematic as it concerned 
activities the pupils had carried out previously. But it yielded significant results. The 
table shows the percentages relating to shapes chosen, respectively, least or most 
frequently. 

A few 9-10 years old saw D and M as unsafe 
fences because they mistook the ‘gap’ in the 
line as a gate, necessary in their view to let 
the sheep in and out. The 10-11 years old 
excluded D and M in a higher percentage, 

perhaps because they are more used to working with traditional geometrical shapes 
given by closed lines. It is interesting to note that the least frequently excluded shapes 
are A, E and I, in other words, those with rectangular or almost rectangular shape. 
This was not the only criterion used. The context of our questions influenced the 
pupils a lot. By the word ‘safe’ they understood not only that the sheep should not 
escape, but also that they should not hurt themselves. We researchers used the word 
‘safe’ in order not to explicitly name closed lines, but the pupils’ interpretations were 
different based on the distinction between closed and open lines. The choice of an 
ambiguous word allows various different interpretations. If the pupil “sees” the space 
inside and outside a line, s/he has the concept of “independent space”, in which the 
line is placed (Speranza, 1997). The pupils who “see” closure in the open fences 
perceive as space only that internal (intra-figural non-independent space). Another 
important aspect is the presence of sharp corners: children distinguish between 
internal and external corners (Vighi, 2003). The question ‘Which (fence) do you 
think they should choose?’ does not necessarily force pupils to choose only a closed 
line. For example, B and F were often excluded because they were too thought to be 
too small. “F and B are not wide enough for the sheep, and if they are all squeezed 
up together they might climb over the fence by climbing on each others’ backs”. 
Some pupils excluded C, F, H, G and L “because if they run the sheep might hurt 
themselves”. In the oral interview they explained that they meant the “parts with 
corners” which might “hurt them”. The drawings do not give the idea of a fence for 
some of the pupils. “C, L, G and H are a funny shape.” ‘Sheep usually have a fence 
like I”. “I have never seen a fence like F”. Pupils with greater experience of 
geometry wrote things like, “I excluded C, F, G and L because they are not 
geometrical shapes and so they are more difficult to control”. So pupils opted for 
rectangular shapes for reasons of regularity, symmetry, absence of ‘inside corners’, 
spaciousness as well as aesthetics. 

 M D A E I 

9 -10 years old 63% 62% 7% 7% 9% 

10 -11 years old 91% 89% 6% 11% 17% 
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2) Comparing perimeters 
 Finding the shape with the smallest perimeter Comparing perimeters 

 B F C   A-B-I E-F-L C-G-H 

9 -10 years old 95% 87% 79%  

10 -11 years old 85% 94% 88%  

9 -10 

years old 

80% 26% 16% 

 

The percentages in the first table show that the fence with the smallest perimeter was 
identified fairly easily. As the second table shows, only the 9-10 years old carried out 
the comparison of terns activity, as the older ones had already worked on the concept 
of perimeter. In the first group of three, the order of the perimeters is the same as the 
order of the areas, and this meant that most of the replies were correct even if the 
reasoning was faulty. Many pupils in fact put one shape on top of another and seeing 
that shape I ‘fits inside’ A, deduced that I has a smaller perimeter than A. This is a 
clear instance of the area-perimeter conflict, as is the following remark: ‘B is smaller, 
so it covers less area so less barbed wire is needed’. Some pupils used the concept of 
perimeter correctly: “I went round the shape with string …” and “Shape I has 
rounded corners so it needs less barbed wire”. In the second group of three, the 
shape with lowest perimeter and area is F, and reasoning correctly, in terms of 
perimeter, or incorrectly, in terms of area, it is in either case identified as the 
‘smallest’.  The other two, L and E brought to light the confusion between the two 
concepts. Shape E in fact has the biggest area, but the smallest perimeter. The 
following are some of the interesting comments from pupils: “I traced the perimeter 
and counted every second, and E is the biggest”. There is the idea of movement and 
the dynamic geometry. “I measured the length and the height with a ruler, and L is 
the biggest”, “F has sides that come in so it needs less barbed wire”. In the third 
group of three, the most common mistakes were to break up G and transform it into a 
rectangle equivalent to A, and say that C has one ‘piece’ less than A. This method is 
valid for measuring the area, but misleading for measuring the perimeter. In this case 
too, the shape with smallest perimeter, C, coincides with the smallest area. It is thus 
important to compare G and H. Not many pupils used string to measure the perimeter 
of H. A few used a ruler to measure the longest dimensions, many made a rough 
assessment just by eye, seeing which shape was the biggest. 

