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REPORT FROM THE WORKING GROUP MODELLING AND 
APPLICATIONS 

- DIFFERENTIATING PERSPECTIVES AND DELINEATING 
COMMONALTIES

Gabriele Kaiser, Bharath Sriraman, Morten Blomhøj , Fco. Javier Garcia 

1. Introduction 
The modelling and applications working group at CERME5 was again characterised 
by a heterogeneity of approaches to modelling research. There was a sense of 
continuity in the work of the group from CERME4 in Spain due to the presence of a 
core group of researchers representing the different approaches. Concerning growing 
clarity and common understanding of the different approaches progress has been 
achieved in the working group from the meetings at CERME4 to CERME5. One of 
the leading goals of the organisers was to ensure both a continuity for the present 
discussion as well as accumulate current perspectives coherently into the existing 
literature for use by modelling researchers. 

The participants of the group represented a big variety of countries: Participants from 
8 European countries (Cyprus, Denmark, France, Germany, Great Britain, 
Netherlands, Portugal, Spain) and 4 non-European countries (Brazil, Israel, Lebanon, 
USA) attended the working group.
In the working group 18 papers and 1 poster were presented. The papers were 
classified into 3 groups: papers
� with theoretical reflections,
� promoting research towards action,  
� presenting empirical research. 

Most papers belonged to the last group, which was structured along the age level of 
the cohort addressed in the studies, i.e. lower secondary level, upper secondary level, 
university level, in-service-teaching level.  

2. Revisiting the classification of approaches
The discussion was structured using a classification of the variety of approaches 
developed by Kaiser & Sriraman (2006) on the basis of the discussion at CERME4. 
This classification was based on the goals of modelling and distinguished various 
perspectives within the discussion according to the central educational aims in 
connection with modelling. It describes briefly the backgrounds these perspectives 
are based on as well as their connection to the initial perspectives. Two issues of the 
Zentralblatt für Didaktik der Mathematik (see Kaiser, Blomhoj, and Sriraman 2006 
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and Sriraman, Kaiser, and Blomhoj, 2006) were devoted to papers representing the 
different perspectives. We refrain from reproducing the whole classification table and 
restrict ourselves to the main categories:

Name of the perspective Central aims  
Realistic or applied modelling Pragmatic-utilitarian goals, i.e.: solving real 

world problems, understanding of the real 
world, promotion of modelling competencies 

Contextual modelling Subject-related and psychological goals, i.e. 
solving word problems  

Educational modelling; 
differentiated in a) didactical 
modelling and  
b) conceptual modelling 

Pedagogical and subject-related goals:
a) Structuring of learning processes and its
    promotion 
b) Concept introduction and development 

Socio-critical modelling  
Epistemological or theoretical 
modelling 

Theory-oriented goals, i.e. promotion of theory 
development

The following approach can be described as a kind of meta-perspective:
Cognitive modelling Psychological goals: 

a) analysis of cognitive processes taking  
    place during  modelling processes and    
    understanding of these cognitive
    processes 
b) promotion of mathematical thinking 
processes by using models as mental images or 
even physical pictures  or by emphasising 
modelling as mental process such as abstraction 
or generalisation 

Figure 1: Shortened version of the original classification of current perspectives on 
modelling (from Kaiser and Sriraman, 2006, p. 304) 

Several researchers agreed that the classification as given was useful and could aid 
understanding of the interrelations between the very different and complex 
approaches adopted by researchers and practitioners. As one of the main points of 
criticisms the need to separate out didactical approaches and research perspectives 
was pinpointed. Didactical approaches are characterised by a normative orientation 
concerning the overall aims of applications and modelling in mathematics education 
in contrast to research perspectives which guide studies on special aspects concerning 
applications and modelling. This missing distinction leads to difficulties, because 
individual researchers and practitioners usually operate across several perspectives 
both concurrently and consecutively. It was concluded that classifications of 
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approaches allow a systematisation of the debate, but it has to be stated clearly that 
such a classification is only a working instrument in order to facilitate the 
understanding of the debate, based on idealisations and simplifications.  

In the extensive discussions during the group sessions, several fundamental issues 
were raised. This discussion addressed the following issues:

� The need to devise and develop common notions and terms;  
� The need to revise the classification of Kaiser & Sriraman; 
� The usefulness of including concrete examples to illustrate the differences 

between perspectives;
� Prospects for future collaborative work of the group.  

In order to solve a few of the aspects described above one of the sub-groups 
developed a task for each perspective in order to get a better understanding of the 
classification table, which is shown below. 

 Task Feature 
Realistic
Modelling

Create a price structure for 
a taxi driver. 

This is an open task. You have to 
create a model and therefore you need 
the whole modelling circle 

Contextual
Modelling

A taxi driver has a fixed 
price of €2.00 and the 
price/km is €0.15. The age 
of the taxi driver is 43 and 
his taxi is 7 years old. 
How much costs a drive of 
6 km? 

This is more a word problem. 

Educational
modelling 

The same task as in 
contextual modelling 

A teacher can use a modelling task to 
explore linear functions. The teacher 
uses the understanding of the context 
to develop mathematical concepts. 
The question is how a task should be 
placed in the curriculum 

Socio critical 
modelling 

How should a taxi driver 
be paid? 

You can think about different price 
structures, but the intention is to think 
also about the social question. You 
can argue that a taxi-driver should be 
paid for every hour he is working. 

Epistemological 
modelling 

How much money did the 
taxi driver earn at the end 
of a day? 

In this question many concepts are 
hidden. You have to think about the 
price structure…. how many 
customers? How much gasoline was 
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needed? The original cost of the car? 
A deep analysis is necessary 
considering various perspectives.

Figure 2: Original classification of perspectives on modelling exemplified using the 
problem of the cost of a taxi ride 

In the discussion of this attempt it became clear, that it was difficult for some 
researchers to see the differences between educational and contextual modelling. The 
description of the socio-critical approaches is not unique: One could be critical about 
the model, the assumptions, the validity of the model, but one could also be critical 
about how modelling is used in society. The epistemological perspective was very 
difficult to understand and to exemplify.  

3. Proposal for a revised classification system
As already mentioned one of the criticisms was the need to separate the different 
intentions which are underlying studies or publications, i.e. papers or studies might 
either be characterised as comprehensive didactical approaches or as approaches 
connected to distinct research intentions. Didactical approaches are normative 
theoretical approaches characterised by overall norms education shall follow and 
aims to be supported by applications and modelling, formulated by those belonging to 
this perspective. They characterise the teaching approaches connected with 
applications and modelling, which are favoured by the various perspectives and are 
strongly influenced by the theoretical background to which the perspectives refer. In 
contrast approaches connected to distinct research intentions guide empirical or 
theoretical studies concerning applications and modelling. They are of course not 
independent from the didactical approach, but they might either focus more on 
cognitive aspects such as concept development, development of modelling 
competencies or the affective domain of learners such as engagement or motivation, 
confidence, self-efficacy, and beliefs.  Keeping that difference in mind, it is obvious 
that individual researchers and practitioners might operate across several perspectives 
both concurrently and consecutively. 

Comprehensive didactical perspectives or normative theoretical approaches: 

Name of the 
approach

Central aims Background  Authors of 
paper
presented at 
CERME5 

Realistic or 
applied
modelling 

Pragmatic-utilitarian goals, 
i.e.: solving real world 
problems, understanding of the 

Anglo-Saxon
pragmatism and 
applied

Burkhardt; 
Schwarz,
Kaiser;
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real world, promotion of 
modelling competencies 

mathematics Romo Vasquez 

Contextual
modelling 

Subject-related and 
psychological goals, i.e. 
solving word problems  

Problem solving 
debate and 
psychological 
laboratory
experiments

Model eliciting 
approach

Psychological goals, i.e. apply 
model elicited through solving 
the original problem to a new 
problem 

Problem solving 
debate

Mousoulides, 
Sriraman,
Pittalis,
Christou

Educational
modelling 

Pedagogical and subject-
related goals:
a) Structuring of learning 
processes and its promotion 
b) Concept introduction and 
development
c) Promotion of motivation 
and improvement of attitudes 
towards mathematics 
d) Promotion of critical 
understanding of modelling 
processes and models 
developed

Didactical
theories and 
learning
theories

Andresen;
Berman, 
Verner,
Aroshas;
Blomhoj, Hoff 
Kjeldsen;
Canavarro;  
Maaß

Socio-critical
and socio-
cultural
modelling 

Promotion of critical 
understanding of modelling 
processes and models 
developed as overall goal 
connected with recognition of 
cultural dependency of 
modelling examples and 
modelling approaches 
developed

Socio-critical
approaches in 
political
sociology,
ethno-
mathematics 

Barbosa

Epistemological 
modelling 

Promotion of connections 
between modelling activities 
and mathematical activities, re-
conceptualization of 
mathematics and 
reorganisation of school 
mathematics from a modelling 
point of view 

Anthropological 
Theory of 
Didactics

Barquero,
Bosch, Gascón; 
Ruiz, Bosch, 
Gascón
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Approaches connected to distinct research intentions: 

Name of the 
approach

Central aims Background  Authors of 
paper
presented at 
CERME5 

Cognitive
approaches

a) Analysis of cognitive 
processes taking place during
modelling processes and 
understanding of these cognitive 
processes
b) Promotion of mathematical 
thinking processes by using 
models as mental images or even 
physical pictures  or by 
emphasising modelling as mental 
process such as abstraction or 
generalisation

Cognitive
psychology 

Borromeo 
Ferri;
Jurdak,
BouJaoude;
Roorda, Vos, 
Goedhart;
Vos, Roorda 

Affective
approaches

Promotion of positive attitudes 
towards mathematics and 
mathematics teaching 
Promotion of adequate self-
perception such as self-efficacy 
Influence of special aspects such 
as authenticity of the real world 
context

Related 
psychological 
approaches

Vorhoelter;
Wake,
Pampaka

Pragmatic,
teaching-
oriented
approaches

Evaluation of the effectiveness of 
teaching proposals or the 
possibility to realise special 
examples in school, analysis of 
teaching strategies, intervention 
measures by teachers  

General 
pedagogical
research

Theoretical
approaches

Development of meta-analysis of 
models and modelling 
approaches

 Peled 

Figure 3: Revised classification of current perspectives on modelling 

4. Future directions 
The above described framework for the description of the modelling debate provides 
a basis for mutual understanding of the protagonists from different perspectives. The 
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descriptions developed above give insights into the origin of the different 
perspectives and its relations to the underlying background philosophy. It makes 
clear, that the various approaches promoting applications and modelling in school or 
university teaching come from very different theoretical perspectives spanning the 
debate from ethno-mathematics to problem solving. They are characterised by 
different views on important aspects of applications and modelling such as their 
views on goals and intentions of applications and modelling, which vary from 
promotion of a better understanding of the real world to the promotion of learning 
mathematical theory. Accordingly, their views on the role of the context are highly 
differentiated ranging from the call to authentic real world examples to more or less 
artificial, mathematically oriented examples. In addition, their perception of the 
modelling process is also highly different demanding a modelling cycle starting from 
real world problems and coming back to them or modelling processes which start 
from a real world problem, but lead to mathematical reflections and the development 
of new mathematical theory.  

Bearing in mind the different educational, philosophical, and cultural background of 
the various perspectives on applications and modelling developed internationally this 
overview will not only allow the identification of differences between the various 
perspectives, but as well the identification of commonalities. This will hopefully 
promote a mutual understanding within the debate and foster long-term intensive 
research collaborations between researchers from different perspectives.  
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UNDERSTANDINGS OF ‘MODELLING’ 
Mette Andresen

Danish University of Education 
 
Abstract: This paper meets the common critique of the teaching of non-authentic 
modelling in school mathematics. In the paper, non-authentic modelling is related to 
a change of view on the intentions of modelling from knowledge about applications 
of mathematical models to modelling for concept formation. Non-authentic 
modelling is also linked with the potentials of exploration of ready-made models as 
a forerunner for more authentic modelling processes. The discussion includes 
analysis of an episode of students’ work in the classroom, which serves to illustrate 
how concept formation may be linked to explorations of a non-authentic model.  
 
 
Introduction: understandings of modelling in this paper 
The title of this paper refers to the fact that the term ‘modelling’ is used with 
different meanings depending on the theoretical framework, the context of practice 
etc. In the paper, a distinction is made between: 1) modelling at functional level, 
which means expressive modelling, aiming at problem solving and involving certain 
applications of mathematical concepts, methods etc. This interpretation is in 
accordance with (Blum 1991 p 10). Modelling at functional level, thereby, requests 
modelling competence in the meaning described by Niss (2002), and 2) modelling at 
the level of concept formation, following the ideas of Realistic Mathematics 
Education (RME) like it is described in Gravemeijer (2000): the main design 
heuristics in RME are the horizontal and vertical mathematising, illustrated in fig.1 
showing Gravemeijer’s four-level-model of the development of mathematical ideas. 
In the four-level-model, ‘horizontal mathematising’ happens by changes from 
situational to referential level, by the creation of what is labelled ‘emergent models’. 
Symbolising is a main issue for these changes. The modelling for concept formation 
continues during ‘vertical mathematising’ that happens by changes from referential 
to general level 

 
Fig 1. Levels of activity (Gravemeijer and Stephan 2002 p 159) 
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Background: modelling activities in school mathematics 
During the last decades, there has been a growing interest for modelling activities in 
school mathematics. These activities are issues of (expressive) modelling at 
functional level, apparently regarding the larger part of curriculum, as mentioned for 
example by Blum (1991). The teaching of this modelling approach aims to let the 
students acquire the advantageous knowledge of authentic models’ applications and 
their results. Its aim encompasses both technological knowledge on how to build and 
use models and democratic competence in relation to models, as mentioned in 
Blomhoej (1991 p 189). Following this point of view, students’ expressive 
modelling processes take place when the student or a group of students start with a 
real world problem and build a mathematical model on their own, solve the problem 
mathematically and transfer the solution back to the real world situation. Blomhoej 
and Jensen illustrate the ideal process in Fig.2 showing the process divided into sub-
processes. Important arguments, though, are brought forth by teachers against letting 
the students’ do the full modelling process (Fig.2). The main arguments claim that 
the process is too complex and time-consuming. Further, it is hard for the teachers to 
control the open-ended process in order to ensure the desired result or learning 
outcome for all the students. These arguments exemplify what Blum calls C2: 
Counter-arguments from the learner’s point of view and C3: Counter-arguments 
from the teacher’s point of view (Blum 1991 p 17). 
 

