
WORKING GROUP 1. The role of images and metaphors in the learning 
and understanding mathematics 

 
83 

The role of images and metaphors in the learning and understanding mathematics 
(including embodied cognition) 

 
84 

 Bernard Parzysz, Gert Kadunz, Elisabetta Robotti, Leo Rogers  
Exploring the effects of representations on the learning of statistics in Greek primary 
school 90 

 Sofia Anastasiadou, Athanasios Gagatsis  

Guess what is inside this box: Look at these opened boxes for clues 101 

 Roberto Araya  

The number line as metaphor of the number system: A case study of a primary school  111 

 Maria Doritou, Eddie Gray  
Ways of thinking about the uses of images in learning and teaching geometry: A more 
thorough investigation of the links between drawings and figures 

 
121 

 Sophie Gobert  

Mathematical Writing 131 

 Gert Kadunz  

Students’ and teachers’ representations in problem solving 141 

 Annita Monoyiou, Pandelitsa Papageorgiou, Athanasios Gagatsis  

The role of the conceptual metaphor in the development of children’s arithmetic 151 

 Carol Murphy  
The power and perils of metaphor in making internal connections in trigonometry and 
geometry 

 
161 

 Norma Presmeg  

Metaphors and image schemata in concept formation and reasoning 171 

 Reinert A. Rinvold  

Teaching special relativity 181

 Leo Rogers, Patrick J. Caines  

Metaphors and cognitive modes in the teaching-learning of mathematics 191 

 Jorge Soto-Andrade  
 



GROUP 1 : THE ROLE OF IMAGES AND METAPHORS IN THE 
LEARNING AND UNDERSTANDING MATHEMATICS (INCLUDING 

EMBODIED COGNITION) 
Bernard PARZYSZ

IUFM Orléans-Tours & DIDIREM, université Paris-7 (France) 
Gert KADUNZ 

University of Klagenfurt (Austria) 
Elisabetta ROBOTTI 

ITD-CNR Genova (Italy) 
Leo ROGERS 

Brunel University London (England) 

For the fourth time, a working group of CERME was devoted to study images and 
metaphors in the learning and understanding mathematics. A striking feature of this 
group is that, although most of the participants change from one congress to another, 
their number remains about the same, i.e. 15 to 20. This can be interpreted as a sign 
of a constant interest in these questions among researchers in mathematics education 
involving new (and mostly young, as it appears) people through time. 
Eleven papers were submitted to the group. As required by the organising committee, 
the review process was conceived as a peer review: in our case each paper was 
reviewed by three members of the group, including one of the four co-leaders, each 
of them being in charge of 2 or 3 papers. Each reviewer had then to produce a written 
report, and the co-leader in charge of the paper was asked to make a synthesis of the 
3 reports and to decide if the paper could be accepted for dicussion in the group, 
eventually after some changes; the 3 reports and the synthesis were sent to the 
author(s), who were asked to take into account the changes considered necessary 
before sending a second version. As a result, all the papers were accepted for 
discussion.
During the congress the group work was organised in the following way: in the first 
session, half of the time was devoted to an individual introduction by each member of 
the group and to a presentation of what had been discussed in the group at CERME 4 
and of the research questions which had emerged then, among which are: What are 
the characteristic metaphors, in use or possible, for different domain of mathematics 
or different systems of representation? How do metaphors and representations 
contribute to learning and communicating mathematical concepts? How does the way 
of using them influence the construction of mathematical concepts? How can we 
facilitate students’ passage from one type of representation to another? How can 
teaching lead to a change in students’ metaphors? What happens when there is a 
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mismatch between teacher’s and student’s metaphors?1. In each of the remaining five 
sessions two papers were discussed and the final meeting was devoted to the 
preparation of a ‘reporting session’, in which the group (in fact, the co-leaders) were 
to present the work which had been released during the congress. In this session, each 
author was asked to write down what they thought important to be remembered of 
their paper as well as the results of their research, and to raise one or two questions 
which they thought of interest for future research. A PowerPoint presentation was 
then elaborated on this basis to be presented the next day to CERME participants 
coming from the other groups.  
Ideas and discussion 
A metaphor2, implicitly compares two domains of experience, giving meaning to 
elements of one of these domains (the target domain) by reference to structural 
similarities in the other (the source domain). The two domains connected by 
metaphor have similar elements (the ground of the metaphor) but also dissimilar 
elements, which create a tension between the two domains (Presmeg).
Example : A teacher is a gardener. 

- The source domain is gardening, and the target domain is education. 
- The ground is the idea of creating suitable conditions for growing. 
- The tension is the fact that a student is a human being, contrary to a plant. 

The idea that explains how metaphors are linked with bodily experience is the notion 
of image schema (Johnson, 1987, pp 28). A schema is a recurrent pattern which 
occurs in a person’s cognitive activities; image schemata are images associated with 
such patterns and order in actions, perceptions and conceptions. Cognition may 
appear under various modes, and a teacher should be aware of that fact; for instance, 
one can distinguish between verbal and non verbal, or between sequential and non 
sequential, hence there are four modes when combining them (Araya).

1 See the group presentation by Parzysz, B., Pesci, A. & Bergsten, C. in Proceedings of  CERME 4. 
2 ‘[Metaphor] implies the use of an analogy or close comparison between two things that are not 
normally treated as if they had anything in common.’ (Hutchinson encyclopedia, 9th ed.). 
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Embodied
cognition

Cognitive modes 
(in the mind)

sequential non sequential 

verbal non verbal verbal non verbal

Neuroscience describes the neural organisation which permits the establishment of 
cognitive modes, and these modes, in turn, structure the output of external registers. 
One can think that the structure of abstract concepts is communicated more 
effectively by using the simpler structures of familiar ‘concrete’ concepts; for 
instance, a rotation metaphor can be useful to construct the ideas of special relativity 
(Caines). The interplay between metaphors and various cognitive modes must be 
explored, in order to study their relevance for the teaching and learning of 
mathematics.  Multimodal approaches, including diffent kinds of metaphors, often 
foster significant understanding. Then a question arises: how can the teacher facilitate 
connected mathematical learning? (Soto-Andrade). This leads to the notion of 
reification. According to Sfard3, “reification – a transition from an operational to a 
structural mode of thinking – is a basic phenomenon in the formation of a 
mathematical concept”. The sudden appearance of reification can be considered as 
the “aha” moment, the moment of real understanding. “It is the birth of the metaphor 
of an ontological object”4. Regarding this question, the ‘written’ (this term including 
also the drawn) is not merely a visual substitute for the ‘spoken’, but can sometimes 
show the unspeakable, allowing the emergence of new mathematical ideas. For 
instance, using ‘operatively’ a diagram, or recognising some similarities between two 
diagrams, can lead to the solution of a problem (Kadunz).
When using metaphors in teaching mathematics, difficulties appear when there is a 
mismatch between the teacher’s and their students’ focuses. For instance, in the 
English curriculum, the ‘number line’ metaphor is presented as a ‘key classroom 
resource’, and highly recommended as a ‘helping tool’. While teachers focus on 
procedural aspects (and by the way express limited conceptual and structural 
knowledge), children focus merely on actions and perceptual characteristics, and 

3 Reification as the Birth of Metaphor. For the Learning of Mathematics, 14, 44-55. 1994. 
4 Op. cit. 
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express difficulty in reconstructing knowledge about whole and rational numbers 
(Doritou & Gray). Actions using prototypes and embodied objects in interplay with 
suitable use of protocols, definitions and discourse (i.e. interplay between formal and 
cognitive) is a promising approach for improving the teaching and learning of 
mathematical ideas (Rinvold).
Principal theoretical approaches 
Among the eleven papers, two subgroups can be distinguished, the first one being 
based on the works of Núñez, Lakoff and Johnson on embodied cognition, and the 
second one on the works of Duval on the representation registers. In fact, 8 papers 
quote Núñez, Lakoff and/or Johnson as reference, and 5 papers refer to Duval5.
The idea of embodied cognition, supported by the convergence of cognitive science, 
neuro-science, cognitive linguistics and evolutionary anthropology, is based on the 
assertion that human ideas about such things as number, force, space and time must 
have their origins in bodily perceptions, and are not disembodied abstractions. They 
are mental constructions forged out of human experience over an evolutionary time 
scale. The theory of embodied learning and the conceptual metaphor can be 
considered as a lens for examining children’s informal, intuitive arithmetical 
knowledge (Murphy). Within this framework, a key notion is that of conceptual
metaphor, which is not merely a figure of speech but is a matter of thought ; it is the 
mechanism by which the abstract is comprehended in terms of concrete, everyday, 
sensory-motor experiences such as ‘in’, ‘next’ or ‘movement’. 
Duval6 distinguishes two typical characteristics of the cognitive activity involved in 
the learning of mathematics: on the one hand, several registers are commonly at play; 
on the other hand, mathematical objects can never be apprehended perceptively. Two 
questions arise from this consideration : How is it possible to learn how to move from 
one register to another ? How do we teach the students not to confuse a mathematical 
object with its representation ? The origin of many difficulties in the learning of 
mathematics is linked to these two questions. A classical example is given by 
geometrical ‘figures’. Many students cannot distinguish between the visual 
‘signifying’ information of a geometrical diagram and the geometrical properties of 
the referent (i.e. a theoretical object). Moreover some geometry problems are 
ambiguous as to the kind of validation wanted by the teacher (e.g. May I use 
measures to justify my conclusion ?). The kind of problem and type of validation are 
both part of the teacher’s responsibility, in order to make the didactic contract 
(Brousseau) explicit, but most teachers are not aware of this problem (Gobert).
Duval defined the notion of a semiotic representation register, which is a system of 
external modes of semiotic representation, e.g. verbal, tables, trees, graphs, 
geometrical diagrams, etc. Problems can arise when several registers can be used to 

5 As the reader has already guessed, two papers refer to both. 
6 Quel cognitif retenir en didactique des mathématiques? Recherche en Didactique des 
Mathématiques 16-3, 348-382. La Pensée Sauvage (Grenoble) 1996. 
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solve a problem. For instance, when solving non-routine problems, students cannot 
always choose appropriate representations. They often stick to one type of 
representation (mostly ‘concrete’) and do not (or cannot) move to another one, even 
when the teacher shows them that another type of representation is more suitable 
(Monoyiou, Papageorgiou & Gagatsis). This lack of flexibility in moving from one 
type of representation to another can be interpreted as the students’ conception that 
different representations of the same concept are completely distinct and autonomous 
mathematical objects and not just different ways of expressing the meaning of a 
particular notion (Anastasiou & Gagatsis). When the research focus is on ways by 
which students construct connections amongst various mathematical registers, 
awareness of the role of metaphors in these connections can be a useful research tool. 

Mathematical concept 

metaphors

Register 1 Register 2 Register 3 …

The discussions that we engaged in during the sessions offered us the possibility of 
looking for answers to some of the research questions that have emerged from WG1 
of CERME 4. We have considered the embodied cognition of Lakoff and Nunez and 
the representation registers of Duval as principal theoretical approaches when 
referring to metaphors and representations in teaching and learning practices. Thus, 
we have tried to give ideas about how metaphors, representations and their ‘links’ can 
be used by the teachers as a means to communicate mathematical concepts and, by 
the students, to learn and understand those concepts. We have also highlighted the 
risks and problems of using metaphors and different representations in teaching and 
learning practices. One of these risks is that the intended meaning implied by the use 
of a metaphor may not always be understood by the learner. 
For this reason, we have discussed the essential role of the teacher in managing the 
interplay between metaphors and various cognitive modes. The wide variety of 
experience from different contexts provided by members of the Working Group helps 
us to provide more and more detailed answers to the research questions. 
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EXPLORING THE EFFECTS OF REPRESENTATIONS ON THE 
LEARNING OF STATISTICS IN GREEK PRIMARY SCHOOL 

Sofia Anastasiadou*, �thanasios Gagatsis** 
*University of Western Macedonia, **University of Cyprus 

This study aims to contribute to the understanding of the role of the different types of 
representations and translations in the learning of statistics in Greek primary school. 
Specifically, this study investigates the abilities of 3rd, 5th and 6th grade primary 
school students in using representations (verbal, tabular, graphical and symbolic 
form) of basic statistical concepts and in moving from one representation to another. 
Results revealed the differential effects of each form of representation on students’ 
performance and the improvement of performance with age. Representational 
flexibility and associations were also found to vary across grades.

INTRODUCTION AND THEORETICAL FRAMEWORK 
In the field of statistics learning and instruction, representations play an important 
role as an aid for supporting reflection and as a means of communicating statistical 
ideas. The NCTM’s Principles and Standards for School Mathematics (2000) 
document include a new process standard that addresses representations.  
In this study, we revisited the role of representations in an effort further to understand 
the nature and structure of representations in developing statistical concepts. We 
investigated the developmental nature of the ability to use multiple representations 
and translate from one representation to another.  
Representations have been classified into two interrelated classes: external and 
internal (Goldin, 1998). Internal representations refer to mental images corresponding 
to internal formulations that we construct of reality. External representations concern 
the external symbolic organizations representing externally a certain mathematical 
reality. In this study the term “representations” is interpreted as the “external” tools 
used for representing statistical ideas such as tables and graphs (Confrey & Smith, 
1991). By a translation process, we mean the psychological processes involving the 
moving from one mode of representation to another (Janvier, 1987). Several 
researchers in the last two decades addressed the critical problem of translation 
between and within representations, and emphasized the importance of moving 
among multiple representations and connecting them (Gagatsis & Elia, 2004, 2005; 
Gagatsis, Elia & Mougi, 2002; Hitt, 1998; Yerushalmy, 1997). Duval (2002) claimed 
that the conversion of a mathematical concept from one representation to another is a 
presupposition for successful problem solving. According to Elia and Gagatsis (2006) 
the role of representations in mathematical understanding and learning is a central 
issue of the teaching of mathematics. The most important aspect of this issue refers to 
the diversity of representations for the same mathematical concept, the connection 
between them and the conversion from one mode of representation to others. Gagatsis
and Shiakalli (2004) and Ainsworth (2006) suggest that different representations of 
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the same concept complement each other and contribute to a more global and deeper 
understanding of the concept. 
The understanding of a mathematical concept presupposes the ability to recognise the 
concept when it is presented using a series of qualitatively different representation 
systems, the ability to handle the concept flexibly in the specific representation 
systems and finally, the ability to translate the concept from one system to another 
(Lesh, Post & Behr, 1987). In statistical education, the interest focuses both on the 
various types of representation and on the translations between them. 
This study intends to shed light on the role of different modes of representation on the 
understanding of some basic concepts in statistics. The study was designed to explore 
primary school students’ performance in using multiple representations of statistical 
concepts with emphasis on the effects exerted on performance and on the relations 
among the various conversion abilities from one representation to another by the age 
of the students.
METHOD 
Participants 
The sample of the study involved 220 third grade students (age 9), 225 fifth grade 
students (age 11) and 229 sixth grade students (age 12) from primary schools in four 
regions of Western Macedonia. These regions were selected because of their diversity 
in size, population and geographic location. In particular, the four regions vary in 
terms of geographic location, student population, school size, student achievement, 
ratio of the number of students to the number of teachers, teachers’ methods of 
instruction, number of schools and proportion of teachers who received a recognized 
teacher education program at a university in their initial training. Below we briefly 
describe the content of teaching that students receive in statistics in the third, fifth and 
sixth grade of primary school according to the Greek curriculum, in order to give 
some information on students’ prior knowledge. 
The content of statistics in the third, fifth and sixth grade
According to the curriculum, third grade primary school students are taught to: record 
data, portray data through the relevant graphic and tabular representations, make 
assumptions and predictions regarding the results of the relevant actions, and reach 
the relevant conclusions based on the data. Additionally, third grade students must be 
able to: perceive the concepts of chance and probability, as well as the relationship 
between them, detect probable events, calculate the frequency of events and 
categorise the relevant statistical data and create the relevant tables. 
Fifth grade students have often come across the terms “mean value” and “average” in 
mathematics problems and can perhaps understand their meanings intuitively. 
According to the curriculum, fifth grade primary school students are taught: the 
meanings of the terms “average” and “mean value”, how to read simple statistical 
tables and charts, how to use charts in order to present specific statistical data and 
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how to empirically interpret the meaning of research. Fifth grade students are 
expected to: understand the meaning and process of finding the average of the 
numbers provided; know the concepts of research, research population, research 
sample and research conclusions; know the basic steps that are required for 
conducting research, which include recording statistical data, sorting data, working 
out the absolute and relative frequency, graphic representations, calculating the 
average and formulating predictions and conclusions. Students themselves are 
required to gather and present statistical data that are drawn from their school and 
wider social environment.  
In sixth grade students are taught to: record data, read simple statistical tables and 
charts, portray data through relevant graphic and tabular representations, read a table, 
extract information from it and convert it to a verbal or tabular representation, 
calculate the average and formulate predictions and conclusions. Additionally, sixth 
grade students must be able to: work out the absolute and relative frequency, 
calculate the frequency of events and categorise the relevant statistical data, construct 
the relevant tables and bar or pie or histogram charts, understand the meaning and 
process of finding the average of the numbers provided. 

Tasks and variables 
A test was developed and administered to the students of the three grades. The test 
consisted of 6 tasks on frequency tables, bar charts and their application to solving 
everyday problems. These 6 tasks can be divided into three groups of two similar 
problems about the point of proposed representations nevertheless the content of the 
problems were different. In particular, the first task gives some information in verbal 
form and students are required to give the graphic form of this information (bar chart) 
(V1vg), while the second task gives information of the same kind in verbal form and 
requires its transformation into tabular form (V2vt). The second task is the following: 
“The values that follow represent the height of six children: Maria 100cm, Nicos 
120cm, Kostas 132cm, John 140cm, Ann 114cm. Represent these data on a table.” 
The third task involves reading a table (see Table 1) of the frequency of students’ 
grades, extracting information from it and giving an interpretation in verbal form 
(V3tv).

Grade 6 7 8 9 10
Frequency 1 3 4 6 5

Table 1: The table included in the third task of the test

The fourth task involves reading a bar chart, extracting information from it and 
giving an interpretation in verbal form (V4gv). The fifth task involves reading a bar 
chart, extracting information from it and converting it to a tabular representation 
(V5gt). The sixth task involves reading a frequency and relative frequency table, 
extracting information from it and converting it to a bar chart (V6tg). 
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Right and wrong (from our point of view) were scored as 1 and no answers 0, 
respectively. Students’ responses to the tasks comprise the variables of the study 
which were codified by an uppercase V (variable), followed by the number indicating 
the exercise number. Following is the letter that signifies the type of initial 
representation (e.g. r=representation, t=table, g=graphic, v=verbal) and, lastly, comes 
the letter that signifies the type of final representation.
Data analysis 
For the analysis of the collected data the similarity statistical method (Lerman, 1981) 
was conducted using computer software called C.H.I.C. (Classification Hiérarchique, 
Implicative et Cohésitive) (Bodin, Coutourier & Gras, 2000). This method of analysis 
determines the similarity connections of the variables. In particular, the similarity 
analysis is a classification method which aims to identify in a set V of variables, 
thicker and thicker partitions of V, established in an ascending manner. These 
partitions, when fitted together, are represented in a hierarchically constructed 
diagram (tree) using a similarity statistical criterion among the variables. The 
similarity is defined by the cross-comparison between a group V of the variables and 
a group E of the individuals (or objects). This kind of analysis allows for the 
researcher to study and interpret in terms of typology and decreasing similarity, 
clusters of variables which are established at particular levels of the diagram and can 
be opposed to others, in the same levels. It should be noted that statistical similarities 
do not necessarily imply logical or cognitive similarities. 
The construction of the similarity diagram is based on the following process: Two of 
the variables that are the most similar to each other with respect to the similarity 
indices of the method are joined together in a group at the highest (first) similarity 
level. Next, this group may be linked with one variable in a lower similarity level or 
two other variables that are combined together and establish another group at a lower 
level, etc. This grouping process goes on until the similarity or the cohesion between 
the variables or the groups of variables gets very weak. Based on this process, it is 
evident that the shorter the vertical lines in the diagram the stronger they are. The red 
horizontal lines represent significant relations of similarity.  

RESULTS 
Descriptive results 
Table 2 presents the success rates of third, fifth and sixth grade students in all types 
of conversions.
Students’ success in each grade varies across the different conversion tasks. 
Considering the lowest and the highest percentage in each grade, this variation 
decreases with age: third grade, 22-36%; fifth grade, 48-59%; sixth grade, 75-82%. 
These findings showed that the success rate improves with age and continued 
instruction. Continued instruction help students to carry out conversions of statistical 
concepts more successfully. According to Duval (2002) the conversion of 
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representations is consider as a fundamental process leading to mathematical 
understanding and successful problem solving. Thus a conversion between 
representations to another does ensure the correct understanding of the particular 
mathematical-statistic concept. Duval (2002) and Even (1998) the ability to identify 
and represent the same concept through different representations is considered as a 
prerequisite for the understanding of the particular concept. 
Tasks Type of translation Third grade 

success rate (%) 
Fifth grade 
success rate (%) 

Sixth grade 
success rate (%) 

V1vg Verbal - Graphic 33.15%, 54.6% 82.3%
V2vt Verbal - Tabular 23.5% 62.3% 76.5%
V3tv Tabular - Verbal 22.2% 60.4% 75.8%
V4gv Graphic - Verbal 30.16% 48.4% 79.1%
V5gt Graphic- Tabular 24.4% 53.7% 74.6%
V6tg Tabular - Graphic 35.56% 59.2% 79.4%
Table 2: Success rates of students in the tasks 

In order to examine in a more comprehensive way the differences between 3rd, 5th and 
6th grade students with regard to their performance in the various tasks and the 
interrelation of their responses, a comparison was made between similarity diagrams 
1, 2 and 3 concerning the 3rd, 5th and 6th grade respectively.
Similarity analysis results 
The similarity diagrams in this study concern the data of each grade separately, and 
allow for the arrangement of students’ responses (V1vg, V2vt, V3tv, V4gv, V5gt, 
V6tg) to the tasks into groups according to their homogeneity. 
Two clusters (Cluster A and B) of variables are identified in the similarity diagram of 
third grade students’ responses as shown in Figure 1. The strongest similarity occurs 
between variables V1vg and V6tg in Cluster A. It is suggested that students employed 
similar processes to construct a graph based on information given verbally or in a 
table. The similarity connection of the variables V1vg and V6tg to the variable V4gv 
reveals students’ consistency with regard to their performance in constructing a graph 
and their performance in drawing information from the graph and interpreting it 
verbally. Cluster B consists of the variables V2vt, V5gt and V3tv. It is suggested that 
students dealt consistently with the tasks that required the construction of a table 
based on information given in verbal or in graphic form, as well as, with the task 
involving the verbal interpretation of its data.
The formation of the two distinct clusters indicates that students dealt differently with 
conversions requiring the construction of a graph or the verbal interpretation of a 
graph (V1vg, V6tg, V4gv), relatively to the conversions involving the creation of a 
frequency table or a verbal description of the data given on a table (V2vt, V5gt, 
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V3tv). This suggests that students in third grade treated the graphic and the tabular 
representations in isolation. Students’ higher success rates at the tasks of the first 
cluster (V1vg: 33.15%, V6tg: 35.56%, V4gv: 30.16%) relatively to the tasks of the 
second cluster (V2vt: 23.5%, V5gt: 24.4%, V3tv: 22.2%) indicate their greater 
difficulty in tackling the second group of tasks and provide further support to the 
above assertions.

V
1v

g

V
6t
g

V
4g

v

V
2v

t

V
5g

t

V
3t
v

Cluster B Cluster A  

Figure 1: Similarity diagram of third grade students’ responses

The similarity diagram of the fifth grade students’ responses, illustrated in Figure 2, 
involves three pairs of variables (V1vg-V2vt, V4gv-V5gt, and V3tv-V6tg). This 
grouping suggests that students dealt similarly with the conversions involving the 
same initial representation that is verbal form, graph and table.  
Thus, the initial representation of the task had an effect on the conversion or 
interpretation processes employed by the fifth grade students. The similarity cluster 
(Cluster B) of the variables including the table as a starting representation (V3tv-
V6tg) is disconnected from the other similarity pairs which form a joint cluster 
(Cluster A), indicating students’ compartmentalized ways of handling frequency 
tables and the other forms of representation, i.e. graph and text. 
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Figure 2: Similarity diagram of fifth grade students’ responses 

The strongest similarity in the similarity diagram of the sixth grade students’ 
responses, illustrated in Figure 3, occurs between the variables V1vg and V6tg. This 
similarity reveals sixth grade students’ consistency in their processes when 
constructing graphs on the basis of verbal or tabular representations. Students’ 
responses to the other tasks are interwoven in the similarity diagram, indicating 
students’ coherence in dealing with the corresponding conversions irrespective f their 
initial or target representation. Students’ high success rates at all of the tasks of the 
test ranging from 74.6% to 82.3% provide further evidence for this assertion.
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Figure 3: Similarity diagram of sixth grade students’ responses 

CONCLUSIONS 
Representations enable students to interpret situations and to comprehend the 
relations embedded in problems (Christou, Gagatsis & Zachariades, 2001). 
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Representations are considered as extremely important with respect to cognitive 
processes in developing statistical concepts (Kaput, 1987). The main contribution of 
the present study is the identification of students’ abilities to handle various 
representations, and to translate among representations related to the same statistical 
relationship across three age levels in primary education. Our findings provide a 
strong case for the role of different modes of representation on students’ performance 
to tasks on basic statistical concepts such as frequency according to Duval’s theory of 
representations (Duval, 2002). At the same time they enable a developmental 
interpretation of students’ difficulties in relation to representations of frequency.
Students’ success was found to increase with age. Moreover, the three similarity 
diagrams clearly showed the different ways in which third, fifth and sixth grade 
students dealt with tasks involving different representations of statistical concepts. 
Third grade students despite showing consistency in constructing graphs and tables 
separately on the basis of other forms of representation treated these representations 
in isolation in their conversion processes. Their conversion processes depended on 
the target representation of the conversions and specifically on their abilities to 
construct a graph or a table. However, they showed inconsistency in interpreting 
graphs and tables verbally. Students encountered greater difficulty in analysing and 
interpreting data given in tabular form rather than in graphic form. This suggests that 
they have not yet developed the ability to read and interpret verbally various forms of 
representation of statistical concepts.
Compared to the younger students, fifth grade students have developed their abilities 
to construct a table or a graph and to interpret statistical data given in different forms 
verbally. However, their abilities were found to depend on the initial representation 
of the conversions. This behaviour yielded consistency in dealing with conversion 
tasks involving the same initial representation. The different modes of representation 
though, remained isolated in fifth grade students’ processes, as well.  
These findings show that despite the improvement of students’ performance from 
third to fifth grade, students in both grades encountered difficulties in the 
understanding of statistical concepts and more specifically in moving flexibly from 
one representation to another. Lack of connections among different modes of 
representations indicates the difficulty in handling two or more representations in 
mathematical tasks. This incompetence is the main feature of the phenomenon of 
compartmentalization in representations, which was detected in both third and fifth 
grade students (Duval, 2002). This inconsistent behaviour can be seen as an 
indication of students’ conception that different representations of the same concept 
are completely distinct and autonomous mathematical objects and not just different 
ways of expressing the meaning of a particular notion.  
This phenomenon did not appear in the performance of sixth grade students. Their 
success was found to be independent of the initial or the target representation of the 
tasks. Their high and consistent outcomes in all of the conversion tasks indicate that 
they have developed the understanding of the relations among representations and the 
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skills of representing and handling flexibly basic statistical knowledge in various 
forms. A possible explanation is that the older students could recognize the 
mathematical structure and content of the tasks in different representations and deal 
more flexibly with these components, either by translating them to another 
representation or by giving an interpretation for them. This suggests that development 
and instruction generate general cognitive strategies that are increasingly independent 
of representational factors. 
Moreover, in Regis Gras method of implicative statistics, ‘part right’ or ‘part wrong’ 
is scored as 0,5, but in our research we did not use such a case. For this reason, 
students who were not sure about the correct answer, and who avoided to answer at 
all were classified as ‘wrong’.
As we noted above, that statistical similarities do not necessarily imply logical or 
cognitive similarities and a more detailed investigation of pupils answers and what 
might be regarded as the ‘equivalence’ of the questions would be useful. 
At this point we ought to mention that in Greece many teachers’ supports the lack of 
necessity for the knowledge of statistics, as much in general subjects as in particular 
such as average term of a set of data, the frequency, and the construction of charts 
and graphics that derived from their previous studies. The Greek pedagogical 
departments do not have statistical education in the corpus until recently. We 
consider that this important factor that influence instruction in third, fifth and sixth 
grade.
Based on the findings of this study another important question arises: How could 
instruction in early grades of primary school help students overcome their 
compartmentalized ways of thinking and enhance their understanding of basic 
statistical concepts with the support of multiple representations? It would be 
practically useful if this question was examined by a future experimental study.   
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GUESS WHAT IS INSIDE THIS BOX:   
LOOK AT THESE OPENED BOXES FOR CLUES 

Roberto Araya
Programa de Investigación en Educación, Universidad de Chile 

A game used as a metaphor for some statistics and probability concepts is proposed. 
It is a pattern discovery game where players guess what is inside boxes. Random 
variables are considered box features, the classification variable is viewed as the box 
content, and methods to find the most discriminating variables are viewed as 
concrete ways of arranging boxes. Based on findings about the source of difficulties 
with probabilities the game promotes a strategy that uses ecologically valid formats. 
The verbalization of detected patterns as explicit rules expressed with algebraic 
language is also encouraged. Teaching is presented as hints to play better: how to 
store and graph information, and how to describe patterns. Evidence of student´s 
deep understanding of the targeted mathematical concepts is presented. 