3) Isoperimetric 

The results show that pupils do not often recognise that different shape can have the 
same perimeter. Only a few identified the group A-E-C or two of its members. The 
percentages regarding the two shapes A-E are surprising: 19% (9-10 y. o.) and 12 % 
(10-11 y. o.). This was because they failed to recognise or use the congruence of the 
two shapes. A-C were recognised as having the same perimeter by only 9% of the 
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older pupils. Shape C was matched with L by 9% as having the same area (Tirosh, 
Stavy, 1999). The higher percentage concerns shapes A-G: the equi-decomposability 
prevails, as for B-F (18%). 

4) Comparing the perimeter of all the shapes 

This question provided the opportunity to look over replies to previous questions and 
find possible mistakes. But in fact pupils found it hard, as they are not used to 
comparing so many elements. There were no correct replies, and only 28% of the 9-
10 years old gave a reply coherent with the comparisons they had made in previous 
activities. 

Worksheet B 
5) Comparing area 

Finding the shape with the 
largest area  

                                   
Comparing the areas 

 H G A E    A-B-I E-C-F G-L-H  

9 -10 years old 55% 17% 13% 11%   9 -10 years old 72% 64% 56% 

10 -11 years old 60% 20% 46% 57%   10 -11 years old 66% 83% 69% 

 

The children generally found it easier to compare areas than perimeters, or at least 
tackled the problem with more appropriate strategies. Most pupils recognised shape 
H as the largest, but although the question 5) suggests there is only one, they 
indicated two or more fences although they are not in fact equivalent. The following 
methods were used by pupils to compare the area of shapes, as recorded in the 
interview: 

- superimposing shapes: “I placed H on top of E, H sticks out more, so it is bigger” 

- decomposing: “In G we moved a piece and it became the same as A” 

- measuring and comparing the ‘main dimensions’ (the main length or height): “H is 
longer than A, so it is bigger”, “I only measured the height of E and G, and they are 
the same”, “A, E and L have the same height and the same width so they are as big 
as each other”. The pupils used the traditional shape the rectangle and measuring 
methods. 

- measuring and comparing the perimeter: “in the straight parts I measured the sides 
with a ruler, and the curved sides in my head, then I added up the sides” 

- perceptive comparing: “I measured by eye”, “ L is the biggest by eye” 

6)  Equi-extension 

We did not predict that determining shapes of the same area should be difficult, at 
least as far as the simplest pairs such as A-E and C-L are concerned. But in fact there 
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were cases where pupils failed to recognise that two congruent rectangles, set in a 
different way on the sheet of paper, have the same extension. Only 18% of 9-10 years 
old recognised rectangles A-E and only 6% of the 10-11 years old identified pair A-
E. So isometric invariance, important property of equi-extension was not recognised. 

Visual perception tricked some pupils in the pair C-L; the missing rectangle in L 
appears to be larger than C. Cutting up pieces allowed pupils to see the equi-
extension of pairs B-F and G-A, and also E by transitivity. But none of the 9-10 years 
old used this method and the 10-11 years old used it only for G. So 20% recognised 
A and G as equivalent in area, but only 6% A, E and G. 

7) Comparing the area of all shapes 

There was a higher percentage of correct replies than for the question comparing 
perimeters, although the percentages were still low (14% and 16%). Older pupils 
however showed a higher percentage of replies coherent with comparisons given to 
previous questions: 46% for the 10-11 years old and 30% for the 9-10 years old. 