 
Fig.2. Blomhoej and Jensen. (2003) p 124-125 
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Change of view on the intentions of modelling 
A change of view on the intentions of modelling, from knowledge about applications 
of mathematical models to modelling for concept formation, makes it possible for 
teachers (and researchers) to take these common teachers’ experiences into account. 
The two understandings of modelling are naturally linked together in the sense that 
modelling at the functional level offers possibilities of modelling for concept 
formation. The potentials for concept formation, though, are not in general realised 
independently of the settings and the teacher’s guidance.  
Such a change of view on the intentions of modelling follows Blum’s argument P4: 
psychological arguments for applications and modelling (Blum 1991 p17-18) and 
allows the teaching of sub-processes rather than full, expressive modelling 
processes. The great advantage of the change, however, is that it serves to realise the 
learning potentials for the students embedded in exploration of ready-made 
mathematical models. Later in this paper the idea of concept formation through 
exploration of a ready-made model is illustrated with an episode of two students’ 
work with a task, picked out from (Andresen 2006). Based on the episode, the paper 
discusses the role of explorative work for concept formation as a forerunner for 
expressive modelling.  
 
The use of non-authentic models 
Further, modelling for concept formation allows the teaching to consider non-
authentic mathematical models. This is in accordance with Blum’s short remark, that 
besides really real, also artificial problems and traditional word problems may be 
used – the latter are sometimes ‘better suited to educational purposes than are 
genuine real world applications’ (Blum 1991 p 22). In line with this, Blomhoej also 
states that well-chosen, relevant pseudo-realistic models necessarily should be 
treated besides authentic models (Blomhoej 1991 p 191).   
The authenticity of models and modeling is an issue, frequently put in front by 
students and teachers: the transition goes gradually from authentic models of real 
world problems into a sort of artificial “textbook-real world-problems” which tend to 
oversimplify the complexity of the problems they intend to deal with. The teaching 
of mathematics in school necessarily implies some restrictions:  only certain parts of 
applied mathematics can be considered. School mathematics must be practiced in 
contrast to ‘mathematising in practice’ like it is described in (Hoyles, Noss and 
Pozzi 1999). According to Hoyles et al., mathematising in practice may involve a 
‘pay-off’ for making mathematics visible, in terms of personal or professional 
empowerment. Focus in their study is on the process of computational modelling, 
showing how connections may be forged between implicit and explicit mathematical 
thinking, and the process is driven by the aforementioned pay-off. In school 
mathematics, in contrast, it is understood that the silent agreement between the 
students’ and the teacher implies that the students follow the teacher’s advises. 
Therefore, it is of special importance for the agreements between the teacher and the 
students to avoid that the students feel “cheated” by oversimplifying or misleading 
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mathematical models. Negotiations between the teacher and the students, and a 
clearly statement of the assumptions, intend to overcome this problem.  
 
Excerpt from a classroom episode 
In the following, excerpts from an episode of teaching differential equations models 
serve to illustrate how two students’ ‘thinking loud’ gives them mutual support to 
their concept formation. My interpretation of the process followed the idea of 
mathematising represented in (fig.1). The theme of this episode was the changes 
between the real world problem and the model during their exploration of the model. 
The two students, like the rest of the class, worked in pairs one lesson with the task 
(Hjersing et al. 2004 p 46) in the classroom. The task concerned an elementary, 
oversimplifying model of the learning process: 
 
 If we let L(t) be the fraction of the list learned at time t, where L = 0 

corresponds to knowing nothing and L = 1 corresponds to knowing the entire 

list, then we can form a simple model of  this type of learning base don the 

assumption:  

 • The rate dL/dt is proportional to the fraction of the list to be learned. 

 Since L = 1 corresponds to knowing the entire list, the model is: )1( Lk
dt
dL

	�

where k is the constant of proportionality.  

For what value of L, 0 � L � 1 does learning occur most rapidly? 

 

 

 

 

 

 

 
Fig 3. Excerpt from the textbook (Hjersing et al. 2004 p 46) 

The aim of the first task, apparently, was to make the students aware that the 
equation expressed the learning rate. The students explored the model by 
substituting one and zero: 

S1: That is, if we let this one be 1, then it wil increase...oh no because 
otherwise it will...no, it has to be... it can not equal zero so it will 
never be zero. 
S2: But it will not equal zero if you let L be zero 
S1: Oh no it becomes one, then. One minus zero... then it is one... k 
then it is one.. 
S2: It is just k, isn’t it? 
S1: Yes but that does not make sense because if L is zero then you do 
not memorise anything 
S2: Yes but then it has to be one, you know, because if...then it has to 
be zero 
S1: Yes 
S2: Because then.. 
S1: Yes that makes sense you know because... 
S2: If you see a paper for the first time then there will always be 
something... there will always be someone who forgets... 
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 This short dialogue reveals how these two students thought aloud in common. They 
related their calculations very closely to the real world problem without questioning 
the model. They changed fluently between the model and the real world problem. 
Then S1 grasped the idea and shared it with S2:  

S1: When it equals zero, the learning rate is fastest 
S2: In the very, very beginning... 
S1: From the very beginning 
S2: Just so – the less L the faster you learn 
 
 

 Now, both students had established the model. They read further in the text: 

  

 

 

 

 

Suppose that two students memorise lists according to the same model: )1(2 L
dt
dL

	�

(a)If one of the students knows one-half of the list at time t = 0 and the other knows none 

of the list, which student is learning most rapidly at this instant?  

(b) Will the student who starts out knowing none of the list ever catch up to the student who starts 
out knowing one-half of the list? 

Fig 4. Excerpt from the textbook (Hjersing et al. 2004 p 46) 
 
The students wondered, whether it was possible to know half part of the list without 
ever seeing it. They, obviously, enjoyed their conversation and the work with the 
model. Even if they, apparently, found the model a little crazy, they were definitely 
willing to work with it: 

S2: Not just this one... 
S1: It does not make sense that he memorises one-half at time zero, but it 
does not matter 
S2: Yes because then he just know... 
S1: Without seeing it 
S2: Yes 

In the following dialogue, both tried to reason with their good sense:  
S1: But then it will nevertheless be the student who still does not memorise 
anything who is learning most rapidly at that time. Because he has the 
possibility of knowing 100% 
S2: Yes and the other has 70 
S1: Yes he had already learned something 
S2: He started before... 
S1: This student will memorise faster than this student 
S2: learn faster, eh? 
S1: Or the other 
S2: Yes because the less number of... something 
S1: This model 

Then S2 changed to the model perspective, talking about the variable t and 
substitute, in contrast to the ealier words from the beginning, and the students 
continued in this perspective: 
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S2: You can just substitute... t is zero 
S1: We can let this one equal... 
S1: One of them learns 1 and the other learns 0.5, eh? 
S1: No, the one lerns 0 and the other learns 0.5, so... 
S1: When we substitute – you know, one of them learned nothing... 
S2: Then it says 2 
S1: And the other learned one-half, eh? 
S2: Oh yes.. 
S1: Then you substitute 0.5 then it is 2 times a half, then it says 1. So this 
is the bigger and then the other learns faster.. 

The students continued their work with the next question in a similar way.  

 

Explorative and expressive work  
 For the following discussion, a distinction is made between explorative work and 
expressive work at functional level: explorative work aims at inquiry of existing 
constructions or artefacts like mathematical models or statements or computer 
commands for standard routines. Expressive work aims at creation, for example 
creation of a solution or description of a mathematical problem. The modelling 
process in (Fig. 2) is expressive work since each of its six sub-processes requires 
creative non-routine activities. In general, students’ works in school math tend to be 
explorative rather than expressive.  
 
Exploration of models as a forerunner for expressive modelling 
Since the teaching of applied models during expressive modelling is complex and 
time consuming, exploration of mathematical models as a forerunner of expressive 
modelling seems to be of interest. The excerpt from the classroom episode serves to 
illustrate the students’ exploration of the model. During the whole teaching sequence 
that encompassed this episode, the students trained isolated parts of a full modelling 
process separately by exploring and revising ready-made mathematical models, as a 
forerunner of expressive modelling. The idea of the teaching sequence was to let the 
students: 

- Study the ‘mechanics’ of the single terms in the sense of symbolizing and 
creating relations between the single terms 

- Focus on the potential roles and the meaning of particular, mathematical 
conceptions like for example derivative, slope etc. 

- Train their ability to recognise different types of mathematical models and be 
critical to their use in the actual context 

Whereas the first point relates to concept formation, the third point concerns 
applications of mathematical models at the functional level. The second point, thus, 
acts as an in-between. These ideas, apparently, may apply to other topics than 
differential equations models. During the teaching sequence, the students’ modelling 
activities appeared less time consuming and complex, and to a high degree the 
activities were under the control of the teacher. Though explorative, the experiments 
capitalised on the students’ creativity and thereby resembled expressive activities. 
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Still, they allowed the exploration of conventional, powerful symbolisations. This is 
in accordance with Gravemeijer’s description of RME’s conceptualisation of 
modelling. In the description, modelling shares some commonalities with both the 
expressive and explorative approaches to design (Gravemeijer et al. 2000 p 240 ff). 
Thus, not only the expressive work but also the students’ explorative work was 
designed to facilitate the students’ own construction of mathematical conceptions. 
For example, the concept formation in the case of explorative work was facilitated 
by classroom- and group discussions of shared models and negotiations of 
symbolising.  
 
Conclusion
The following conclusion is based not only on the excerpt from the classroom 
episode that serves to illustrate the students’ work, rather than on the entire research 
project, from which the excerpt was picked out. Based on the project’s qualitative 
analyses and discussions, the research project concluded that sequences of 
explorative work may serve to support the students’ concept formation and at the 
same time prepare them for expressive modelling. The explorative work may focus 
on parts of an authentic mathematical model, which is subsequently treated as a 
whole in one or both of the aspects ‘technological knowledge’ and ‘democratic 
competence’, respectively. Though, the episode illustrated that appropriate, non-
authentic models can be used as well.  
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This paper focuses on the teaching of mathematical modelling during the first year of 
experimental sciences university degrees. Within the frame of the Anthropological 
Theory of the Didactic (ATD), we propose the design of Research and Study Courses 
(RSC) as a new didactic device to teach mathematical modelling with a double 
purpose: to make students aware of the rationale of the mathematical contents they 
have to learn and to connect these contents through the study of open modelling 
questions. We also show to what extent these courses can “cover” the considered 
mathematical curricula giving a clear functionality to its different contents. 

1. TEACHING MATHEMATICS AT THE UNIVERSITY LEVEL 

The written description of different mathematical courses of Spanish first year 
university scientific programmes states that the teaching of mathematics follows a 
double objective: on the one hand, they strive to give students basic mathematical 
training; on the other hand, they try to introduce students to mathematical modelling. 
Mathematical contents are then organized in “topics”, “themes” or “modules” centred 
on a main concept (limits, derivatives, integration, linear applications, 
diagonalisation, ordinary differential equations, etc.) each including a number of 
definitions, properties, theorems, proofs, various techniques and types of problems. 
At the end of the study process, problems tend to turn into “applications” such as 
giving a “rationale” to the contents and showing their functionality.  

This traditional organization has prevailed historically for various reasons of didactic 
economy that we will not discuss in this paper. One of the drawbacks of such 
organization is that it hides the problematic questions which constitute the rationale 
of the taught notions, properties, theorems and techniques. The contents are reduced 
to a finite set of pre-existent "works" to study, but generally the questions that 
motivated the construction of these contents disappeared from the school’ culture. 
This situation leads to the formulation of the following didactic problem, which 
constitutes the core of our research: 

Given the classical description of contents in a university course, how can we design 
a didactic organisation that locates problematic questions at the starting point of the 
study process, that is, as the main generators of the mathematical contents that, 
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because they appear as an answer to these questions, can be connected and acquire a 
clear functionality?  

Here we consider the particular case of a first course of mathematics in experimental 
sciences degrees: biology, geology, chemistry and physics. The corresponding study 
programme is generally structured in three main areas: linear algebra, one-variable 
differential and integral calculus, and ordinary differential equations. 

In order to approach the didactic problem stated above, we postulate that it is 
necessary to use mathematical modelling in an explicit and central way during the 
study process. In other words, we assume that doing mathematics consists essentially 
in the activity of producing, transforming, interpreting and arranging mathematical 
models. This modelling activity starts with the study of an extra-mathematical 
system, where an initial problematic question is considered, followed by the 
construction of a model of this system that, duly treated, allows providing an answer 
to the initial question and bringing up new problems to be studied. According to this, 
we can reformulate the didactic problem as follows: 

Given the classical description of contents in a university course, how can we design 
a didactic organisation where mathematical modelling has an explicit and crucial 
role? What kind of status should we confer to mathematical modelling in order to 
transform it into a true instrument to study problematic question and to articulate the 
contents used during the study process?    

2. MATHEMATICAL MODELLING IN THE ATD

Several works within the framework of the ATD have analyzed and described the 
modelling activity (Chevallard 1992; Chevallard, Bosch & Gascón 1997). Following 
the recent works of Javier García (2005, see also García, Ruiz, Gascón & Bosch 
2006) we will consider that in a modelling activity both system and model have a 
praxeological structure and that the modelling activity is a process of reconstruction 
and articulation of mathematical praxeologies which become progressively broader 
and more complex. That process starts from the consideration of a (mathematical of 
extra-mathematical) problematic question that constitutes the rationale of the 
mathematical models that are being constructed and integrated. Our objective is to 
study, analyze and describe the conditions and constraints that would allow the 
development of study processes respecting these characteristics.  