INTRODUCTION
Learning statistics and probabilities is a major challenge. It is very easy to make 
conceptual mistakes. They are one of the main sources of cognitive illusions and 
fallacies (Piatelli-Palmarini, 1994; Gigerenzer, 2000). Gigerenzer (1998) emphasizes 
that using relative frequencies, probabilities and percentages to represent varying 
degrees of uncertainty is not a natural format for the mind. It is not ecologically valid. 
By studying human behaviour in uncertain decision-making situations, Gigerenzer 
concluded it is not that we are bad or inept at probabilities, but rather that our 
capacity heavily depends on the format used to represent uncertainties. Using the 
format of natural frequencies and natural sampling the illusion disappears. Instead of 
saying that the probability of an event occurring is 0.33, it is psychologically clearer 
to say that a given event will occur 33 out of every 100 times. This may look odd: 
although mathematically these forms are equivalent, to the mind they are not.  
Brase, Cosmides and Tooby (1998) add two more difficulties. They claim that we are 
not made to estimate uncertainty for a single event: it is too abstract, we do not run 
across this type of situation in real life. In other words, psychologically it makes no 
sense to talk of the probability of heads coming up for a single throw of the coin. 
What does make sense is to say that for every 100 times the coin is tossed, heads will 
approximately come up 50 times. In other words, “single events are unobservable” 
(Brase, et. al. 1998): the probability of a single event cannot be observed by an 
individual. We don´t have the mental mechanisms to handle probabilities of single 
events, but we do have the mechanisms to observe the frequency with which the 
events occur. The other difficulty is that of “individuation”. We have been made to 
count complete objects, but not the inseparable aspects of objects. We are not very 
good at segmenting the world in an unnatural fashion. We are wired to segment and 
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count whole objects as we find them in nature: under ecologically valid conditions. 
Our ability to count is not general. It is critically dependent on the specific nature and 
context of what is being counted. We are only good at counting complete objects that 
move as a unit, independently of other surfaces. In the case of other kinds of objects 
or conditions, we tend to select for other more outstanding or natural characteristics 
and “count” them. For example, toddlers spontaneously count certain objects like 
teddy bears, but they don´t count parts of objects. However, if the parts of the object 
have been broken off of the parent object they count them (Shipley & Shepperson, 
1990). This capacity for individuating concrete physical objects that satisfy certain 
specific conditions is part of our innate physics (Leslie, 1994; Spelke 1995; Povinelli, 
2000) and whole-object bias (Bloom, 2000).   
Based on these findings about the sources of the cognitive difficulties, I propose a 
game to teach some contents of probability and statistics. I argue that this game can 
be considered as a metaphor and I provide an example of its educational impact.  

THE METAPHOR OF GUESSING ON THE BOX CONTENT
There is plenty of empirical evidence (Cosmides & Tooby, 1996; Gigerenzer, 1998; 
Gallistel, 1990) that in experiential ecologically valid situations we correctly estimate 
probabilities implicitly (unconsciously) and act accordingly. In this format, our 
processing algorithms count the occurrence of events and gradually select the 
characteristics to be predicted as accompanying the events. Some characteristics are 
more salient and therefore may initially cause us to fix our attention on irrelevant 
aspects. But as situations are repeated, the relevant and ecologically valid 
characteristics start to be selected and stored in associative memories. The move to 
associations with actions and active representations is slower and more gradual 
(Siegler & Araya, 2005; Tranel et Al., 2000). From the educational point of view, it is 
very important to seek ways of helping to make explicit these implicit associations.  
Based on these ideas, I report on an experience with the “Magic Surprises” game, that 
was designed in 1996 to help teach some statistics and probability, particularly 
discriminant analysis, and to make connections with algebra (Araya, 2000). This is a 
guessing game, a sort of bingo, in which students must elaborate hypotheses based on 
evidence that accumulates gradually as the game advances. Different boxes of 
different colours and sizes contain surprises: numbered cells that can be white or 
black. Based on previously opened boxes (the learning sample) players must guess on 
the surprises inside the new, randomly selected boxes. The game encourages 
systematic information collection as in Table 1, its presentation in several graphic 
forms, and the use of algebra to make explicit the intuitively perceived patterns. The 
idea of using a random sequence of boxes is to introduce statistics and probability 
concepts using the innate capabilities for natural frequencies and natural sampling. 
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Figure 1 : Magic box and its surprise with 12 cells that was inside the box.

Box Face Cells

Colou

r Length Thickness Width 

Colou

r Length Width Expression 1 2 3 4 5 6 7 8 9 10 11 12

Blue 8.5 2.23 4.9 Pale 2 1.63 Sad W W W B B W W B B W W B 

Blue 5.8 2.16 5 Pale 1.84 1.28 Sad W W B W B W B W W W B W 

Blue 5.9 2.6 3.9 Pale 1.53 1.69 Sad B B B B B B B W B B B B

Blue 5.8 2.2 3.5 Pale 1.72 1.24 Sad ? ? ?  ? ? ? ? ? ? ? ? ?

Table 1: After the first three outcomes, player n has to guess the colour (Black or White) of 
cell n for the box features written on the 4th row. 

Additionally, the box is simple for our innate physics modules to understand and 
handle. It satisfies the Spelke conditions (Spelke et Al, 1995): cohesion, continuity, 
solidity and contact. Furthermore, boxes and surprises facilitate not only counting and 
individuation strategies, but also confirmation of frequency estimates, and the use of 
perceptual pattern recognition skills for discriminating between different factors 
(figure 5).

Figure 2. Screen to input guesses and screen with outcome shown below the guesses.   

The teacher or game coordinator can define different relationships between the 
visible external characteristics of the boxes and the surprises inside. For example, she 
may choose two variables (i.e. box-length and box-width) and establish that a given 
cell (cell number two, for example) is white or black, according to whether these 
variables are over a given straight line (in the plane formed by the box-length and 
box-width variables). In the example that follows, the teacher has selected a 
discriminating region defined by two second-order inequations for the box-width and 
face-length variables. Therefore in the x-y graph the black cells, marked with crosses, 
appear in the middle of a region defined by two parabolas (figure 3).  
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Slowly, the distribution of black cells (crosses) and white cells (square dots) begin to 
form a pattern as the game advances. The first image corresponds to the outcomes of 
the first ten surprises, the second to the first 100 surprises. The gradual emergence of 
a clear pattern easily captures students’ attention and helps to develop classes that are 
both engaging and educative. 

Figure 3 (a) Graph of the first ten surprises.    (b)Graph of the first 100 surprises.                  
A cross represents a black surprise, the other mark represents a white one.

Points are not only awarded to correct guesses but also extra points are awarded if the 
player can produce rules expressed in algebraic terms that when applied to the present 
data generates correct guesses. Examples of such rules are: 

IF box-width > 5                           IF   box-width  +  2*face-length  < 8    

THEN cell_5 is black                         THEN cell_3 is black 

ELSE cell_5 is white                          ELSE cell_3 is white 

Rules can also be expressed graphically as decision trees. 

In the game the teacher not only promotes the processes of counting, estimating 
frequencies, making tables and graphs, but also establishes a connection between 
statistics and algebra, and stimulates the search for multiple representations.  
When rules are used the game can be played not only to guess the outcome of the 
next box, but alternatively it can be played to guess for a sequence of 10 or 100 
boxes. This way the teacher can make the distinction between one event and several 
events, avoiding the difficulty of assigning probabilities to single events. For single 
events, the guess has to be if the cell is going to be white or black, but for multiple 
events the student can also give rules such as: 

IF box-width > 5                         

THEN   7 out of 10 times cell_5 is black

ELSE    1 out of 10 times cell_5 is black 

The mathematical concepts are taught during the game as hints to play better. The 
teaching strategy has three parts. First, the rules of the game are explained and 
practised. After a few guesses and checking the outcomes, the teacher explains how 
to record the information in a table and why in this way it is easier to find patterns. 
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Then the game continues and after a while the teacher explains how to represent 
information on number lines. This means, that each measurement of a box feature (for 
example, box length = 6.1) is represented as a mark located on the position 6.1 of the 
box length line (Fig 5). Then the teacher analyses the advantages of using our visual 
processing capability to find interesting patterns on the generated learning sample. 
Then the game continues. After another couple of turns, the teacher explains how to 
display the information as x-y graphs. This way the students read the graphs where 
each cross is the location where a dart thrown by a (black) machine arrived, and each 
circle is the location where a dart thrown by another (white) machine arrived. Then, 
the game continues. After a another couple of turns the teacher explains how to 
describe regions that discriminate between crosses (black cells) and circles (white 
cells) using rules with algebraic expressions and decision trees.

WHERE IS THE METAPHOR?
There is a long history of games associated with probability, from the first book on 
the subject, written by Cardano in the 1560s, to practically all standard textbooks 
used today. The use of games as metaphor is also common in natural language (“play 
your cards right”, “the ball is in your side”, “life is a game”) and in science (theory of 
games is used by Lakoff & Johnson as a metaphor for rational action, board games 
are considered by Holland as one cornerstone metaphor of science). In mathematics 
metaphors are used everywhere (Lakoff & Nunez, 2000; English,1997; Holland, 
1998; Araya, 2000; Richland et Al, 2004; Soto-Andrade, 2006), as in probability 
(Lakoff & Johnson, 1999), even though most students and teachers are unaware of 
their use. A metaphor is as a map between abstract ideas and ones more innate, closer 
to concepts and procedures better known or hard-wired. By the metaphor mechanism 
a kind of vestigial cognitive organ is invited (Pinker, 1997). There is the source 
domain of the more innate or better known concepts (Holland, 1998; Lakoff 
&Johnson, 1980; Holyoak & Thagard, 1995; Gertner et. al., 2001; Finke et. al., 1992) 
and the target domain with the more abstract or less innate concepts. The target 
objects do not have to resemble their corresponding source objects, but the structural 
properties of both domains must be similar (Falkenhainer et. al. 1989).  

Figure 4: The Magic Surprise game as a metaphor for statistical pattern finding and 
discriminant analysis. 
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Here the source is the guessing game. It is a way of thinking about random variables 
and discriminant analysis (the target). The classification variable (typically with two 
values) in the target domain is imagined as the content inside the box: a white or 
black cell. The independent variables in the target domain are seen as different 
features of the box that contain the cell. These are evolutionary meaningful features 
such as colour, shape, and characteristics of faces drawn on one side of the box.  
Furthermore, the notion of some unknown connection between the independent 
variables and the classification variable is illustrated as the connection between the 
box characteristic and the colour of the cell. In each game such a connection is 
designed by the teacher but is unknown to the players. There are powerful hard-wired 
pattern recognition circuits that we can use to search for clues on the source domain. 
One way is to form two groups for the previously opened boxes according to the 
colour of the respective cell inside. This way the player´s visual system will 
automatically find the discriminant variables (see Figure 5). It will detect if there is a 
box shape, its colour or an expression on the faces painted on the boxes that 
discriminate between the black or white cells. Once the player has seen this relation 
then we can ask her to express it in mathematical form. Also, we can ask her to look 
for other ways to use our perceptual systems to help find or make the findings more 
precise. The x-y graphs for example, help to find better rules that discriminate 
between black and white contents, and describe them mathematically. 

Figure 5: Three boxes contain a black cell and four contain a white cell. Note that it is very 
easy for the visual system to detect that the boxes closer to a square contain black cells. 

Arranging boxes is a smart strategy for using the external world to store information. 
This way some part of the pattern finding is computed by external world procedures 
as well as perceptual brain circuits, facilitating enormously the computations that the 
higher cognitive centres have to do to detect patterns. In this embodiment view of 
cognition (Ballard 2002), the external world is an important computational resource 
that frees resources otherwise needed by the internal cognitive system. Furthermore, 
the body, that serves as an interface between the world and brain, provides additional 
computational resources that also frees additional resources. The body reacts 
emotionally on the early implicit detection of patterns, signalling the possible 
emergence of a pattern. One of the main objectives of the game is to help the 
translation of the implicit findings to more explicit forms. The transition from the 
initial implicit learning to explicit learning is a dynamic process very similar to the 
discovery process on other tasks (Tranel, et.al., 2000; Siegler & Stern, 1999; Siegler 
& Araya, 2005). The game metaphor and the different graphical tools taught, help the 
transition since the geometric features of the boxes and faces are easy to describe 
explicitly using algebraic notation.
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EVIDENCE OF LEARNING AND GENUINE UNDERSTANDING OF THE 
TARGETED MATHEMATICAL CONCEPTS
The game has been played by elementary, middle and high school students and 
teachers. I report here one illustrative case that has been video recorded. It is a 9 year 
old girl playing alone with a computer version of the game and where each box has 
only one cell. After having made 15 guesses and obtained as feedback the 15 
outcomes she has all the information in a table and she has marked the previous 
results on the number lines associated with each variable as shown in figure 6. 

Figure 6 :  The first 15 surprises (8 blacks and 7 whites) graphed in three lines. The first line 
contains the face width of each of the first 15 surprises as a location in the line and marked 
as cross if the surprise was black and circle if it was white.

At that point of the game the subject is being interviewed: 
Researcher:  Which of all the components you think is more important? 

Subject:  face-width 

Researcher:  and (this case) where is it located? 

Subject:  here (pointing with the pencil to the corresponding location on the face-
width number line) 

Researcher:  and according to that, what (colour) should it (the cell) be? 

Subject:  it should be white colour 

Researcher:  OK, make your guess 

She introduces her guess and the computer simulates the opening of the box and the 
computer announces that her guess is correct. 

Researcher:  Why didn’t you select box-length? 

Subject:  Because it doesn´t help me much  

Researcher:  Why it doesn´t help you? 

Subject:  Because it is very entangled (she points to the box-length line) 

Researcher:  OK, and box-thickness? 

Subject:  It is more entangled (she points to the box-thickness line) 

Researcher:  and box-width?  

Subject: ...also (she points to the corresponding line) 

Researcher:  and look to face-width. Why face-width is less entangled? 
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Subject:  Because it has the balls more closed together (pointing with a pencil to the 
zone marked with circles on the face-width line), the crosses are more 
closed together (pointing now to another zone where the crosses are 
concentrated) and it is more easy. And if it is in this zone it is black, and if 
it is here (pointing to a zone) or here (pointing to another zone) it is white. 

Not only has the subject quickly learned to plot the data in several lines, marking 
with circles or crosses according to the colour of the cell, but she has understood that 
to make a good guess she has to find the variable that is most discriminating between 
white and black cells, and that this fact is represented graphically on the different 
lines. She has understood that this representation is very helpful and that a 
discriminating variable has the face width line marked with crosses and circles 
concentrated on clearly different zones so that there is not much superposition 
between crosses and circles.  She has also understood how to express her findings as 
simple rules, that her guesses are only probably correct, and that this probability can 
improve as she gathers more data from new outcomes, and consequently adjusts her 
rules. She also can assign probabilities to different guesses, recognizing different 
conditional probabilities according to partial information expressed as belonging to 
certain particular regions. Experiences with solving discrimination problems in 
different contexts, show that students can use this game as a way to think about the 
problem to solve. 

CONCLUSIONS
The pattern discovery multi player game described in this paper has been a successful 
strategy for teaching some statistics and probability topics and to express the findings 
with the use of algebraic language. Several “ecologically valid” teaching strategies 
are used in the game: frequencies and not percentages or probabilities (Gigerenzer, 
1998), one event versus several events distinction and, counting of complete objects 
instead of trying to count inseparable aspects of objects (Brase, et. al., 1998), 
segmentation as trees, and multiple representations. The game has been played by 
primary, middle and high school students and teachers.  It has been played with or 
without computers, and the learning of each player has been monitored as the game is 
being played even if hundreds of individuals are playing. Combined with a strategy 
of teaching that is presented as several hints to improve the play, the whole activity 
produces a rapid learning of mathematical concepts and algorithms such as efficient 
recording of categorical and numerical information, production of relevant tables and 
graphs, localization of numbers and intervals on the number line, plotting linear and 
quadratic functions, describing and visually representing linear and quadratic systems 
of inequalities, estimation of probabilities and conditional probabilities, building and 
comparing segmentation trees, and computing some simple statistical discrimination 
measures. The game has been shown to be a good metaphor for discriminant analysis 
and conditional probability concepts. It activates innate pattern recognition modules 
that facilitate the understanding of the concepts and its translation into mathematical 
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language. For example, fourth graders are able to represent the data in graphic form, 
and search and find discriminating variables, express their findings in algebraic 
language, and make predictions in probabilistic terms. The game is easily used as a 
source domain when thinking in other discriminating problems in different contexts. 
For example when tested on a problem analysing data to find symptoms that better 
discriminate certain medical conditions, they are able explicitly to establish a map 
between different symptoms and different features of the boxes, between the presence 
of the medical condition with the colour of the cell, and between the strategies to seek 
for the most discriminating symptom and the strategies to seek for the most 
discriminating box features. This type of evidence of learning and deep 
understanding of the intended mathematical concepts indicates that this is a didactic 
strategy worth pursuing.
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THE NUMBER LINE AS METAPHOR OF THE NUMBER 
SYSTEM: A CASE STUDY OF A PRIMARY SCHOOL 
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The number line has been characterised as a metaphor for the number system, 
although in its completeness it is a very sophisticated one. Using such a metaphor to 
teach can, however, lead to a learning paradox — its structure needs to be 
understood by both the teacher and the pupils. This paper examines the way the 
number line is presented, used and developed by the teachers and children within one 
school. The evidence indicates that the teachers emphasise its use as a tool with little 
consideration given to its structure. This appears to have a direct impact on the 
children’s construals and leads to misconceptions, errors and fragmentation. Having 
acquired only a limited appreciation of what it offers in terms of understanding the 
number system, the children eventually reject it.

INTRODUCTION
If learning is seen as an active construction process that grows, in part, from the 
assimilation of new knowledge with existing knowledge, then analogical reasoning 
associated with metaphors may provide a mechanism for linking the two (Gholson, 
Smithers, Buhrman, Duncan and Pierce, 1997). However, teaching through the use of 
analogy and metaphor, presents us with a ‘learning paradox’ — the structure needs to 
be understood both in the existing knowledge and in the new knowledge (Bereiter, 
1985). If the metaphor is active for the teacher but at the best dormant, or at the worst 
extinct for the learner, then the desired communication of ideas is unlikely to occur. 
Metaphors can allow large chunks of information to be transferred or converted from 
one domain of knowledge to a new one provided the similarities between the two are 
established but, even if they are, the metaphor is only as useful as the knowledge of 
the initial domain allows it to be. Black (1979) suggested that metaphors can help 
generate new knowledge when the known domain and the new domain interact in the 
mind of the learner so that each is enriched by the other — a process achieved if the 
metaphor is ‘active’ so that both the promoter of the metaphor and the recipient can 
identify the similarities between the two knowledge forms. 
Using evidence drawn from the way in which teachers and children in an English 
primary school used the number line, this paper indicates that understanding based on 
solely on the use of the number line for descriptions and actions associated with 
whole number did not provide a basis for handling its increasing complexity or 
provide a foundation for the reconstruction of knowledge necessary to cope with 
fractions.
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THEORETICAL FRAMEWORK 
Herbst (1997) suggests that the number line is a metaphor of the number system. He 
defines it as the consecutive translation of a specified segment U, as a unit from zero, 
that can be partitioned in an infinite number of ways (i.e. fractions of U) to form a 
number line: 

one marks a point 0 and chooses a segment u as a unit. The segment is translated 
consecutively from 0. To each point of division one matches sequentially a natural 
number. (Herbst, 1997; p. 36) 

All kinds of numbers can be represented; the natural numbers (1, 2, 3,…), integers (... 
-2, -1, 0, 1, 2,…), rational numbers (p/q, where p and q are integers), and real 
numbers (having infinite decimals). This quality enables Herbst to write about what 
he calls the “number line metaphor” and its “intuitive completeness” (Herbst, 1997, 
p. 40). This is a view enhanced by Lakoff & Núñez’s (2000) identification that the 
points on a line correspond to real numbers — the ‘points on a line’ metaphor. 
It is possible, therefore, to build a variety of number lines to introduce different 
numbers of the number system. Consequently, there can be a one-to-one 
correspondence between numerical statements and number-line figures and it is these 
features that would appear to suggest its use as a pedagogical tool.
Within the curriculum material recommended for English schools, (usually identified 
as the National Numeracy Strategy (NNS) (DfEE, 1999) designed to support the 
National Curriculum for Mathematics (DES, 1991), the number line is identified as a 
“key classroom resource”. However, within the documentation there is no explicit 
reference to the conceptual knowledge associated with its form and use. The number 
line is not explicitly defined, but seen as: 

… a means of showing how the process of counting forward and then back works. It can 
also be a useful way of getting children to visualise similar examples when working 
mentally. (QCA, 1999; p. 31)

Additionally, actions associated with the use of the number line are frequently 
ambiguously associated with a number track and a hundred square but, as Skemp 
(1989) argues, differences between track and line do not lie simply in the perceptual 
sense that one has the “spaces numbered” and the other has the “points numbered”:

The differences between a number track and a number line are appreciable, and not 
immediately obvious. The number track is physical, though we may represent it by a 
diagram. The number line is conceptual – it is a mental object, though we often use 
diagrams to help us think about it. The number track is finite, whereas the number line is 
infinite. However far we extend a physical track it has to end somewhere. But in our 
thoughts, we can think of a number line as going on and on to infinity. (pp. 139-141) 

Within the NNS the number line appears not only as an alternative version of the 
number track but it also is frequently fragmented to emphasise particular features of 
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the number system such as whole number and fraction. Expanding knowledge from 
the former to the latter may present difficulties and obstruct the reconstruction of the 
child’s development of the number system — compatibility of the number line with a 
pupil’s already existing knowledge of whole number may be inconsistent with the 
new knowledge required for fractions (Davis, Alston & Maher, 1991).
METHOD
The results within the paper are part of a wider study on teachers’ and children’s use 
and understanding of the number line representation within the mathematics 
classroom (Doritou, 2006). The study took place in a school located in a deprived 
area of the English West Midlands. Following the 2004 inspection, the overall 
assessment for mathematics was identified as ‘Good’— teachers had good subject 
knowledge and the teaching and mathematical development of the children was 
improving although the overall standards were slightly below average.
The study embraced the period 2003 and 2004 and reports on outcomes derived from 
the analysis of a series of classroom observations and interviews with 22 pupils with 
median ages ranging from 6.5 to 10.5 (four from each of the year groups Y2, Y3 and 
Y4 and five from each of the Years 5 and 6). The sample represents children of mixed 
ability in mathematics, as identified through their dominant frames of reference 
(Pitta, 1998) triangulated with their achievement within Standard Attainment Tasks 
(SATs), and the teacher’s personal assessment. The observations focused on the use 
of the number line by teachers in their lessons, while the interviews considered 
children’s learning as a result of these lessons.
RESULTS
The illustrative examples within this paper reflect a small proportion of evidence 
illustrating the use of the number line metaphor in the development of whole numbers 
and fractions. It is drawn from across the year groups and demonstrates the teacher’s 
indications of meaning associated with the number line and the way the number line 
was used and interpreted by the children. 
Within each year group, use of the number line was frequently associated with 
lessons dealing with whole number — 13 of the 24 observed — and fractions and 
decimals. It was associated with ordering number (Year 1), elementary addition and 
subtraction (Year 2), the addition and subtraction of two digit numbers (Year 3) and 
following revision of these approaches extended to three digit addition and 
subtraction (Year 4). In Year 5 the number line was used to focus upon multiplication 
and division of numbers by 10 or 100 whilst within Year 6 it was division. 
Additionally, within Year 4 the main emphasis was fractions whilst within Year 6 it 
was fractions and decimals.  
Whole Number Considerations 
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Teachers within Years 1, 2 and 3 were frequently ambiguous in their use of the terms 
number track and number line and made little, if any, distinction between these terms 
and that of ‘hundred square’: 

If you look against my board, you can see a big number line on the top that goes from 
zero all the way up to ten and then a smaller number line [actually a number track]1

underneath that goes from one to twenty.  (TY1)2

A ruler is a bit like a number line.  (TY2) 

Really, they [the number line and number track] are sort of similar things, but this 
[number line] goes zero to one hundred, this [number track] goes from one to one 
hundred, so it’s the same really… (TY3)

This ambiguity was later expressed by some of the children during their interviews. 
In response to the question “What did you do in class today?” responses included: 

Using a number line [means hundred square], coloured it with pens, got numbers on it 
and the number line don’t go up to one hundred, but the square does.  (Child 2.2)3

The teacher done a sum. He had to jump on a number line to get the answers.  (Child 3.4) 

We had to find the difference between the take-away sums. Thirty-nine take-away thirty-
six are close together, so you get a number line or a hundred square and count down to 
the highest number.                 (Child 3.2) 

These reflections on the lessons not only suggest that the children missed the 
conceptual differences between the number line as a representation of continuity and 
the number track (or hundred square) as a representation of counting numbers, but 
also tend to focus on procedures.
The emphasis of teaching was clearly on the use of the number line as a tool to order 
numbers, develop forward and backward counting and generally support addition and 
subtraction. In the early years the usual approach used throughout all the observations 
when performing addition or subtraction was to start from the largest number, and 
then add on (or count back) to the next number or the next ten etc.: 

Just put the largest number first. (TY2)

The largest number has to come first on a subtraction. Twenty-two take-away two. Use 
the number line — take-away two and you move back.  (TY3)

Later subtraction was introduced as complementary addition: 
Smallest (number goes in the beginning) coz the number line goes up. … The first thing I 
want to do is to get to the next multiple of ten… (TY4)

                                          
1 [Italicised] comments within quotes identify the observer’s/interviewer’s comments added for clarification 
2 TY1 Represents the teacher (T) observed in a particular year Y — in this instance the Year 1 teacher. 
3 Children are identified by year group and designated within that group. Thus Child 2.2 is from Year 2 and is the 

second child interviewed   
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Subsequent actions were then associated with a “jump” from the first placed number 
to the second. Teachers of the older children increasingly demonstrated a tendency to 
provide visual references to jumps without associated number line segments. 
In one particular lesson within Year 2, the teacher used an unmarked line (“the empty 
number line”) to demonstrate the addition of 11 and 37. She proceeded to place 37 
near the left hand side of the line and with her index finger, traced a jump of 10 and 
then a jump of 1, stressing the partition to demonstrate how children should first ‘add 
ten’ and then ‘add 1’ thus starting at 37, ‘jump ten’ to 47 and then ‘jump one’ get the 
sum 48. After a second similar example, the teacher concluded: 

This is the way we can use our number line to help us add numbers. (TY2)

This theme also formed the basis of the first two lessons observed within Year 4. 
After “revision” of addition, the emphasis moved to the use of the empty number line 
(later superseded by the simple illustration of jumps) for subtraction. The notion of 
“jump ten” was generalised as “bridging ten” and in essence, the children were 
encouraged to use the same approach for subtraction that they had used for addition:

 Smallest (number at the beginning) coz the number line goes up.  (TY4) 

The children were then to establish the difference between the smaller and larger 
numbers. What is particularly interesting is that the conceptual differences between 
take-away and finding difference through complementary addition was not made 
explicit in any of the lessons. The generic term subtraction was used without 
operational clarification.
The selected children from within Year 4 were interviewed after these first two 
lessons and presented with a series of addition and subtraction problems. Since the 
number line had been the central resource used within the observed lessons, it was 
assumed that all children would refer to it. However, only two of the four children 
attempted to use it and both of these arrived at incorrect solutions. The other two 
children used partition and when asked to use the number line were unsuccessful.