Conclusions 
The experimentation clearly confirms the existence of difficulties with the concepts 
of perimeter and area, widely discussed in teaching research. It yielded useful 
findings on children’s approach and procedures, discussed in our analysis of the 
results. Rather than definitive conclusions, it furnished us with ideas for further 
research. The pupils worked better on the area of a shape than the length of its 
boundary. In general, the bidimensional aspect predominated over the 
unidimensional: the fence with the largest area is usually thought to be that with the 
longest perimeter. But as we remarked above, it could be that the context we chose 
affected their judgement. In fact the adjectives “bigger” and “smaller”’ are more 
familiar to children in the context of sheep and fields than “shorter” and “longer”. 
Sometimes the unidimensional aspect prevails: to compare some areas,  some 
children compare heights, (Montis et al., 2003). The context we selected involves 
perhaps too many shapes and comparisons, but precisely for this reason it is more 
meaningful for the children as well as the researcher. 

An analysis of the children’s work confirmed the importance of working first on the 
concept of perimeter and area and only subsequently on measuring them. In fact 
measuring can prevail over the reasoning: for example, some children patiently 
measured every section of shape H, the most unusual, and added all the numbers 
together. The habit of using a ruler led them to identify the measurements they took 
with the lengths. They also used the verb “measure” inappropriately in cases of 
simple comparison. We also noted that pupils are accustomed to working on single 
shapes and not on the comparison of geometrical shapes. It would therefore be 
opportune to carry out work on geometrical transformations, particularly congruence, 
earlier. 
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The activities caused difficulties to the pupils in that there was a conflict between 
their already acquired knowledge and skills in geometry. They did not think of 
switching register, so there were few ‘common sense’ observations. But when they 
looked at area, which they had not previously studied at school, the children 
approached the problem in a more relevant and adequate manner. 

The procedures they used yield important information for designing activities to help 
them distinguish the two concepts of perimeter and area. 
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WORKSHEET A 
 

1) Two shepherds, Pino and Mario, want to find a safe fence to keep their sheep 
enclosed.  
Which of these fences do you think they should choose?  

 
 
The best fences are: ......................................................................................................   

If you excluded any of the fences, say which ones and write down why you 

excluded them...............................................................................................................  

2) Mario has a problem: he needs to use barbed wire for the fence and he wants to buy 

the smallest possible quantity.  

Which fence uses the least barbed wire, A, B, or I? ............................................................  

Write them in order here, starting with the smallest:  

Which fence uses the least barbed wire E, F or L? .............................................................. 

Write them in order here, starting with the smallest:  

Which fence needs the least barbed wire C, G or, H?.......................................................... 

Write them in order here, starting with the smallest:  

3) Are there any fences, which need the same length of barbed wire? If so, write them 

here and explain why. ...................................................................................................  

4) Now put all the fences in order, from shortest to longest.........................................  

WORKSHEET B 

5) Pino wants the fence to be as safe as possible, but he wants the sheep to have as 

much grass to graze as possible. Help him to find a safe fence, which encloses as 

much grass as possible. 

 

Which fence do you think he should choose? Why?....................................................  

Now look at fences A, B and I and compare them according to how much ground 

they enclose. 

Write them in decreasing order. ...................................................................................  

Do the same for fences E, C and F. ..............................................................................  

Do the same for fences G, L and H. .............................................................................  

6) Are there any fences, which enclose the same area of grass? If so, write them here 

and explain why. .........................................................................................................  