García (2005) and Bolea, Bosch & Gascón (2004) discuss the constraints that the 
teaching of modelling has to face in the case of secondary education. One could 
imagine that the institutional environment of sciences or engineering degrees would 
provide better conditions for the teaching of modelling. Indeed, the corresponding 
curricula incorporate mathematics courses since they constitute an essential tool for 
the understanding, use and development of these sciences. However, reality is quite 
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disappointing. Always left to the end, the teaching of modelling problems is basically 
absent from Spanish “real” university curricula. Mathematics tends to be organized 
in a traditional way, where the teaching reproduces the logic of the axiomatic 
construction of concepts. In fact, as we have already pointed out, the ruling 
"ideology" in mathematics teaching at university could be called the "application of 
pre-established knowledge", leaving no place for the process of modelling. The 
modelling activity hence degenerates and is restricted to the algorithmic use of pre-
existing models. On the way, any questioning related to the origin of the models and 
adequacy is eliminated.  

In order to face this problem, we decided to use the notion of Research and Study 
Course (RSC) as a didactic device to facilitate the inclusion of mathematical 
modelling in educational systems, and, more importantly, to explicitly situate 
mathematical modelling problems in the centre of the teaching and learning process. 
That is, we will use RSC as a possible way for both teaching mathematical modelling 
at university level and covering, through it, a given mathematical curriculum. As we 
will see now, RSC will provide some adequate conditions to formulate questions 
concerning: (a) the origin of the models and their evolution; (b) the relations 
(adequacy) between models and modelled systems; (c) the effectiveness of the model 
to address initial questions; (d) the limitations of each model and the resulting need 
of broadening their reach (by remodelling the limited models, etc.).  

3. TOWARDS A NEW ORGANIZATION OF MATHEMATICS 
CURRICULUM: THE RESEARCH AND STUDY COURSES 

Chevallard (2004 & 2006) introduces the concept of Research and Study Course 
(RSC) as a general model for designing and analyzing study processes. Our teaching 
proposal will take into account the main characteristics of the RSC as proposed by 
Chevallard and, at the same time, the constraints that hinder mathematical modelling 
activities at university level (Barquero 2006).  

A RSC must be generated by the study of a question Q, of real interest to the students 
(“alive”), and strong enough to generate many other questions. The study of Q and 
the subsequent questions it generates lead to the construction of a large body of 
knowledge that will outline a field of possible RSC and their limits. The sequence (or 
“tree”) of questions generated by an initial question Q is, in fact, a sequence of pairs 
questions/answers: (Qi, Ri). The RSC thus permit retrieving the original relationship 
between questions and answers, or between problems and theories. This relationship 
is a key for the construction of scientific knowledge in general and for the activity of 
mathematical modelling in particular. Below, we highlight some of their 
characteristics: 
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� They let mathematical modelling play a central part in the study process. One 
must emphasize in each step that modelling has an essential role as a tool for the 
construction of new knowledge. 

� To certain extent, they induce in some sense the transformation of the goals and 
evaluation methods. Because there is a problem to answer and not a concept to teach, 
it becomes necessary to evaluate the study process itself (the course followed to 
obtain the answer) and not only the final product. 

� They allow making clear, crystallizing, institutionalizing and evaluating the very 
same process of modelling. This can be achieved if the study process has certain 
continuity over time, thus breaking the atomization of mathematical questions. 

� They allow the questioning of the models that are being developed. This 
questioning is the driving force of the entire study process, and gives rise to the need 
of restructuring, correcting and interpreting current models into wider and more 
complex models. 

Next, we present the design of a study process which places modelling at the heart of 
the mathematical work proposed to the students. It allows covering, through the 
RSC, a wide range of the mathematics taught in a first year university course.  

We start from a generative question about the study of population dynamics. It 
constitutes the thread of the entire learning process. We propose to answer this 
question by constructing different mathematical models, which allow to frame the 
problems at first, and to broaden them progressively. Indeed, when studying the links 
between the system (the growth of a population) and the initial model, new questions 
will appear that can only be addressed through the construction of more 
comprehensive mathematical models that, in turn, will generate new questions, and 
so on. A sequence of successive enlargements of the considered mathematical 
models is thus generated. We postulate that this process helps connecting and making 
functional the different mathematical contents that are programmed in the course. 

4. DESIGN AND TESTING OF THE RSC

4.1. A priori design: mathematical map of the RSC 

We consider a system X (population), where a given value xt (population size) 
changes over time t. The study of the population evolution, i.e., the dynamics of 
population X, gives rise to the following initial question:

Q0 : Given the size of population X over some time period, can we predict its size 
after n periods? Is it always possible to predict the long term behaviour of the 
population size? What sort of assumptions on the population and its surroundings 
should be made? How can one create forecasts and test them? 

Working Group 13

CERME 5 (2007) 2053



  
Depending on whether we consider time in a discrete or continuous value, we 
develop two families of models: discrete models or continuous models in population 
dynamics.  

If we assume, initially, that time t is measured in discrete units, and that xt depends, 
among other factors, on past states xt – 1, xt – 2, …, xt – d (0 < d � t), studying question 
Q0 leads us to consider two main types of models: 

� When xt only depends on xt–1 (population with independent generations), we study 
models based on recurrent sequences of order 1: xt+1 = f(xt), where f is a real valued 
function of one variable. We can thus cover the field of one variable calculus and the 
study of sequences. 

� When xt depends on the d > 1 past generations xt–1, xt–2,…xt–d  (population with 
mixed generations), we study recurrent sequences of order d > 1, which can be 
expressed as vector recurrent sequences with Xn+1 = f (Xn) where X0 = (x0, x1, … x d-1) 
is the vector of the d initial generation sizes and Xi = (xid,  xid+1, …, x(i+1)d-1) is the i-th 
vector of d generations, 0 � i � n. We thus cover the field of linear algebra. 

If we assume that time t is measured as a continuous variable, we study the 
continuous evolution of the population, which has an analogous structure, in some 
sense parallel to the situations described above. This allows us to study mathematical 
models with ordinary differential equations (ODE) of order 
 1. 

4.2. General conditions for testing and limits of the RSC 

We tested the use of the suggested RSC during the academic year of 2005-2006, with 
first year students of a technical engineering degree (3 years program), in the 
Industrial Chemical Engineering department, at the Universitat Autònoma de 
Barcelona (UAB). The testing took place within the one-year course “Mathematical 
Foundations of Engineering”.  

The test was performed in what we called a “Mathematical Modelling Workshop”, 
which was optional for the students, and would at the most provide a bonus of 1 
point out of 10 in the final grade of the course. Since the RSC were relatively 
independent of the course, and since there were a number of institutional constraints 
on the curriculum, we divided the map of a possible modelling work into three 
modules that gave rise to the following three RSC. 
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4.3. The first RSC: the dynamics of a population with independent 
generations

The first RCS on the discrete study of the dynamics of a population with independent 
generations took place during 6 sessions of 2h each. The first session started with the 
study of data corresponding to the size of a population of gooses in an isolate island, 
for a period of 5 years. The students were asked to analyze the data and provide an 
initial answer to the generating question. 

Students worked in teams of two or three. During the first session, the students took 
three approaches to the problem: a number of teams tried finding the best polynomial 
interpolation to the data; another group of teams tried an exponential fit on the data; 
the rest tried using recurring sequences to model the population dynamics. In the 
class discussion, the three approaches were presented by the teams, and the students, 
with the guidance of the instructor, decided that the discrete recurring sequences 
approach would be explored first, leaving the continuous approach for a later RSC. 

In the second session, the instructor described the work done by the students that 
focused, in the first session, on recurring sequences. In particular, the class agreed on 
the notation to be used and some requirements, such as considering a population with 
independent generations. xn was defined as the size of the n-th generation of 
population X and the study of the population evolution was thus characterized by the 
study of the sequence (xn) n�N. The assumption of independent generations leads to 
consider several indicators of the population growth. The instructor suggested to 
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generations, on which several assumptions were placed, leading to the construction 
of a variety of mathematical models of increasing complexity.  

During all the sessions of the first RCS, students were working in the same teams. In 
the beginning of each session, the teams had to deliver a report of all the work done 
during previous sessions, and there was one team in charge of explaining and 
defending its report. It was a very good way to compare and discuss the work done 
during all the process, and particularly, a way for the study community to formalise 
all the questions treated and their successive partial answers. This allowed them to 
agree on how to continue with the study process. At the end of the first RSC, teams 
gave in a final report of the entire study. Below, we summarize the assumptions on X 
(Hi) that were considered in the course, along with the main problematic questions to 
be addressed (Qi), the mathematical models (Mi) interpreted as tools to address the 
questions, and the successive temporary answers (Ri). 

� From the malthusian model to the logistic model 

H1 : The relative rate of growth is constant:  rn = r 

Q1 : What are the dynamics of a population with a constant rate of growth?

The situation can be modelled with the following model (M1), known as the 

malthusian model:  
xn+1 –  xn

 xn
 = r. Given the initial population size x0 = c > 0, we can 

calculate xn for any generation n:    xn = (1 + r)n x0 �� � �����������Q� 

If ��= 1+ r, the following answer R1 to Q1 can be provided:  

R1: If ��
�1, the population is wiped out; if ����1, the population size remains 
constant independently of the time elapsed; and, finally, if ����1, the population 
grows indefinitely. 

This result raises a new question about the limitation of the model when � > 1 and 
the considering of a new hypothesis H2:  

Q’1 (limitation of M1): The case of ����1 assumes the existence of infinite resources. 
How can we overcome this unrealistic fact?  

H2: The size of the population cannot exceed a given maximum value K. Therefore, 
the rate of growth must decrease when the population size approaches this maximum 
value. For example, we can assume the simplest case of a rate of growth decreasing 
linearly with size.  

Q2: What are the dynamics of a population under H2 conditions? 
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One of the simplest models that satisfies H2 is summarized by the equation 

<
>

;
2
=

: 	�� K
x

xx n
nn 11 � , known as the logistic equation (discrete) or Verhulst model. In 

contrast with the malthusian model, this equation cannot be solved in closed-form, 
i.e., with a general formula xn = f(n).  

Q2.1.: What does the convergence of (xn) depend on, in the logistic model? 

� A functional model that generalizes the malthusian and logistic models 

The work performed so far can be described by recurrent relationships )(1 nn xfx ��  
where f represents the functional relationship (linear or quadratic) between two 
consecutive generations of the population. 

The teacher proposes then to study directly the more general model xn+1 = f(xn), of 
which M1 and M2 are specific instances. A general functional model (M3) is then 
considered and initial question is rephrased as: 

Q3: What are the dynamics of the sequence of a sequence (xn) generated by the 
relationship xn+1 = f (xn) where f can be any C1 function? 

New techniques are now necessary to analyze the behaviour of xn+1 = f(xn) for a 
general function f. This induces a huge enlargement of the types of problem that 
could be considered and marks the end of the RSC as was followed with the students.  

5. CONCLUSIONS AND DISCUSSION 

5.1. Feasibility and local compatibility of RSC with traditional teaching  

As we proposed in the design phase, we verified that the sequence of questions 
arising from the generating question Q0 cover most of the traditional curriculum of a 
first year mathematics university course, plus some additions. As the RSC were 
taking place, we observed that the issues arising from the RSC had more and more 
impact on the class lectures and problem sessions. As a matter of fact, this would be 
the ideal situation for a mathematics course that integrates the RSC as an essential 
didactic tool. The appearance of mathematical organisations in the course would then 
be subordinated to the needs appearing from the study of a small number of 
problematic questions. Anyway, we have to admit that the teaching system ecology 
has only been partially modified. The diffusion of such instructional devices to other 
first course degrees is clearly a more complicated problem that we would have to 
tackle in the future. 

5.2. Didactic functions of the RSC and mathematical modelling survival 
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First, we should emphasize the importance, during the RSC, of the exploratory and
technological moments. Indeed, we believe that promoting the "experience" of these 
moments allows the students to individually create hypotheses, formulate questions, 
compare experiment and reality and choose the relevant mathematical tools. These 
constitute the first phases of mathematical modelling. In addition, we would like to 
point out that the students were highly involved in the evaluation and 
institutionalization moments. Specifically, two didactic devices undoubtedly 
permitted changes in the ruling didactic contract: Team presentations, followed by 
delivery and defence of the reports in each session; Class materials without a priori 
fixed contents.  These two moments helped conduct rather successfully the phases of 
production of knowledge and interpretation of the system, as well as the criticism and 
study of the limitations and links between each model constructed. These are crucial 
phases in the modelling process, which are not covered in traditional educational 
systems. 

5.3. Changes towards a new didactic organization  

The distribution of responsibilities during the management of the RSC was very 
different to the one of a traditional course. Since the beginning, the instructor acted 
as the director of the study process instead of lecturing the students. She gave as 
much autonomy as possible to the students and negotiated explicitly some aspects 
which are usually under the responsibility of the teacher: scheduling the study 
process, selecting mathematical contents, using computer and bibliographical 
resources and evaluating partial results. This increasing autonomy taken on by the 
students during the RSC is a necessary condition to carry out the activity of 
mathematical modelling. In this sense, we observed the importance of always 
keeping in mind the generating question, which we used as the thread of the entire 
study process. This allowed us not to consider the mathematical tools as a goal in 
itself, but rather to give an answer to a certain question. We thus obtained a 
functional teaching of mathematics as opposed to the traditional “monumentalism” 
(see Bosch & Gascón 2006).  