One reason for error was confusion in the use of a 
similar procedure for both addition and subtraction. 
Child 4.3 (Figure 1), for example, attempting to 
find the solution to 84 and 36, replicated the 
procedure used by the teacher during the lesson. 
Though she made some procedural errors, these 
were corrected. Recognising that 48 could not be 
the correct answer she casually changed the plus 
sign to a minus sign.  

Figure 1: Subtraction instead 
of addition (Child 4.3)

Child 4.2, who represented amounts by a jump, also made errors in the calculations. 
When asked why he did not use a number line he explained: 
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Coz I don’t like drawing lines (marking the points)… that’s where you make a mistake 
when you draw out lines. In Year 3, coz I used to get told off… drawing lines. (Child 4.2) 

Child 4.4 marked points (“lines”) on her empty number line to support counting up to 
52 from 17 when dealing with 52 — 17 and, giving the correct answer 35, explained: 

Coz there were thirty-five spaces… The little lines [small marks between 17 and 52].

Child 4.1 indicated one of the issues she perceived when using a number line:  
Coz it ain’t the same answer as when I partitioned it… I’ve done the number line 
wrong… The partitioning way [is better].

When Y5 children were asked to describe the substance of their lesson, none 
associated partition with use of the number line, but one indicated that an alternative 
way of doing the addition was to use a number line, but her attempt to do so was 
unsuccessful and she indicated that:

The vertical [standardised] way is the easiest. The number line is the hardest.  (Child 5.5) 

Within Year 5 addition was also reinforced during one of the observed lessons. Here 
the teacher used empty number lines to illustrate the way the bridging process may be 
used to solve two digit addition combinations. The lesson then proceeded to focus on 
addition with the standard algorithm. During the subsequent interview, only one child 
referred to the use of the number line whilst the others referred to the use of the 
standard algorithm and gave illustrative examples using this algorithm.  

Child 5.1 demonstrated an interesting 
variant on the use of the number line 
and on partition to obtain a solution to 
24 + 32 (Figure 2 refers). She first 
marked 0, 100, then 20 and 30, then 4 
and 2 and then made jumps to add them: Figure 2: Child 5.1 using partition

You have to do little bits here [in between 20 and 30]. Put fifty-six there… Twenty-four 
add thirty-two… two and thirty and twenty and four… two add four [jump from 2 to 4]
equals six. Twenty add thirty [jump from 20 to 3] equals fifty. Then we add them 
together. Fifty and six, fifty-six. (Child 5.1) 

From a perceptual perspective, the child indicates that the line has numbers and 
marks (“little bits”), but apart from being the indicators of the position of a number, 
there appears to be no conceptual sense of why such mark may be there or of what the 
relationship between each may be. Note for example that there are twelve almost 
randomly placed ‘bits’ between 20 and 30 and that the interval between the ‘bits’ 
appears to have no relationship (note the interval 0 to 56 and the interval 56 to 100). 
From an operational perspective, the partitioning process guides the jumps made on 
the number line, but these jumps have no relationship between what is happening and 
the eventual outcome of the process (see the sum of 2 + 4 and the sum of 20 + 30).  
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It is interesting to note that after 4 years relatively sustained experience with the 
number line in the development of addition and subtraction, the children’s conceptual 
understanding of its relatively sophisticated nature appears to have progressed very 
little. They reiterate the ambiguities expressed by their teachers and much prefer the 
final compressions represented by the standard algorithms to solve addition and 
subtraction combinations. The relation between the initial use of the number line, the 
“jumps” and subsequent bridging processes, partitioning and the compression of this 
into a standard procedure seem to have been overlooked.  
Consideration of Fractions
Using the number line as a resource to develop understanding of fractions was only 
seen within Year 4 where five of the seven observed lessons dealt with this topic. 
Number line related tasks associated with fractions involved, for example, an 
unmarked stick approximately one metre long, empty number lines, a segmented line 
with the ends marked 0 and 1, a segmented line with the ends marked 0 and 5 and a 
variety of other lines with the left end marked 0 and the right marked with various 
numbers such as 60 or 100.  
The unmarked stick was frequently referred to as a number line. The ends were then 
identified and the children asked to find particular fractions between the end points. 
Though the stick carried the implication that it was a unit interval partitioned into 
fractions this was not made explicit. The focus was upon correctly naming, ordering 
and establishing equivalences between particular points on the stick. In this sense, the 
development carried the same features as lessons observed within Years 1, 2 and 3 
the correct naming and ordering of points in sequence on a line or path.  
During one phase of a lesson, the teacher presented the children with a line: 

We’re gonna call it a line [line marked on a sheet of paper], it’s gonna be our number 
line. Put zero at this end [left end point] and one at this end [right end point]. Where 
would you put a half? Hands up if you put this [1/2] as well. Did you also find that it was 
in the middle? If I fold this piece of paper see if I have a half in the right place. Now find 
a quarter and three quarters. (TY4)

This particular feature of folding a number line was assimilated by at least one of the 
interviewed children: 

I’ve got a way of checking the half! You could fold the sheet in half…  (Child 4.3) 

The emphasis on “middle” and “half” was emphasised by the teacher, 
A half of anything will be exactly in the middle. (TY4)

and clearly remembered by the children: 
There’s only one half in the middle… the proper half.  (Child 4.3) 

Anything that’s in the middle equals a half. (Child 4.4) 
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However, whilst half appeared 
relatively easy to pinpoint on a 
number line, other fractions were 
problematic. On the line segment 
from 3 to 5, Child 4.2 pinpointed 
number 4 (the middle) successfully, 

but failed to pinpoint other fractions correctly (Figure 3): 

Figure 3: Applying whole number 
operations to fractions (Child 4.2)

One and a half [wrote 1/2], one and three quarters [wrote 1/3]… one over four [1/4], one 
over five [1/5]… one over nine, ten tenths, ten over eleven, … , five.  (Child 4.2) 

The clearly marked number 4 was ignored when other fractions were inserted. There 
appeared to be no attempt to pinpoint the position of these fractions and they 
appeared to be the child’s perceptions of the way fractions were ordered. Clearly the 
child’s knowledge of fractions was influenced by whole number considerations — 
the larger the number the larger the fraction. However, 10 seemed to be of particular 
significance. After completing 1/9, the child wrote 10/10. When asked “Why should 
ten over ten come after one over nine?”, the child replied “Coz nine comes before 
ten…” It appears that Child 4.2 forgot the sequence he was writing, 10 now became 
the numerator although the denominator continued to reflect natural number order.  
Some of the confusion of the children may have arisen from the presentation of the 
teacher. Presenting one example, the teacher drew a number line segment with only 
the ends 0 and 10 marked. She proceeded to mark the points usually representing the 

number 1 to 9 by placing 5/10 in the 
middle, and then, in order 1/10, 9/10, 
3/10, 4/10, 7/10, 1/2 at the places 
where numbers 1, 9, 3, etc. would 
normally go. There was no indication 
that the fractions represented partitions 
of the number line segment. Child 
4.4’s interpretation is in Figure 4. 
Throughout the series of interviews, 

only one child (Child 6.2) indicated signs he appreciated the conceptual underpinning 
of the number system by the number line. It was more usual for the children whether 
within Year 2 or 6 to see the number line through its visual characteristics — 
numbers in order with little marks to show where the numbers are. Such features 
were implicit in the teacher’s representations and the acts which eventually became 
“jumps” without any explicit reference to the number line. The underlying continuity 
inherent within the number line was not established for these children who saw whole 
number and fraction as two discrete systems.  

Figure 4: The relative positions of f ractions
and whole numbers (Child 4.4) 

Child 6.2 proved to be the exception however. When asked what he would put on a 
line segment marked 0 in the middle and 1 on the right hand side, he recognised the 
symmetry that could be applied through the use of positive and negative integers, the 
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equivalence classes associated with decimals and fractions and appreciated that no 
matter how small the number represented by a partitioned unit or a partition of this 
partition, there could be further partitions. He could identify the relationship between 
the different forms of numbers — wholes, fractions, decimals and negative numbers 
— and use this relationship to give a sense of his understanding of continuity. During 
the observed teaching nor during interviews with other children was the potential 
richness expressed by this child apparent. An illustrative example is seen through the 
explanation associated with the freedom with which he interpreted a request to 
identify some numbers on a line with the 0 to 1 segment marked towards the right 
hand side:

Child 6.2:  I could [mark more numbers], but that would go into eighths and things like 
that. Between that [0] and that [-1] I’d do it into tens. That’s one, two, three, 
four, five, six, seven, eight, nine [marking notches for the negative decimal 
numbers]. Minus zero point one, minus zero point two and so on.

Interviewer:  Could you put a quarter on this line?  

Child 6.2: Yeah! That’s the quarter there [points at 0.25], that’s the half [points at 0.5]
and that’s three quarters [points at 0.75].

DISCUSSION
It is clear from the evidence that both the teachers and the children within this school 
interpreted numbers as locations on a path and any associated operations were seen as 
acts of moving along the path. The number line provided the path and the jumps, or 
the bridging processes, the acts. Lakoff and Núñez (1997, 2000) suggest that the 
similarities that arise from such an interpretation of an arithmetical metaphor can be 
interpreted as “Arithmetic is Motion”. Such a conception would seem to satisfy the 
objectives outlined within the National Numeracy Strategy (QCA, 1999) but it does 
not appear to have provided a sense of the conceptual structures outlined by Herbst 
(1997). Indeed, Foxman & Beishuizen's (2002) have suggested that the more 
successful calculation strategies of British pupils, when dealing with simple 
arithmetic, are based on sequential jumping methods rather than partitioning or 
splitting methods. Indeed, the evidence from this school seemed to be on emphasising 
the validity of the metaphor and not on the strengths it may possess to clarify the 
properties of the number system. The potential of the metaphor is simply used as a 
pedagogic representation that supports the development of procedures without the 
structural basis that could support its meaningful understanding and, particularly in 
later years, a more successful appreciation of its use. Gradually the complexity of 
ideas presented to the children, immersed as they are in ambiguity, appeared to lead 
them to conclude that arithmetical operations can be done in an easier way than that 
which encourages use of the number line. Additionally, the presentation of ideas that 
required the children to reconstruct their knowledge of the whole number system to 
include fractions of wholes was not supported by reference to the conceptual links 
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between the two. The children appear to have learned little from their experience with 
the number line as a metaphor of the number system. It appears to have evoked a 
strong sense of ‘Arithmetic as Motion’ in the context of whole number but this was 
eventually superseded by a preference for a standard algorithm and did not support 
the extension to fractions. In the latter sense particularly, it did not serve its purpose.  
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DRAWINGS AND FIGURES  

Sophie GOBERT       IUFM & University of Nantes, France
sophie.gobert@paysdelaloire.iufm.fr 

The aim is to highlight and describe clearly the correspondence or conflict about 
links between what is “seen” in a geometrical drawing and what is “known” about 
the geometrical referent of this drawing. Characterization is made with two criteria. 
On one hand is the visual “signifying information” in a drawing defined as visual 
information which enables us to see a spatial relation which could be modelled by a 
geometric property. On the other hand is the “geometric property” of a theoretical 
object called “the referent”. Considering pupils difficulties in managing these links, 
called in the paper D-F Links, we propose to question elements which are on the 
teacher’s side, elements depending on the responsibility of the teacher: the part of the 
didactic contract about what kind of problem pupils have to deal with: be they spatial 
or geometric problems; and consequently, the kinds of validation forms which are 
attempted: deductive, perceptive or by the use of instruments; and the conversion to a 
graphic register already made (or not) in the wording of a geometric problem. 
Introduction
The question about the links between a ‘drawing’ and a ‘figure’ in geometry is an old 
intrinsic epistemological difficulty which has been studied for some time in didactic 
research. A good synthesis of the state of the problem can be found in the recent 
Handbook of Research on the Psychology of Mathematics Education (Gutiérrez and 
Boéro Eds., 2006) with articles about visualization (Presmeg, 2006) and about 
Teaching and Learning Geometry ([HKCL], 2006). 
In Cerme 3, B. Parzysz (2003) follows the two paradigms developed by Houdement 
and Kuzniak (1998) in France, to define the spatio-graphic geometry and the pre-
axiomatic geometry. In spatio-graphic geometry, called G1 by Houdement & 
Kuzniak, “the objects in play are physical (models, diagrams, computer images …) 
and the proofs are of a perceptive nature (eyesight, comparison, measure …).” In pre-
axiomatic geometry, called G2, “the objects in play are theoretical (their existence 
proceeds from axioms and definitions) and proofs are theoretical as well.” 
Furthermore, for more than ten years researchers in geometry have distinguished 
between a “figure” and a “drawing”. I refer to Laborde and Capponi (1994) about 
using these two terms in geometry: “As a material entity the drawing may be 
considered as a signifier of a theoretical referent (a theoretical geometrical object). 
The geometric figure consists of pairing a referent with all of its drawings; then a 
figure is defined as all the pairs formed by two terms: the first term being the referent, 

Working Group 1

CERME 5 (2007) 121



and the second being one of the drawings which represents it ; the second term is one 
drawing among all possible drawings of the referent. In accepting this, the term 
geometric figure establishes a relation between a geometrical object and its possible 
representations.”
Clarification about what “the referent” is. 
To clarify the purpose behind, the theoretical geometrical object as a theoretical 
referent will be called only “the referent”. Even if the construction of a concept has 
its roots in all of the representations of the referent, we can possess an autonomous 
concept of something independently of all of its possible representations. For 
instance, children construct the concept of “flower” with familiarity with an 
environment of a great variety of flowers, making bouquets with different sorts of 
flowers, seeing lots of pictures of flowers in books, singing songs about flowers, … 
The concept of “flower” does not exist alone, independently of all possible modes of 
representations (verbal, design, graphic, photography, …). But we can talk about and 
consider this concept without signifying any one of these images. That is what “the 
referent” means. The beginning of conceptualization of a geometric object bears 
some similarity to this point above. The first stage in the conceptualization of a 
referent is constructed by associations with rich variety of representations of this 
referent (Vygotski, 1934). Even if conceptualization in geometry is more than that, 
and other stages are needed to elaborate the geometrical concepts, our purpose 
concerns the early stages of learning (primary school and beginning of secondary 
school, or between 3 and 12 years old). 
Since a referent has autonomy and may relate to an infinite number of semiotic or 
cognitive representations, it is almost the same for a drawing. A drawing has its 
autonomy as strokes on the paper or the computer screen. A drawing alone does not 
possess any geometric signification. It may possess it only if a geometric referent is 
specified. For instance, a drawing with three strokes two of which are equal in length, 
may represent a happy birthday hat, a Indian’s house, an Egyptian pyramid, a 
triangle, an isosceles triangle, the two sides of a rhombus and it’s diagonal, … . When 
one sees a drawing, what is the referent one will consider? If it is not signified by 
language, the interpretation depends only of the person who is seeing the drawing. 
The referent certainly cannot be defined by the drawing. It’s a real problem in 
geometry because the language involved is sometimes much too complex to define all 
the considerations about a configuration of geometrical figures. It is specially 
difficult when we consider topological properties, or intersections and common 
points from a few different objects which may need considerable care to describe the 
referent unambiguously. Probably that explains why mathematicians often use 
drawings with their texts about problems (but not with their text of a proof), or why 
geometrical problems in textbooks are frequently accompanied by drawings. But we 
will see below how this phenomenon becomes involved with pupil’s difficulties.
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Signifying information and D-F Links 
Following the distinction made by Parzysz (1988) about “seeing” and “knowing” we 
introduce the criteria “signifying information” defined as: visual information from a 
drawing which enables us to see a spatial relation which could be modelled by a 
geometric property like parallelism, perpendicularity, lengths, equality of angles or 
symmetry. For instance, consider the drawings below:

         Drawing 1                       Drawing 2                      Drawing 3                              Drawing 4

Drawing 1 possesses signifying information about perpendicarity which the others 
drawings do not possess. Drawing 4 possesses signifying information about 
parallelism which the others do not possess. But all of these drawings possess visual 
information referring to some kind of spatial relation within the drawing considered 
as a spatio-graphic object. Thus visual information may be signifying information or 
it may not.  For instance, let us consider the figure defined by drawing 1 and the 
referent “two perpendicular segments with a common extremity”. Then drawing 1 
possesses signifying information for perpendicularity but does not possess signifying 
information for equality of lengths. 
The distinction between visual information and visual signifying information is really 
essential, and specifies the criteria with which a characterisation about D-F Links 
may be described. D-F Links can indeed be classified in the following way: Let S 
stand for the visual signifying information; NS for no visual signifying information; P 
for a geometric property explicitly given for the referent; NP for a geometric property 
lacking in the description of the referent. So the four cases are: SP, SNP, NSP, and 
NSNP; below we have a table which shows these cases illustrated with “two 
segments perpendicular or not” as the referent, and “two segments perpendicular or 
not” as the drawing.
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REFERENTD-F Links 
P : « two 

perpendicular segments» 
NP : « two segments » 

without a specified 
perpendicular property 

S : visual   signifying 
information

Case SP 

CORRESPONDENCE

Case SNP 

CONFLICT

D
R

A
W

IN
G

NS : visual no
signifying information 

Case NSP 

CONFLICT

Case NSNP 

CORRESPONDENCE

These four cases can also be described with language: visual signifying information 
embodies a geometrical property of the referent (or not); Non-signifying visual 
information embodies a geometrical property of the referent (or not). 
Take us an example where these different cases are well stated:

Referent:

ABCDEFG is a cube: sides ABCD and EFGH are parallel, 
with [AF] and [DE] two parallel lines. R, S, T, U are stated 
respectively on [AB], [DE], [EH], [AB] (R and U are 
distinct) with the constraint: the lengths AR, DS, HT, BU 
are equal, and corresponding to 4/13 de AB.

Here is one of all possible representations of the referent:

The figure is defined by: 

Case SP

DSC with a right angle at D; AFR with a right 
angle at A; … 

Case SNP

RUT with a right angle at R; RDS with 
a right angle at D; … 

Case NSP

RUT with right angle at U; TBU with a right 
angle at U; ADS with a right angle at D; … 

Case NSNP

SCH; SRC; … 

If we choose another representation of the referent, the cases would not be the same. 
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The results of research principally about pupil’s difficulties indicate that they deal 
with drawings as spatio-graphic objects in the spatial space, as shown by Presmeg 
(2006). They deal with visual signifying information as geometrical properties of the 
referent. The question often claimed is: how can we help pupils to change their 
relation to the drawings to move from G1 to G2, the drawing-world to the 
geometrical world? Certainly these difficulties will always be there for the pupils, 
because this is an epistemological and phenomenological phenomenon in the intrinsic 
nature of geometry. But even if pupil’s learning depends of them, of course, some 
elements may be studied which are on teacher’s side, elements depending on the 
responsibility of the teacher. The following paragraphs present some ideas about this. 
Kinds of problems and the forms of validation
Texts are often accompanied with drawings. The difficulty in considering a geometric 
problem for most pupils is, as the research has shown: once the formulation of the 
problem is represented by a drawing, pupils tend to work mostly with the drawing, 
treating it as a spatial object and not necessarily as a representation of the geometrical 
referent given by the text. Therefore, this is an important element to consider in 
teaching how to choose an exposition of the exercises. Two criteria may be 
considered: the kind of problem and the form of validation. Let us first consider the 
kind of problem: spatial or geometric? 
-  Spatial problems are problems in G1: a spatial problem is posed in the spatial 
reality, with spatial objects which possess spatial properties. A solution to a spatial 
problem concerns only the specific situation of this problem. A spatial problem is 
unique. It requires a pragmatic solution which is appropriate to this problem and only 
to this one. A spatial problem is characterized by its specificity. Spatio-graphic 
problems are considered as spatial problems.
-  Geometric problem are problems in G2: a geometric problem is posed in the 
geometric reality, with geometric objects which possess geometric properties. A 
solution to a geometry problem concerns all of the configurations generated by the 
referent. It requires a geometric solution proved with mathematical reasoning as a 
general result adapted for all configurations. Generality characterizes geometric 
problems. 
There seems to be a relation between the kind of problem and the modes of its 
validation for a solution. We believe that the kind of problem and its validation forms 
have to be separated, making clearer the management of D-F Links in problem 
solving. Remember the three validation forms: deductive, perceptive, or with the use 
of instruments. Each form has its own rules which enable us to declare valid 
assertions about objects and relations between them in a particular kind of problem. 
The “really” about an assertion refers to a choice of its validation form. The
deductive form corresponds to the assertion which may be deduced with 
mathematical rules, proof without contradiction, and with language and deductive 
organization; the deductive form is the typical validation form in G2. The perceptive 
form is based on the conspicuous character of images for which are clearly without 

Working Group 1

CERME 5 (2007) 125



perceptive ambiguity; if I see such information and I see it clearly without perceptive 
ambiguity then I may consider it as a data or a possible answer to my question. 
Validation with instruments is a particular perceptive validation form in which 
perception is according to some scale and using an instrument appropriate for this 
scale. For instance, an angle may be right by measurement with a set square on the 
black-board, but it may be non-right by measurement with a set square on paper. 
Perceptive or instrumented forms are typical validation forms in G1. 
Take an example and consider how the answers may be different according to the 
choice of validation form. Consider the following spatio-graphic question: “Is the 
angle a right angle in these drawings below?” 

Deductive form of 
validation

No answer Yes
If we know what the code signifies 

No answer 

Instrument form 
of validation

Depending about perceptive scale 
It may be right for one scale and may not be right for another.  

Perceptive form 
of validation 

Yes No

The wording of a problem 
Let consider now some examples of the way some problems are written, and try to 
make explicit the kind of problem and the validation form.  
Ex1: “Draw a rectangle which has one of it’s corners at the centre of a circle.” This is  
a spatio-graphic problem: the objects are spatial, we can draw them with the hand or 
with instruments. Nothing is defined in the text as a referent or a validation form to 
consider this wording as a geometric problem. 
Ex2: “ABCD is a parallelogram. ASB and ATD are two equilateral triangles outside 
the parallelogram. Prove that STC is an equilateral triangle.”  Here it is clearly a 
geometric problem and the deductive form of validation is explicit through the word 
“prove”.
Ex3: “ABCD is a regular trapezium, M is the intersection B

C

M

A
point of the diagonal (AC) and (BD). Compare area of AMD 
and area of BMC. Justify your answer.”
The drawing opposite accompanies this wording.  
According to the text alone, this is a geometric problem, but the validation form for 
the comparison is not really explicit. This ambiguity is strengthened by                 
the presence of the drawing which places the problem in the spatio-graphic 
environment. We know now through research results that in this case most pupils will 

D
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work with this particular drawing. Why should they not have to work with this 
image? Otherwise why is this image there? The image creates ambiguity about the 
kind of problem and it’s validation form. Certainly one will make a drawing to give 
oneself a representation of the configuration to solve the problem, but it’s very 
different when you have the responsibility to do that, or when this conversion from 
wording to a drawing is made by someone else. 
Ex4: “Construct a figure like this one, with OA=OB.
Construct E and F as projections respectively from A and B  
on the line (d) in parallel to (d’). What is the nature of AEBF? Justify.” 
Here the problem is clearly given in the spatio-graphic environment, as a construction 
task. So the quadrilateral AEBF is unique. But the validation form is not explicit.  

d

d
A

B

O

We see the ambiguity of the terms of a geometric exercise, and the importance of 
thoroughly thinking through the role of images to define the kind of problem the 
pupils are intended to deal with. The following hypothesis might be stated: a 
geometric problem can be defined on condition that the characteristic of generality 
will be respected and the deductive form explicit. The language is powerful enough to 
generate this possibility and to symbolize generality. But how can this condition be 
met when a drawing is given with the wording of the problem, focusing the pupil’s 
attention on the specificity of the drawing?
Geometric problems and their conversion 
Duval (1998) calls the operation of translating the term from one register (here the 
text) to another register (here the drawings): “a conversion”. In the examples above 3, 
4, or “the cube”, the conversion is already made. Yet the production of a drawing by 
oneself in order to create one’s own visualization (sensitive or cognitive) of the 
geometric configuration certainly involves comprehension better than reading a 
particular kind of ready-made image which focuses one’s attention on particular 
spatial characteristics. To make a drawing by oneself helps to develop external and 
internal representations of the problem. To try to produce your own image to 
represent “the cube” defined only by the referent given above: you will certainly 
draw something which has no likeness with the drawing given in the wording. 
Furthermore, because you are an expert in mathematics, you manage D-F links using 
your drawing to help you to treat and solve the problem. Because some 
representations possess a heuristic function, and some others are obstacles for 
conspicuous indications of properties of the referent, images for conversion or 
treatment are different and multiple, and are chosen by the expert to help them to 
access geometric properties or arguments about the configuration. 
Thus we deduce that conversion is a specific activity for solving a problem in 
geometry which leads to the epistemological question about the generality of a 
theoretical object and specificity of one of its external or internal representations. 
Conversion is bound to D-F Links. Either the responsibility to make the conversion in 
a geometric problem is on the solvers side, it is the responsibility of pupils, or the 
conversion is already made in the spatio-graphic environment, but then the condition 
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of generality must be met, and yet it is impossible without a multiplicity of drawings. 
In this last case, Dynamic Geometry Environment (DGE) certainly offers this 
possibility to see an ‘infinity’ of drawings associated with the same referent. In all 
cases, teachers have the responsibility to define the kind of problem.   
D-F Links and conversion in DGE 
How is it possible to clarify explicitly for pupils the different D-F links in order that 
they can understand some necessary knowledge to enable them to manage the 
correspondence and conflicts between “seeing” and “knowing”? Perhaps the 
Dynamic Geometry Environment is a rich and adaptable tool to assist this task, 
because dynamic geometry software is constructed from an axiom: the invariance by 
movement of visual information characterizes signifying information about a 
geometric property of the referent which is associated to a particular drawing by the 
instructions for its construction. “When the user drags one element of the diagram, it 
is modified according to the geometry of its construction rather than according to the 
wishes of the user … spatial invariants in the moving diagrams represent geometrical 
invariants.” ([HKLS], 2006). In other words, through the given visual rule-axiom, 
signifying information which is invariant by “drag mode” is a sign referring to a 
geometric property of the referent. Refer again to the table for D-F links considered 
now in this environment. 