7) Now put all the fences in order, from the biggest to the smallest, according to how 
much ground they enclose. ...........................................................................................  
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“MEASUREMENT” ON THE SQUARED PAPER1 
 

Paola Vighi, University of Parma, Italy 

 
 

Abstract: In this paper we present an activity, experimented in an Italian primary 
school, focused on drawing ‘diagonal’ and congruent line segments on squared pa-
per. Squared paper is a material tool used to mediate geometrical concepts, among 
other things. It embodies rich mathematical knowledge and in some cases facilitates 
learning, while in other cases can be an obstacle. After an analysis of the problem on 
which the activity is based, we discuss results of an experimentation that have impli-
cations for teaching. The long-term risks relating to the lack of understanding and 
conceptualisation of some aspects embodied in squared paper are discussed. 
 

Introduction 
Squared paper is nowadays an ordinary tool in schools. Indeed it is somewhat surpris-
ing to find that it came into use only at the beginning of the Twentieth Century, when 
manufacturers started to sell it at affordable prices. Brock and Price (1980, p. 366) 
give a full description of the causes and stages of the gradual adoption of squared pa-
per: “It is clear that until the 1820s and 1830s the graphical method and, in particular, 
squared paper were rarely used. Moreover, until the 1870s … such methods remained 
in relatively uncommon use in Great Britain and were not employed by students as 
part of their elementary scientific and mathematical education”. Only by the end of 
the first decade of the Twentieth Century, squared paper came into use in mathemati-
cal activities. Squared paper is now used in primary schools in Italy for different ac-
tivities and purposes. In the early years it is used to support drawing activities. The 
points where the lines cross are used to pick out “stylised” drawings, with consecu-
tive line segments as boundary. Exercise books of squared paper are commonly used 
in mathematics; the grid help, for example, to keep numbers in columns for additions 
and subtractions. The squares are useful for drawing geometric shapes, for the pe-
rimeters of rectangles, squares and shapes with straight sides, and they are particu-
larly used for area. In the third year of primary school, a ruler replaces the “square” 
as a unit of linear measure, but the “square unit” is used for measurement of areas. 
Squared paper is also used for drawing symmetrical shapes. Though the syllabus may 
not be followed in practice, the maths programme in Italian primary schools explic-
itly refers to “the use of squared paper”, since, as Speranza writes (1989 a, p. 20), 
“the idea is extremely fertile, it gives us the basic idea of coordinates”. Squared paper 
embodies rich mathematical knowledge and can be useful to facilitate learning. But I 
believe that its full potential as a useful and important instrument in mathematics has 
                                                 
1 This work was carr ied out  in the Loca l  Research Uni t  in Mathematics Educat ion,  Univers i ty o f  
Parma,  I ta ly.  
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yet to be explored. Nowadays a lot of attention is given to technological tools, but it 
would be interesting and constructive to investigate more thoroughly how to exploit 
the humble squared paper. 
This paper presents an activity based on the concept of length of a diagonal line seg-
ment drawn on squared paper. Line segments of equal lengths will be compared 
without superimposition or measuring. The research is a preliminary enquiry. 

Aims 
The main aim is to find out whether children understand how to draw “diagonal” line 
segments on squared paper without measuring the length directly, but using the 
squared paper to measure “indirectly”. We also aim to identify possible difficulties 
and preconceptions about this. 
A more general aim is to study how to pave the way for the concept of gradient of a 
straight line. 

Theoretical framework 
We can consider squared paper as a cultural artifact. By cultural artifacts we mean 
“historical products that can be conceptual (e.g. scientific concepts), symbolic forms 
(for ex. numerical systems) or material (for ex. tools)” (Saxe, 1991). In other words, 
an artifact is a man-made instrument present in our culture; it is a means of commu-
nication. As research shows, “Pointing out and working on some «mathematical 
facts» that are present and encoded in opportune cultural artifacts can prove to be the 
keystone to create learning situations having a strong educational impact in school 
practice. In this way mathematical knowledge can be inserted into a common knowl-
edge, pupils can be stimulated and motivated and led toward a more conscious learn-
ing” (Bonotto, 1999). 
Traditionally on squared paper the pupils measure only horizontal or vertical line 
segments. But clearly squared paper can be used for other purposes, apart from count-
ing horizontally or vertically. It can for example be used to work with “diagonal line 
segments”. By “diagonal line segment” we mean any line segment which is neither 
horizontal nor vertical compared to the lines of the grid. Of course, for measuring di-
agonally, Pythagoras’ theorem is necessary, and obviously this is not taught at pri-
mary school. Let us, however, investigate how it can be used implicitly as an in-act 
theorem (Vergnaud, 1990). 
See the following line segment: 