5.4. The status of mathematical modelling within the RSC 
Considering the work done by students in a particular model (the discrete logistic 
model, for instance) we can observe that students pass through the different stages of 
the modelling process. A didactic organisation starting from a generative question 
and structured by a sequence of questions and provisional answers not previously 
determined that helps keeping the initial question “alive”, seems appropriate to 
promote the mathematical modelling activity. However, if we analyse the study 
process that includes a whole RSC, or what is more the course structured by the three 
RSC, it becomes clear that one of the main didactic functions of this device consists 
in their capacity to produce a progressive enlargement of the models that are being 
built up which helps the connection between models and, finally, promotes the 

Working Group 13

CERME 5 (2007) 2058



  
internal dynamics of mathematical modelling. One of the main didactic functions of 
the RSC comes from their capacity of broadening and articulating different 
mathematical models, and hence giving momentum to the internal dynamics of 
mathematical processes. This momentum can only be generated if, during the RSC, 
the modelling activity can progressively achieve the status of a (mathematical) study 
object, beyond the status of being a (didactic) tool to study a number of mathematical 
organisations. Only then, the students will be able to formulate all the questions 
related to mathematical and didactical techniques without constraints, and to take 
responsibilities traditionally assumed by the teacher. 
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Abstract
An education design experiment in which applications were integrated in the 
Multivariable Calculus course at the Technion was carried out in 2002-2005. The 
purpose of the study was to emphasize the connections between the mathematics 
course and the science and engineering disciplines, and examine the effect of 
applications on students' understanding and learning motivation. In the experiment 
we extended the conventional curriculum by optional applications motivated 
recitations. Data analysis indicated that the experiment succeeded to improve the 
understanding of calculus concepts, and had significant positive effect on students' 
achievements and motivation. In this paper we briefly describe the experiment, try to 
understand its result through and a learning processes analysis, and discuss further 
initiatives of teaching with applications.

Introduction
Applications and modeling, the subject of our CERME 5 Discussion Group 13, is a 
central theme in mathematics education research (Blum, 2002; Haines et al., 2006). 
In engineering education, the ability to apply mathematics has been recognized as one 
of the main learning outcomes required from graduates (Criteria for Accrediting, 
2000, pp. 32-34). With the general agreement about the importance of this goal, there 
is a debate on the way of achieving it (Blum and Niss, 1991). Some educators 
propose teaching mathematics from the application perspective (Kumar and Jalkio, 
2001) with focus on the mathematical skills required by the engineering disciplines. 
This paper considers an experimental study of integrating applications in the 
Multivariable Calculus course at the Technion. Traditionally, the basic mathematics 
courses at the Technion are taught at a high level of theoretical abstraction and 
without applications. Our experience shows that a considerable part of the students 
encounters difficulties in their studies. This is in spite of the fact that in order to be 
accepted to the Technion, the students need to have high grades in advanced high 
school mathematics and in the scholastic aptitude test. 
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In our study integrating applications was suggested as a possible remedy to the 
students' difficulties, and our goal was that the experiment will influence the way the 
basic mathematics courses are taught. The research was done in the framework of the 
doctoral thesis of Dr. S. Aroshas written under the supervision of the first authors. 
Since our experiments of teaching calculus with applications were conducted within 
constraints of the given course, we had to change the learning processes and the 
research methods during the study. This motivated us to conduct the study in the form 
of education design experiment (Cobb et al, 2003). The experiment was conducted 
between 2002 and 2005. Details of the experiment were presented in (Aroshas et al., 
2006). Motivated by the positive results we extend our study in theoretical and 
practical directions, as described in this paper. 
The paper is organized as follows: we first present the experiment and its results. 
Then we discuss learning through solving applied problems in terms of mental 
representations, and try to use this model to explain the effects observed in the 
experiment. Finally we mention further initiatives of teaching through applications of 
other mathematics courses.

Study Framework 
Conventionally, the Multivariable Calculus course at the Technion included four 
lecture hours and two hours of recitation. With the development of the Technion 
Mathematics Web tutoring system the recitations were reduced to one hour a week. 
In our study the course schedule was extended by supplementary applications 
tutorials which were given voluntarily in conjunction with teaching a conventional 
Multivariable Calculus tutorial. The study included three teaching experiments which 
examined different forms of supplementary applications tutorials.  
In the first (pilot) experiment Supplementary Applications Tutorials (SATs) were 
given by Aroshas in the fall semester 2002-2003. About 75 students from different 
science and engineering faculties participated regularly in the optional classes. The 
SACs were coordinated with the main calculus class so that theoretical concepts and 
their use in real problems were studied in the same week. 
The tutorials were followed up by a pilot study. In conjunction, we developed and 
tested applied problems and teaching methods in class. To characterize the applied 
problem solving skills we asked a number of experts from science and engineering 
faculties at the Technion for their opinion regarding the need for learning applications 
in the mathematics courses, and how important it was for their students. We also 
accepted their advice on how to present and analyze applied problems in the course.  
The second (central) teaching experiment was conducted in the spring semester of 
2003-2004 and designed in the following way. Two groups (experimental and 
control) of Multivariable Calculus students were created with the same number of 
students (N=33). Both groups attended the same Calculus lectures with no emphasis 
on applications, but their tutorials were different. Throughout the course the control 
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group participated in two weekly hours of conventional tutorials (without 
applications), while the experimental group participated in one weekly hour of 
conventional recitation and one of SATs. There were no significant differences 
between the experimental and control groups with regard to mean grades in One 
Variable Calculus and in the pre-course test, interest in studying calculus with 
applications. Both groups represented the same engineering faculties. In this 
experiment the study focused on testing the effect of teaching calculus with 
applications through its comparison with the conventional teaching approach. The 
comparison related to learning achievements, understanding calculus concepts, and 
students motivation. 
In the third (additional) teaching experiment two supplementary 2-hours SATs were 
given in the fall semester 2004-2005 and attended by more than 50 students from the 
multivariable calculus course. The goal of the tutorials was to introduce the calculus 
concepts of Lagrange multipliers and multiple integrals prior to their formal study in 
the lecture. In the sessions the concepts were recreated from the practical need and 
through the analysis of applied problems. In the follow-up we examined to what 
extend the SATs helped students to understand the concepts taught in the lectures.  

Research Questions, Instruments, and Applied Problems 
The research questions were as follows: 
1. What is the effect of the applications-based mathematical instruction on learning 

achievements, understanding calculus concepts, and motivation in the course? 
2. What are the possible ways of integrating applications in the Multivariable 

Calculus course while keeping its existing constraints and limitations?      
In the first teaching experiment we used pre-course and post-course questionnaires. 
Four questions of the pre-course questionnaire were repeated in the post-course one. 
They tested student opinions on the following aspects: 
1.  Anticipated effect of integrating engineering and science problems on 

understanding the calculus concepts. 
2.  Interest in solving calculus problems from the area of specialization. 
3   Viewing the calculus capabilities as a condition to succeed in the area of 

specialization. 
4.  Interest in attending the applications motivated course in addition to the 

conventional calculus class.
The post-course questionnaire also inquired student opinions about the contribution 
of the three teaching methods used in the course: demonstrating mathematical 
problems of science and technology, constructing and solving mathematical problems 
in context, visualization through computer simulations.  
The central teaching experiment applied pre-course and post-course questionnaires 
and tests. The pre-course questionnaire examined students' attitudes and learning 
styles, and collected personal information. This information and a One Variable 
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Calculus applications test were used for creating experimental and control groups. 
The two post-course questionnaires were also conducted in both groups. The first one 
tested students' opinions about the value of tutoring sessions and their preferences in 
learning with applications. The second one was an understanding test which 
examined students' possible misconceptions of Multivariable Calculus concepts. The 
midterm exam and the final course exam grades of students in the control and 
experimental groups were also collected.
In the third teaching experiment we used an attitude questionnaire which was 
conducted after each of the supplementary applications classes and the following 
lecture. In the questionnaire the students evaluated the contribution of the classes to 
their understanding of the calculus concepts given in the lecture.

Results
First teaching experiment 
The pre-test findings were as follows: 
� The absolute majority of students pointed their high level of expectations from 

integrating applied problems on understanding the calculus and interest to solve 
problems from the area of specialization. 

� A majority of the students (70.7%) recognized the connection between success 
rates in the first-year mathematics and the majoring subjects.   

The post-test indicated:
� The students did not change their opinion about the effect of integrating applied 

problems, and continued to be interested in solving problems related to the area of 
their specialization (as given by the t-test). This shows that the course met the 
students' expectations.  

� There was an insignificant increase in the average evaluation of the importance of 
the calculus capabilities for success in the area of specialization (as given by the t-
test).

� All the students reported that they would recommend attending the applications 
course to their classmates. 

� All three teaching methods significantly contributed to the understanding of 
calculus concepts (as revealed by F-test). The contribution of visualization through 
computer simulations was the highest. 

Second teaching experiment 
The pre-course questionnaire was used to divide calculus students into two "equal" 
groups: the experimental group and the control group. As a result, there were no 
significant differences between the control and experimental groups in One Variable 
Calculus grades, interest in learning mathematics with applications, results of the 
one-variable calculus applications test, in representation of different faculties and in 
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learning styles. The comparison between the experimental and control groups at the 
end of the course indicated the following features: 
1.  The mean exam grades of the experimental group were 8.9 points higher than that 

of the control group in the midterm exam and 6.3 points higher in the final exam.  
The differences between the groups in both exams were found significant (t test).  

2.  The experimental group gave a significantly higher evaluation for the contribution 
of the course in relation to all the aspects mentioned in the table. 

3.  The two groups are of the same opinion about the need of addressing different 
learning styles and integrating applied problems in the course.  

It is worth mentioning, that in the teacher evaluation survey of the Technion Centre 
for Promotion of Teaching, the mean grades given by the control and experimental 
groups to the calculus teacher were similar (4.85 and 4.86 out of 5). This fact 
supports the view that the advantage of the experimental group was a result of 
studying calculus with applications. 
The calculus understanding test consisted of 14 theoretical and applied questions 
related to the following concepts: equipotential lines, directional derivative, gradient, 
tangential plain, Lagrange multipliers, and extremum. The test was validated by two 
experienced practicing lecturers of the Technion Multivariable Calculus course. 
Significant advantage of the experimental group over the control group in the 
percentage of correct answers to the test questions was indicated. For some of the 
questions correct answers were given by 70-80% of students in the experimental 
group vs. 25-35% in the control group. Typical student reflections to a question on 
the contribution of studying applications for understanding calculus concepts were as 
follows:

"Through applications I grasped the complex calculus concepts". 
"The impact of a one-hour application session is the same as of a regular 
(two-hour) tutorial". 
"It is a pity that applied problems were not given in the first Calculus 
course".

Third teaching experiment 
The attitude questionnaire conducted after each of the two supplementary 
applications classes asked to evaluate its contribution in the following aspects: 
understanding a lecture, following the lecturer's explanations, geometric 
interpretation of the concepts, linking new and formerly studied concepts, and 
development of problem solving skills. The answers were very positive. More than 
90% of the students mentioned high positive contribution of the SATs in all the 
abovementioned aspects. In response to a question on preferred teaching methods, an 
absolute majority of the students supported teaching calculus with applications 
through practical examples, discussions of possible applications, and visualization of 
calculus concepts.          
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Learning Process Analysis 
In order to understand how applied problem solving contributes to mathematical 
learning we need to analyze the underlying knowledge acquisition process. We do it 
by using the prevalent model of internal mental representations of knowledge 
perceived through cognitive processes (English and Halford, 1995). By this model 
concepts and ideas are internally represented by networks of knowledge units which 
include spatio-temporal images and predicate-argument structures (propositions). 
Links between knowledge units depend on associations rather than on logic. Different 
internal networks also can become connected by links and form organized bodies of 
knowledge (schemata) representing complex concepts and categories. It is accepted 
that this model of mental representations provides a psychologically realistic 
description of different aspects of cognition such as mathematical problem solving. 
Here we will use the model to explore some effects of applied problem solving on 
developing mathematical knowledge. 

Explication of knowledge 
Implicit knowledge is knowledge to perform a task, but without the ability to explain 
and modify the performance which characterizes explicit knowledge. Following 
Karmiloff-Smith (1990), explicit knowledge is created through constructing higher 
level representations of knowledge from that existing at an implicit level. This view 
is shared by diSessa (1998) who stresses the need for mediating between formalisms 
and experience in physics and constructing representations from theoretical and 
intuitive "knowledge pieces".  
With regard to the multivariable calculus course considered in this paper, the students 
study it after and in parallel with basic science and engineering disciplines, such as 
physics. These disciplines strongly use calculus methods but present them as implicit 
procedures, while the underlying concepts are not yet internalized by the students 
from the mathematics course. As a result, students have difficulties in problem 
solving and understanding the disciplines. The value of solving applied problems 
from different disciplines in the calculus course was mentioned by many of our 
students. The students discovered meaning of the procedures that they used in the 
disciplines and their typical reflection was: "Now we understand the mathematical 
procedure used by the (science or engineering) teacher and acquired the mathematical 
method for solving a class of similar problems". 

Enhancement of problem solving skills         
The major factors that underlie human reasoning (English and Halford, 1995, pp. 29-
30) include memory retrieval, strategies, and analogies. The role of applied problem 
solving practice in stimulating mathematical reasoning processes can be clearly 
observed. Indeed, the characteristic feature of memory functioning is that information 
which is communicated and used more frequently is better retrieved in memory. In 
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our case, when studying calculus with applications the students create associations 
which link representations of mathematical concepts with representations of different 
real situations. Through these associations, the mathematical concepts recur to 
students’ memory when they face the situations in their everyday practice. 
Strategies are constructed on the basis of mental models which represent the structure 
of the relevant concepts and delimit the workspace of their use for problem solving 
(English and Halford, 1995, pp. 45-50). In our case study, calculus application 
experience facilitated the students to develop, test and revise their problem solving 
strategies in two ways. First, by dealing with new situations and non-standard 
problems the students extended their notion of possible application of calculus 
concepts. Second, by exploring the properties of a variety of calculus applications the 
student developed rules, algorithms, and heuristics that became components of their 
applied problem solving strategies.  
An analogy is a mapping between two represented situations in which elements of the 
first representation (the source) are mapped into elements of the second 
representation (the target) in such a way that relations in the source and the target 
correspond (Holyoak et al., 2001). Del Re (2000) pointed that analogies embodied in 
physical and mental models have essential role in scientific research. He considered 
mathematical models as tools of argumentative analogical thinking. In our calculus 
course, we saw that solving applied problems affected students' analogical reasoning 
in two directions. First, when solving various real problems by common 
mathematical models the students discovered analogies between different situations. 
Second, this practice helped to understand abstract mathematical concepts by 
mapping them into real representations which were clear to the students from their 
experience.