RFERENT – MEDIA : DYNAMIC GEOMETRY 
ENVIRONMENT (DGE)

DF-Links 
DGE as semiotic mediation of 
the geometric referent defining 
the figure. 

P : « two 
perpendicular segments» 

NP : « two segments » 
without specified 

perpendicular property 

S : visual   signifying 
information

CORRESPONDENCE CONFLICT SETTLED 

D
R

A
W

IN
G

NS : no visual 
signifying information 

CONFLICT SETTLED
by impossible case in 2D 

CORRESPONDENCE
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In this environment conflicts are settled; it means only that visual data are always 
being signified by the drag-mode. Even if the difficulties remain for pupils to access 
the geometric properties in solving problems, DGE enables pupils to clarify explicitly 
the D-F Links and manage them easier in order to understand that beyond drawings 
there is something else they have to deal with. When just one drawing illustrates a 
geometric configuration, its visual aspects are too pregnant with its spatial 
specificities. But when many (an ‘infinity’ of) drawings illustrate a geometric 
configuration, the focus of pupil’s attention is on the common properties of all these 
drawings: the referent (even if it is difficult to make it explicit).  
Suppose now that “the cube” above is given (ready-made) in DGE (in 3D). The drag-
mode allows generating an ‘infinity’ of positions in space, and then drawings of those 
positions, which can be seen by pupils. Conversion is already made, but the 
movement of the image makes pupils aware of what is “seen” does not correspond to 
what they are required to know about the referent. Some positions of the image for 
instance, show RUT with a right angle at U, and others without a right angle at U. 
Thus drawings do not focus attention about one specific case, but let us think about 
the diversity. Also drawings may enable the heuristic function. Even if the spatio-
graphic mode is used to embody a geometric problem, the dynamic geometry 
environment might be a tool which can be adapted to clarify D-F links and the kind of 
problems pupils have to deal with. 
Conclusion
Many books about teaching or curriculum treat the pupils’ difficulties in management 
of relationships within geometric figures as if they were lacking a skill according to 
the “type of control” for a drawing: perceptive control, instrument control or 
deductive control. In my paper I have tried to show the necessity of equipping 
teachers with a tool to think of pupils’ difficulties as an epistemological matter. 
Clarification of D-F Links, the kind of problem, and conversion as a crucial first stage 
in problem solving, might be interesting areas to investigate what teachers need to 
make the didactic contract explicit. Certainly it will not be enough to help children 
learn only to use geometrical knowledge to resolve geometric problems and to have 
familiarity with the deductive form for validation in G2. 
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MATHEMATICAL WRITING 
Gert Kadunz 

University of Klagenfurt, Austria 

Writing about one’s own doing of mathematics is a topic regularly found in papers 
on mathematics education. Fewer authors focus in their research on the act of 
writing when doing mathematics. The following paper concentrates on this kind of 
writing. What is the meaning we can give to writing - or preferably inscriptions1 - 
when we are learning mathematics. Considering the breadth of the field the 
statements presented here offer only a short view on the relation of speech and the 
written when doing mathematics. Building on various linguistic theories between 
speaking and writing and a case study, the aim of this paper is to stress the 
suggestion that the written form is more than simply a visual substitute for the spoken 
word. Using this for the learning of mathematics, I will argue that when doing 
mathematics new ideas can emerge from the written.  

INTRODUCTION
Literature on mathematics education offers a series of research results on the meaning 
of writing about doing mathematics, “post-process”. Examples of these results and 
their lively and sometimes controversial discussion can be found in Doherty, 1996, 
Morgan, 1998, Porter 2000, or Pugalee, 2004. The majority of these studies view the 
written as an instrument of secondary importance. They investigate the use of texts 
students write on their own learning of mathematics. Writing about one’s own doing 
of mathematics offers a chance to learn mathematical concepts. Therefore, students 
create their own texts on mathematics (Eigenproduktionen in German, Maier, 2000). 
Here we find mathematical diaries and similar extensive descriptions of mathematical 
activities. With their help the language of mathematics may become part of the 
student’s language. When reading these papers very little information is presented 
about the written itself as a means of learning mathematics. 
In the following I will present a particular – in some sense complementary – view on 
the written when doing mathematics. I will argue that the written is more than just 
materialized speech that it is, so to speak, more than something that follows the 
spoken. In explaining my ideas I will start by presenting a video-based case study, 
which reports on two students’ mathematical activities while solving a geometrical 

1 For the use of „inscription“ see Latour, 1990 or Roth, 2003. I use inscription to describe 
anything that is written on paper, blackboard, computer screen etc. An interesting research 
question would be to find similarities and differences between the use of the inscription
and image schemata as presented by Mark Johnson (Johnson, 1987). In my paper I will not 
investigate this question as I concentrate on materialized mathematics being always visible 
to our eyes whereas “image schemata operate at a level of mental organization that falls 
between abstract propositional structures, on the one side, and particular concrete images, 
on the other.” (Johnson, 1987, p. 29). 
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task. Afterwards I will refer to some valuable suggestions from media theory 
(linguistics) and its view on writing. So what is the significance of the written2 in 
learning mathematics when new knowledge – knowledge in statu nascendi - comes 
into existence? I will argue that in some cases the written itself can become a source 
of new ideas when learning mathematics. 

METHODOLOGY 
To illustrate my view I will use a video-based case study3. It shows two 14 years old 
pupils  solving a problem. Their activities together were captured by two video 
cameras. For the purpose of supporting the evaluation, the two video pictures were 
incorporated in a single picture (see figure 1). One camera was fixed in one position, 
while the observer focused the other on interesting details. The students were given 
90 minutes time to answer the question presented to them. The video was taken in the 
afternoon when classes had finished. 

CASE STUDY PART 1 
Figure 1 shows both students and the object they had to investigate. The students had 

been asked to describe the movement of the 
given object (a surface of revolution) on the 
table. They were to use their 
mathematical/geometrical knowledge. The 
question seems to be formulated in a 
completely unrestricted way. This openness 
was intended. The researcher’s aim was to 
establish a context where both students could 
themselves feel like researchers. The study was 
designed in such a way that they should write 
down all their attempts without looking for an 
algorithmic solution. A more narrowly 
formulated task would have resulted in such a 
strategy. The number of tools both participants 

of our case study were allowed to use also mirrored the openness indicated above. 
Besides their tools for doing geometry (ruler and compass), they could also use in 
addition different measuring tools (a tape measure, vernier calipers which is a tool for 
measuring the diameter of a circle) or computer software (spreadsheet software and 
software for dynamic geometry). Observing the video the viewer can easily recognize 
two courses of action. In both lines inscriptions – i.e. written forms – were invented 
and widely used. However, these inscriptions differ greatly from each other. 

Figure 1 

The first line starts from the observation of the movement of the surface of revolution 
on the table. Several times the participants in our case study, like young children 

2 Research results on similar questions – inventing and using inscriptions – can be found in 
diSessa, 2000.

3 I am grateful to M. Katzenberger – mathematics teacher at Gymnasium St. Paul/Carinthia - 
for making this video available to me. He produced it in spring 2005. 
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playing with a toy, pushed the object to roll on the table and observed this rolling 
with great attention. Thereby they focused their interest on the points of contact 
where the rolling touched the table. Therefore, they could imagine a closed curve of 
these points. However the question of how to record the history of this rolling 
remained, and of how to fix the contact points? A clever strategy, invented by both 
students, was to bring them a step further. They took several sheets from a stock of 
paper to let their object roll on a “soft plane”. While rolling the object on the sheets 
one student pressed it down hard onto the paper. The result was the complete and 
visible trace and impression of the movement on the sheets. In this way the history of 
the movement was documented as shown in figure 2. All subsequently constructed 
traces of the objects rolling - in this first action line – were built using this impression 
technique, which itself is nothing other than a special kind of inscription. It took only 
a few moments for both students to suppose that both curves are circles with a 

common centre. This point was found by means of elementary geometry. A 
circumscribed square was drawn around the greater “circle” using the impression. 
The diagonals of the square immediately led to the centre of the circle. It is worth 
recording that, although they had learned it in their geometry lessons, our students 
never used the theorem about the circumcircle of a triangle. 

Figure  2      Figure  3 

When watching the video one recognizes that many steps on the way to a solution 
were heavily influenced by inscriptions which the students had already produced or 
which they invented and drew ‘as they worked’. Starting with a virtually 
unsystematic playing with the surface of revolution, they followed a strategy which 
enabled them literally to feel the curves they were looking for.  To strengthen this first 
tactile impression and to make it more utilizable for their visual senses one student 
coloured the impressed curve with his pencil (figure 3). From the seen and the felt, 
both students conjectured that the curves they were looking for had to be circles. This 
paved their first way to a solution to the given problem. Thus our students used their 
inscriptions en route to their goal. The written – in this case study a geometrical 
construction with all its peculiarities - did not follow the spoken. On the contrary, – at 
least in my view – the written was the precursor to formulating the next step towards 
the solution, i.e. the writing comes first then the speech follows.
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THEORETICAL APPROACHES 
A review of research reports on mathematics education indicates quite different tools 
for interpreting students activities. Some of them focus on investigating relations 
between internal or mental representations and external or physical representations 
(Goldin and Kaput, 1996; Goldin, 1998a, 1998b). Others pay particular attention to 
the language used when doing mathematics. They offer very thorough interpretations 
of students activities applying methods from hermeneutics (e.g. Krummheuer, 1997).  

In 1987 Latour wrote: “Before attributing any special quality to the mind or to the 
method of people, let us examine first the many ways through which inscriptions are 
gathered, combined, tied together and sent back. Only if there is something 
unexplained once the networks have been studied shall we start to speak of cognitive 
factors.” (Latour, 1987, p. 258). We can also follow Latour’s suggestion using means 
from semiotics (Dörfler, 2005; Hoffmann, 2005; Kadunz, 2006b;). In this paper I will 
offer another approach. 
If we look into the history of western thinking, we notice that numerous philosophers, 
linguists or semioticians did not follow this view on the writing-speech relationship. 
The linguist Roy Harris (Harris, 2001) describes in detail this relation from a 
linguistic and a historical point of view. The only example I wish to take from Harris, 
is his reference to Aristotle’s strict separation of the written from the thought. He 
argued that the written (grammata) is inferior to the spoken as the written is ruled by 
convention4. To think and speak comes first; writing is only in second place. At least 
during the 20th century several interesting texts were published showing the relation 
of the written and speech in a new light (Harris, 1986, 2001; Leroi-Gourhan, 1993; 
Krämer, 2003). Harris as well as Leroi-Gourhan argued that the roots of writing 
could be found neither in an image like doubling of facts nor in a linear doubling of 
human speech. One step beyond this is Harris’ claim (Harris, 1986) that before man 
was able to use letters he learned to use numbers. Man became “numerate” before he 
became “literate”. Similar ideas on the history of counting can be found in Schmandt-
Besserat (1997) or Nissen (1993). 
A useful position on investigating writing is presented by authors like Sybille Krämer 
(Krämer, 2003) or Wolfgang Raible (Raible, 2004). Both of them can be seen in the 
tradition of Harris and Leroi-Gourhan. One of Krämer’s questions in her paper from 
2003 asks whether the only job of writing is fixing the spoken. Furthermore, she asks 
whether the order of writing follows the order of the spoken. If we answer this last 
question positively, then “…it is only the presence of the graphic-visual dimension 

4 “A possible clue lies in the fact that Aristotle was born about twenty years after an 
important orthographic reform: the official introduction of the Ionic alphabet to Athens 
(403 BC), replacing the previously used local Attic alphabet. Naturally, documents and 
inscriptions in the old Attic alphabet did not disappear overnight. Every Athenian of 
Aristotle’s generation was perfectly well acquainted with the two systems, and therefore 
with the following facts. … the possibility of changing alphabets shows that there are no 
intrinsic links between grammata and sounds: grammata can be invented, borrowed or 
adapted to suit any needs.” (Harris, 2001, p.35) 
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that is admitted to the writing” (Krämer, 2003; p. 159; my translation). It is this 
graphic-visual property of writing we can recognize in the two dimensions of a 
written text, which are a source of viewing structural aspects to the reader and the 
writer as well. Modern literature (poetry) makes use of this. There is no equivalent of 
this aspect in spoken language. Krämer’s conjecture that, by writing, the order of our 
thoughts can become visible is significant for me. We find examples in the table of 
contents of a book. By looking at such a table for just a second, we get an impression 
about the importance of the parts of the book. We do not need to read the table of 
contents sequentially. Other examples which present aspects of our thoughts in the 
written are the use of italics or footnotes. 
“What is presented in a text is not the phonetic event (Lautgeschehen) but structural 
facts such as grammatical categories and relations between thoughts and structures of 
arguments” (Krämer, 2003, p.160; my translation). 
Krämer offers these ideas as a basis for an alternative theory of writing. Thereby she 
investigates writing as a medium, a symbol system and as Kulturtechnik. It would be 
far beyond the scope of this paper to present Krämer’s ideas in detail. There is only 
one point to which I wish to refer. In her deliberations about writing as a symbol 
system Krämer writes about the construction of “cognitive objects“(Wissensdinge). 
“A phonographic understanding of writing is based on the assumption that writing 
refers to speech. In contrast to this position, we presume that the reference for all 
writings are abstract things, more or less theoretical entities, which are not visible. If 
this assumption holds then the power of notational iconicity lies in the fact it brings 
everything we can think, and which is thereby invisible, to the register of perception.” 
(Krämer, 2003, p. 164; my translation).  
I stress that this capacity of writing is in Krämer's view not a capacity with which we 
can see the invisible – whatever this may be – behind the visible. Rather, she asks 
whether this bringing to the register of perception is by itself already a form of 
creation of that which is offered to the visual sense.
Beside the structural aspects as a result of the two dimensions when looking on a 
written text there is another aspect of the written when doing mathematics. The 
written can be seen as a means for performing operations or as a system for doing 
operations. Following Krämer we call it operative writing (“operative Schrift”). This 
kind of writing does not concentrate on spoken language and so it does not serve 
communication immediately. What are the profits we can expect from using the 
written as “operative Schrift”? I mention two: Exploration and cognition. If we take 
notice of exploration then mathematical writing offers the opportunity to transform 
mathematical signs following very strict rules. While transforming there is no need 
for considering the semantics of the signs. The simple addition of natural numbers is 
an example for using operative writing as we only need to know an algorithm for 
adding and a multiplication table we have learned by heart in primary school. When 
solving linear or quadratic equations we also need no semantics. We just stick to the 
algebraic rules. If there is no need for interpreting the activities done then we are free 
to concentrate on the beginning and the end of a “calculation”. We can change the 
given parameters to explore their impact. The following case study part 2 will present 
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the example of one of our students searching for an error he had made using an 
algebraic equation.
I mention a second aspect. As operative writing frees us from time consuming 
interpretation of (mathematical) signs we gain the freedom to interpret the results of a 
calculation. In front of our eyes - metaphorically speaking - new ideas can come into 
existence. In this sense operative writing serves our cognition. With these brief 
indications that writing itself can construct the new, I shall now return to the students 
and to their activities. 

CASE STUDY PART 2 
The video data I will present now offers a new solution of a very different kind. The 
route to this solution can be seen from three positions. From the first we see free hand 
drawing plays a crucial role. As a second I mention the collaboration between the 
students where they use one drawing together and from this drawing develop the 
main solving strategy. As a third we will find in the students’ activities different 
kinds of inventing and using writing and drawing, in particular the rule-governed 
transformation of an algebraic equation.  
After finding their solution empirically, the observer encouraged both students to 
look for an alternative method of solving the task using the measuring tools offered. 
They suggested the vernier calipers to be the best tool for this purpose. The diameters 
of the base circle, the diameter of the top circle, the height and the distance between 
points of these circles were measured with these vernier calipers. Finally, these 
measuring activities were the source for the inscription shown in figure 4. To be able 
to judge the creation of this inscription it is necessary to explain the mathematical-
geometrical background of our students. During class seven and class eight both were 
members of a course named “Geometrisches Zeichnen” which means geometric 
drawing. Geometric drawing (Technical drawing in England) is a subject of 
instruction taught in Austrian academic secondary schools (Gymnasium) and in lower 
secondary schools (Hauptschule) as well. The main topic of this subject is to learn 
how to draw a plane or spatial object following the laws of geometry. Computer 
software is widely used. Beside this, they develop drawing skills for producing 
sketches with and without measured values. Furthermore, our students’ mathematics 

Figure  4 Figure  5
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teacher always encouraged them in their mathematics lessons to produce sketches 
when they had to solve a mathematical problem. Therefore, inventing and using 
sketches with measurements was part of their mathematical life. The sketch we can 
see in figure 4 became the starting point for a new method of solving the given task. 
After this, a student, I will call him B, had finished his drawing he started to label it 
with measured values obeying labelling rules he had learned in school. During 
sketching and labelling our three-dimensional object became an object in the drawing 
plane. A problem from geometry in the three-dimensional space was transformed into 
a problem in plane geometry (figure 4). After observing the drawings in figure 4 the 
other student, I will call him A, started to draw a right-angled triangle. We can see 
the faint drawing in figure 5. Then he stopped and both students compared the given 
object with their drawings. After several minutes student B started a further attempt. 
The three sketches – figure 5 – motivated student B to look for similar triangles to 
calculate the cone which encloses the given surface of revolution. To fulfil this plan 
he had to calculate the length of a segment from an arbitrary point of the base circle 
to the unknown top of the cone. In figure 4, we see one part of this segment, which 

was measured with the vernier calipers. The 
idea of employing similar triangles 
developed not only from the sketch in figure 
4 but also from the sketch student A had 
drawn (figure 5). Let’s hear what student B 
said after two minutes of carefully observing 
all sketches. 
B: Just wait a moment. 
In the meantime student A had begun to 
draw his vertical projection. 
B: Now let me draw. Do you know what I 
have thought? It is the intercept theorem that 
represents the relation! 
A: (looks doubtful) 

Figure  6 

B started his explanation with the aid of his labelled sketch. Then he began to draw a 
new inscription. He labelled it with all the measurements (figure 6) and used this 
inscription as a means to establish an algebraic equation. 
 In his first equation, he made a mistake. As he compared his solution with the 
already existing “engraving” solution he recognized his error. So he made another 
attempt using the intercept theorem. He labelled A’s faint drawing of a right-angled 
triangle – not shown in figure 6 – with measurements and obtained a second equation 
from this drawing. This equation led after some transformations to another numerical 
solution which fitted the “impressed” solution. 

INTERPRETATION 
Viewing this video and taking Krämer’s ideas into consideration, we can say that 
“initial” ideas – the ignition so to speak - and their verbal formulation often started 
immediately after a new sketch was finished. Both the ways of arriving at a solution 
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that I have presented here support my view on writing and drawing when doing 
mathematics.  
If we remember the first data I presented in part 1 the successful idea for finding a 
solution started from rolling the object on the table. The students had already used 
this kind of movement when they investigated other bodies of revolution. Finding 
their interesting strategy of pressing the object into the sheets of paper emerged from 
a rather chance observation. The students’ achievement was their connecting of the 
impression and the given task. This impression was just a necessary requirement for 
finding the first step to the solution. Memorizing the colouring of the impressed curve 
we can say that the first solution was determined by their senses. Hand and eye the 
sense of touch and the visual sense organized the student’s activities. 
Compared with the data given in the case study part 1, the data from part 2 seems to 
be more profitable for my enterprise as I will show now in this precise description. 
After having made a series of measurements B started to draw a sketch from the axial 
section of the object which he labelled carefully. The labelling with all its details was 
an easy job for student B. This ability has its root in his geometrical socialization. On 
the other hand this construction of the sketch was in some sense like “mechanical” 
activities. How did student B invent the idea of using the intercept theorem? To begin 
with we could suggest that B could read this theorem from his drawing. But B could 
not, and he needed support from his colleague, student A. Similarly to the impressed 
solution something unintentional was the source of a successful idea. We can find 
this source in student B’s activities when he labelled his sketch with measurements. 
Labelling a sketch or any other geometric drawing was a well-known practice for 
both students. Student A did not see just a section of the given object when he looked 
at the given sketch. His engagement with the given object and observing the 
measurement labels led A to have the idea of drawing a right-angled triangle. We can 
say that A’s unorthodox action “abused” these measurement labels. When (ab)using 
these labels A always had the context in mind as he referred all sides of his right-
angled triangle to the given object. Video data show that in the meantime student B 
had followed A’s activities very carefully. Now two drawings were drawn on the 
paper. There was the right-angled triangle as the result of A’s “abuse” and B’s own 
sketch. If one lays the first drawing over the other and additionally knows the 
intercept theorem then it is conceivable that a person would gain the idea of using 
this theorem. This is exactly what B did. With Krämer we can say that the idea for 
solving this problem developed from the drawn and the written.  
The remaining activities can also be seen in the light of Krämer’s view on the written, 
as presented, or more precisely on the operative use of the written. Video data shows 
that student B formulated an algebraic equation. He used it to explore his solving 
strategy and to prove it empirically. As B had deduced the interception theorem with 
the aid of two geometrical drawings this theorem had to pass the test. But this did not 
happen. In his first attempt student B made a mistake when establishing his equation. 
However, as the calculation of one variable was the only task B had to fulfil he could 
easily test his calculated result against the already existing “impressed” solution. We 
can say that the rule-governed transformation, the operative use of the written, 
supported the exploration. 
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CONCLUSION
The case study presented has shown the importance of inscription (the written and the 
drawn) when solving a mathematical problem. Constructing and using drawings and 
the written as well can be seen as a possible source of new knowledge. By using 
well-known inscriptions or by inventing new ones, allows mathematics to happen 
right in front of their eyes. On this basis they may be able to use these writings 
successfully. In some cases, as illustrated through video recordings, spoken language 
only came after the written. 
My deliberations should not challenge the importance of the spoken when learning 
mathematics. Similarly as in the introduced view on the written, where inscriptions 
may bring something – which is not part of the spoken – to the eyes of the learning 
student, there are elements of the spoken language, which cannot be expressed by the 
written (e.g. gesture, facial play). 
Beside answering the research question it was also of importance for me to offer 
some arguments that the relation between the spoken and the written is not a 
hierarchical one. An example of destructing such a relation was introduced by Jaques 
Derrida (1997). 
Further research could follow at least two directions. Following the first one we could 
compare the results of interpretations of similar - or the same - empirical data using 
other theoretical approaches (See footnote 1 and Kadunz 2006a). A second direction 
could carry on Derrida’s idea of destructing hierachical relations where the relation 
between the written and the spoken is just one example. Learning mathematics 
always means inventing rules and following rules. Is the relation between inventing 
and following a hierarchical one? Some hints to answer this question may be found in 
Wittgenstein’s deliberation on language and mathematics (Wittgenstein, 1984; 
Krämer, 2002).
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STUDENTS’ AND TEACHERS’ REPRESENTATIONS IN 
PROBLEM SOLVING  

Annita Monoyiou, Pandelitsa Papageorgiou & Athanasios Gagatsis
Department of Education, University of Cyprus  

The aim of this study is to investigate the representations used by students as they 
attempt to solve non-routine problems, and the representations used by teachers for 
solving and teaching the same problems. Furthermore we examine the relationship 
between students’ and teachers’ representations. Participants were 107 primary 
school students of the 5th and 6th grade and semi-structured interviews with 20 
teachers were conducted. It was found that students prefer to use more concrete 
representations (pictures and diagrams) instead of abstract representations (symbols 
and algorithms) to solve the problems although sometimes these types of 
representations lead to incorrect solutions. On the contrary teachers prefer more 
abstract representations to solve and teach the same tasks.

INTRODUCTION
The role of representations in mathematical understanding and learning is a central 
issue in the teaching of mathematics. The most important aspect of this issue refers to 
the diversity of representations for the same mathematical object, the connection 
between them and the conversion from one mode of representation to others. This is 
because unlike other scientific domains, a construct in mathematics is accessible only 
through its semiotic representations and one semiotic representation by itself cannot 
lead to the understanding of the mathematical object it represents (Duval, 2002).  
Representation is any configuration of characters, images or concrete objects that 
stand for something else (DeWindt-King & Goldin, 2003). Kaput (1987) suggested 
that the concept of representation involves the following five components: A 
representational entity, the entity that it represents, particular aspects of the 
representational entity, the particular aspects of the entity that it represents that form 
the representation and finally the correspondence between the two entities. Following 
Kaput’s definition, the representation is considered a mental symbol or concept, 
which represents a concrete material symbol. It takes the place of another element 
and obtains more capabilities than the object itself. In other words, the representation 
is autonomous and independent from the represented object and the individual can 
modify and elaborate it without constraints.  
The aim of this study is to investigate the representations used by Cypriot students as 
they attempt to solve non-routine problems, and the representations used by their 
teachers for solving and teaching the same problems. Furthermore we examine the 
relationship between students’ and teachers’ representations.
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THEORETICAL BACKGROUND
Representations in Problem solving
There have been many attempts to define and describe problem solving, but most 
have fallen short of capturing the sense of what it involves. One shortcoming of most 
definitions is their failure to acknowledge the essential role played by representations 
in the process (Cai & Lester, 2005). Successful problem solving in mathematics 
involves coordinating previous experiences, knowledge, familiar representations and 
patterns of inference and intuition in an effort to generate new representations and 
related patterns of inference that resolve the tension or ambiguity that prompted the 
original problem-solving activity (Lester & Kehle, 2003, p. 510). Consequently, 
representation is regarded as an especially important construct in mathematics 
learning in general and specifically in problem solving. 
Among the characteristics of successful mathematics problem solvers is their ability 
to create and use appropriate representations, both internal and external. In this study, 
we are interested in external representations used by students to solve non-routine 
problems, and by teachers to solve and teach the same problems. External 
representations can have one or more different forms (verbal, symbolic, pictorial, 
diagrammatic, manipulative objects). The use of representations in mathematics 
problem solving, especially external ones like diagrams, is very important (Pantziara, 
Gagatsis & Pitta-Pantazi, 2004). 
In solving a problem, a solver needs to establish representations of the problem not 
only to help her or him organize and make sense of the problem, but also to 
communicate her or his thinking to others. Initially, the problem solver’s 
representation might include only the “givens” and the statement of the goal of the 
problem. Usually, the representation used by a problem solver changes. After the 
problem has been solved, the problem solver may use yet another representation to 
express her or his solution. Thus, representations are the visible records generated by 
the solver to communicate her or his thinking about the way the problem was solved. 
Moreover, these representations, both initial and final, may differ among problem 
solvers (Cai & Lester, 2005). 
Many studies have revealed a striking difference between students’ representations, 
especially cross-national studies which examined thinking and reasoning involved in 
U.S. and Asian students’ mathematical problem solving. Asian students tended to use 
symbolic representations (e.g. arithmetic or algebraic symbols), while U.S. students 
tended to use visual representations (e.g. pictures) (Cai & Lester, 2005). 
Some researchers (Dreyfus & Eisenberg, 1996; Smith, 2003) have pointed out that 
concrete representations and strategies have limitations since they are context-or task-
specific strategies in problem solving. Concrete representations may limit students’ 
thinking and further learning unless they can shift to more generalized approaches. 
Therefore, symbolic representations may be considered more advanced and 
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sophisticated (Dreyfus & Eisenberg, 1996). According to developmental 
psychologists (Bennett, 1999), children start off representing their world in concrete 
terms and only later shift to more abstract representations. As they mature, students in 
their later elementary and middle school years can begin to think and manipulate 
mathematical objects mentally and represent them numerically and symbolically. 
However, recent studies suggest that a developmental perspective may not explain 
students’ use of different representations in their problem solving (Cai, 2004). These 
differences may occur due to different teaching approaches and representations used 
by the teachers in the problem solving process. Some teachers less frequently 
encourage students to move to more abstract, conventional representations and 
strategies in their classroom instruction. One of the common misconceptions held by 
those teachers is that concrete representations or manipulatives are the basis for all 
learning since they believe that concrete representations or manipulatives can 
facilitate students’ conceptual understanding (Burrill, 1997). On the other hand, some 
teachers view only symbolic and numerical solutions as “mathematical solutions”. 
They do not regard pictorial solutions of a problem as “mathematical” (Cai, 2004).  
In the light of the foregoing discussion, the research questions of this study were as 
follows:
1. What kinds of representations are used by fifth and sixth graders as they attempt 

to solve non-routine problems? 
2. What kinds of representations are used by the teachers in these children’s schools 

as they attempt to solve and teach non-routine problems? 
3. Why students and teachers use specific types of representations and not others?
4. Is there a relationship between the kinds of representations used by teachers and 

students?