 
Fig. 1 
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Even without measuring the length of a segment by a ruler, it can be “identified” as 
the diagonal of a rectangle. The line segment AB, for example, can be seen as a di-
agonal line of a rectangle with the horizontal sides measuring “two” and the vertical 
sides measuring “four”. Consequently any other line segment identified as “move-
ment by two and four sides” will be congruent to AB. We call this strategy “identify-
ing a diagonal line segment”. As research shows, “the idea of using two ‘compo-
nents’ (horizontal and vertical) to identify a shift is not immediately obvious. Chil-
dren tend to speak in imprecise terms and may confuse the length of a line with its 
projection.” (Speranza, 1989 b). In this case the custom of using the squared paper for 
horizontal or vertical measuring constitutes an obstacle (Brousseau, 1983) and leads 
pupils to make mistakes. 
It is also important to communicate that it is possible to work on length without 
measuring, that is to present the concept of length as g-quantity (Marchetti, 2005), as 
intrinsic property of an object, in order to avoid the “reductive effects of a didactic 
transposition which converts important mathematical concepts into useless concepts, 
through algorithms.” (Chamorro, 2001). 
We opted to focus on this subject in class through an activity based on the drawing of 
Fig.1. This is not a simple activity, in fact it is an a-didactic situation, in Brosseau’s 
sense (Theory of Didactic Situations). It is a situation where the pupil interacts in an 
environment (milieu) set up by the teacher for the learning of a particular knowledge: 
“The pupil knows very well that the problem has been selected to allow him to ac-
quire a new knowledge, but he must also know that this knowledge is wholly justified 
by the internal logic of the situation and that he can construct it without making re-
course to didactics.” (Brousseau, 1986). He acts as researcher and the teacher leaves 
him to work on his own initiative. An a-didactic situation is one where the pupil tries 
to find the answer using his own knowledge, which is however inadequate. This 
means that he has to take decisions, adjust his scheme of knowledge and sometimes 
retrace his steps to correct and modify his actions. This paper is based essentially on 
the pupils response to an a-didactic situation of action and on the analysis of their be-
haviour. 

Methodology 
In order to investigate, we designed an experimental activity based on drawing con-
gruent diagonal line segments by asking pupils to draw isosceles triangles. We did 
not allow the pupils to use measurements in the task. The complete experiment was 
carried out as follows: 
Planning and identification of a task which would lead pupils to think about the 
length of diagonal line segments: we used the concept of isosceles triangle, which has 
two sides of equal length, in order to work on equal lengths without explicitly naming 
them. 
Experimentation in the classroom: the pupils were asked to draw individually and 
freehand onto squared paper (squares 0.5 cm) following the teacher’s instructions. 
Analysis of results: The pupils’ drawings were studied and classified. 
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The classroom activity 
Sixty pupils 9 – 10 and 10 – 11 took part in the experiment2. Both classes had already 
worked with triangles, including isosceles triangles.  
The teacher drew the shape in Fig. 1 on a squared blackboard. The pupils were asked 
to look carefully and copy the shape onto squared paper. 
The next task was: “AB is one of the equal sides of an isosceles triangle which has all 
its vertices at the intersections of the lines on the paper. Complete the triangle” 3. 
The next task was: “Could you have completed the triangle in a different way? Copy 
line AB again and try again”. 
So the teacher merely asked the question. Each pupil took his own decisions and tried 
out drawings. At the end the teacher led class discussion. 

Analysis a priori 
“The a priori analysis of a situation attempts to determine if the situation can be lived 
as a-didactic by the pupil. It is a search for necessary conditions” (Margolinas, 1990). 