Additional Work 
Discussions and initiatives 
The results of our experiment were discussed in a special committee that was formed 
at the Technion to suggest ways to improve the mathematics courses given to 
engineering students. The committee included professors of different engineering 
departments and from the department of mathematics. The committee was chaired by 
the first author but this was not the reason for the unanimous agreement of all the 
committee members that one of the ways to improve teaching of mathematics is to 
integrate applications and modeling and the ideas that were tested in our experiment 
can serve this purpose. The committee members felt that developing tutorials 
according to our suggestions is a good way to increase the students' motivation and 
interest in the course without compromising the abstract theoretical level of the 
course.
The committee recommended offering the engineering students an option of applied 
problem solving practice in the basic mathematics courses. Following this 
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recommendation, our experiment was extended to the one-variable calculus course 
given to mechanical engineering students. In addition, the second author is 
developing a teacher training course on mathematical models in science and 
technology.
Another effort in this direction was made in teaching linear algebra. The teaching-
with applications course was given by the first author. In the course the way of 
teaching applications differed from those tried in the experiment. Applied problems 
were an integral part of the lecture. Some of the problems were chosen from the 
major disciplines of the engineering students. Examples are: computing currents in 
electrical circuits (systems of linear inequalities); controlling chemical processes 
(eigenvalues); calculating air flow over wings. In the first two examples the 
knowledge acquired in the course enabled the students to perform the tasks. The 
solution of the third task was not presented in the course because it involves partial 
differential equations that the students had not studied yet. We decided to consider it 
in order to construct a bridge between the course and a central problem for 
aeronautical engineers. We hope that this connection can motivate students, 
especially aeronautical engineering majors, and help them to recall the material when 
facing this problem in future courses. We conclude the discussion of the Linear 
Algebra applied course, and the paper, with two additional examples.  
An inquiry problem – the case of Google 
Searching the Internet is an issue of general interest. We used this issue to develop an 
inquiry problem that motivates the study of eigenvectors. When the Web is searched 
for information about some concept, many sites may be offered. For this reason, it is 
of utmost importance to rank the usefulness of the sites. In the course we explained 
how the ranking is made by Google, using linear algebra (Berman, 2006). 
Accordingly, a site gets high rank if it is pointed to by high ranked sites. This is 
similar to the principle of tennis or chess player ranking. Let xi denote the probability 
that a virtual surfer is in site i. Let x = (xi) be the probability vector which describes 
the surfer's location. Applying the ranking principle the students obtain a system of 
linear equations   Ax=x, where A is a stochastic matrix. The vector x that satisfies the 
system gives the ranking of the sites. At this point we can only assure the curious 
students that there is a unique x without proving it, but we can use the obtained 
system to motivate the definition of eigenvectors. This is an example where the 
application preceeds the definition and perhaps makes the definition more natural.  
Simple cryptography 
This example is used to suggest an application of matrix inversion, extend the interest 
of the students in this operation, demonstrate the importance of the computing the 
inverse as a multiple of the adjoint and discuss the pitfall of round off errors. We start 
by choosing a 2×2 invertible matrix A and a message expressed in numbers that we 
want to send. We write the message as a matrix with 2 rows B and compute the 
product AB. The students, who know at this point of study the formula for inverting a 
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2×2 matrix, multiply A-1AB and read the message. Our experience is that a question 
follows: can the same be done with a 3×3 matrix or with bigger matrices so it is now 
natural to discuss the inversion of such matrices. Once this is done we show the effect 
of the computation accuracy on the results of the operations and conclude that it is 
recommended to choose the matrix A so that it and its inverse are integral matrices. 
We return to this point after the students learn the relation between the inverse of a 
matrix and its adjoint and choose A to be a product of a lower triangular matrix and 
an upper triangular matrix, both with all diagonal entries equal to 1. The advantage of 
this discussion is that the students appreciate the formula for inverting a matrix, that 
otherwise seems too theoretical.  

Conclusions
The results of all three experiments were positive. Learning achievements of students 
who attended supplementary applications tutorials were significantly higher than 
those of other students. Through applications the students explore mathematical 
modeling cycles, and this practice resulted in better and easier understanding of 
calculus concepts, higher learning motivation and interest in the subject. The absolute 
majority of the students involved in the study supported integrating applications in 
the multivariable calculus course, recommended to continue teaching with 
applications in the future, and even extend this practice. 
We used a representational model of perception in order to explain the effect of 
applications on mathematical understanding. We hope that our design experiment and 
the representational model can be used to continue the study of theoretical and 
practical aspects of teaching with applications.
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LEARNING THE INTEGRAL CONCEPT THROUGH 
MATHEMATICAL MODELLING 

Morten Blomhøj and Tinne Hoff Kjeldsen
IMFUFA, Department of Science, Systems and Models, Roskilde University 

We investigate how mathematical modelling activities can support students’ learning 
of mathematical concepts. From experiences in developing, teaching, and observing 
students at work in a modelling course for first year university students, we argue 
that students’ contextualised reflections in modelling situations are crucial in this 
respect. We illustrate how these types of reflections can be provoked and how they 
can enhance students’ learning of mathematical concepts by analysing dialogues 
from a project, designed to support students’ development of the integral concept. 

INTRODUCTION
One of the main reasons given for teaching mathematical modelling is to support 
students’ learning of mathematics (Niss, 1989), (Blomhøj, 2004).  Through 
modelling, mathematics is used to describe, understand, predict, and prescribe the 
reality we live in, thus modelling can create connections between the students’ extra-
mathematical experiences and the mathematics involved in their modelling activities. 
Working through the modelling process students are challenged to use different 
aspects of their mathematical conceptions in various situations. Hence, it is of interest 
to design and evaluate modelling situations from the perspective of their potential to 
challenge the students’ mathematical conceptions.
Accordingly, the objective for the (empirical) study presented in this paper is to 
answer the following general research question:

How can mathematical modelling activities’ potentials to support students’ learning of 
mathematical concepts be realised through interactions with students during their 
modelling activities?

In what sense such learning potentials exist is discussed in a forthcoming paper. In 
this paper we briefly describe the mathematical modelling course that constitutes the 
empirical basis for our research. Then we discuss how our research has progressed 
through interplay between development of practice, theory, and pedagogical 
observations. To illustrate how our approach can provoke students to use the context 
in the modelling situation as a means for making sense of their mathematical 
conceptions we present a detailed analysis of a learning situation where groups of 
students used the concept of the integral to model the CO2-balance in a lake. Finally, 
we provide some conclusions about our general research question. 
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THE EMPIRICAL BASIS – AN UNDERGRADUATE MODELLING COURSE 
We have collected our data during eight years of co-operation developing and 
teaching a mathematical modelling course for first year university students at 
Roskilde University, Denmark.   
The mathematical content of the course covers linear regression, calculus, numerical, 
analytical, and qualitative methods for solving and analysing differential equations 
(Blomhøj et al., 2004). All topics and concepts are discussed as tools for modelling. 
Besides demonstrating the relevance of mathematical modelling in the sciences, and 
contributing to the development of the students’ mathematical modelling competency 
(Blomhøj & Jensen, 2003), the course is also designed to support students’ learning 
of fundamental mathematical concepts and methods the last being our focus here.
The course is taught in classes of roughly 40 students with two weekly sessions of 
two and a half hours over two semesters. It is structured around six mini-projects, 
intended to make the students work on those parts of the mathematical modelling 
process that involves mathematisation, mathematical analysis, and interpretation and 
evaluation of results, see (Blomhøj & Kjeldsen, 2006).  The students work on the 
mini-projects in groups of three for a period of three weeks, during which there will 
also be lectures, exercises and homework. For each mini-project the students can 
choose among a list of problems. The groups produce a written report. At the end of 
the term every student defends orally one of her/his mini-projects, randomly chosen. 

INTERPLAY BETWEEN PRACTICE, THEORY, AND OBSERVATIONS 
Our course differs from the Realistic Mathematics Education programme (RME) in 
that it is a university course and has the development of modelling competency as its 
main agenda (Treffers, 1987), (Gravemeijer & Doorman, 1999), (Gravemeijer, 1998). 
The recent work by Zbiek & Conner (2006) has a focus similar to ours but at a 
different educational level and context.
In general, the effects of modelling activities on students’ conceptual learning are not 
that well researched. In our own work on how to carry out the learning potentials 
through interactions with students during their modelling activities we can identify 
three important issues related to the development of practice, theory, and pedagogical 
observations, respectively. 
First, the mini-projects in the course are developed deliberately to create 
opportunities for challenging and enlarging students’ understanding of the central 
mathematical concepts and methods in the course. However, the potentials for 
learning mathematics through the mini-projects do not realise themselves 
automatically. We need to pay careful attention to the learning potentials of each 
mini-project to notice when it can be pursued in the contemplations of a group of 
students, and to find ways to challenge students to engage in the relevant reflections. 
Therefore, the development of course material and teaching practise is an ongoing 
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process that has benefited from our close collaboration and from having team-taught 
the course several times. 
Secondly, the design of the course draws on theories about the teaching and learning 
of mathematical modelling (Niss, 1989), (Blum & Niss, 1991), (Blum & Leiß, 2006), 
concept formation (Sfard, 1991), concept images (Tall & Vinner, 1981), (Vinner & 
Dryfys, 1989), and the importance of the epistemological relations between symbol, 
concept, and object in learning of mathematics (Stienbring, 1989). 
Thirdly, during dialogues with the groups we have recorded pedagogical observations 
that pointed out specific difficulties students had when they needed to draw on not 
well-developed images of their mathematical concepts. In such situations the 
students’ focus changed from the task of modelling towards their own understanding 
of the involved mathematical concepts. Students experienced what Tall & Vinner 
(1989) refer to as a cognitive conflict in their evoked concept images. Besides 
creating frustrations, these situations contain opportunities for students to engage in 
certain types of reflections, situated in the students’ modelling activity but directed 
towards their understanding of mathematical concepts. 
In the following section we illustrate how students’ modelling activities can create 
incidences of cognitive conflicts, where students can be challenged to engage in these 
types of reflections, which then eventually support their conceptual learning of 
mathematics. Moreover we show how these opportunities can be realised through 
dialogues between a group of students and a teacher that is well aware of the possible 
cognitive conflicts in the situation. 

LEARNING THE INTEGRAL CONCEPT BY MODELLING ACTIVITIES 
The mini-project “CO2-balance of a lake” is designed to challenge students’ 
understanding and images of central features of the concept of the definite integral. 
Students’ perception of the integral concept prior to the project 
Prior to the project work we introduce the integral concept in the classroom with 
focus on its interpretation in different modelling situations and on numerical 
integration. To support students’ understanding of the definite integral as a sum we 
use a considerable amount of time on numerical integration – by hand as well as by 
MatLab. In the “integration by hand”-exercises the students integrate by “counting 
rectangles”. That this method challenges their concept image is clearly conveyed by 
the students’ reactions towards this rough and “childish” method of integration. It 
makes them uncomfortable, and seems to go against their conception of calculus. 
For many of the students their concept image is limited to the operation: find an anti-
derivative, insert the endpoints of the integration interval in the anti-derivative, and 
subtract the two magnitudes. This limited concept image has the consequence that 
students will not be able to evaluate the definite integral of a function not given by an 
analytical expression or a function to which an analytical anti-derivative cannot be 
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determined. Usually students have not experienced this consequence as a conflict, 
presumably due to their limited concept image of a function. It is our experience that 
in the beginning of the course students cannot imagine functions not given by an 
analytical expression. Nor can they imagine the existence of analytically given 
integrable functions for which analytical expressions for the anti-derivatives cannot 
be found. Also, most of the students are confused about the arbitrary constant C
appearing in the general formula for the anti-derivative. When should it be taken into 
account and when can it be left out? Apparently, it is not included in the formula:  
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The mini-project of modelling the CO2-balance of a lake is designed to challenge 
students’ understanding of the concepts of the definite integral and the anti-
derivative, the significance of the constant, and the interpretations of these concepts 
in different problem situations. 
Modelling of the CO2-balance of a lake 
Biologists are interested in how the net rate of change of CO2 in a lake changes over a 
24 hours period, and on the basis of the data, partly displayed in table 1, students are 
asked to analyse the CO2 balance in the lake. 

Hours after dawn CO2 mmol/l/hour Hours after dawn CO2 mmol/l/hour 

0.666 -0.027 12.666 0.028

1.333 -0.048 13.333 0.058

… … … …

12.000 0.000 24.000 0.000

Table 1: Data express the rate of change in CO2 concentration (mmol/l/hour) over a 24 
hour period. There were 2.600 mmol CO2 in the lake at dawn. 

Through a number of helping questions and by means of challenges given to the 
groups in dialogues with the teacher during their modelling work we establish a 
framework for the students’ work. To give a first impression of the situation the 
students have already been prepared to produce a plot of the data (see figure 1). 
In the first part of the mini-project the help-questions are designed to make the 
students interpret the plot and realise what information they can read off directly. 
That the sign of the rate of change is negative during the day and positive during the 
night is straight forward, but what that says about the CO2 content in the lake is not as 
clear. The students’ problems come from two sources: (1) they are not completely 
sure about the mathematical relationship between the CO2 rate of change and the CO2
content, and (2) they do not really understand what the CO2 rate of change tells them 
about the system. 

Working Group 13

CERME 5 (2007) 2073



The CO2 rate of change in mmol/l/time
0 08

0 06

0 04

0 02

10 15 20 25 30

-0 02

-0 04

Time in hours after dawn-0 06

Figure 1: Shows a plot of the data indicated in table 1. 