METHODS
Participants were 107 primary school students of the 5th and 6th grade, eleven and 
twelve years old respectively, 52 boys and 55 girls from four schools. Students were 
given about 80 minutes to consider eight non-routine problems taken from Cai 
(2004). Here we present three sample tasks:  

TASK 1: Look at the figures below. 

       1 step            2 steps                    3 steps                    4 steps 
a) How many blocks are needed to build a staircase of 5 steps? Explain your answer. 
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b) How many blocks are needed to build a staircase of 20 steps? Explain your 
answer.
TASK 2: Sally is having a party. 
The first time the doorbell rings, 1 guest enters.
The second time the doorbell rings, 3 guests enter.
The third time the doorbell rings, 5 guests enter.
The fourth time the doorbell rings, 7 guests enter. 
Keep going in the same way. On the next ring a group enters that has 2 more persons 
than the group that entered on the previous ring.
a) How many guests will enter on the 10th ring? Explain or show how you found your 
answer.
b) 99 guests entered on one of the rings. What ring was it? Explain or show how you 
found your answer. 
TASK 3: Here are some children and pizzas. Seven girls share 2 pizzas equally and 3 
boys share 1 pizza equally.

Does each girl get the same amount as each boy? If not, who gets more? Explain or 
show how you found your answer.
Each student’s response was assigned a numerical score from a five-level (0-4) 
scoring rubric. To receive a score of 4, a student’s explanation or solution process 
had to show a correct and complete understanding of the problem. To receive a score 
of 3, a student’s explanation or solution process had to be basically correct and 
complete except for a minor error, omission, or ambiguity. To receive a score of 2, 
the explanation or solution process had to show some understanding of the problem 
but be otherwise incomplete. If a student’s explanation or solution process showed a 
limited understanding of the problem, it was scored as 1. If a student’s answer and 
explanation showed no understanding of the problem, the response received a score 
of 0. If a student omitted a task the student’s response would also be scored as 0.
Furthermore the representations used by students for solving each non-routine 
problem were analysed. Four categories of representations were used: symbolic, 
pictorial, diagrammatic and verbal. The first category included students’ solutions 
involving algorithms and symbols, specifically numbers and letters. The second 
category included students’ solutions involving drawings (pictures). The third 
category included students’ solutions involving tables. Finally, the fourth category 
included students’ solutions involving verbal explanations or reasoning. Both the 
representations and the responses given by students were coded by two persons.
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Semi-structured interviews with 20 teachers of the participating schools were 
conducted. First they were given the three tasks presented above and asked to solve 
them. The solutions given by the teachers were categorised according to the four 
kinds of representations mentioned before. Later on they were asked to mention what 
kinds of representations they were going to use while teaching these tasks in their 
classrooms. They were only asked to talk about their teaching approaches and not 
actually teach these problems.

RESULTS
Students’ responses and representations 
Table 1 shows the frequencies and percentages of students’ responses to the tasks.

Tasks
1a

(n=107)
1b

(n=107)
2a

(n=107)
2b

(n=107)
3

(n=107)

f % f % f % f % f %

Correct and complete 
answer 80 74.8 22 20.6 56 52.3 15 14.0 8 7.5

Correct and complete 
answer except for a 
minor error 

6 5.6 15 14.0 8 7.5 6 5.6 0 0.0

Some understanding 
but otherwise 
incomplete task 

3 2.8 9 8.4 5 4.7 4 3.7 3 2.8

Limited understanding 
of the task 1 0.9 19 17.8 1 0.9 10 9.3 21 19.6

No understanding or 
omission of a task 17 15.9 42 39.3 37 36.4 72 67.3 75 70.1

  Table 1: Frequencies and percentages of students’ responses to the tasks

It seems that the task 1a was the easiest because a large percentage of students 
(74.8%) gave a correct and complete answer. The most difficult task was task 3. Most 
of the students showed no understanding or omitted this task (70.1%). Tasks 1b and 
2b were solved by a small percentage of students, 20.6% and 14.0% respectively, due 
to the fact that a generalization was necessary. Task 2a was solved by half of the 
students (52.3%).
Table 2 shows the frequencies and percentages of students’ representations to the 
tasks.
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Representation
1a

(n=107)
1b

(n=107)
2a

(n=107)
2b

(n=107)
3

(n=107)

f % f % f % f % f %

Symbolic 9 8.4 24 22.4 14 13.1 18 16.8 1 1.0

Pictorial 76 71.0 49 45.8 0 0.0 0 0.0 60 56.1

Diagrammatic 3 2.8 9 8.4 63 58.9 29 27.1 0 0.0

Verbal 11 10.3 13 12.2 4 3.7 6 5.6 10 9.3

Omission of the task 8 7.5 12 11.2 26 24.3 54 50.5 36 33.6

  Table 2: Frequencies and percentages of students’ representations to the tasks

Most of the students solved task 1a using a pictorial representation (71.0%). It is 
noteworthy, that all the students who used pictorial representation managed to solve 
the problem successfully. Most of the students tried to solve task 1b using the same 
type of representation as in task 1a (45.8%). None of them managed to solve the 
problem correctly. It seems that students were influenced by the picture given in task 
1a and tried to solve task 1b in the same way. Some of the students who used 
symbolic or diagrammatic representation managed to solve the task correctly. Most of 
the students solved task 2a using a diagrammatic representation (58.9%). Almost all 
of them managed to solve the problem correctly. The use of a diagram seemed to be 
the most appropriate way to solve this task, although the problem was given in a 
verbal form. Half of the students omitted task 2b due to the fact that a generalization 
was required. The students who tried to solve the task 2b using a diagram (table) 
(27.1%) gave a wrong response. The diagram was not the appropriate type of 
representation for solving this task and it seems that the students who used it were 
influenced by the previous task. Most of the students who used a symbolic 
representation gave a correct response to task 2b. Most of the students (56.1%) used a 
pictorial representation to solve task 3. These students failed to solve the problem 
correctly. Probably they were influenced by the picture already given in the task. The 
students who used symbolic or verbal representations gave the most correct 
responses.
Semi-structured Interviews 
Semi-structured interviews with 20 teachers were conducted. Table 3, shows the 
representations used by the teachers to solve the three tasks.
Most of the teachers (13) solved task 1a using pictorial representation. They drew a 
staircase with 5 steps and counted the blocks. In task 1b most of the teachers used a 
diagram in order to solve it. They made a table and tried to find the pattern. No one 
tried to solve the problem using a pictorial representation. Most of the teachers (13) 
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solved task 2a using a diagram. They made a table and found the pattern. In task 2b 
all teachers found the general formula and solved the problem symbolically. Nineteen 
teachers solved task 3 symbolically. They used fractions, made them equivalent and 
then compared them in order to decide who gets more.    

Tasks 1a 1b 2a 2b 3
Symbolic 2 7 7 20 19
Pictorial 13 0 0 0 0
Diagrammatic 5 13 13 0 0
Verbal 0 0 0 0 1
N=20
Table 3: The representations used by the teachers to solve the tasks

Table 4, shows the representations teachers mentioned they were going to use while 
teaching the three tasks.

Tasks 1a 1b 2a 2b 3
Symbolic 2 2 0 0 16
Pictorial 3 3 0 0 3
Diagrammatic 15 15 20 20 0
Verbal 0 0 0 0 1

N=20
Table 4: The representations used by the teachers to teach the tasks

Most of the teachers mentioned that they were going to use a diagram to teach tasks 
1a and 1b. Eight of them argued that they were going to help their students to make 
generalizations and find a general formula. Specifically, they spoke as follows:

Teacher 1: “They (the students) have to make a table and find the result. They also need 
to find a general type n x (n+1)/2.” 
Teacher 2: “With a table they can find the relationship/general rule and apply it.” 
Teacher 3: “In order to answer the second question (20 steps), the students have to 
discover the general formula with my help. They can not continue the pattern until the 
20th step or draw it. Those are time-consuming solutions.” 

The three teachers who stated that they were going to use pictorial representation 
mentioned: 

Teacher 4: “I will ask them (the students) to draw different staircases and help them 
realize that each stair is one block more than the previous.” 

Most of the teachers mentioned that is difficult for the children to find a general type. 
All teachers stated that they were going to use a diagram in order to teach tasks 2a 
and 2b, by making a table and find the pattern. Twelve of them mentioned that 
students have to find a general type. Specifically they argued: 

Teacher 6: “….with a table. I will help them understand what is happening and at the end 
we will find a general type.” 
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Teacher 7: “In the beginning with a table. Then they will notice that we double the 
number of the doorbell ring and subtract one (2x-1).” 
Teacher 8: “We will make a table and try to find the relationship between the number of 
the doorbell    ring and the number of the guests. Each time we add the number of the 
doorbell ring with the previous number.” 

In task 3, sixteen teachers stated that they were going to use a symbolic 
representation in their teaching. Specifically they said: 

  Teacher 10: “Definitely with a symbolic representation. It is not easy for the students to 
compare 1/3 and 2/7 using a picture. It is easier to make fractions equivalent and compare 
them.”

The three teachers, who stated that they were going to teach the problem with the use 
of a pictorial representation, mentioned that they were going to guide students to 
separate the circles and compare the pictures.

DISCUSSION
The aim of this study was to investigate the representations used by Cypriot students 
as they attempt to solve non-routine problems, and the representations used by 
teachers for solving and teaching the same problems. Furthermore we examined the 
relationship between students’ and teachers’ representations.
Students’ performance in all tasks except task 1a was moderate. The problems given 
were not the ordinary problems that students deal with in their textbooks. The three 
tasks presented in this study could be solved using different strategies. They could 
not be solved with a simple algorithm and they required more complicated 
mathematical reasoning. Almost three quarters of the students gave correct response 
to task 1a. This task seemed to be easy to solve using a pictorial representation.
Students chose the most appropriate type of representation (pictorial), meaning the 
easiest and less time – consuming one to solve task 1a. On the contrary, the task 1b 
although it was similar to the task 1a it could not be solved easily using the same type 
of representation. The students failed to solve the task 1b because they used the same 
type of representation as in task 1a instead of using a more productive and less time - 
consuming representation. They tried to build a staircase and count the blocks. 
During the counting process they reached a wrong answer. The drawing they made 
would have been useful if the students could see the steps as a sequence of triangular 
numbers or as an arithmetic series but this did not occur. In task 2a almost two thirds 
of the students used the most appropriate type of representation for solving the 
problem (diagrammatic). As in task 1b, students used a less appropriate type of 
representation to solve task 2b and gave an incorrect response. In tasks 1b and 2b, 
students failed to use symbolic representation in order to reach a general formula. In 
task 3 almost half of the students used pictorial representation and failed to solve the 
problem because it was not easy to compare the two heteronymous fractions with the 
use of a picture. It was easier to use a symbolic representation, turn the heteronymous 
fractions into fractions with equivalent denominators and compare them. In general, 
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students preferred to use more concrete representations instead of abstract 
representations. In some tasks concrete representations were appropriate and led to 
correct solutions while in other tasks abstract representations were necessary in order 
to reach easily a correct solution. 
As expected all of the teachers used the most appropriate representations for solving 
the three tasks, although these representations were different from the ones used by 
them for teaching the same tasks. Furthermore the representations used by the 
students for solving the problems were different from the representations used by the 
teachers for teaching the problems. Specifically, the teachers preferred to teach tasks 
1a and 1b using a diagrammatic representation, while students tried to solve them 
using a pictorial representation. Moreover the teachers mentioned that they are going 
to help students come up with a general formula but none of the students managed to 
make a generalization. Although students tried to solve the tasks 2a and 2b in the 
same way their teachers prefer to teach them (diagrammatic), again they were not 
able to reach a general formula as the teachers would like. In task 3 students used a 
pictorial representation while the teachers prefer to use a symbolic representation in 
their teaching. It seems that students prefer to use concrete, pictorial representations 
as they think they are easier to handle and help them reach a correct answer. It is 
obvious that pupils need to go through an iconic stage before they are ready to use 
symbols. Teachers ought to be aware of this and help their students develop the 
transition between iconic and symbolic stage. They also ought to use multiple 
representations in their teaching. Each type of representation can be useful for 
reaching a correct solution to a problem if students are able to handle the 
representation appropriately. In some tasks pictorial representations led to incorrect 
solutions because students did not manage to handle them appropriately. 
Students should learn to use easily all types of representations in order to solve a 
problem correctly. It is also very important to be able to choose the most appropriate 
type of representation for each problem, meaning using the representation that will 
lead them easily to a correct solution.  In order to achieve this, teachers should 
engage students in discussions about the appropriateness of different types of 
representations in problem solving. If a central aim of classroom instruction is to 
foster the transfer of acquired knowledge beyond the initial learning context to new 
circumstances, concrete experiences are only effective if they offer support for 
generalization and conceptual understanding (Presmeg, 1997).  
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THE ROLE OF THE CONCEPTUAL METAPHOR IN THE 
DEVELOPMENT OF CHILDREN’S ARITHMETIC 

Carol Murphy
University of Exeter 

This paper explores the relationship between the perceptual and the conceptual in the 
development of children’s informal arithmetic. It compares two major theories- 
Piagetian abstraction and embodied learning – in order to clarify the building of 
abstract ideas from perceptual, sensory experiences. The arithmetic principles of 
commutativity and associativity are examined within these two theories. The theory of 
embodied learning and the conceptual metaphor is considered as a lens for 
examining children’s informal, intuitive arithmetical knowledge.

INTRODUCTION
This paper is presented as an examination of theoretical issues and existing empirical 
research that explores how children’s formal mathematical ideas can be built from 
informal, intuitive arithmetic. Although research has examined children’s invented 
procedures and the flexibility of the procedures (Carpenter and Moser, 1984; 
Steinberg, 1985; Kamii, Lewis, and Jones, 1993; Foxman and Beishuizen, 1999) the 
research into how children develop the ability to use flexible methods is more limited, 
although Gray and Tall (1994) have associated success in the use of arithmetic 
flexibility to the notion of a ‘procept’ where numbers are viewed as both processes 
and concepts.
Arithmetic principles, such as commutativity and associativity, can play a role in the 
development of flexible calculation strategies. There is evidence (Groen and Resnick, 
1977) that children develop the use of arithmetic principles without instruction. They 
come to use the arithmetic principles intuitively from their own informal, 
spontaneous development of arithmetic.  
If there is evidence that children develop an intuitive and spontaneous use of 
principles such as commutativity, how does this happen? This paper intends to 
examine two theoretical models - Piagetian theory of abstraction and the more recent 
theory of embodied learning - that both provide a model for the development of the 
arithmetic principles.   

CHILDREN’S IMPLICIT USE OF PRINCIPLES OF ARITHMETIC 
There is evidence that prior to or in the absence of direct instruction young children 
will devise their own procedures that assume mathematical principles. Groen and 
Resnick’s (1977) empirical work with 4- year olds showed that, even though 
instruction in addition was limited to the ‘count-all’ strategy with physical objects, 
many children soon abandoned this more primitive strategy and initiated the ‘count-
on’ strategy. They also found that many of the children spontaneously chose to start 
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with the larger number. For example, given the problem 2 + 7, the children swapped 
the numbers to 7 + 2 in order to make the ‘count on’ more efficient. This ‘count-on 
from the larger’ strategy assumes commutativity in that 2 + 7 = 7 + 2 or, more 
formally a + b = b + a.  Although still relying on a counting procedure there is an 
implicit use of an arithmetic principle in order to use a more economical strategy.   
Further to the more efficient count-on strategy children may use known facts in an 
innovative way as they invent their own arithmetic procedures.  Beishuizen, Van 
Putten and Van Mulken (1997) and Fuson (1992) have identified two main types of 
invented procedures.  One is termed ‘splitting’ numbers where tens and units are dealt 
with separately (23 + 4: a child may add the 3 + 4 and then add to the 20). Another is 
termed ‘complete’ number where one number is kept complete (24 + 7: a child may 
keep the 24 complete but split the 7 into 6 and 1). Such ‘splitting’ number or 
‘complete’ number procedures assume associativity in that (20 + 3) + 4 = 20 + (3 + 4) 
or formally (a + b) + c = a + (b + c).
Children who invent their own procedures would appear to have an intuitive 
understanding of arithmetic principles such as commutativity and associativity.  It is 
possible that children come to assume that arithmetic operations are commutative as 
they realise the principle of order irrelevance (Gelman and Gallistel, 1978) and apply 
this assumption to addition.  

“Addition in the child’s view, involves uniting disjoint sets and then counting the 
elements of the resulting set. According to the order irrelevance principle it does not 
matter whether in counting the union you first count the elements of one set and then the 
elements from the other or vice versa” (p. 191).

When extended to three sets, associativity is also used intuitively.

THEORETICAL PERSPECTIVES 
The spontaneous development of the principles of commutativity and associativity 
would suggest that children bring intuitive, informal arithmetic to the classroom. 
Descartes’ notion of intuition is that of certain and evident knowledge (Lakoff and 
Johnson, 1999) where we cannot help but see what is before us. ‘Knowing is seeing’ 
is a tenet of Lakoff and Johnson’s view of embodied learning.  Phrases such as ‘I see 
what you mean’ or ‘Let’s see what is in the box’ are used to convey knowledge of 
what has been said or knowledge of what is in the box. From an embodied learning 
viewpoint perception, as a sense-impression from the external world, is seen as a 
source domain for knowledge. Conceptualisation of abstract ideas can be reasoned 
about from domains of experience, of which many are sensory-motor. The cognitive 
mechanism for such conceptualisation is the conceptual metaphor. The conceptual 
metaphor is not merely a figure of speech but a matter of thought (Lakoff, 1980). It is 
the mechanism by which the abstract is comprehended in terms of concrete, 
everyday, sensory-motor experiences such as ‘in’, ‘next’ or ‘movement’.   
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Lakoff and Nunez’s (2000) analysis of mathematical ideas suggests an elaboration of 
everyday commonplace experiences such as object collection and object construction 
onto the abstract world of number. Mathematical reasoning is seen as a product of 
bodies and brains. The notion of embodied learning presents a mechanism to work up 
from sensory experiences to abstract concepts. Through metaphorical projection 
abstract concepts are brought into being from the sensory, figurative world (Johnson, 
1987).
In the Piagetian viewpoint concepts of number and arithmetic are not seen to be 
developed through sensory-motor experiences but through reflective or pseudo-
empirical abstraction. Whereas empirical abstraction described the unconscious 
abstractions from the sensory-motor elements and the observable properties of objects 
themselves (Piaget, 2001), reflective abstraction described an operation on a mental 
entity that becomes in turn an object for reflection at the next level, allowing for 
further mental operations (Gray, Pinto, Pitta, and Tall, 1999). Although a two-stage 
hierarchical process reflective abstraction does not draw its information from the 
sensory, physical experiences of empirical abstraction but from the coordination of 
the objects. Empirical abstraction has no parallel hierarchy. That is, there is no 
empirical abstraction from the results of previous empirical abstraction (Piaget, 
2001). There is no projection from perceptual knowledge and so perceptual 
knowledge cannot be the source of new constructions. 

ABSTRACTION AND ARITHMETIC PRINCIPLES 
In Piagetian terms abstraction in the development of number and arithmetic is non-
empirical.  The notion of number is not supplied by the senses so there is a need to 
attend to non-perceptual properties of the objects. Abstraction of this form is termed 
pseudo-empirical.  It draws its information from apprehending the properties that are 
presented by an object but where the properties were introduced by previous actions.  
The focus is on the actions of the objects and the properties of those actions. The 
child may be ‘leaning’ on the perceivable results but the perceived properties have 
been introduced by the child’s actions. Such an abstraction entails a level of 
reflection.
The spontaneous development of the arithmetic principles, such as commutativity, 
would occur as a form of pseudo-empirical abstraction. The source is drawn from the 
coordination of the actions of counting and manipulating the objects. The 
coordination of objects may impress on a child that there is a reason for a particular 
result, a ‘quasi-necessity’ (Piaget, 2001), where a child is certain of an event even 
though the child may not understand the reason for it. The child gains the impression 
or assumption of commutativity. In Piagetian theory the sensory, experiential world 
has no direct relationship with the child’s assumption of commutativity.  
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CONCEPTUAL METAPHOR AND ARITHMETIC PRINCIPLES
The notion of embodied learning provides a model where perceptual, sensory-motor 
experiences are part of the formation of concepts. Abstract ideas can be 
conceptualised and reasoned about from domains of experience that are mostly 
sensory-motor (Lakoff and Johnson, 1999). In understanding an idea, we may talk 
about ‘grasping an object’ (a sensory-motor experience) and if we fail to understand 
an idea we talk about it ‘going over our heads’ (a sensory-motor experience). Such 
sensory-motor structuring is apparent in the sense of quantity where we say that 
‘more is up’. Here ‘more’ is conceptualised in terms of the sensory-motor experience 
of verticality, which may have derived from the filling of a glass of water.   
Lakoff and Nunez (2000) have provided a model for the development of arithmetic 
principles from perceptual systems. From the properties of object collections we can 
determine equal results through different operations in the construction of the 
collections and see that the same collection results from any order. More specifically, 
the knowledge that combining object collections A and B in the physical world give 
the same result as combining B to A can be mapped onto the number world (p.54). 
This would be similar for three sets.  
Other everyday experiences show us that there are various ways to get the same 
results. Lakoff and Nunez gave the example of shopping for an item by going to the 
shops, by mail catalogue or over the Internet.  These are all different processes that 
result in the purchase of an item. Such knowledge is represented as an Equivalent 
Result Frame (Lakoff and Nunez, 2000, p.87). The conflation of these metaphors, 
Arithmetic is Object Collection and Arithmetic is Object Construction, with the 
Equivalent Result Frame would explain the emergence of commutativity and 
associativity in children’s arithmetic. Here the abstract reasoning of commutativity or 
associativity is based on the perceptual experiences of seeing the identical result of 
the combinations or the different processes in everyday life.  

DISCUSSION
Both theoretical perspectives have provided explanations for the spontaneous 
development of arithmetic principles that are used in flexible calculation strategies. 
The Piagetian viewpoint would seem to provide a model for examining the perceptual 
separately from the conceptual. The embodied learning perspective would seem to 
provide a model where the conceptual can be built from perceptual, sensory 
experiences.
Baroody and Ginsburg’s (1987) empirical research provided an example of a boy, 
Case, who appeared to be uncertain of applying commutativity to addition 
procedures. When asked if commuted pairs such as 6 + 2 and 2 + 6 would add up to 
the same thing or something different, Case’s response was that the pairs were 
‘almost the same but different’. When asked to add 2 + 7 and 7 + 2 Case seemed 
uncertain whether the commuted pairs were equivalent or not and carried out 
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counting procedures with both pairs to check. Why would he say ‘almost the same 
but different’?  We do not know for certain why Case responded with the statement 
but it is tantalising to speculate.
One speculation may be that Case is focusing on the perceptual attributes of the 
object collections. After all a collection of 2 objects of one type, say colour, and 7 of 
another would appear as a different collection to one of 7 and 2. The arrangement of 
the objects would give a different pattern. Hence focus on the ‘rich image of the 
objects’ would not suggest that the commuted pairs are the same. Pitta’s (1998) 
empirical studies of young children and counting cubes suggested that the more able 
children attended to mathematical qualities, such as the notion of five when asked to 
say what was important about the set of objects. The children who did not use 
efficient strategies would focus on the concrete experiences such as pattern or colour. 
Thus it is possible that some children did not know what was relevant to focus on. In 
the same way that Tall (2004) proposed the need to focus on the non-perceptual 
attributes of objects, maybe Case has not rejected the ‘rich image of detail’ of the 
objects in order to focus on the structural relations. This speculation would support 
the Piagetian notion of reflected abstraction that draws on the non-perceptual 
attributes. The focus is on the coordination of the objects and not the objects 
themselves.  
Take the situation where you have 2 sweets and are given 7, this would be a very 
different situation to having 7 sweets and being given 2. Even the action of counting 
out 2 sweets and counting out 7 is different to counting out 7 and the counting out 2. 
So if the child focused on the ‘rich image’ of the actions the commuted pairs may not 
be seen as equivalent.
In mapping from the object collection metaphor of the physical world to the world of 
numbers the physical attributes would not seem to be helpful in making sense of the 
situation and seeing the equivalence. Sfard (1994) commented on the implausibility 
of the claim that metaphorical projection from the perceptual to the abstract could be 
a simple correspondence between a sensory experience and an abstract concept in a 
similarity relation. Sfard has interpreted the embodied notion of conceptual metaphor 
as non-comparative. She saw the conceptual metaphor as 

“… a mental construction which plays a constitutive role in structuring our experience 
and in shaping our imagination and reasoning. In other words, rather than being a product 
of a comparison between two existing things or ideas, metaphor, as conceived by Lakoff 
and Johnson, is what brings abstract concepts into being” (p. 46)

Sfard continued to explore the notion of the embodied schemata as those originally 
built to put order into our physical experience, which are “‘borrowed’ to give shape, 
structure and meaning to our imagination” (p. 47).  She proposed that this view of 
embodied learning and the conceptual metaphor does acknowledge the abstract 
reasoning from the physical world or ‘figurative projection’.  
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But how might the embodied learning perspective explain Case’s uncertainty with the 
commuted pairs? If I am allowed to take a comment from one of Sfard’s 
interviewees, it may shed some light. 

“It is only when you are perfectly certain, without having to check, that things might be 
exactly the way they are. It’s like in the case of an intimate familiarity with a person. 
With such a person you often know what he is going to do without having to ask … The 
(abstract) things have a life of their own but if you understand them, you make 
predictions and you are pretty sure that you will eventually find whatever you foresaw… 
The intimacy is exactly what I had in mind: you know what is to happen without making 
any formal steps…” (p. 49) 

This response reflects Johnson’s (1987) view of understanding, that it is not just a 
matter of reflection on pre-existing knowledge but as the “way we experience our 
world as a comprehensible reality” (p. 102). If, as Sfard suggested, “experiential 
comprehension gives people an ability to anticipate behaviours of material objects 
without reflection” (p. 49), a further speculation might be that Case has not yet been 
able to use experiences to support anticipation and certainty of the result. The 
conceptual metaphors of everyday experiences of equivalent results may help him 
feel familiar with initutive ideas such as commutativity and to make sense of the 
abstract mathematical notion. A young child’s understanding of commutativity may 
not solely be through operational reasoning and reflection on the process but also 
through analogical reasoning on the equivalent results of the process as an 
ontological object, a familiar known experience.  