The first task is for the pupil to copy a line segment drawn on the board by the 
teacher. The second task is to draw an isosceles triangle, following a precise task: one 
side is given and the triangle vertices can only be at certain fixed points. Pupils are 
not told if the triangle has to be isosceles in A or in B.  The pupil therefore needs to 
know what an isosceles triangle is, and use this knowledge opportunely. As men-
tioned above, we adopted this approach of drawing congruent shapes in order not to 
mention the lengths of line segments. It is likely that the triangle drawn will have a 
horizontal or vertical side, and that the pupil will make use of the figural concept 
(Fischbein, 1993) of an isosceles triangle (Vighi, 2003). In other words, the pupil will 
probably be influenced by the stereotype of the “roof” or “flag” triangle (Marchini, 
2005). But this knowledge is not sufficient to carry out the task, it may even be an 
obstacle: squared paper can interfere with the mental image and the pupil may have 
difficulty in reconciling the two aspects. This is precisely the aim of the third task; 
leading pupils to acquire the skill to draw five different types of triangle: two acute-
angled, two obtuse-angled and one right-angled, as shown in Fig. 2 (if we distinguish 
between inversely and directly congruent triangles there are altogether six possibili-
ties). The pupil may attempt the task by trying out to draw different triangles, and 
then deciding if and how they are acceptable for the task.  

                                                 
2 I  wish to  thank teachers  T iziana  Colla  and Sara Ziver i  warmly for  their  co-opera t ion.  
3 We st ipula ted tha t  the tr iangle ver t ices were to  be at  these intersec t ions a fter  a  previous ex-
per iment where pup il s  had used the squares sporadica l ly,  drawing their  shapes as though the pa-
per  had been a  p la in whi te  shee t .  
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Recourse to the figural concept of the triangle allows drawing the first two triangles 
in Fig. 2. 
 

 
Fig. 2 

We predicted that some pupils would stop at this, but that others would look for new 
strategies to complete the task. It is necessary to take into account the grid of the 
squared paper as an element that can help carry out the task. In other words, the pupil 
needs to realise that the strategy of “identifying a diagonal line segment” is the best 
way of solving the problem. In fact, in order to complete the task, the following ob-
servation is fundamental: to move from point A to point B there is a shift of two hori-
zontal and four vertical squares. Moreover, starting from a point P each shift of two 
squares in one direction and four in the other gives point Q such that PQ is congruent 
to AB. This is the main learning point of the activity. We predicted two types of be-
haviour: either pupils ignoring the grid or otherwise finding that it interferes with 
what they have in mind, making their task more difficult rather than easier. Another 
strategy could be to place a pencil over AB so that one of the points coincides with A 
or B and find a second point on the pencil and rotate it so that it meets one of the in-
tersections. If the pupils do not do this spontaneously, in the phase of validation, we 
present a dynamic model consisting of a short stick which can rotate round one of its 
ends fixed to a grid.  

Analysis of the results 
A preliminary observation on the way the pupils drew the line segments is that when 
asked to copy a line segment like that in Figure 1 from the blackboard onto squared 
paper, many pupils mistakenly drew a simple diagonal line segment. Some pupils did 
not mark the end points of the line segment before they started to draw it. 
Observations on the first task: 

- Pupils found the task difficult as far as using the intersections of the squares 
was concerned, even though the points A and B they were given also coincided 
with the intersections. 

- A high percentage (82%) of pupils first drew a triangle with a horizontal base. 
The figural concept of triangle as “roof” predominates (Marchini, 2005). 
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- Some pupils (15%) drew a right-angle triangle with AB as hypotenuse, thus 
not carrying out the task correctly and giving emphasis to horizontal and verti-
cal directions (5 pupils in the lower class and 4 in the upper). 

- Many pupils (39%) copied the line segment AB with a slope of 45° to horizon-
tal. The pupils called this type of line segment a “perfect diagonal”.  