We often see them confuse the graphical picture of the CO2 rate of change displayed 
in figure 1 with the CO2 content. To deduce facts about a function from a graphical 
representation of its derivative is not strongly represented in the students’ conceptual 
framework. At this stage the students do not think of the CO2 content as an anti-
derivative to the CO2 rate of change. Instead they think of the CO2 rate of change as 
the derivative of the CO2 content. Their concept images of these two different ways 
of looking at the relation between the CO2 rate of change and the CO2 content is not 
integrated at this point. One of the purposes of this modelling project is to create 
situations where students get opportunities to develop links between these relations. 
In the second part of the project students are asked questions such as: When will the 
CO2 content in the water be at its lowest, and how much CO2 will be in the water 
when that happens? Is the lake in equilibrium with regard to the CO2 content?  How 
can this question be decided graphically? How much CO2 was released to the water 
during the 12 hours of night and how much was removed during the 12 hours 
daytime? These questions all require the students to regard the CO2 content as an 
anti-derivative of the CO2 rate of change. They force the students to shift focus and 
view their plot of data as a plot of a function whose anti-derivative they are searching 
information about. At this point, only a few students have a concept image so well 
developed that it does not matter to them whether they use one way of considering 
the data plot or the other. For most students however, there is a considerable 
difference in the two points of view. Since the students only have a discrete set of 
data they experience the numerical integration method of “counting rectangles” as a 
valuable and sensible tool that can answer relevant and significant questions. 
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The use of pedagogical observations 
We have made extensive use of pedagogical observations as a tool to get a deeper 
insight into students’ learning processes and problems of learning various 
mathematical concepts. Modelling projects are an excellent context for this tool 
because they effectively create situations where the observer can get insights into the 
challenges facing students as they try to understand and learn. The modelling context 
stimulates students to talk about the mathematics, formulate problems and questions 
of a mathematical character, and test their understanding in group discussions with 
each other. Below we will show in detail how we have used pedagogical observations 
to get insights into and challenge students’ understanding of the integral concept. 
The object in the third part of the project is to address both students’ perception of the 
definite integral as an accumulated sum and the problem they have with 
understanding the role of the arbitrary constant C.  Students are asked to produce a 
graph of the CO2 content as a function of time. For most students this either creates a 
conflict with their concept image or reveals a huge gap in their understanding. They 
realise that they need to integrate the function (the CO2 rate of change) represented by 
their plot of data, but that is followed by their confusion caused by vague or missing 
connections between the concept definition and their concept image of the definite 
integral, as well as their problems with the distinction between the definite integral 
and anti-derivative functions. 
The following dialogues are reconstructed from our experiences and observations 
over time with groups of students working on the project: 
The teacher (T) has been summoned by the group. The students (S) are stumped.  

T:  What are you being asked to calculate? 
S:  The CO2 content of the lake. 
T:  Correct, how can you determine that? 
S:  Well, we know the rate of change … 
S:  That means we know  …  'f
S:  Is it  we have to find? (Everyone looks at the teacher) f
T:  I don’t know. It is the CO2 content you are asked to find. 
S:  We know the velocity so it is  we have to find. f
S:  We must integrate. 
T:  Yes, what is it you need to integrate? 
S:  Our function (points at the plot of data). 

Then the teacher leaves. After a while the teacher is called back in: 
T:  How is it going? Have you integrated your function? 
S: No. We can’t. 
S:  We don’t have an expression for the function. 
T:  OK – but aren’t there other ways to integrate? 
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S:  Yes, numerically, and we did that, but we got -0.025 which cannot be true. 
The CO2 content cannot be negative. 

T: How did you arrive at this number? 
S: We integrated the function by counting rectangles. The ones below the 

ordinate axe are negative. 
Here the students clearly have problems understanding how the integral concept is 
connected with the problem of determining an anti-derivative. 

T:  Let’s try to focus on what it is you have to find. 
S:  We have to find the integral. 
T:  Yes, but why is it that you want to integrate? 
S: … ??? … 
T:  What does it say in the text? 
S: Oh yes, we have to find the CO2 content. 
T:  Yes, when? 
S: … ??? … What do you mean? 
T:  Is it at midnight … or … ? 
S: Yes … no … it is at dawn. 
T: Where does it say that? 
S: Ehh .. it doesn’t. 
T:  No, what does it say? 

Rereading the text they realise they must find the concentration as function of time. 
S: But then we have to calculate many numbers! 
T: Yes. 
S: But the integral is just one number … right? How can it then become a 

whole function? 
T:  How will you estimate the CO2 content at time 0.666? 
S: Integrate. 
T: Yes, but what? 
S: The function – the rate of change. 
T:  Yes, but where from and where to? 
S:  Ohhh – from 0 to 0.666. 
T:  Yes. 

The teacher leaves again – and is called back in after a while. 
S: We still don’t get it. Do we need to count rectangles all over? 
T:  What do you mean by “all over”? 
S:  We have done it for the first data point from 0 to 0.666. And we also did it 

for the second data point from 0.666 to 1.333. Is that then the CO2 content 
at time 1.333? 

T: That is a good question. 

After some discussion the group realises that they must add the first integral from 0 to 
0.666 to the second to get the CO2 content at time 1.333. First at this point, do the 
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students really understand that they can tabulate an anti-derivative (the CO2 content) 
by successively adding “the next column” of rectangles. They realise why there is no 
conflict between the definite integral being one number and the possibility of 
tabulating an entire anti-derivative function by integration. 

S: That is a huge calculation … 
T: Yes, but the function to be integrated is tabulated in the data set, so maybe 

you can use one of your MatLab programs. 
S: Oh yes, numerical integration. 

After such discussions most of the groups are able to take over their modelling work 
to produce the requested graph, to use it, and to reflect on it in relation to biological 
questions about the lake.
One particular group decided to use Excel to integrate instead of one of their MatLab 
programs, because they felt that in Excel they were able to keep track of what was 
added when and to what. It is noteworthy that this group realised by themselves that 
they had to add the initial amount of CO2 in the lake, and that this amount was the 
constant C. Some of the other groups at first hand overlooked that, and found 
negative amounts of CO2 in the water, which gave rise to comments about the 
feasibility of these results in relation to the context. 

DOCUMENTATION AND CONCLUSION – WHAT DID THEY LEARN? 
In this mini-project students’ learning of mathematics is supported through the 
connections the students are challenged to explore between the concepts of the 
derivative function, anti-derivative functions, and the definite integral. Through this 
project students develop abilities to apply these concepts in particular contexts. The 
project enables them to juggle with the concepts and to interpret them in relation to 
each other and in relation to a perceived reality. 
The project demystifies the arbitrary constant C in the formula for the anti-derivative. 
Through area-observations students are able to answer many questions regarding 
amounts of CO2 being removed or added to the lake. In such questions the constant C
plays no role. But when it comes to determine the actual content of CO2 in the lake at 
a given time the constant and its interpretation play a crucial role. The constant 
determines the actual level of CO2 and that idea is encountered in the third part of the 
mini-project, where students realise that they cannot solve the problem without taking 
the initial level of CO2 in the lake into account. This experience enabled them to read 
new meaning into the general formula for anti-derivatives interpreting the constant C
as the value of the function F(t) at some chosen time t = t0. It is within the modelling 
context that this becomes clear for students. They found that without the constant 
they calculated only increasing and decreasing amounts of CO2, and because they 
calculated with signs they ended up finding negative amount of CO2 in the lake. This 
contra-intuitive result was what triggered their reflections.
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Students’ understanding of the concept of the integral got connected to the definition 
of the concept, and they experienced the usefulness of integrating by counting 
rectangles. This is clearly demonstrated by the group of students who used Excel to 
tabulate the function of the CO2 content. This group of students understood the 
integral concept at a deeper level than before the mini-project, and at the end they 
were able to transfer the definition of the definite integral to new modelling 
situations. Students’ reflections are contextualised, and therefore one should not 
presuppose transfer of students’ conceptual understanding of the integral concept 
developed in relation to a particular mini-project to other modelling situations. The 
question of transfer has to be investigated separately. However, we have some soft 
evidence showing that students who have worked with the CO2 mini-project 
afterwards are able to use the integral concept in other modelling projects. 
Mathematical modelling provides opportunities for students to learn mathematics in 
different ways. Here we have focused on situations where the students reflect on their 
mathematical understanding in activities related to mathematisation, analysis of the 
mathematical system, and the interpretation of the results. These types of reflections 
are situated in students’ particular modelling activity and the learning potentials of 
such reflections are triggered by students activating different aspects of their 
conceptual knowledge, experiencing possible conflicts in their understandings, and 
enlarging their concepts images by connecting the concepts to their modelling 
activities.
In course planning and developing of modelling projects, one can look for such 
learning potentials. It is our experience that the projects have to be genuine modelling 
projects in order for the students to engage in reflections about their mathematical 
understandings. However, we recognise that the student-teacher interaction during the 
modelling activity is absolutely crucial. 
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PERSONAL EXPERIENCES AND EXTRA-MATHEMATICAL 
KNOWLEDGE AS AN INFLUENCE FACTOR ON 

MODELLING ROUTES OF PUPILS  

Rita Borromeo Ferri
Faculty of Education, University of Hamburg, Germany 

Abstract: In this paper one aspect of my current study (COM²-project) will be 
presented. The phenomenon or rather the term of “individual modelling routes” 
will be clarified and exemplified by means of two different modelling routes of 
pupils. The focus lies further on the analysis why these routes are different. Two 
main reasons could be reconstructed, which is firstly experiences and secondly 
mathematical thinking styles of the pupils. Concerning these aspects it will be 
shown how these modelling routes look like, that means which phases between 
reality and mathematics were preferred while solving the modelling task. 

Introduction
The frame of the presented results in this paper is the COM²-project (Cognitive-
psychological analysis of Modelling processes in Mathematics lessons)1. This 
study tries to close a part of the lack regarding research on modelling under a 
cognitive perspective. In the COM²-project contextual mathematics lessons are 
analysed from a cognitive-psychological perspective and issues from the Ph-D 
thesis on mathematical thinking styles are taken up (Borromeo Ferri 2004) in 
which learners’ different individual mathematical thinking styles were 
reconstructed.
In this paper I will show one aspect, which became more and more interesting 
during my data analysis. At this point I have to make clear that it was not a goal 
in my study to analyse pupils’ experiences in connection with their modelling 
process. This was also not a research question. After reconstructing and 
characterizing the so-called “modelling routes” of pupils, I compared these 
modelling routes. During these analysis I could reconstruct, that 
experience/extra-mathematical knowledge of pupils’ is beneath mathematical 
thinking styles an influence factor, why modelling routes can differ.
Because of that, it is important to know, what is meant by the term modelling 
route and to get an overview about the state of the art of “modelling under a 
cognitive perspective. 
1 Theoretical framework 
1.1 Short overview about “modelling under a cognitive perspective” 

1 Study was supported by the German Research Foundation as a Post-doc-project within the Graduate School  
“Learner Development and Domain Specific Educational Experience” (University of Hamburg). 
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Within the didactic literature on modelling there exist only a few studies, which 
have their focus on cognitive processes of pupils while modelling. Treilibs, 
Burghardt and Low (1980) focused on the aspect, how an individual builds a 
model (the so called “formulation phase”). Consequently they did not examine 
the complete modelling cycle. But this was the first step going more on a micro 
level analysing individuals modelling processes. Also Matos’ and Carreira’s 
(1995, 1997) research for example puts a special emphasis on 10th grade 
learners’ cognitive processes. They analysed transition processes from reality to 
mathematics and backwards. But they did not reconstruct the transitions 
between the single phases, for example between real situation and real model or 
mathematics results and real results. This is one claim of the COM²-project. 
Galbraith’ & Stillmans (2006) new study about identifying blockages during 
transition processes of pupils has also a cognitive approach. They turned their 
attention on the kinds of mental activity that the individuals engaged in as they 
moved around the modelling cycle. A similar interest has the DISUM-project 
(Blum/Messner/Pekrun) (see Blum/Leiss 2003). They try to reconstruct 
cognitive barriers of individuals while modelling next to other aspects. 
Nevertheless and to conclude briefly: the so called “cognitive modelling”, seen 
as a meta-perspective within classification of current perspectives on modelling 
(Kaiser & Sriraman 2006), is neglected in the modelling discussion. To resume 
this short overview a characterisation of “modelling analysed under a cognitive 
perspective” will be given, which shall make the main goal of these studies more 
transparent:
If modelling is considered under a cognitive perspective the focus lies on the 
(individual) thinking processes which are expressed more or less through 
actions while modelling process. 

1.2 Modelling cycle under a cognitive perspective 
The modelling cycle under a cognitive perspective (Borromeo Ferri 2006, 
Borromeo Ferri, in press) which is shown below is a central instrument for 
analysing the modelling processes of pupils. I adapted this cycle from 
Blum/Leiss (2005) for the purposes of my study.  

mathematical
model

mathematical
results

real 
results

real model

mental representation
of the situation

real 
situation

rest of the world mathematics

1

2

3

4

5

6

1 Understanding the task

2      Simplifying/Structuring the 
task; using/need of (EMK), 
depends on the task

3 Mathematising; EMK is 
needed here strongly

4 Working mathematically, 
using individual 
mathematical 
competencies

5 Interpreting

6 Validating

extra-mathematical
knowledge (EMK)

extra-mathematical knowledge
(EMK) 6

fig. 1: Modelling cycle under a cognitive perspective (Borromeo Ferri 2006) 
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Blum/Leiss (2005) used the term situation model, which is a well known term in 
connection with word problems (Kintsch & Greeno 1984, Reusser 1997, etc). 
But I replaced it for the term mental representation of the situation (MRS), 
because in my sense it better describes the kinds of internal prozesses an 
individual can have while reading and understanding a modelling task. Also 
MRS has fewer connotations to “word problems”. Concerning these phases of 
the modelling cycle I wanted to analyse pupils’ modelling processes on a micro-
level. According to that claim my main research questions are: 

1.3 Research questions 
1 What influences do the mathematical thinking styles of the learners’ and 
teachers’ have on modelling processes in contextual mathematics lessons? 
2 Can differences between MRS, real model, mathematical model and the other 
phases (as described in the didactic literature on modelling) be reconstructed 
from the learners’ way of proceeding? 