DEVELOPMENT OF AN EMPIRICAL STUDY 
This theoretical discussion proposes that the conceptual metaphor can have a role in 
the construction of children’s arithmetic and acknowledges the possibility that 
mathematical concepts such as number can be built from bodily actions and 
perceptions. An empirical study would allow further substantiation of such a 
proposal. In the area of neuroscience empirical evidence would suggest that 
embodied learning and the notion of conceptual metaphor does play a role in the 
development of mathematical ideas. As Rogers and Caines (2007) proposed, mental 
processes can be said to exist by virtue of neural processes where human ideas such 
as number have their origins in bodily perceptions. Metabolic brain imaging 
techniques provide evidence that intuitive ideas are part of a functional web that 
connects primary sensory and motor areas.  
But how could a methodology be developed to investigate the role of the conceptual 
metaphor in children’s learning in arithmetic? The development of an empirical study 
would suggest methodological difficulties, one of these difficulties being how to 
investigate implicit, intuitive knowledge in young children’s solving of numerical 
problems. 
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In Sfard’s study she had asked the question ‘What happens in your mind when you 
feel that you have understood a piece of mathematics?’ to research mathematicians. 
Responses suggested a notion of familiarity with the mathematics. As mathematicians 
it is possible that they were able to see ‘right to the ground’. In other words they were 
explicitly aware of the intuitive sense of the mathematics. A brief investigation with 
prospective primary teachers did not provide the same responses of familiarity. 
However some of the prospective primary teachers did refer to ‘cogs in the brain’, 
‘ideas clicking into place’, ‘pieces of jigsaw fitting into place’ or even ‘a flick of a 
switch’. These in themselves are metaphors for connections so even if they do not 
mention the notion of familiarity they may be referring to the sense that the 
mathematical idea is becoming part of a functional web. Whether this question would 
elicit such responses from children has not been tested.  
A further methodology would be to observe children’s overt strategies as they carry 
out trials to solve addition problems and how these relate to their understanding of 
commutativity or associativity as in Canobi, Reeve and Pattison’s (2002) study. 
Canobi et al’s study provided further evidence of the relationship between children’s 
intuitive use of the arithmetic principles and their development of flexible strategies. 
Children were asked to justify the correct responses and it would seem that the 
children referred to the equivalence of the results but this is not explored fully. A 
further examination into the children’s autonomous ideas of equivalence as a 
structural commonality could be pursued.  
Other studies have provided evidence that children’s analogous reasoning enables 
them to see the structural commonalities in multiplication and division word 
problems (English, 1997). It can also be seen that young children may focus on the 
actions and relationships within different numerical problems.  A child may solve a 
problem through direct modelling where the strategies used reflect the specific 
actions of the problem and, as such, interpret each problem as a new, individual one 
(Carpenter, Fennema, Franke, Levi, & Empson, 1999). Young children may not see 
the ‘common thread’ or structural commonality that ties the direct modelling 
strategies together. As children progress to more advanced counting strategies it is 
considered that they begin to see the common thread. In the same way that English 
demonstrated that analogous reasoning helped children to see the structural 
commonalities so it is possible that analogous reasoning enables children to see the 
‘common thread’ or equivalence different contextual problems and even in trials 
related to commutativity and associativity. Hence as each trial is presented to the 
children as a problem with different actions and relationships analogy plays a role in 
allowing them to see the structural commonality of equivalence.  
The combined methodologies of observing overt calculation strategies and 
investigating analogous reasoning could be seen to enable the determination of a 
relationship between analogy and the development of flexible calculation strategies. 
A methodology is still needed to determine how the intuitive knowledge is arrived at 
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and to identify the mechanism that allows the analogous reasoning to take place. If 
conceptual metaphors are involved, how are they processed? 

CONCLUSION
The conceptual metaphor and embodied learning perspective may help to explore 
how sensory experience is built on and provide a way of exploring the relationship 
between children’s informal, intuitive knowledge and the formal knowledge of the 
classroom.  Sensory experiences with object collections could be built on to develop 
the intuitive knowledge of the arithmetic principles that in turn could support the 
development of flexible strategies.  
In exploring the example of commutativity it is possible to see on one hand the 
development as a non-empirical abstraction based on reflection of the child’s actions 
on objects but the dissociation from the perceptual does not provide the opportunity 
to explore the relationship with children’s sensory experiences. On the other hand, 
exploring commutativity from an embodied learning perspective provides the 
possibility that the abstract world of number can be built from perceptual, sensory 
experiences.
The issue of divergence in children’s use of arithmetic remains a concern for 
educationalists. It has been suggested that low attaining children rely on procedural 
counting strategies whereas more able mathematicians recognise the economy of 
flexible strategies (Baroody and Ginsburg, 1986; Gray, 1991). Children who adhere 
to procedural counting strategies may find it more difficult to learn flexibility in 
arithmetic procedures, even with instruction (Murphy, 2004). As further instruction in 
arithmetic procedures takes place in school, it is possible that mathematics may 
become a subject that makes little sense to these children. It would seem worthwhile 
to examine how children make the mental leaps that allow them to understand the 
mathematics.   
As yet little is known how metaphors are processed (Gentner, Holyoak, and Kokinov, 
2001) but conceptual metaphors may provide a lens to investigate children’s 
development in arithmetic. The notion of embodied learning could help examine how 
children build an abstract notion of number and develop an implicit use of principles 
that informs their arithmetic from informal, sensory experience. The examination of 
children’s development in arithmetic in terms of conceptual metaphors has inherent 
methodological difficulties in determining young children’s explicit awareness of 
something that is implicit and intuitive. Other studies have paved the way in 
indicating the relationship between arithmetic principles and flexible strategies and 
also in children’s progression from the ‘rich detail’ of informal arithmetic and direct 
modelling to the more abstract counting strategies that rely on analogical awareness 
of structural similarities. A review of observation or interview techniques is needed to 
investigate the mechanism that is happening and to determine the role of the 
conceptual metaphor.  
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THE POWER AND PERILS OF METAPHOR IN MAKING 
INTERNAL CONNECTIONS IN TRIGONOMETRY AND 

GEOMETRY 
Norma Presmeg 

Illinois State University 
This paper draws upon data collected in two research projects, on the teaching and 
learning of trigonometry and geometry respectively, to illustrate the power of 
metaphor to facilitate students’ connected knowledge in these fields. The structure of 
metaphor is examined. Because the domains connected by metaphor have both 
similar and dissimilar elements, it is necessary for both teachers and learners to take 
into account the tension introduced by the dissimilar elements in order to make the 
most of the potential connecting power of metaphor. Illustrations are provided of 
how spontaneous idiosyncratic metaphors of learners as well as taught metaphors 
provided by their teachers may become a powerful shared socio-mathematical force 
or an individual means for connected learning in geometry and in trigonometry. 

ALISON’S WATER LEVEL: A VIGNETTE 
Already in the early 1980s, in my doctoral research on visualization in the teaching 
and learning of high school mathematics, it became apparent that metaphor could be 
used in the service of generalization in this teaching and learning. All of the 
difficulties experienced by the 54 visualizers in that study could be related in one way 
or another to problems of generalization. Visual imagery and inscriptions, by their 
nature, provide one concrete case of a mathematical principle; yet they have to be 
understood in a general sense in order to be used effectively. In the course of 188 
transcribed interviews over the course of a school year, there were two means of 
overcoming this one-case concreteness of visualization. One of these was by the use 
of pattern imagery—which depicts pure structure—and the other was by embracing 
the power of metaphor to connect disparate domains (Presmeg, 1985, 1992, 
1997a&b). From this early research, an illuminating illustration of the usefulness of 
idiosyncratic personal metaphors to learners is provided in the following extract from 
a transcript of an interview in which Alison was solving a trigonometric problem that 
required her to find a reference angle in the second quadrant, given the rotation angle 
(… indicates that time has elapsed). 

Alison: Then it would be sine … second quadrant. So, 180; you take it from 180, 
’cause that’s your water level. 

Interviewer: Oh, is that how you think of it [laughing]? And how does the water level 
help you to get it? 

Alison: Oh, um … you’ve got … It’s like a ship sailing: can’t sail that way really 
[gesturing up and down, along the y axis]. There, that, sort of, it can. You 
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work it from there. You take most of your …’cause that’s your 360 … it’s 
there as well. 

Interviewer: Did you think of that for yourself or did someone tell you about the water 
level? 

Alison: No, I just thought of it. 

Alison’s water level metaphor enabled her to make sense of a trigonometric principle 
in terms of her real life experiences. This encapsulation of the principle also had 
apparent mnemonic advantages: she could recall the principle with ease. 

THE STRUCTURE OF METAPHOR 
Metaphor has directionality: if one says, “A teacher is a gardener”, one is talking 
about a teacher, highlighting those nurturing aspects of the field that are shared in 
teaching and in gardening. It would be far less appropriate to say “A gardener is a 
teacher”, because plants have less capacity to be taught than human learners. “A 
teacher is a policeman” provides a very different conceptualization of the work of a 
teacher. The work of a teacher is the target domain; gardening or policing are the 
source domains. These domains are also known as the tenor and the vehicle of the 
metaphor, respectively, in literary classifications (Leino & Drakenberg, 1993). The 
elements that are common in the two domains being compared are known as the 
ground of the metaphor. Those elements that are not comparable in the two domains 
comprise the tension that is present in every metaphor. 
 The foregoing brief analysis of the structure of metaphor (elaborated in 
Presmeg’s 1998 paper) provides the theoretical lens for analysis of the data on 
metaphor collected in two recent empirical investigations. Both research studies were 
concerned with connections amongst registers or domains in students’ learning, thus 
although the research had a wider focus, metaphor was a natural part of these studies 
by virtue of its function in connecting domains of experience. Registers are taken as 
modes of representation in this paper. Duval (1999) considered conversions, both 
within and amongst various registers (such as algebraic and diagrammatic), to be 
essential aspects of effective learning of mathematics. The research on which this 
paper is based provided confirming evidence for Duval’s claim, although caution is 
needed in taking students’ ability to move fluently amongst registers as sufficient 
evidence of deep conceptual understanding (Presmeg & Nenduradu, 2005). 

TWO RECENT RESEARCH PROJECTS 
In the spring semester of 2006, I had the privilege of collaborating with colleagues in 
two investigative studies. With Susan Brown, enlarging the scope of her doctoral 
research (Brown, 2005), I investigated elements of her teaching of trigonometry that 
facilitate learners’ construction of connections amongst the various registers of 
school trigonometry, such as triangle definitions, the coordinate plane, the unit circle, 
and the graphs of trigonometric functions. In a separate study with colleagues Jeffrey 
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Barrett and Sharon McCrone, in Jeff’s class of mainly preservice elementary school 
teachers, we investigated connections between understanding of geometric principles 
using dynamic geometry software and using traditional Euclidean compasses-and-
straightedge constructions, in the course Geometric Reasoning: Geometry as Earth 
Measures. The nature of this course, “earth measures”, enabled the introduction of 
some trigonometry along with the geometry, in the topics taught and in the interviews 
that were conducted with selected students. After all, the meaning of the word 
“trigonometry” is “triangle measurement,” taken from the Greek words trigon, 
triangle, and metron, measurement, and trigonometry is widely used in navigation 
and in land surveying on a global scale. My research question in both projects was 
the same, namely, How may teaching facilitate students’ construction of connections 
amongst mathematical registers? In this paper I shall concentrate on the metaphors 
that were evident in the 30 task-based interviews (6 interviews in the geometry class 
and 24 in the trigonometry project). 
 In the trigonometry part of the course Enriched Advanced Algebra/ 
Trigonometry taught by Susan Brown, in addition to observation of the teaching of 
seven lessons, four students were interviewed six times each, on January 30, February 
6, 13, and 27, April 17, and May 9. The four students, Laura, Raj, Jim, and Brian 
(pseudonyms) were chosen by the two researchers in consultation, in order to achieve 
a variety of learning styles. Each individual task-based interview of 15-25 minutes’ 
duration was audio-recorded; I transcribed the recorded data immediately following 
the interview or on the same or the following day, when memories of the context 
were fresh. In the course of the 24 interviews there were 9 instances of spontaneous 
metaphors and four references to metaphors that had been introduced by the teacher 
(Susan). In the geometry course with preservice teachers, one metaphor, which was 
first mentioned by the teacher, Jeff, became adopted by the whole class and used 
throughout the remainder of the semester by students and teacher alike. Data 
collection in this class included video recordings of all class sessions, field notes of 
one observer (either Sharon or Norma) in almost all sessions, reflective notes on each 
session by the teacher (Jeff), and transcriptions of audio-recorded interviews. Sharon 
and Norma each interviewed three students twice (near the beginning and the end of 
the spring semester), with one student, Mary, in common to both interviewers: thus 
four students were interviewed twice each, and Mary four times. In this paper I shall 
draw on field notes in three sessions, February 14, 16, and 21, in which a metaphor 
became part of the class discourse. 

EXAMPLES OF “TAUGHT” METAPHORS 
In the trigonometry data from Susan’s class, two of the four students initially 
experienced difficulty in working with rotation angles in the third quadrant. Both 
Laura and Jim had a tendency in the first two interviews (Jan. 30 and Feb. 6) to drop 
a perpendicular to the y axis rather than the x axis in the third quadrant, in attempting 
to find the reference angle. The triangles they constructed introduced an added level 

Working Group 1

CERME 5 (2007) 163



  
of complexity and hindered their working. Jim in the discussion that ensued even 
expressed resistance to working from the x axis in that quadrant: he did not like 
drawing a reference triangle “backwards on itself” in the third quadrant, because it 
would be “blocking” the rotation angle (see Jim’s transcript data in Presmeg’s 2006 
paper, vol. 1, pp. 29-30). After these first two interviews, on February 7, the teacher, 
Susan, asked her class to perform a computer program in which they created a 
colourful “bow tie” to illustrate the principle of using the x axis in finding reference 
angles in the four quadrants (figure 1, without the colour). After this exercise, none of 
the four students interviewed used the y axis for this purpose.  

 

Laura, Raj, Jim, and Brian all 
used the whole or some part 
of this visual inscription of 
the bow tie metaphor when 
working in the four quadrants 
in subsequent interviews. It 
became a shared social 
metaphor for a mathematical 
principle. 

Figure 1. The bow tie inscription. 

Susan had introduced another metaphor, that of a boom crane and its movements, in 
working in a half-plane in the early part of the course. Both Brian and Jim indicated 
in the first interview (January 30) how helpful this real-world connection was for 
them in making sense of the extension of the right triangle trigonometric definitions 
to the coordinate plane. “Mrs. Brown does a good job of just, you know, showing us 
lots of different ways with real life examples, and that helps”, reported Brian. 
However, in its connections of triangle trigonometric definitions with the structure of 
a coordinate half-plane, the boom crane metaphor turned out to serve more than just 
the purpose of a real life example, because its target domains were both triangle and 
coordinate plane trigonometric fields. The bow tie also effectively linked these two 
target domains, while the source domain came from real life. The dual target domains 
thus facilitated students’ conversions between these two registers of trigonometry in 
each of these two metaphors. The bow tie inscription is already one step removed 
from the imperfections of a real bow tie: here lies the tension of the metaphor. The 
inscription is a pseudo-concrete model, in the sense of Parzysz’s (1999) 
characterization of mathematical modelling from the real world: 

  Mathematical model.Pseudo-concrete modelReal situation 

 In the “earth measurement” course, Jeff introduced a metaphor in the geometric 
context of constructing various kinds of quadrilaterals, both by means of classical 
Euclidean constructions and by using dynamic geometry software. In the computer 
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laboratory (unlike the constructions with compasses and straightedge), students’ 
constructions of quadrilaterals such as a square or a trapezoid could in some cases be 
“broken” by dragging vertices: the whole inscription could come apart! The metaphor 
of unbreakable was adopted by the whole class and used by students in sessions in 
the lab on February 14, 16, and 21 as a test of whether or not a construction had been 
done rigorously. For instance, in attempting to construct a square (February 14), 
Jenny used Geometer’s Sketchpad to draw a circle, then to construct lines that 
appeared to be perpendicular, through the centre of the circle. She connected the 
points of intersection of these lines with the circle, in order to create a square – but 
after dragging, the object was obviously no longer a square: it was not unbreakable. 
This metaphor became an important test, used in class dialogue subsequently not only 
in the computer lab but in using classical tools, where dragging was not an option. 
The metaphor had come to embody a general principle for the class, one that went 
beyond the initial context of its inception. 
 The metaphors of the bow tie, the boom crane, and the unbreakable sketch all 
used source domains from real life contexts, but their target domains were 
mathematical principles. The bow tie encapsulated the principle of drawing reference 
triangles to the x axis in the four quadrants of the coordinate plane. The boom crane 
made a logical connection between the movements of this crane and the principle that 
one could identify a point in the plane by means of a distance from an origin and an 
angle measured from the positive side of the x axis. The metaphor of an unbreakable 
sketch drew upon students’ real experiences with objects that could be shattered or 
come apart. All three of these metaphors were memorable for the students, as 
evidenced by the fact that talking about them became part of the shared classroom 
culture. These metaphors were originally introduced by the respective teachers, Susan 
and Jeff. However, as in the case of Alison’s water level metaphor in the opening 
vignette, interviews also revealed spontaneous metaphors with which students 
endeavoured to make sense of mathematical principles. 

EXAMPLES OF SPONTANEOUS METAPHORS 
Of the four students interviewed in the trigonometry project, Jim was the one who 
thought most visually in his choices of inscriptions and language in solving problems 
in trigonometry. His terminology was often metaphorical. For instance, the following 
transcript is from the interview on April 17. I was asking Jim how he knew that the 
tangent of an angle is the sine of the angle divided by its cosine. 

Jim: Because for the tangent it’s the y, I guess the y, um, the y coordinate on the 
unit circle. And the cosine is the horizontal … um, on the circle. 

Interviewer: I know what you mean. 

Jim: So, then, on the unit circle the cosine is the horizontal movement and sine is 
the vertical movement, to get to the point on the unit circle, so it would be 
sine over the cosine. 

Working Group 1

CERME 5 (2007) 165



  
Jim then made the connection between the tangent as the slope of a line, and these 
vertical and horizontal “movements”. In stating that the cosine is the horizontal 
movement, his thinking was clearly metaphorical. This language seemed to come 
much more naturally to him than his hesitant attempts to define sine and cosine in 
terms of coordinates of points on the unit circle. In this interview, he also spoke of 
the trigonometric ratios in terms of distances, using a journey metaphor (cf. Lakoff & 
Johnson, 1980; Johnson, 1987; Lakoff & Núñez, 1997). The metaphor of a journey 
was also present in a striking way in his language in the last interview (May 9), in 
which he referred to the x value of the cosine as “the amount you go over”. The 
journey metaphor was also found in language used by Raj and Brian in interviews. In 
the third interview (February 13), Brian spoke of “distances” from the x and y axes 
when referring to the sine and cosine ratios respectively. In the first interview 
(January 30), I asked Brian if there were any aspects that had helped him make the 
transition from triangle definitions to trigonometry in the coordinate plane. 

Brian: I think the thing that made the transition easiest, was that, when we worked 
on the positive [that is, in the first quadrant], it was just like working with a 
normal triangle. Your sine was still the opposite over the hypotenuse, your 
cosine was still the adjacent over the hypotenuse. And that made it easy to 
see the translation that, sine was y, which was still the same as the 
opposite, over the r; cosine was still the adjacent, over the r. 

Brian’s characterization of a “translation” in this context could be a metaphoric 
reference to the trigonometric definitions in terms of movement in the plane. 
However, the metaphor might also have its source in a linguistic context: one 
translates between two languages in a way comparable to the translation between the 
registers of the triangle definitions and the designation of points in the plane. 

The most dynamic instantiations of the journey metaphor were those used by 
Jim, who was obviously at home in the visual environment of a journey. But Jim’s 
metaphorical thinking in terms of spatial orientation sometimes led him astray, as 
illustrated next. In the final interview of the trigonometry project (May 9), each of the 
four students was asked to identify the “big ideas” of the trigonometry part of the 
course they had completed, and to explain to the interviewer how these big ideas are 
“all connected together, if they are”. The wording was deliberately broad, in order to 
elicit those ideas that each student considered significant, and possible connections 
amongst them. About one third of the way through the 20 minute interview, Jim had 
identified the trigonometric ratios in terms of distances again, in the coordinate plane 
with a unit circle. Then he sketched the graphs of sine, cosine, and tangent of an 
angle. 

Interviewer: Can you link the graphs with the circles? 

Jim: Um, for this one [sine] if you had the origin or zero for the y at um, zero, 
here, um … And this would be one on the unit circle and negative one here. 
The same thing for all of them. Then you have for the cosine, reaches, 
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you’d start up here [at one on the y axis] for the cosine graph and then, see 
it goes down as you go around. So, until it goes down to the bottom, and 
then it goes back up. 

Interviewer [based on Jim’s gestures]: So you’re going clockwise, from the top, in the 
cosine? 

Jim: Yes! 

Interviewer: Is that how it works? Are you thinking it’s one here at the top, on the y 
axis? 

Jim: Yeah. And then negative one at the bottom. 

1 

Jim’s gestures and words 
suggested that his image of 
the changing values of the 
cosine, based on the cosine 
graph and its sinusoid shape, 
was as in figure 2. 

 

-1 
 

Figure 2. Jim’s attempt to link the graph of y = cos � with the unit circle. 

There was a certain logical quality in Jim’s gestured inscription, because the sinusoid 
shape of the cosine graph does “start up here” at one on the y axis, move to negative 
one after half a revolution of the angle, and then return to positive one after 
completing the revolution, and the negative part of the cosine wave happens in the 
“right” places. But what makes this conversion a cognitively complex task, and what 
Jim was overlooking, was that he had formerly defined cosine � as the “horizontal 
movement” or the “x value” of points on the unit circle. His journey metaphor was 
not helpful in this instance, because he converted the y “distance” quite literally from 
the graph of y = cos �, in which the axes represented � and y, to a unit circle with 
axes x and y respectively, on which cosine should have been represented by x 
coordinates rather than y. The discourse continued as follows. 

Interviewer: What is cosine again? 

Jim: Um … cosine is the x coordinate over the radius. 

Interviewer: Yeah. So what you’re telling me here [at the start, on the y axis] is that the x 
coordinate is one? 
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Jim: Oh, yeah! So … starting here then [positive x axis], that would be the top, 

the highest cosine value of one, then work backwards this way [counter-
clockwise]. 

Then Jim completed the comparison correctly. It is interesting that Jim’s imagined 
inscription conforms to the way that angles are measured in large-scale space, from 
due north clockwise, in surveying and navigation. 
 There was one further spontaneous metaphor, of an anthropomorphic nature, in 
the first interview with Brian. I had asked him whether the triangle trigonometric 
definitions were still viable in the coordinate plane. 

Brian: Um, in a sense, yes, but these [the triangle definitions] all have to account 
for positive integers, and your calculator thinks the same way. Looking at 
the coordinate plane, you have to deal with negative x now, so it could be 
negative like, and negative y. So in both senses you could work with a 
negative adjacent for your x. Because the right angle, when we’ve been 
doing these rotations it’s always on the x axis. This change, this angle is 
here. So basically, the opposite is the y. 

Brian drew a perpendicular from a point in the third quadrant to the x axis, and 
completed the right triangle. He did not refer to the bow tie metaphor, which had not 
yet been introduced in class. He did not need it. His metaphoric reference to a 
calculator “who” can think captures the principle that the calculator has to work 
economically with trigonometric ratios and thus deals only with positive values, as in 
the right triangle definitions. “Basically” the adjacent is the x coordinate and the 
opposite is the y now, but the thinking calculator can deal only with positive values, 
so it is up to the student to supply any relevant negatives in the four quadrants. 
 Spontaneous metaphors are especially powerful in illuminating the unique 
ways that individual students attempt to make sense of mathematical principles. 
However, in interpreting students’ words and inscriptions, it is necessary to bear in 
mind that every metaphor has a tension as well as a ground, and that the tension may 
result in some difficulties unless it is taken into account, as illustrated in Jim’s case. 

SIGNIFICANCE OF STUDENTS’ USE OF METAPHORS 
Particularly when the research focus is ways that students construct connections 
amongst various mathematical registers (as is the case in the projects outlined in this 
paper), awareness of the role of metaphors in these connections is a useful research 
tool. Lakoff and Núñez (1997) presented a thought-provoking foundation for the 
position that mathematical cognition is structured by metaphors of various kinds. 
However, these authors wrote in terms of the canonical structures of mathematics 
itself (as accepted by professional mathematicians), and in my view did not pay 
sufficient attention to the idiosyncratic, spontaneous metaphors that individuals 
construct in their attempts to give meaning to mathematical ideas.  
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In the teaching and learning of mathematics, either by serendipity or design, it 

sometimes happens that a metaphor introduced by the teacher becomes part and 
parcel of the fabric of classroom discourse, and thus helps many students in their 
building of connections for mathematical concepts. In the current research projects 
the metaphor that a good construction is unbreakable (serendipitously introduced by 
the instructor, Jeff) served the double role of connecting the target dynamic geometric 
computer constructions with the real life source context of objects that can break or 
shatter or be pulled apart, and of connecting—by usage—the world of dynamic 
geometry software with the contrasting world of static Euclidean constructions. As in 
the bow tie metaphor, one source domain (breakable objects) was mapped on to two 
target domains as the students used the metaphor in both worlds, thus moving 
between the registers of these worlds in working with the same geometric ideas. Of 
course, ground and tension were present in both modes, but the students who picked 
up and used this metaphor seemed to have no difficulty in distinguishing between 
elements that were common in the structures being compared, and those that were 
not. The same could be said of Susan’s deliberately introduced metaphors of the bow 
tie and the boom crane in connecting registers of trigonometry. Both of these 
metaphors were of evident value to students as reflected in their words and actions in 
interviews designed to elicit their ways of making connections. 

More subtle, but not on that account less valuable, were the idiosyncratic 
metaphors introduced spontaneously by the students themselves. That they were 
constructing metaphoric connections with real life contexts was revealed in some 
cases by the kind of language they used. Many terms related to journey and position 
metaphors: you go over; you go up. In one case the metaphor was anthropomorphic:
your calculator thinks the same way. The metaphor of a translation in connecting 
triangles and the coordinate plane had overtones both of movement and of translating
one language into another. In all cases the implicit comparisons helped the students 
to find contexts that were personally meaningful in making sense of the mathematics 
that they were learning. Mnemonic advantages were also apparent: Alison did not 
forget the mathematical principle that was the target of her water level source, and 
nor did Susan’s students who made the bow tie their source for the same target 
principle. Despite the perils introduced by the tension present in every metaphor, the 
power of metaphor in students’ constructing of connected knowledge of mathematics 
is clear. 
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METAPHORS AND IMAGE SCHEMATA IN CONCEPT 
FORMATION AND REASONING  

Reinert A. Rinvold
NLA College of Teacher Education 

Bergen
Norway

Metaphor theory and cognitive science provide viable models of the functioning of 
the brain and our way of thinking that is highly relevant for mathematics education. 
In this paper I discuss how the metaphor analysis of Lakoff & Núñez (1997, 2000) 
and the concept of image schemata proposed by Johnson (1987) and Lakoff (1987) 
can be used to improve the learning of mathematical ideas and reasoning. The 
theoretical tools of prototypes and protocols from Dörfler (1991, 2000) are central 
for the application of image schemata and metaphors to this field. A central focus of 
the paper is how interplay between the formal and cognitive parts of mathematics is 
necessary in order to achieve learning with understanding. 