 

 
Fig. 3 

Observations on the second task: 
- Some pupils at first said they were sure there was no other possibility, but they 

thought again when they saw their peers drawing. 
- Some did not succeed in overcoming the usual stereotype of the “roof” and drew 

other triangles congruent to the previous ones or only isosceles ones, with AB a 
different length compared to the length stipulated (43%). 

- Other pupils (2 in the lower class and 9 in the upper one) opted for a “flag-style” 
triangle. 

- Others gave up the idea of the squared paper and emphasised the quality of “isos-
celes”. 

- Of the triangles shown in fig 2, the first was the most frequently drawn. The 
stereotype of the acute angle triangle prevented them from seeing the obtuse an-
gle triangle, which moreover is “turned round”. 

- Some pupils made a typical mistake mentioned above caused by their way of 
‘measuring’ line AB. They counted the squares crossed by the diagonal line from 
top to bottom up to four and applied the same number to the horizontal. Some-
times they actually remarked ‘Oh, it’s an equilateral triangle!’ even though the 
shape was clearly not equilateral. Checking with a ruler or the teacher question, 
(“Are you sure? It is an isosceles triangle?”) showed them their mistake. 

- Only two pupils in each class, after much thought and many attempts to carry out 
the task by exploiting the squared paper, found a way to “identify a diagonal line 
segment”. When they did, their faces lit up and they produced their drawings. 
The pupils have to anticipate the idea of a diagonal line as the hypotenuse of a 
right-angled triangle, which is not yet drawn. This activity is at the third, or rep-
resentative level, according to Van Hiele (1986).  
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Fig. 4 

 

The class activity was followed by a class discussion, led by the teacher. The pupils 
who had made the “discovery” drew it on the board and explained it to the others. 
Pupils debated and made argumentations about the solutions and tested solutions to 
find the ‘correct’ drawings. Naturally the discussion was concluded and institutional-
ised by the teacher. Exercises to test learning of the new concept were also used in 
subsequent lessons. 

Conclusions 
The problem and the way the pupils approached it provide rich food for thought. The 
situation is a good action’s situation in that the pupils assessed their own work as 
well as having the opportunity to improve it. But only about half of the pupils did 
this. The others were unable to overcome the stereotype of the “roof” or “flag” trian-
gle and look for a new way of solving the problem. Learning took place in some 
cases. So the main aim was achieved: several pupils discovered independently the 
strategy of “identifying a diagonal line segment”. The others, although they appeared 
to understand it were often not able to apply it immediately. Further work is clearly 
necessary. 
The artifact “squared paper” can lead the pupil to modify his actions and knowledge. 
But it can also constitute an obstacle. The requirement to draw a line segment with 
the end points at the grid intersections proved to be a difficult constraint. The tradi-
tional uses of squared paper typically gives rise to “taxi-geometry”, with horizontal or 
vertical movements. I feel however it would also be useful to work on diagonal lines 
and their lengths. It is a way of realising that in a right-triangle the hypotenuse is 
longer than each cathetus. Pythagoras’ theorem supplies a numerical explanation for 
this, while our activity involves the geometric aspect. 
The idea, discussed by Speranza, that the length of a diagonal line is the same as its 
orthogonal projection is often mentioned in the literature. Our experiments showed its 
prevalence. The mistake can last beyond school years if it is not corrected. Even uni-
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versity students are not immune: as can be seen in Fig. 5 showing two drawings by 
first year university science students. 

 

   
Fig. 5 

 

The triangle drawing activity allows teachers to point out this preconception and 
eradicate it before it becomes rooted in pupil’s mind. 
In conclusion, the low awareness among teachers of the mathematical facts embodied 
in squared paper means that the mathematical potential of the artifact may not be 
fully exploited. But I completely agree with Laisant who calls “squared paper, a mar-
vellous instruction which ought to be in the hands of everyone who works in mathe-
matics, from the kindergarten to the university”  (Laisant, 1904, p. 23, quoted in 
Brock and Price, 1980). 
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