2 Methodological framework 
In this chapter I will only briefly describe the methodology and design of the 
whole study and I will shortly explain how modelling routes were reconstructed. 
COM²-project is a qualitative study which combines classroom research and 
analysis of single individuals respectively groups of pupils within these classes. 
For the investigations three 10th grade classes from different Gymnasien 
(German Grammar Schools) were chosen. The sample includes 86 pupils (65 
pupils in the first phase and additional 26 pupils in the second phase of data 
collection) and three teachers (two female, one male).
The used modelling tasks are of central importance as they delineate the field of 
analysis and were taken from the DISUM-project. They were analysed under 
subject matter aspects and from a cognitive viewpoint.
All lessons including group works were videotaped and transcribed. Firstly, 
statements of the pupils were analysed concerning the aspect, in which phase of 
the modelling cycle they worked on. For every single pupil the statements were 
coded (Strauss & Corbin 1990), so that an individual modelling route could be 
reconstructed. Comparing these modelling routes one coded statements of each 
individual in which they were talking about their own experiences and extra-
mathematical knowledge in connection of the given situation of the task. I did 
not interviewed them about their experiences to the task, I analysed, if pupils’ 
were talking about this intuively. 
3 Selected results of the study
Here I will not show all results of the study with regards to the focus of this 
paper. So one aspect will be presented and described in detail. 
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3.1 Individual modelling routes 
As I said before, beginning with data analysis it was not a goal to reconstruct 
“individual modelling routes” less was the term in my mind. During the process 
of analysing different phases in the modelling process of pupils it became much 
clearer that they switched more or less between phases and that some of the 
modelling process were similar in some way, but some not. So I made the 
decision not to speak from modelling processes but from individual modelling 
routes, which is characterised as follows (see Borromeo Ferri 2006): 
“Modelling route is the individual modelling process on an internal and 
external level. The individual starts this process during a certain phase, 
according to their preferences, and then goes through different phases several 
times or only once, focussing on a certain phase or ignoring others.  
To be precise from a cognitive viewpoint, one has to speak of visible modelling 
routes, as one can only refer to verbal utterances or external representations for 
the reconstruction of the starting-point and the modelling route.” 
After reconstructing 20 modelling routes of learners I set up the hypothesis that 
different modelling routes are a result of different mathematical thinking styles 
of the pupils. In sense of theoretical saturation (Strauss & Corbin 1990) after 
analysing the remaining 15 modelling processes of the learners2 I am able to 
formulate a result, which is more on a solid base and includes further aspects: 
� Phases of the modelling process (which are described on a normative way 

in the didactic literature on modelling) can be distinguished and described 
empirically (for more details see Borromeo Ferri 2006). 

� Modelling routes of pupils are different, because of influence factors on 
several levels. This is not a hierarchy, further more modelling routes 
result from a combination of these levels: (1) Level of Mathematical 
thinking styles, (2) Level of mathematical competencies and (3) Level of 
extra-mathematical knowledge and own experiences. 

In this paper I will only describe (1) and (3) in more detail, which is the basis 
for understanding the statements of the pupils in the example later on. 

(1)Main influence factors are mathematical thinking styles (visual, 
analytic, integrated) of pupils. Visual thinkers for example differ in 
their modelling routes compared with analytic thinkers. Visuals are 
more reality-based. They need the mental picture of the real situation 
or real model. That’s why they often switch back, when they are 
between mathematical model and mathematics results. Their 

2 Per class and per lesson a group of five pupils were videotaped, so that 35 pupil altogether 
were in a special focus. Modelling routes of each individual were reconstructed with respect 
of the influence of the group. Methodological basis for this way of analysis is Personality and 
Social Psychology; see especially Slavin (1995) and Johnson/Johnson (1999). 
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argumentations are also very visual although they working on the 
mathematical model. 

(3) It could be reconstructed, that strong extra-mathematical knowledge 
and experiences of pupils have influence on their modelling route in 
the following way: apart from affects, which are mostly connected 
with experiences, extra-mathematical knowledge contributes to 
determine the result of the given problem very exactly. This is a 
conclusion of the knowledge one has about the situation more or less 
in detail. 

3.2 Daniel, Andreas and the level of extra-mathematical knowledge 
In this chapter I will describe more in detail and with an example of two pupils, 
Daniel and Andreas, what is meant with the influence of extra-mathematical 
knowledge pointed out in (3). Of course, as said before, this level is a 
combination of at least one level more. 
I selected Daniel and Andreas for this illustration, because both have different 
mathematical thinking styles (Daniel: Analytic thinker, Andreas: integrated 
thinker) and both have different experiences and knowledge about the given 
situation in the task. Andreas’ experiences concerning the situation in the task 
were on a deeper emotional level, because this was a part of his life. Daniel and 
the other group members had not such experiences and extra-mathematical 
knowledge.
Both worked in a group with three other pupils on the following modelling task: 

At the end of the summer one can see a lot of straw bails. Straw bails on the picture above are 
piled up in this way that in the bottom line are five, in the next four, then three, then two and 
on the top one ball. 
Try to find out exactly, how high this mountain of straw bails is. 

For a better understanding of pupils’ modelling routes a short normative analysis 
of the solution process regarding different phases is given: 
The real situation of this task becomes very visible through this picture, so a 
mental representation of the situation is perhaps very close to it. The individuals 
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try to understand, that they must determine the height of the straw bail 
mountain. Simplifying and structuring this mental picture more on, one can 
think of circles instead of straw balls and perhaps draw them down for a real 
model. In this phase also the woman sitting on the straw balls can take into 
account for solving the problem. The level of extra-mathematical knowledge in 
this task is not very high, how it is in other problems, in which it is for example 
implicit asked after the diameter of the earth. Anyway one can suppose that a lot 
of pupils (living in the city) have seen these straw bails from a distance while 
driving in the car, but sitting on it or touching them is surely not the rule. 
Perhaps it is easier to know the height of a woman as the height of a straw bail. 
Both aspects can be used as a step to build a mathematical model: Woman’s 
height of approximately 1.7 m can be piled and then added up to get the height 
of the straw bail mountain. Another way is using Pythagoras Theorem by 
estimating the height of one straw bail of approximately 1.5 m. Taking into 
consideration those straw bails in lines below will be pushed because of the 
weight of the other bails; one can build a model with a radius of only 3/4 of a 
straw ball. Inner-mathematical competencies such as Pythagoras Theorem or 
fractional arithmetic are needed to get mathematical results of about 6.7 m 
height. These results must be interpreted concerning the given problem to get 
real results. Validating real results means then to compare these with the mental 
representation and real model one had at the beginning. 
Daniel and Andreas were very active within the group and made a lot of 
annotations although they worked not often on modelling problems in math 
lessons. That is why Daniel said at the beginning: “ It is not possible, because 
we have no numbers to calculate!” 
In the following I will describe Daniels and Andreas modelling route together 
with focus on their extra-mathematical knowledge/experiences and 
mathematical thinking styles3. So the first level was to analyse in which phase of 
the modelling process the individuals had been. It makes sense to know that 
concerning the aspect, at which point for example Andrea is telling or 
explaining about his experience or extra-mathematical knowledge. 
Short after Daniel remarked, that numbers are needed to solve this task he had a 
decisive idea, which he formulated as the first of the group:” You have to think 
about the height of the woman.” In this statement one can reconstruct a mental 
representation he has of the situation. He did not simplify the problem so far. 
Then he said to a girl in the group:”The woman is perhaps as tall as you.” Here 
one can speak of a real model, because he structured the problem strongly. The 
interesting thing after this was, that Daniel repeated:”Yes, but we have not a 

3 Quotes made by pupils during the videotaped modelling process can only be an exemplary 
illustration of a change of modelling phase. The modelling processes are too long and 
complex to give an account of all the utterances in detail.  
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single number!” As an analytic thinker he focused on facts and numbers, which 
were not given in the problem. 
This was not a problem for Andreas in the first minutes working on the task. As 
an integrated thinker he combines elements of visual and analytic thinking 
styles. So short time after Daniel repeated the statement Andreas said to the 
group members: “Say, can you imagine that the woman is now standing up? 
Yes?” This is really a wonderful example for MRS and Andreas continued:”
You have to think about the woman, that she stands up now, that means, she 
must be as big as the straw bail.” It is interesting how Andreas made his mental 
representation so visual for all group members. 
Directly after that, Daniel came to a mathematical result, which he estimated:” I 
would estimate that the height is 10m altogether, because a straw ball has a 
diameter of 2m.” So he built a mathematical model on an implicit level and used 
addition as an inner-mathematical competency. But most of the group members 
were of the opinion, that it must be less than 2m. So the group validated Daniels 
result in a certain way and he made again a comparison: “How tall are you 
Julia?” and started a new modelling process beginning with a real model. Julia 
said that she is 1.65m tall. Daniel concludes that the woman must be 10cm taller 
than Julia and tried to convince the others, that one straw bail is higher than the 
woman. 
Andreas was not sharing that opinion and answered: “No!” This “No” was the 
beginning of Andreas’ verbalised knowledge about straw balls, which he firstly 
did not express. He then began to measure the straw ball with his lineal. 
Although Andreas was in the phase of mathematical model his arguments were 
on a visual level:” If one image that it is 10cm, then it is 1.50m.” Daniel 
answered with a good idea and switched back to real situation: “You have to 
think, that these straw bails sink down! They don’t really lie on top of each 
other, they glide in the gaps.” Of course this idea was from Daniel and this was 
again an impulse for Andreas to tell more about his extra-mathematical 
knowledge.
Andreas said:” Yes, air must come through the straw balls and they are not stiff! 
If you cut the straw ball here that will be a quarter.” On the basis of this 
statement Andreas and Daniel and some of the other group members calculated 
and discussed about rounding up their results. But Andreas wanted to determine 
the height more exactly and tried to convince the others that is must be less 
because of the fact that the straw balls sank down. His knowledge was on an 
implicit level up to now. Following conversation makes clear that his 
experiences have influences on his modelling route and therefore on his 
transition processes between phases of reality and mathematics: 
Julia: “I’m not sure, which effects it really has, if these straw bails sink down.” 
Susi: “I don’t think that straw bails sink down so heavily.” 
Daniel: “Have you ever been on top of one straw bail?” 
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Julia: “In grade 5 we made an excursion and I climbed on top of such a straw 
bail.”
Of course Julia wanted to make clear, that she has experiences. But for Andreas 
was that not enough and he answered: “I grew up on a farm, don’t tell me 
anything!” After that, Daniel came again to a result of 6m, which was not 
interesting for Andreas. He wanted to talk about what happens, if these straw 
balls will become wet. Further on he explained other group members the 
difference between hay and straw. Through this knowledge and experiences it 
became clear, why he wanted to determine the height of the straw ball in such an 
exact way. For him these were real results, far more as for the others. 
To summarize all the statements and actions of Andreas and Daniel while 
modelling, they will present as individual modelling routes within the modelling 
cycle below. There changes in the phases will become visible, but not how long 
pupils are in one phase.  

mathematical
model

mathematical
results

real 
results

real model

mental representation
of the situation

real 
situation

rest of the world mathematics

1

2

3

4

5

6

1 Understanding the task

2      Simplifying/Structuring the 
task; using/need of (EMK), 
depends on the task

3 Mathematising; EMK is 
needed here strongly

4 Working mathematically, 
using individual 
mathematical 
competencies

5 Interpreting

6 Validating

extra-mathematical
knowledge (EMK)

extra-mathematical knowledge
(EMK) 6

Andreas Daniel

fig.2: Individual modelling routes of pupils (RS: real situation; MRS: mental representation of 
the situation; RM: real model; MM: mathematical model; MR: mathematics results; RR: real 
results)

I will shortly describe the modelling routes: Andreas spent a long time in reality 
at the beginning by switching from MRS to RM and again to RS before he went 
into mathematics. Daniel switched fast from RM to MM and even to MR, as 
described before. Then he needed time back in reality to modify his RM for 
creating in new MM and finally new MM, which he interpreted. 

4 Summary and Discussion 
The example showed that there are factors, which can influence modelling 
routes of pupils. The influence of extra-mathematical knowledge/experiences is 
such a factor. Andreas as an integrated thinker switched often back to reality, 
because he had his experiences in addition. His clear imaginations of the real 
situation let him determine the result very exactly. Daniel as an analytic thinker 
had more the idea to estimate his result. He had fewer experiences with straw 
balls and so not a clear picture of a straw ball like Andreas has. 
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I want to emphasise extra-mathematical knowledge as a special influence factor 
next to the others, because it came up more and more while analysing my data, 
although it was not a goal of the whole study to figure that out in detail. We 
know from several studies (e.g. Busse 2005) that context of a task influences the 
modelling process of pupils. But it is not my goal to point this out again. Further 
more I see experiences of individuals as an enrichment of their modelling route 
in various ways and as a strong factor compared with mathematical thinking 
styles. To make it more concrete: It could be reconstructed that analytic thinker 
switch very fast into mathematics and stay there. Visual thinkers switched more 
often back and forward between reality and mathematics. But if now an analytic 
thinker has a lot of experiences/extra-mathematical knowledge concerning a 
special task, does his modelling route changes? Is he still working more in 
mathematics or more in realty or does he also takes his knowledge to determine 
the results on a higher mathematical level? These questions came up to myself, 
as I analysed my data and recognized that extra-mathematical knowledge must 
be a factor and that I can’t let it outside. So I reconstructed that analytic thinkers 
who have strong extra-mathematical knowledge in connection with a task used 
really more imaginations of reality than in a task, in which he could not involve 
experiences and extra-mathematical knowledge. There is another aspect, which 
came up to me: In chapter 3.1 (3) I pointed out that experiences are connected 
with affects. Of course extra-mathematical knowledge can be a result of 
experiences, but not absolutely. So (personal) experiences can be seen closer to 
affects and emotions. If I take this in consideration I am leaving a little bit the 
area of cognition, which I not want to do. 
Besides all these reflections I will finish with a more general remark: I think that 
the phenomenon of individual modelling route and the reason why they can 
differ is a possible diagnostic instrument for the teacher in two ways: (1) for a 
better understanding of pupils behaviour while modelling and (2) for himself 
while dealing with modelling problems in classroom. 