INTRODUCTION
Lakoff and Núñez think that metaphor theory and cognitive science will change both 
mathematics itself (1997) and mathematics education (2000). My focus is how the 
field introduced by Lakoff, Johnson and Núñez can be used to change mathematics 
education by actively promoting new ideas and pointing to weaknesses in 
contemporary practice. Changes closely related to mathematical content will be 
discussed. Knowledge of embodied cognition gives the hope of better and more 
systematic learning of both mathematical ideas and mathematical thinking. In order to 
achieve this, the formal parts of mathematics should not be forgotten. Dörfler (1991) 
gives some advantages of the formal approach to mathematics. For instance, it gives 
high security and accuracy. Also, formal reasoning can in principle be mechanized 
and automated. Lakoff and Núñez (2000) mention much of the same, but also that 
algorithms minimize cognitive activity. My claim is that interplay between the 
cognitive and the formal is fruitful and necessary. Improvements are possible in both 
areas, and often a change on one side has consequences for the other. 

REIFICATION, DISCOURSE AND METAPHORS
Traditional textbooks and classroom practice emphasize the formal part of 
mathematics. Techniques are taught systematically, but usually not ideas. Lakoff and 
Núñez state that mathematics should be taught in terms of the latter.  

To overstress either techniques of formal proof or techniques of calculation is to 
shortchange students. Students have a right to understand mathematics in terms of its 
ideas – and especially when the ideas are controversial and conflict with one another. 
Since a great many mathematical ideas are metaphorical, teaching mathematics 
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necessarily requires teaching the metaphorical structure of mathematics (Lakoff & 
Núñez, 1997, p. 85).

To achieve this, a link is needed to connect the analysis of ideas with learning. Sfard 
has pointed out that efforts of introducing or bringing about the appropriate 
metaphors are often rewarded with limited success (Sfard, 1994). In several papers 
Sfard (1991, 1994 e.g.) discusses her theory of reification. According to Sfard, 
“reification is the birth of the metaphor of an ontological object” (1994, p. 53). The 
sudden appearance of reification is at the same time the moment of real 
understanding. The way of thinking is drastically changed from operational to 
structural. Sfard states, “Reification – a transition from an operational to a structural 
mode of thinking – is a basic phenomenon in the formation of a mathematical 
concept” (p. 54). Reification is normally preceded by considerable effort and work. 
The dominant part of this work takes place in what Sfard calls the condensation phase 
(1991, p. 19). The approach in this phase is predominantly operational (p. 14), but the 
learner becomes more and more capable of thinking about the process as a whole (p. 
19). The phase is a struggle for understanding, often including a search for structural 
metaphors. Then reification can also mean that a system of structural metaphors for 
the new concept is established. 
Sfard gives emphasis to the potential role of names, symbols, graphs and other 
representations in condensation and reification (p. 21). In the case of negative 
numbers, the student initially sees only operations like subtractions and movements 
to the left on the number line. However, the symbols for these processes resembling 
those for the natural numbers, suggest that they behave like the latter. Involved is the 
metaphor that “negative numbers are numbers”. The use of the well known signs ‘+’ 
and ‘-’ in the new setting has a potential of communicating the metaphor.  
The emphasis of Dörfler (2000) on the Wittgensteinian (2001) idea of language game 
is an important and consistent supplement to Sfard’s theory of reification. The former 
implies that the learner has to jump into the discourse of the subject in order to learn. 
You cannot learn the meaning of the piece called knight in chess without playing the 
game and taking part in the discourse among the players. In the theory of Sfard, 
symbols and operations have to be used before they are understood. Dörfler can be 
seen to describe phases similar to condensation and reification. The grasp of the as-if 
attitude of Dörfler (p. 122) is comparable with reification. His formulation “to be 
inducted into the mathematical discourse about a concept” (p. 111-112), seems to 
indicate the same phase. This is preceded by a period of action and communication. 
Dörfler does not often mention metaphors, but they are implicitly present, both as 
prototypes (pp. 102) and in the concept of discourse. The number line is a possible 
prototype of the whole numbers Z (p. 103) and its introduction may be viewed as a 
final trigger for the reification of negative numbers (Sfard, 1991, p. 21). Lakoff and 
Núñez (1997) regard the number line as a linking metaphor when we metaphorically 
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understand numbers as points on a line (p. 34). In this case we are linking arithmetic 
and geometry.  

IMAGE SCHEMATA AND PROTOCOLS OF ACTIONS 
Image schemata or embodied schemata were introduced by Lakoff (1987) and 
Johnson (1987). The two notions are used interchangeably by Johnson (p. 28). Image 
schemata are associated with patterns and order in actions, perceptions and 
conceptions. According to Johnson (1987, p. 29), “A schema is a recurrent pattern, 
shape, and regularity in, or of, these ongoing ordering activites.” Image schemata 
explain how metaphors are connected to bodily experience.  

Human ideas are, to a large extent, grounded in sensory-motor experience. Abstract 
human ideas make use of precisely formulatable cognitive mechanisms such as 
conceptual metaphors that import modes of reasoning from sensory-motor experience 
(Lakoff & Núñez, 2000, p. XII).

Dörfler (1991, 2000) in his work underlines that many mathematical concepts are 
related to systems of actions and their products. When such systems are available, the 
formation of image schemata and conceptions can be supported by focusing attention 
on the relevant aspects of the actions. 

With respect to image schemata for mathematical concepts I propose a special 
mechanism which is hypothesized to lead to the conscious construction of image 
schemata by the individual (1991, p. 28).  

This mechanism is called protocols of actions. Protocols consist of records, notations 
or descriptions of mental or physical manipulations and interactions with object-like 
models. According to Dörfler, a protocol is a cognitive process (p. 28). However, the 
internal mental processes and the external signs take part in close interplay. Guidance 
from teachers or other competent persons is necessary for successful use of protocols. 
As an example consider the learning of isometries in the plane. Rotations are more 
easily comprehended when physical objects are rotated than abstract mathematical 
points. A protocol of actions for the former situation can be some kind of record of 
the rotation angles and the changing positions of the rotated objects. This helps the 
student to be aware of the patterns in compositions of rotations and to link the activity 
to the discourse of mathematics. Reification means that an image schema for rotations 
is established. The kind of situation and devices used for the rotations may then be 
turned into a protototype for mathematical rotations. When this is achieved, the 
physical system can be seen as the source domain of a metaphor for mathematical 
rotations. An example of further metaphorical use of mathematical rotations is to give 
meaning to orthonormal matrices in linear algebra.  
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IDEAS AND THE FORMAL IN MATHEMATICS 
Sfard mentions several dichotomies of mathematics and mathematical understanding 
(1991, pp. 7). For instance, mathematics can be divided into abstract and algorithmic. 
The main such distinction in her paper is the duality between operational and 
structural mathematical understanding. The word duality is used in another sense than 
dichotomy. A duality refers to inseparable, though dramatically different, facets of 
the same thing (p. 9). Beside the operational/structural duality of mathematical 
understanding, I will also put emphasis to the distinction between ideas and the 
formal in mathematics. Conceptions, metaphors and image schemata are classified on 
the cognitive or idea side of mathematics. The formal consists of algorithms, 
formulas, symbols, definitions and axioms. This is the part of mathematics that in 
principle can be written in a formal language and be represented on a computer. The 
distinction between ideas and the formal is not the same as that between the structural 
and operational. Certainly, symbols and rules are needed in working with an 
operational approach, but the phase of condensation is more than that. Ideas are 
important in the struggle for meaning. Also, structural thinking is not at all an escape 
from the formal part of mathematics. 
Concepts are often considered to be on the formal side, given by definitions. One 
origin is Aristotle and his theory of essences. Following Sfard I use the word 
“conception” as the cognitive version of concepts (p. 3). In objectivist thinking 
conceptions are the internal representations of concepts. However, from the 
perspective of metaphor theory or constructivism concepts cannot be considered 
independently of conceptions. The meaning of a concept is not inherent in formal 
definitions or operations. The theories of Sfard and Dörfler show how meaning 
develops in interplay between operations, ideas and formal aspects like symbols and 
rules. Neither of these factors can give meaning in mathematics independently. 
Certainly ideas and the formal are very different aspects of mathematics. In order for 
the distinction to be a duality, the two have to be inseparable and facets of the same 
thing. At least they seem to be inseparable. Ideas in advanced mathematics heavily 
involve or relate to the formal aspect. Also, no formal concept is pursued without 
accompanying ideas. It is more interesting however, to look for a deeper connection. I 
suggest that some definitions and use of formal language have more potential of 
being related to clear ideas than others. For instance our positional system of 
numerals is better suited for thinking about numbers than the roman numerals. 
Something similar is suggested by Sfard.  

Although such property as structurality lies in the eyes of the beholder rather than in the 
symbols themselves, some representations appear to be more susceptible of structural 
interpretation than others (Sfard 1991, p. 5). 

Further research is needed to achieve a good understanding of the phenomena. 
Bergsten (1999) gives a contribution by studying the figurative and spatial 
characteristics of formulas. He refers to Dörfler (1991) who thinks that formulas in 
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mathematics can play the role of a carrier for an appropriate schema (p. 28). A carrier 
is the mental, drawn or physical “objects” whose manipulation leads to the schema 
(p. 21). Also Dörfler’s concept of protocols is relevant to the question. The formulas 
or other formal records associated with protocols are related to the involved image 
schemata.  

THE CONCEPT OF INFINITY 
If protocols of actions are the link between ideas and the formal in mathematics, some 
parts of contemporary mathematics are not included in this. According to Dörfler, we 
cannot devise a protocol whose structure reflects infinite processes such as limits, 
derivatives and integrals. In his words “it is difficult to base the limit concept on 
experiences as they are provided by prototypes and protocols” (Dörfler 2000, p. 121). 
Tall (1989) rejects the classical introduction to calculus through limits, secants and a 
formal definition of the derivative. He claims cognitive obstacles to follow that kind 
of introduction and gives as an example “that many students encapsulate the process
of getting smaller as an object that is arbitrarily small - a cognitive infinitesimal” 
(Cornu in Tall, 1989). The cognitive process behind this is described by Lakoff and 
Núñez (2000, pp. 268). Tall puts forward an alternative based on local straightness 
and tangents, concepts close to physical experience. 
Lakoff and Núñez state that “Mathematics is ultimately grounded in the human body, 
the human brain, and in everyday human experience” (1997, p. 84). Grounding 
metaphors allow us to project image schemata structure from everyday domains to 
the domain of mathematics (Lakoff & Núñez, 1997, p. 34). It is relevant to ask if the 
ideas and ways of thought closest to physical experience are easiest for students to 
grasp. Finite line segments may for instance be easier to comprehend than infinite 
lines. The former was the first to be introduced historically. Only finite lines and 
potential infinity is used by Euclid in his Elements. Line segments are well suited 
manipulative objects associated with protocols of actions and image schemata. After 
all, only finite lines can be drawn on paper or a screen. The absence of infinite lines 
leads to awkward formulations in theorems, but such statements can wait for the 
reification of the line concept. 
Lakoff and Núñez describe the creation of the conception of actual infinity by their 
basic metaphor of infinity, BMI (2000, pp. 158). However, they do not claim the 
infinite to exist as physical reality. This view resembles that of Hilbert and his ideal 
elements.

The role that remains for the infinite to play is solely that of an idea – if one means by an 
idea, in Kant’s terminology, a concept of reason which transcends all experience and 
which completes the concrete as a totality - ... (Hilbert, 1983, p. 201).

Lakoff and Núñez describe currently used ideas of infinity in mathematics. Some of 
these ideas pose avoidable difficulties for the learners of the subject. The example of 
transfinite numbers (Sfard 1994, p. 53) shows clearly what kinds of problems that are 
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posed by actual infinity. For example, the concept of transfinite numbers violates the 
fundamental, experientially established principle “the part is less than the whole”
(p. 53). 
POSITIVE AND NEGATIVE DEFINITIONS 
The concept of prime number is sufficiently advanced to see a link between ideas and 
formal definitions. Usually prime numbers are defined as the natural numbers larger 
than one, not divisible by any other numbers than one and itself. The innocent word 
‘not’ means that this is a negative definition. Prime numbers are defined by the lack 
of a property. This does not directly give the learner obvious objects and actions to 
carry out. Moreover, the word ‘any’ suggests that an infinite number of possible 
divisors have to be checked. We know that there are only finitely many candidates for 
dividing a natural number, but the use of language is distracting. Fortunately, the 
primes can also be defined positively. They are the natural numbers with exactly two 
divisors. The latter definition relates to the action of finding divisors for numbers 
from one and onwards. An associated protocol can be a table of divisors with a 
marking for those numbers with exactly two divisors. This supports the formation of 
an image schema giving a rudimentary understanding of primes. Of course, a 
continued process of learning is needed to gain a mature understanding.  

HYPOTHETICAL REASONING 
Hypothetical reasoning is an imaginative way of thought involving objects not known 
or not existing at all. In the equation x2 + 3x = 10, it turns out that x denotes two 
possible integers, 2 and -5. Similarly, if we ask who the pilot of a plane is, there may 
be two pilots in the cockpit. The equation x2 = 2 has no integral solutions. This 
corresponds to the frightening situation of no pilots. The x and the pilot are 
metonymies which usually have one referent, but sometimes several or none. 
Presmeg (1992, 1997) are actual references for the use of the concept of metonymy in 
mathematics education research.
Solving equations by inspection is a direct and positive approach. This is not 
immediately applicable if we ask for rational solutions of the equation x2 = 2. Then 
we are looking for natural numbers a and b such that a2 = 2b2. The standard proof of 
the non-existence of such a pair of numbers uses formal reasoning with divisibility 
and the fundamental theorem of arithmetic. We are asked to suppose the existence of 
two numbers solving the equation, letting those be referred to metonymically by 
letters a and b. A positive alternative is to view the equation a2 = 2b2 as a sequence of 
equations

,...52,42,32,22 22222222 �������� aaaa

Cases like b = 4 and b = 5 are prototypical. Any factorization of a gives an even 
multiplicity of the factor 2 on the left side of a prototype. Trying to separate the 
factors on the right side in two equal parts, gives a remaining factor of 2. This gives 
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an odd multiplicity of the factor 2 on that side. Given a belief in the uniqueness of 
factorization, this is a contradiction meaning that no number a can be found. The 
involved actions and appropriate protocols have potential of developing an image 
schema for elementary understanding of the impossibility of finding a rational square 
root of two. 
At advanced level a proof of the fundamental theorem using algebraic technique is 
needed. The reason is that uniqueness of factorization is not at all easily seen for large 
numbers. Experience with computer assisted factorization of large numbers can be a 
help to see that factorization is inherently difficult and time consuming. Numerical 
software and calculators are situated on the formal side of mathematics. This gives 
another example that the formal can take part in interplay with understanding and 
ideas.

THE PRINCIPLE OF GENERALIZATION 
Generality through the special was used by the Babylonians long time before the birth 
of symbolic algebra. The dominance of formal mathematics lowered the status of that 
kind of presentation and reasoning. Metaphor theory can change this. The empiricist 
philosophers Berkeley and Hume claimed the general to be particular in the mind’s 
conception of them, (Hume, 1739. Part I, sect. vii). Dörfler’s concepts of prototypes 
and protocols of actions let image schemata be used to rehabilitate general reasoning 
through the special. However, an image schema is something more than a collection 
of particulars. One aspect of this is elaborated by Johnson (1987, pp. 24) taking Kant 
as a starting point.
In the sequence of equations

,...52,42,32,22 22222222 �������� aaaa

the factorization operations on both sides are actions with a clear pattern. The 
recognition of this pattern makes the inference that this kind of action can be done for 
all the equations in the sequence. I call this an application of the principle of 
generalization. Another example is the formula for the sum of the geometric 
progression

1 + 21 + 22 + ... + 2n = 2n+1 – 1. 
A prototype for this identity is

1 + 21 + 22 + 23 = 24 – 1.
A power of two, like 23, can be regarded the three times iteration of doubling, starting 
with the unit one. The prototype identity above can be proved starting with a rod of 
length 24. This rod can be divided into two rods consisting of length 23.
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The left part of these 23 rods can be divided into two 22 rods. The process continues 
until termination is achieved by splitting 21 into 1 + 1. 

The entire 24 rod now consists of the sum 1 + 1 + 21 + 22 + 23. Even if literally only 
one value of n is investigated, the proof is general. The same pattern of actions and 
reasoning can be applied for every n. A help for the learner to be aware of the 
generality of the actions with the rod, is to make a protocol. This can be a figure for 
each splitting of rods with accompanying symbolic formulations. The rods are 
operative prototypes and the prototypical equation is relational and symbolic, using 
concepts of Dörfler (2000). In the language of metaphors, the rods are based on the 
metaphor “numbers are measuring sticks” (Lakoff & Núñez, 2000, pp. 68).  
It is more likely that the metaphors for numbers are activated when the student sees a 
prototype than the version with variables and three dots. If facing the more abstract 
identity first, the student mentally has to make a translation into prototypes in order to 
understand. First when a value is chosen for n, it is possible to make or draw a rod. 
These carriers open the possibility of well grounded ideas. My point is not to argue 
that the dot version should totally disappear. The latter makes totally clear that 
generality is involved. This may be overlooked when reading something intended to 
be a prototype. Formulations with variables also open the way for the forceful 
techniques of algebra.

THE ROLE OF THE TEACHER 
The theories of Lakoff, Johnson and Núñez have strengthened the idea that 
mathematical ideas can be learnt. To achieve such learning both the teacher, the 
curriculum and the school system are very important. This is emphasized by several 
researchers, for instance Tall (1989). Learning takes place in individuals, as 
underlined by constructivism. Individual concept construction involves the formation 
of image schemata and metaphors. Both Presmeg (1992) and Dörfler (1991) point to 
the personal and idiosyncratic in this process. However, shared meanings are possible 
to a sufficiently high degree. Dörfler (1991) explains this by social communication 
and the supply of socially normed and standardized carriers (p. 22). According to 
Dörfler (2000) and Tall (1989), the teacher has to introduce the student to cognitive 
tools and learning environments. The students are not expected to invent such tools 
themselves. They need the guidance of a teacher who points to the crucial and typical 
characteristics for the intended image schemata, extends or delimits the attention etc. 
(Dörfler, 1991, p. 24). The concrete carrier by itself is no guarantee that the student 
constructs the intended image schemata (p. 27). My conclusion is that highly 
competent teachers are needed. They must have both general knowledge about the 
formation of image schemata and metaphors and content specific knowledge of the 
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ideas to be learnt by the students. Realistically, the teachers also need support. 
Examples are good software, material tools, written resources, collaboration and 
updating courses. 

QUESTIONS FOR RESEARCH 
The metaphorical analysis of mathematical concepts is far from complete. For 
instance, geometry is sparsely covered by Lakoff and Núñez. Also, they do not 
include metaphors developed for the purpose of learning. The concept of cognitive 
root from Tall, McGowen and DeMarois (2000) involves these kinds of metaphors. 
The metaphor of the function machine from that paper is of the type Lakoff and 
Núñez call an extraneous metaphor (2000, p. 53). However, the idea of local 
straightness, also introduced as a cognitive root, is embodied and natural (Tall, 1989). 
A research question is to develop a fruitful classification of metaphors for the support 
of finding cognitive roots. Inspired by Freudenthal (1983) I suggest the name 
phenomenological metaphor for the local straightness kind of metaphor. A 
comparison of the use and effects of cognitive roots based on different kinds of 
metaphors seems interesting. Another question worth pursuing is the connection 
between cognitive roots and the operational approach of protocols of actions. Finally, 
the relation between image schemata introduced by Lakoff and Johnson and the 
already existing literature about schemata should be clarified. This is elaborated to a 
certain extent in Presmeg (1992). 
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TEACHING SPECIAL RELATIVITY 
Leo Rogers and Patrick J. Caines

Brunel University, UK. 

Abstract.  The recent convergence of ideas in neuroscience and cognitive 
linguistics has revealed that the unconscious mind is surprisingly powerful 
and extensive. This convergence has resulted in the emergence of cognitive 
frameworks that seem able to generate novel perspectives in the domain of 
conceptual change. We are investigating the application of conceptual 
blending, visual metaphor and embodied cognition in teaching the extension 
of Newtonian mechanics into special relativity. The pivotal role of 
visualisation and visual metaphor is discussed. This theoretical paper 
represents the first step towards a teaching experiment. 
1. EMBODIED KNOWLEDGE OF MECHANICS 
     If we believe that mental processes can only exist by virtue of neural 
processes in the brain, then human ideas about such things as number, force, 
space and time must have their origins in bodily perceptions, and are not 
disembodied abstractions. They are mental constructions forged out of 
human experience over an evolutionary time scale. The idea of embodied
cognition is supported by the convergence of cognitive science, neuro 
science, cognitive linguistics and evolutionary anthropology. (Dehaene, 
1997; Edelman, 2004; Fauconnier and Turner, 2002; Lakoff and Nunez, 
2000).
      Lakoff and Nunez (2000) argue that basic human mental processes are 
largely metaphorical, and that the conceptual system is metaphorically 
structured. They present linguistic evidence that reveals the metaphorical 
structure of mathematics. However Schiralli and Sinclair (2003) argue that 
metaphor itself is constructed from more basic mechanisms, which cannot be 
ignored, of identification, discrimination, generalisation and synthesis. 
These processes are heavily dependent on the ability to categorise and to 
make analogy. Metaphorical extension provides the mind with the ability to 
construct complex ideas on the embodied foundation, as a layered network 
of metaphor built on metaphor. As this structure develops, concepts become 
progressively more disembodied and less intuitive. But certain basic 
concepts are difficult to reduce further because they are semantic embodied 
knowledge, laid down by genetics and evolution within the brains of our 
ancestors and developed by experience of the external world. When this idea 
is applied to understanding mechanics, neural motor control circuits, muscle 
contractions and limb movements provide the basis of an embodied force 
and motion schema.
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     Motor activities are processed unconsciously by dedicated brain modules, 
and conscious thought is supported by a large raft of unconscious 
processing, Edelman, (2004). This basic mechanism provides the semantic 
structure for our understanding of dynamic and static forces. Dynamic force 
is associated with body movements, such as lifting or of throwing a rock, 
which are produced by unbalanced muscle contractions. The idea of static 
force is associated with opposing balanced muscle contractions, made in 
response to decisions to keep the body rigid and still, for instance when 
stalking prey. Unconscious motor routines are a basic component of our 
intuitive force and motion schemas which permit an individual to participate 
in exacting activities, such as ice dancing or taking a running catch that 
demand an extensive intuitive knowledge of mechanics.  Real knowledge of 
mechanics must exist in the brains of all individuals to enable the execution 
of everyday activities. Embodied force and motion schemas are 
metaphorically extended to structure understanding of the force and motion 
schema perceived in the external world. This mechanism also extends 
knowledge of real world forces and motions into the abstract force and 
motion schemas of formal mechanics.  From the point of view of embodied 
cognition, the vector force arrow is representing an unconscious push of the 
hand because we have no other way of subjectively knowing the nature of 
force. The arrow is a visual representation of the force where an unseen hand 
is pushing the arrow.    
       Spatial and temporal awareness are also functionally embodied. The 
central nervous system is characterised by intrinsic spatial awareness. The 
body’s sensory system transmits signals resulting from skin surface 
stimulation along parallel links to the primary somatosensory cortex, where 
the skin surface activation is represented topographically.. The body is 
intrinsically aware of the spatial organisation of its surface even though the 
sensation itself is generated in the brain. The visual system is characterised 
by a precise spatial awareness. A function of the visual system is to provide 
a prompt mental representation of spatial aspects of the objects situated in 
the visual field. The visual signals progress along the optic nerve to the 
visual cortex, while maintaining the spatial organisation of the retina.  The 
visual cortex has numerous layers of cells (V1, V2, V3 and many others) 
through which form, colour, orientation and motion are processed in 
separate areas, Zeki (1991). The retina and the visual cortex generate precise 
responses to orientations; for instance, column cells in V1 respond strongly 
to orientation and direction, Bonheffer and Grinvald (1991). These innate
neural structures enable the visual system to extract spatial information from 
the visual stream and create awareness of the structure of external space.  
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The temporal organisation in the brain makes extensive use of synaptic 
delays between neurons. Pulvermuller (2002) describes synfire chain
mechanisms which are able to generate the temporal sequencing necessary 
for speech, music and motor actions. The mind has a strong sense of 
temporal order. We are able to imagine a sequence running in mentally 
generated time which matches accurately the timing of external sequences of 
real events. The mind also has subjective time awareness. Linguistic studies 
have revealed that we consistently think of time as a flow of events from the 
future to the past, passing us at now, Lakoff and Johnson, (1980). 
Anticipated future events are coming towards us and the experience of 
waiting for the arrival generates awareness of time.      
      Innate schemas of the real world do not allow space and time 
discontinuity and demand invariance of the size and shape of solid objects. 
Even very young children recognise the violations of these schemas, which 
are the basis of cartoon humour. We believe that an object we have placed in 
another room will still be there in the same place when we return to the 
room; if the object has vanished, we believe that there must be a cause for its 
removal. However the means of construction of this knowledge, innate and 
developed during early life, is hidden from consciousness and is beyond 
introspection. It is upon this foundation that the constructions of intuitive 
mechanics are built.
2. FUNCTIONAL WEBS AND THE CORRELATION LEARNING 
PRINCIPLE.
     All neural connections are synaptic, and the strength of connection is 
variable. Dormant synaptic connections between neurons in the cortex are 
normally weak and neural signals are attenuated as they pass through. 
However, connections become much stronger if they are used repeatedly.  
This strengthening mechanism was proposed by Hebb (1949, p.70) and 
quoted by Pulvermuller (2002, p.19). When pre and postsynaptic signals 
activate a synapse simultaneously the synapse strengthens and the mutual 
influence of the two connected neurons becomes stronger. They therefore 
become associated. The mechanism allows the formation of durable long 
distance reciprocal links between groups of sensory and motor neurons. 
Each neuron is massively connected and may send information to, and 
receive information from thousands of others, enabling the extensive mixing 
of information. Pulvermuller (2002, p.21) refers to this mechanism as the 
correlation learning principle.   The correlation learning principle implies 
that frequently co-occurring patterns of activity can be interconnected.  This 
mechanism allows the creation of durable networks, termed functional webs 
by Pulvermuller, which establish associations between frequently 
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coactivated areas in the cortex. It is a mechanism that enables the association 
of two concepts simply by the action of their repeated and simultaneous 
activation. The correlation learning principle is therefore the basis of a 
critical cognitive process.
    Many thousands of webs exist in the cortex. Although associated areas of 
the web are permanently connected by strengthened synapses, these 
networks are normally inactive.  A strongly connected neural web can be 
stimulated into activity by external input, even if only a fraction of the 
neurons in the web are stimulated. The activation spreads to the rest of the 
web, leading to full activation. This process is known as ignition, and is 
described by Pulvermuller (2002, p.29), and has been simulated in neural 
network models by Palm (1981,1982). If the web is a memory representation 
of an object and each neuron is representing some attribute of the object, 
then ignition represents the activation of all attributes of the object, triggered 
by input to at least one. Web ignition can be stimulated either by external 
perceptual input or by internal input from other cortical neurons, outside the 
web. This activation of the web is the basis of short-term memory, whereas 
long-term memory merely requires the web to be in a passive state. 
      An object is represented in the brain by a web of interconnected sensory 
and motor areas, which binds together the object’s stored attributes. In 
addition, webs in the specialised language areas represent words. An object 
web, and the word web representing the object, become highly associated by 
repeated coactivation. Perception of the object will automatically evoke the 
word and the word will automatically evoke a mental representation of the 
object. The extended functional web provides the essential link between the 
word and the attributes of the object, which allows the word to have 
meaning when the web is activated.
       Metabolic imaging studies have revealed that although the specialised 
language areas are always active when words are processed, there are also 
contributions from other cortical areas. Therefore the type of entity which a 
word represents should be reflected in the topography of the functional web 
activated by the word, Pulvermuller (2002, p.56). Investigations using 
metabolic brain imaging techniques have revealed that animal names, tool 
names and action verbs produce the expected brain responses both in core 
language areas and in motor and sensory areas. The specific meanings of 
words are reflected by variations in the topography of cortical responses. 
Animal names are represented by activation in core language areas and 
visual areas because many animals have mainly visual representation in the 
brain.  Tool names are represented by activation of core language areas and 
pre-motor areas. Thus it appears that spatial and action concepts are strongly 

Working Group 1

CERME 5 (2007) 184



associated with premotor preparations for real actions, even though the 
actions are not necessarily realised.   
      Action words and concrete object words are learned by association with 
motor action programmes and representations of experienced objects, which 
are grounded representations, that is they are representations in the primary 
cortical areas. These representations provide a cache of embodied semantic
referents. The process of searching for the meaning of a word entails the 
activation of the functional web containing the basic mapping of the word 
and the associated semantic referent. The implication of this is that a word 
only has meaning when it is part of a functional web which is able to 
connect the word to primary sensory and motor areas. It seems that the 
meanings of words which are learned in the absence of grounded referents 
can only be understood if they are grounded indirectly by association with 
grounded functional webs. This principle must apply to the vocabulary and 
ideas we expect students to acquire and use in physics and mathematics 
lessons.

Fauconnier and Turner (2002) have identified the powerfully creative 
role of conceptual blending. The essence of double scope blending is that 
two conceptual structures may be brought together so that they are within 
conscious attention simultaneously. The emergent structure has 
characteristics of both of the source structures but it also has novel features 
that were not evident before blending occurred. Double scope blending 
appears to be the essential mechanism that permits mental acts of 
imagination and creativity. It allows previously disassociated entities to be 
brought together, with the potential that the new blend might provide 
resolution for some existing enquiry or need. All human creativity thrives on 
the discovery of these blends, and physics and mathematics abound with 
blended structures. For instance, the intuitive concepts of force and area are 
blended, creating the non-intuitive concept pressure, which has new 
characteristics. Inertia, momentum and moment of a force provide further 
examples.   
3. TEACHING SPECIAL RELATIVITY.
Special relativity is available as an option as part of the Advanced level 
G.C.E. physics syllabus of four examination boards but the take-up is 
generally quite low; for example the proportion for the southern area 
Advanced level physics students is only 30%. Despite the well-established 
technological position of relativity, students still regard it with scepticism. 
Relativity is regarded as ‘add-on’ rather than part of mainstream mechanics. 
Students and teachers informally report that: 
�Relativity is poorly understood by teachers. 
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�Teachers have insufficient time to sort out their ideas and poor teaching 
methods are used. 
�There is a necessity to demonstrate cognitive need for relativity before 
introducing the theory.
      These difficulties are compounded by the current shortage of physics 
teachers. Another developing problem is a consequence of the decline in 
algebra skills of school pupils. (Royal Society, 1995) An indication of this 
decline is provided by the content of textbooks from the 1960s such as 
Marder (1968) which has an introduction to relativity for the 16-19 age 
group. This treatment would now be considered quite unsuitable by many 
teachers because of the heavy reliance upon the algebraic derivation of 
results. An exemplary modern text, described as a ‘tour de force’ by the
School Science Review, is ‘Physics’ (Dobson, Grace, Lovett, 2002). In 
chapter 23 the authors make use of a diagram-based thought experiment to 
derive the time dilation formula but unfortunately simply quote other 
important results, which therefore appear as unsubstantiated conjecture. The 
concepts of special relativity deserve to be developed more robustly so that 
the apparent distortions of nature are seen as inevitable. The examination 
syllabuses require a discussion of time dilation, length contraction and mass 
increase.  Usually only about five hours of teaching time are available to do 
this. We suggest that these results should be derived using procedures, which 
where possible, allow the students to construct the reasoning for themselves, 
using a visual approach. According to Mathewson (1999), visual-spatial 
thinking is an aspect of science overlooked by educators. Although vision 
and imagery are fundamental cognitive processes using specialised pathways 
in the brain, we cannot take the visual spatial aspects of cognition for 
granted. Sfard, (1997) and Presmeg, (1997a) have argued that there is a need 
to nurture visual representation and metaphor in school mathematics 
curricula. We may create a diagram in order to describe spatial organisation. 
The diagram then provides the focus for constructive elaboration and it 
enables the elements of the situation to be considered holistically. The 
representation allows further mental abstraction to take place, which might 
not have otherwise occurred. 
 Case study investigations of students’ learning will be carried out which 
will address the following questions.
� Is the visual-spatial teaching producing the anticipated learning outcome?   
� Is there evidence of retention of knowledge?
� Do the students have the ability to extend the ideas?
� Is their new knowledge meaningful or merely remembered?   
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� What are the students’ affective reactions; are they comfortable with what 
they have learned?
4. SUBJECT CONTENT
The fact that light does not propagate instantaneously across space was 
demonstrated by the well-known experiment of Romer in 1676, using 
observations of the inner satellite of Jupiter, Jenkins and White (1957, 
p.382). The investigation of stellar aberrations by Bradley in 1728, showed 
that when the telescope which is being used to observe starlight from zenith 
stars is moving perpendicularly to the light with velocity , the telescope 
must be rotated through a small angle 

v
� , Jenkins and White (1957, p.384). 

The rotation is necessary to accommodate a rotation of the light path 
between the star and the telescope. Bradley’s stellar aberration experiment is 
highly significant because it is a direct observation of dynamic light path 
rotation.

In 1905 Einstein postulated that the speed of light is invariant for all 
observers.  It is important to mention that the idea of the invariance of the 
speed of light is not empirically based. We consider the profound 
modifications to Newtonian absolute time that this proposed restriction 
generates. Light rays cannot be observed sideways, and the time intervals for 
light trajectories may be extremely small; light paths must be inferred and 
visualised concretely by means of a line diagram. We first visualise the path 
of a beam of light as it travels from source S to mirror M then back to S
(fig.1a).   For an observer in this static frame who is stationary with the 
apparatus, the light takes time 2t and travels distance 2ct.   

M                                     M �
………………………………………………………………………

                                                                       
                                                                     � �

ct tc �
                                    v

S S tv � S �
fig.1a. Light path in the                       fig.1b Light path in the moving frame 
           static frame                                            for an external observer
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      We now consider the effect on the path of the beam of light of uniform 
transverse motion v.  According to the observer moving with the apparatus, 
the light path is still as in fig.1a. but according to a stationary external 
observer watching the apparatus pass by, the light path is as in fig.1b.  The 
resulting light path in the moving frame is a blend of the light path in the 
static frame and the uniform motion. This blend is grounded by perceptual 
experience, such as the appearance of wind driven rain. For the external 
static observer, the path travelled by the light in the moving frame is now 
rotated through angle �  and the path length has increased from SMS to

. What is the time now taken by the light to travel the increased 
distance from S to

SMS ��
M � ? Were we to use the ideas of Newtonian mechanics 

the speed of the light must increase, keeping the time for the static and 
moving light paths the same for both observers. But when adopting 
Einstein’s postulate, the simple addition of the vector velocities v and c is
ruled out. Instead we must blend the moving light path with the idea of the 
invariance of the speed of light. The adoption of the Einsteinian option 
immediately leads to the idea that the time interval in the moving frame is 
not the same as time interval in the static frame. The effect of the motion on 
the time intervals can be calculated by evaluating cttc /� . From fig.1b, in the 
right angled triangle ��cos t / t� , ��sin v/c and so, using  we 
obtain the result

1cossin 22 �� ��

��

	

�
�

)1(

1

2

2

c
vt

t . The factor �  is ubiquitous in 

special relativity. For real values of � , 1
�  and tt 
� , and this effect is 
known as time dilation.  Time intervals in the moving frame according to an 
external static observer are always increased and depend on the speed of the 
moving frame relative to the static observer. Thus in special relativity, time 
intervals are relative, and are not observer invariant. An important point is 
that all timings are proper, that is times are measured by the static external 
observer. Time intervals in the moving frame are longer by the factor � , and 
so the rate of flow of time appears to be slower in the moving frame. This 
result is highly counter-intuitive; it violates intuitive knowledge of the 
familiar environment.   
    The range of values of �  as the relative speed is varied can be 
investigated by students, and the range of possible time dilations inferred.    
Students can investigate relative time for the cases when v=0; v<<c; v<c; 
v=c; v>c?  At what speed do relativistic effects ( tt �� ) start to become 
significant?  Do we abandon Newton’s laws? What happens to time dilation 
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as the speed of light is approached?  What would be the consequences of 
exceeding the speed of light? The calculations are much less laborious if 
they are done using the trigonometrical expressions ��sin v/c and �� �cos/1
rather than the derived square root expression. Time dilation can also be 
explored quantitatively using scale diagrams in which the angle �  is varied.  
The idea that time flows at different rates in different frames of reference is 
highly counterintuitive but the reason for this conclusion emerges clearly 
from the blending of the light path diagram and Einstein’s postulate.
      Abundant empirical evidence for the reality of time dilation is available 
from the measured lifetimes of energetic elementary particles, both in the 
environment and in particle accelerators, Ohanian (1985, p.430). Such 
evidence supports Einstein’s speed of light postulate, and the idea that 
Newtonian mechanics is incomplete, but not incorrect.
Summary.
The existence of functional webs provides an understanding of meaning.
Abstract ideas can only have meaning if they associated by functional webs 
with grounded concepts. Awareness of the process of conceptual blending is 
important; the emerging concept has characteristics which differ from those 
of the initial concepts. Violations of intuitive knowledge of mechanics 
provide understanding of the basis of counter-intuition in abstract 
mechanics. A cognitively efficient visualisation can be used to represent a 
situation with unobservable or abstract elements which allows an exploration 
of the situation. Teachers and students may well benefit from more precise 
knowledge of cognitive mechanisms.
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METAPHORS AND COGNITIVE MODES IN THE TEACHING-
LEARNING OF MATHEMATICS  

  Jorge Soto-Andrade 
Department of Mathematics, Faculty of Sciences, University of Chile 

sotoandr@uchile.cl 
  

The didactic role of metaphors and cognitive modes as well as their interplay is 
discussed, based on examples. Transition from one cognitive mode to another is 
illustrated, in case studies with students and in-service teachers. Its relevance to 
the learning process is appraised.   

INTRODUCTION  

In this paper we intend to continue the research undertaken in Soto-Andrade (2006), 
presenting further examples of  didactical uses of metaphors and cognitive modes, as 
well as exploring  the interplay between them, as they emerge in the didactical praxis.  

This exploration requires a first-person approach, in the sense of Varela & Shear 
(1999). Indeed, metaphors having a deeper cognitive thrust are usually those that 
entail a switch in the cognitive mode of the subject perceiving them. For instance,  
when you approach solving linear equations with the help of the “scales metaphor”, 
you switch from a verbal  cognitive mode to a non verbal one:  Instead of checking an 
equality by an arithmetic or algebraic calculation, you put and take out weights on 
both  pans of  a scale, trying to preserve balance. 

After setting up our tentative theoretical framework, we set down our main research 
hypotheses, related to our teaching experiments, and proceed to report on some 
specific examples of metaphors and cognitive modes in action, that  give preliminary 
experimental evidence to support our hypotheses and suggest further research along 
these lines, that we discuss in the final section. 

THEORETICAL FRAMEWORK 

Nature and Role  of Metaphors    

It has been progressively recognized during the last decade  (Araya, 2000; Bills,  
2003; Edward, 2005; English, 1997; Ferrara, 2003; Johnson & Lakoff, 2003; Lakoff  
& Núñez, 2000; Parzysz et al., 2003; Pouilloux, 2004; Presmeg, 1997; Seitz, 2001; 
Sfard, 1994, 1997, and many others) that metaphors are not just rhetorical devices,   
but powerful cognitive tools, that help us in building or grasping new concepts, as 
well as in solving problems in an efficient and friendly way: “metaphors we calculate 
by” (Bills, 2003). We meet conceptual metaphors (Lakoff  & Núñez, 2002), that 
appear as mappings from a “source domain” into a “target domain”, carrying the 
inferential structure of the first domain into the one of the second, and enable us to 
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understand the latter, usually more abstract and opaque, in terms of the former, more 
down-to-earth and transparent. 

The term “metaphor” is often nowadays taken in a loose sense, as a synonym of 
“representation”, “analogy”, “model”, “image”, etc. (Parzysz et al., 2003).  We intend  
nevertheless to be more precise: the following diagram may be helpful to clarify  our 
viewpoint on the difference among metaphors, representations and analogies. 

  

 

 

 

 

 

 

 

 

 

So, as indicated, in operational terms, conceptual metaphors “go up”,   
representations  “go down” and analogies, “go horizontally” both ways.  Notice that 
we take analogy in a rather narrow sense, kin to a “simile” (that draws an explicit 
comparison between two different things), symmetric in nature, and not as an 
“umbrella” concept embracing metaphors, representations, similes, etc. So our 
viewpoint is closer to Sfard’s (1997) than to Presmeg’s (1997). We may have,  
moreover, metaphors going up from different source domains to the same target 
domain and also from the same source domain to different target domains.   

Notice however that this scheme doesn’t impair the subjective aspects of the 
difference between metaphor and representation. For instance, if probability is a new 
concept or a concept under construction for us, then “probabilities are masses or  
weights” is clearly a metaphor for us, that helps us to grasp the concept of  
probability, or better, to build it.  On the other hand, if we are to some extent already 
familiar, albeit not quite comfortable, with probabilities, we may realize that 
probabilities may be represented by masses, we feel more at home with.   

Others might want to say that there is an analogy between probabilities and masses, 
because they see analogy as a symmetrical relationship and they see probabilities and 
masses on the same footing. 

Anyway, be metaphor, representation or analogy, we gather that to solve probabilistic 
problems we may just solve mass or weight problems, where we can take advantage 
of our physical intuition, in static or dynamic settings.   
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higher, more abstract 
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Example: Metaphors for multiplication 
Both addition and multiplication of numbers are commutative. It is however an 
interesting metaphorical insight of Lakoff & Núñez (2000) that while addition is apriori 
commutative, multiplication is only a posteriori commutative, we might say.For instance, 
addition of vectors, complex numbers, quaternions or matrices is ascommutative as the 
addition of real numbers. However, multiplication of quaternionsor matrices is not in 
general commutative. So, in a “good” metaphor for addition commutativity should be 
built-in, but not so in a good one for multiplication.  
This may be compared with Soto-Andrade (2006), where the “product is 
area”metaphor and the “multiplication is concatenated branching” metaphor are 
presented,as two ways of “seeing” that 2 x 3 = 3 x 2, as illustrated below:  

In the first one, commutativity of multiplication is perceived as invariance of
areaunder rotation in one fourth of a turn. So you “see” that 2 x 3 = 3 x 2, without 
even knowing that it is 6, like the Amazonian Indians in Dehaene (2004). In thesecond
one, commutativity of multiplication is less obvious: it is perceived as the factthat the 
order in which we concatenate branchings is irrelevant for the final harvest.If one has 
played around a lot with tree diagrams, this metaphor may become a “metbefore” in 
the sense of Tall (2005). But otherwise one would rather count… This suggest indeed 
that multiplication is not a priori commutative.  
Cognitive styles and modes 
The concept of cognitive styles emerged from work by Neisser (1967), Luria 
(1973)and de La Garanderie (1989) and was further developed by Flessas (1997) and 
Flessas & Lussier (2005), who pointed out to their impact on the teaching-learning 
process.
A cognitive style is defined nowadays as one’s preferred way to think, perceive 
andrecall, in short, to cognize. It reveals itself, for instance, in problem solving.  
The term “cognitive mode” is often used as a synonym to “cognitive style”. It suggests 
however a way of cognizing that is usually more transient and not as stable, or even 
rigid, as a cognitive style is. Since one of our theses is that the ability to switch from 
one way of cognizing to another is trainable, we will rather say “cognitive mode” 
instead of “cognitive style” in this paper, so that Flessas andLussier’s “styles 
cognitifs” will become “cognitive modes” from now on.  
To generate what they call the 4 basic cognitive modes, Flessas and Lussier 
(2005)combine 2 dichotomies: verbal – non verbal and sequential – non sequential (or
simultaneous), closely related to the left – right hemisphere and frontal – parietal 
dichotomies in the brain (Luria 1973) This affords the following table:  
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The 4 cognitive modes VERBAL NON - VERBAL 

SEQUENTIAL S-V S-NV 

NON - SEQUENTIAL NS-V NS-NV 
  

Example:  Solving a problem through different cognitive modes. 

How can you check that you have the same number of fingers in your hands? 

You can approach this problem with different cognitive modes. 

You can count the fingers in your left hand first: one, two, three, four, five. Then, you 
do the same with the fingers in your right hand and you discover that you have the 
same number of fingers in both hands, indeed.  This a typical verbal and sequential 
cognitive mode approach. 

But you can also, in a single gesture, put into a one to one correspondence the fingers 
in both your hands, in a natural way. This is a typical non verbal and non sequential  
approach. You don’t name the numbers, you don’t count, you don’t write any 
formulae. Moreover your checking is simultaneous, non sequential, because you can 
make your homologous fingers touch in just one simultaneous gesture.  

If you make each finger of your right hand touch one finger of your left hand, one by 
one, you would be using a non-verbal, sequential cognitive mode.      

Flessas and Lussier emphasize that effective teaching of a group of students, who 
may display a high degree of cognitive diversity, needs teachers supple enough to be 
able to tune easily to the different cognitive modes of the students. This necessary 
competence has a neurological correlate that can be imaged and monitored in 
contemporary neuroscience (Dehaene, 1997, 2004; Varela & Shear, 1999).   

In what follows we adhere mainly to the framework laid by  Lakoff & Núñez (2000) 
for metaphors and  Flessas & Lussier  (2005) for cognitive modes. 

PROBLEMATICS 

We claim that most in-service teachers are not familiar with either metaphors or  
cognitive modes, in relation with their teaching of mathematics.   More precisely: 

Most teachers are frozen in just one cognitive mode, unaware of it to begin with, and 
so unable to switch to another one.  They are also unaware that their teaching is 
shaped by unconscious and misleading metaphors, like the container-filling metaphor 
or the gastronomic metaphor (called “métaphore alimentaire” in Soto-Andrade 
(2005)). 

Moreover,  their metaphor quiver is poorly furnished: they would rarely have more 
than one metaphor for each mathematical concept or process and they have trouble 
creating “unlocking metaphors” for their students. 
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Students, on the other hand, are not stimulated to work in more than one cognitive 
mode and they have very often the feeling that tackling a problem in a different 
cognitive mode that the one it came wrapped up, is definitely bad manners.    

RESEARCH  HYPOTHESES 

Our main research hypothesis is that metaphors and cognitive modes are key 
ingredients in a meaningful teaching-learning process.  Moreover the deepest impact 
on this process is usually attained by metaphors that involve a switch in the previous 
cognitive mode of the subject. 

We also claim that competences regarding multi-mode cognition and use and creation 
of metaphors and representations are trainable and that measurable progress can be 
achieved in a one semester course or even in a one week workshop.  This, in spite of 
the fact that most teachers report  that their initial training included no metaphors and 
privileged just one cognitive mode: the usually dominant verbal-sequential one. 

We conjecture that on the average primary school teachers will be more successful in 
learning to switch cognitive modes and evoking and using metaphors than secondary 
school teachers. 

Regarding students, our working hypothesis is that they would significantly improve 
their learning if they were able to approach problems with more than one cognitive 
mode and  to draw  from a suitable spectrum of metaphors.  

We present below some examples, tested in teaching mathematics courses to various 
audiences of students, to illustrate the didactical use of different cognitive modes for 
approaching mathematical objects and their interplay with the use of metaphors.     

RESEARCH BACKGROUND AND METHODOLOGY 

The background for our experimental research consisted in several courses, to wit: 

- Mathematics 0: A one semester, general mathematics course, given to first year  
students of the Bachelor in Humanities and Social Sciences Program at the University 
of Chile. Its formal aim is to teach the students “all the mathematics” they will need 
during their university studies, besides statistics. Its real aim is to introduce them to 
the mathematical way of thinking and to the cognitive attitudes of mathematics. 
Classes have 35 students, lessons are 3 hrs a week. Experiments are  carried out 
during the lessons (90 minutes each) and during exams (2 hours each, 4 in a 
semester). Lessons are interactive, questions and activities are suggested and students 
propose ways to tackle them. Students engage often in “horizontal” discussions but 
not so much in group work. Gleaned knowledge is periodically “harvested” and 
recorded in more formal language. 

- Random walks in “Metaphorland” (Paseos al azar en el país de las metáforas): 
A one semester optional mathematics course, addressed to all students of the 
University of Chile. The aim of the course is to introduce them to the power of  
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metaphorical thinking in mathematics,  while performing  a “random walk” through 
several key topics, like randomness, symmetry, infinity and the systemic approach.   
The class had 70 students in 2006. Lessons consist mainly of group work, in small 
groups of 4 to 5 students. Activities and problematic situations are proposed, to be 
tackled by the students, each group working on its own first, then putting together  
their findings. 

- Numbers: One yearly module  (220 hrs approx.), for 2 classes of 30 primary school 
teachers, in the post-graduate program of the University of Chile, for in-              
service teachers who didn’t major in mathematics in  their initial formation. The aim 
of this module is to review the mathematics as well as the didactics of numbers, 
specially fractions, ratios, decimal and binary description of numbers.  The teachers 
usually work in interactive sessions, forming small groups of 3 to 4 teachers. 

The methodology consisted in observing the students and teachers, as they carried out 
various activities, as in the examples described below, that were proposed during 
lessons, group work sessions and as a part of exams and diagnostics. Records of this 
observation comprised the written and drawn production of the students and some 
transcriptions. 

EXPERIMENTAL ACTIVITIES AND PRELIMINARY RESULTS:   

Example 1: Who has more marbles?  

John and Mary have a bag of marbles each, all of the same size.  How can they 
decide who has more marbles?  

They could take the marbles out of each bag, one by one, count them and compare 
the resulting numbers. This is a verbal-sequential approach,  the most frequent one. 

Working with two separate classes of 30 in-service primary teachers, organized in 
small groups (3 to 4 each), we invited them to figure out other approaches, which 
would involve non-verbal or non-sequential modes. They were also asked how they 
would work this problem with their students. In a few minutes,  they came out with:   

-  John pulls out his marbles and Mary hers, one by one, and without counting them, 
they put them side by side, in pairs, sequentially, until one of them, or both 
simultaneously,  runs out of marbles. They recognized this as non verbal – sequential. 

-  To weigh the bags in one’s hands to assess which is heavier.  If it is hard to tell, 
weigh then in a scale, one bag in each pane (non verbal – non sequential approach). 

-  After some 15 min. discussion on the non sequential – verbal approach, 3  teachers 
got the idea of weighing the bags simultaneously in 2 digital scales and compare the 
readings.  

 However, roughly 80% of the teachers  reported that they had  never before tried   to 
employ more than one cognitive mode to solve this type of  problem.  
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Example 2: The number sequence, otherwise… 

 Is it possible to represent the numerical sequence  0, 1, 2, 3, …. up to 63, let us say, 
in a non verbal and non sequential way?    

We presented this challenge to the courses described above, suggesting to try first   
representing the sequence in non verbal - sequential way. As a preliminary, we 
proposed to the students in the classroom to try to get the binary description of their 
number  without counting themselves first, as in Soto-Andrade (2006).  

To do this, they just stand up, trying to match up in pairs, checking whether there was 
one “odd man out”. Then the pairs did the same, and so on.   When the pairing game 
was over, we asked:  Is there an unmatched person? An unmatched pair? An 
unmatched quadruplet? and so on.  They answered: YES–NO–NO–YES–NO–YES.  
When prompted to codify this in a non verbal way, they 
eventually rediscovered the I Ching (Yi Jing) codif-
ication: a broken line for NO, a continuous line for 
YES, or something equivalent.  Reading  hexagrams 
from top to bottom, they got the one in the  2nd  column, 
6th row, in the  figure to the right   (i. e.  number 41). 
Notice that this square arrangement due to Chinese 
philosopher and mathematician Shao Yong (1011-
1077), displays the binary sequence of numbers  0  to 
63, in their natural order.  Students in all 3 courses 
successfully completed this activity and reported later having understood for the first 
time the binary description of a number or quantity. After this non-verbal approach to 
the binary description of numbers, we suggested the harder challenge: 

Approach the binary hexagram sequence in a non verbal and simultaneous way, by 
encapsulating it in a single image that can be reconstructed from just a glimpse of it.  

In a first class of 30 primary school teachers, after 30 min. work in small groups, 5 of 
them came up with diagrams equivalent to famous Shao Yong’s Xiantian (“Before 
Heaven”) diagram or its inverted form (Marshall, 2006), illustrated below.    
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Notice the underlying binary tree! In a second group of  30 teachers, 6 rediscovered 
Xiantian and, most remarkably, one of them, Ofelia, draw all by herself a circular  
version of  the Xiantian diagram, that is a rotation of the classical one, unrolling 
counterclockwise. See below  the classical version (left) and Ofelia’s version (right).  

 

 

They also noticed, as pointed out by S. J. Marshall (2006), that this 
circular diagram reveals a compass rose when looked at from a 
distance. When interviewed, they recurrently reported:   

- I had just learned by heart a recipe to transform usual numbers 
to binary form, but now (after playing the pairing-off game) I 
understand it for the first time! 

- I would have never thought of this way of approaching binary numbers! 

- This is really new to me! I have some trouble in getting used to it, because I am 
too structured and used to seeing things always from the same viewpoint. 

Approx. 5% of the students in the Random Walks course, when exposed to Xiantian 
(without the 7 examples above the square), quickly realized how to recover the whole 
sequence from  this image. The circular Xiantian was tested in Maths. 0 exams, as an 
optional question: out of 40 students,  50% did choose this question and 78% of them 
reconstructed the circular diagram after two 2 second glimpses of it. Out of the latter, 
40% explained correctly how to recover the binary sequence from circular Xiantian. 

DISCUSSION    
We have shown, through several activities carried out in the classroom, how  classical 
mathematical objects and problematic situations may be unexpectedly approached 
with cognitive modes different from the usually dominant verbal-sequential one.  
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We have seen how to facilitate the activation of these less usual cognitive modes, 
even for in-service teachers who never had this sort of experience before. After some 
prompting, a high percentage of students and teachers were able to switch from their 
dominant verbal-sequential cognitive mode to a non verbal or non sequential one. In 
this way, some of them  rediscovered  representations of - or metaphors for - familiar 
mathematical objects, developed in other cultures (like the ancient Chinese, for 
instance), that favoured more than ours non verbal and non sequential cognitive 
modes: “One image is worth 1000 words…” they said. 

According to their reports, taking advantage of more than one cognitive mode 
fostered their understanding of important mathematical objects and processes, like the 
binary description of numbers.  

Our observations show that the ability to approach the same object through various 
cognitive modes and transiting from one cognitive mode to other, is trainable, in 
students as well as in teachers. Experimentation suggests that this is facilitated by 
group work. First person reports by students and teachers bear witness of the impact 
and meaningfulness that this sort of cognitive experience had for them. 

The experiences carried out reveal that often the activation of a different cognitive 
mode, when approaching a mathematical object, entails the emergence of a metaphor, 
or a representation, depending on the previous background of the subject. It remains 
to be checked that, vice versa, students and teachers looking for a useful metaphor to 
get hold of or to build a new concept, will learn to switch to another cognitive mode.  

It would be interesting to test and measure the depth of learning that  students may 
achieve when taught with the help of a broad spectrum of metaphors and various 
cognitive modes and to undertake the design of unblocking metaphors. 
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