References 
Blum, W. & Leiss, D (2003). Diagnose- und Interventionsformen für einen 

selbständigkeitsorientierten Unterricht am Beispiel Mathematik - Vorstellung 
des Projekts DISUM. In H.W. Henn (Ed.) Beiträge zum 
Mathematikunterricht  Hildesheim: Franzbecker (p. 129-131) 

Blum, Werner & Leiss, Dominik (2005). „Filling Up“- the problem of 
independence-preserving teacher interventions in lessons with demanding 
modelling tasks. Proceedings for the CERME4, WG 13 Modelling and 
Applications.

Borromeo Ferri, Rita (2004). Mathematische Denkstile. Ergebnisse einer 
empirischen Studie. Hildesheim: Franzbecker. 

Working Group 13

CERME 5 (2007) 2088



Borromeo Ferri, Rita (2006). Theoretical and empirical differentiations of 
phases in the modelling process. In Kaiser, G., Sriraman B. & Blomhoij, M. 
(Eds.) Zentralblatt für Didaktik der Mathematik 38 (2) (86-95) 

Borromeo Ferri, R. (2007). Cognitive Modelling: Individual modelling routes of 
pupils. In Haines et al. (Eds.) Mathematical Modelling (ICTMA 12): 
Education, Engineering and Economics  Chichester: Horwood Publishing 
(260-270)

Busse, A. (2005). Individual ways of dealing with the context of realistic tasks–
first steps towards a typology. In G. Törner et al. (Eds.), Zentralblatt für 
Didaktik der Mathematik 37 (5) (343-351) 

Galbraith, P. & Stillman, G. (2006). A Framework for Identifying Blockages 
during Transitions in the modelling process. In G. Kaiser, B. Sriraman, & M. 
Blomhoij (Eds.), Zentralblatt für Didaktik der Mathematik 38 (2) (143-162) 

Johnson, D. & Johnson R. (1999). Learning together and alone: Cooperative, 
Competetive and Individualistic Learning. New York: Prentice Hall. 

Kaiser, G. & Sriraman, B. (2006). A global survey of international perspectives 
on modelling in mathematics education. In G. Kaiser, B. Sriraman, & M. 
Blomhoij (Eds.) Zentralblatt für Didaktik der Mathematik 38 (2) (302-310) 

Kintsch, W. & Greeno, J. (1985). Understanding word arithmetic problems. In 
Psychological Review, 92 (1) (109-129) 

Matos J. & Carreira, S. (1995). Cognitive Processes and Representations 
Involved in Applied Problem Solving. In C. Sloyer, W. Blum and I. Huntley 
(Eds.), Advances and Perspectives in the Teaching of Mathematical 
Modelling and Applications (ICTMA-6). Chichester: Ellis Horwood (71-80).

Matos, J., & Carreira, S. (1997). The Quest for meaning in students’ 
Mathematical Modelling. In K. Houston, W. Blum, I. Huntley, & N. Neill 
(Eds.) Teaching & Learning Mathematical Modelling (ICTMA-7).
Chichester: Ellis Horwood (63-75) 

Reusser, K. (1997). Erwerb mathematischer Kompetenzen. In F. Weinert, & A. 
Helmke (Eds.), Entwicklung im Grundschulalter Weinheim: Beltz (141-155). 

Slavin, R. (1995). Cooperative Learning. New York: Prentice Hall. 
Strauss, A.L., & Corbin, J. (1990). Basics of Qualitative Research. London: 
Sage.
Treilibs, V.; Burkhardt H. & Low, B. (1980). Formulation processes in 

mathematical Modelling. Shell Centre for Mathematical Education, 
University of  Nottingham, England. 

Working Group 13

CERME 5 (2007) 2089



MAKING MATHEMATICAL LITERACY A REALITY IN 
CLASSROOMS 
Hugh Burkhardt

Shell Centre, School of Education 
University of Nottingham, England NG8 1BB

and
MARS, Michigan State University 

Email: Hugh.Burkhardt@nottingham.ac.uk 

Abstract
Modelling of new problems is at the heart of mathematical literacy, because many 
situations that arise in adult life and work cannot be predicted, let alone taught at 
school.  There are now plenty of examples of the successful teaching of modelling at 
all levels – yet it is to be found in few classrooms. How can every mathematics 
teacher be brought to teaching modelling reasonably effectively? This paper 
discusses how progress may be made, illustrating it with examples of „thinking with 
mathematics” about everyday life problems of concern to most citizens.  It discusses 
the role that curriculum materials, professional development and various kinds of 
assessment may play, together with the challenges at system level.  There are some 
reasons to be optimistic. 

1.  Background: the story so far 
In a recent paper (Burkhardt, with Pollak 2006), we reviewed the history of the 
teaching of modelling in school mathematics curricula, focusing on developments in 
the UK and the US.  The early explorations in the 1960s were followed by twenty 
years of more systematic development, so that by about 1990 there were proof-of-
concept courses and course components of various kinds across the age range 10-21.  
These demonstrated that typical teachers can teach modelling skills if they have well-
engineered teaching materials and some, relatively modest, professional development 
support. Students in these courses demonstrate a power over practical problems, from 
real-life or’fantasy’ worlds, in which their mathematical toolkits play an important 
role in the analysis and reporting.  They handle, for non-routine problems of 
appropriate complexity, the various phases of modelling shown in the diagram, and 
not only the solve phase on which school mathematics is normally focused. 

Formulate Validate

Solve Interpret

Problem Report
Practical situation

Mathematical model
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Because these are switch-on effects, where students are showing kinds of 
performance that are new to school mathematics, evidence of progress does not 
require tightly structured research studies.  Further, the social value of the skills 

involved is obvious, and rarely questioned1.  The change in student motivation when 
working on real-life problems is equally dramatic. 

The importance of these clear qualitative gains have kept the focus of work so far on 
development rather than insight-focussed research in depth, on the engineering rather 
than the science of the teaching and learning of modelling.  There have been a few 
studies in greater depth with some interesting results, such as Vern Treilibs detailed 
study of formulation processes2 (Treilibs et al. 1980).  Among other things, it 
documented the „few year gap“ between the mathematics students can do in imitative 
exercises and those that they choose and use when modelling (some recent studies 
suggest that this gap is narrowed by teaching modelling).  These examples underline 
the need and opportunities for research to provide further insights into the processes 
of modelling, how students learn the skills involved, and how teachers can help them. 
I hope that some studies will focus on design research that can help the field move 
practice forward, rather than simply academic studies (see Burkhardt 2006). 
In summary, we know how to teach modelling, have shown how to develop the 
support necessary to enable typical teachers to handle it, and it is happenng in many 
classrooms around the world.  The bad news?  „Many“ is compared with one; the 
proportion of classrooms where modelling happens is close to zero.
Why is this, and how can the situation be transformed so that modelling is a feature 
of the mathematics curriculum for every student – the prerequisite for mathematical 
literacy?  I shall first look at what we mean by mathematical literacy, its importance 
as a life skill, and its role in making mathematics itself meaningful and useful to most 
people.  Then I shall list barriers that obstruct the large-scale implementation of 
modelling and, indeed, other curriculum improvements, linking these to various 
levers that promise progress.  
From a societal perspective, the school mathematics curriculum is worse than 
regrettable; it is scandalous.  Currently most people in their adult lives use none of the 
mathematics they are first taught after age 11.  Further, study after study has shown 
that school mathematics gives them none of the aesthetic satisfactions that people get 
from, say, music or literature.  Modelling is the missing ingredient. 

                                          
1 Though some pure mathematicians argue that modelling should be deferred until more mathematics has 
been learnt – indeed, to a stage that most students never reach. 
2 120 students age 17 of high ability in mathematics, but untutored in modelling, were tested on real world 
problems.  Despite 5 years successful experience in algebra, none used it for modelling; though it seemed the 
obvious tool, they chose to rely on more elementary methods: numbers, tables and, sometimes, graphs. 
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2.  What is mathematical literacy? 
Many different terms are used in various places and circumstances: mathematical
literacy (ML) is the most widespread, quantitative literacy is favoured in the US, 
functional mathematics is now fashionable in the UK, while numeracy was originally 
defined as „the mathematical equivalent of literacy“. Distinctions between these 
terms are not widely agreed; for our purposes, they are unimportant. 
PISA (Programme for International Student Assessment, OECD 2003) defines ML: 

Mathematical literacy is an individual’s capacity to identify and understand the role that 

mathematics plays in the world, to make well-founded judgments and to use and 

engage with mathematics in ways that meet the needs of that individual’s life as a 

constructive, concerned and reflective citizen. 

However, such verbal descriptions on their own are ambiguous, particularly across 
countries and cultures – they are easy to re-interpret in terms of one’s own 
experience.  It is useful to complement them with examples – in education, of the 
kinds of task that represent learning goals.  The following illustrate what I (and many 
others) mean by mathematical literacy.  I begin with a PISA task.

ROCK CONCERT M552Q01

For a rock concert a rectangular field of size 100 m by 50 m was reserved for the 

audience.  The concert was completely sold out and the field was full with all the fans 

standing.

Which one of the following is likely to be the best estimate of the total number of 

people attending the concert? 

A. 2 000 

B. 5 000 

C. 20 000 

D. 50 000 

E. 100 000 

While the length and multiple choice format are limiting, this kind of ‚back of the 
envelope’ estimation is central to ML.  So are the following types of task. 

MAKING A CASE 

The spreadsheet contains 2 sets of reaction times – 100 each for Joe and Maria. 

Using this data, construct and justify two arguments: 

   A:  that Joe is quicker than Maria, and

B:  that Maria is quicker than Joe 
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SUDDEN INFANT DEATHS 

In the general population, about 1 baby in 8,000 dies in an unexplained "cot death".

The cause or causes are at present unknown. Three babies in one family have died. The 

mother is on trial for murder.   

An expert witness says: 

   "One cot death is a family tragedy; two is deeply suspicious; three is murder. The 

odds of even two deaths in one family are 64 million to 1" 

Discuss the reasoning behind the expert witness' statement, noting any errors, and 

write an improved version to present to the jury. 

PRIMARY TEACHERS 

In a country with 60 million people, about how many primary school teachers will be 

needed? Try to estimate a sensible answer using your own everyday knowledge about 

the world. Write an explanation of your answer, stating any assumptions you make. 

HOW RISKY IS LIFE? 

"My parents won’t let me go out on my own. They think I’ll be mugged, or run over."  

“My sixty year old granny is terrified by the stories she reads in the newspapers. One 

day she is afraid of being assaulted, the next she is frightened of terrorists.”   

What do you think?  Collect and use data on different causes of death to estimate the 

chances of people becoming a victim of these and other events. Compare the 

likelihoods of these events with each other, with other risks, and with the ‘base’ risk – 

the probability that people of different ages will die in the next year. 

It is clear from the above that mathematical literacy involves complex reasoning, 
linking models of the situation to data.  Lynn Steen (2002) describes it as „The 
sophisticated use of elementary mathematics“, in contrast to school mathematics. 
3.  Barriers to large-scale improvement 
Here I shall list some of the key implementation challenges we face. These are 
discussed in more detail in (Burkhardt with Pollak 2006) and Burkhardt (2006) 

• System inertia: The limited large-scale implementation of modelling is not 
unique; it has proved difficult in many countries to establish any profound 
innovation in the mainstream mathematics curriculum.  This should not 
surprise us.  Teaching modelling requires changes in the well-grooved 
practices of teachers, their teaching skills, and their beliefs about the nature of 
mathematics – and those of parents and politicians. To become part of the 
mainstream curriculum, it is not enough to be "good" and "important".

• The real world is an unwelcome complication in many mathematics 
classrooms.  The “purity” of the subject is something that attracts people to 
teach mathematics; for them, using mathematics to tackle real world problems 
is not their job.  (First language teachers welcome the motivation it provides) 
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• Limited professional development In many countries teachers are expected 
to deliver a curriculum on the basis of the skills they acquired in their pre-
service education, consolidated in early years in the classroom.  In a changing 
world, continuing professional development is essential but in most countries 
is not yet an integral part of most teachers’ week-by-week work.  

• The role and nature of research and development in education, as 
compared with other applied fields, is not well organised for turning research 
into practice. Burkhardt and Schoenfeld (2003) looked at how this process can 
be improved, learning from research-based improvement in medicine, 
engineering and other fields.  The growing role of ‚design research’ in 
education is a move in this direction but more is needed if policy makers with 
problems are to turn to the research community to solve them.  

The research and development agenda that these barriers imply is huge and work on 
it is at an early stage.  Here I can only sketch some of the key ingredients that are 
likely to be important in establishing modelling.  They are all worth working on. 
4.  The importance of communication 
The story of modelling in school mathematics is one of mutual incomprehension 
between leaders in mathematical education and those they seek to serve.  The public 
and most politicians see mathematics as “What I learned at school”. The 
mathematical limitations of many students, which they regularly deplore, are seen as 
a failure to make every child mathematically ‚like them’.  The changes in the 
mathematical skills that society needs are acknowledged, but their implications are 
not understood.  This needs greatly improved communication3.
Contributions to the media are the first area that needs attention. 

• These need to explain and illustrate the changes. The mathematics curriculum 
is still focused on developing reliable technical skills in well-practised 
procedures; everywhere except in schools, these are now performed by 
technology.  In this more technical world, where computers do the routine 
things that clerks used to do, people need a broader range of higher level skills 
so as to be flexible problem solvers who can handle change. 

• This is not an easy communication challenge – people don’t want to read about 
mathematics, so media are reluctant to publish such pieces.  Skilled writers of 
‚popular science’ can provide help. 

• Assessment tasks can be useful tools – they communicate new goals in a vivid 
and compact form, bringing to life verbal explanations; otherwise these are 
interpreted within each reader’s experience. 

                                          
3   It is a salutary exercise to try to trace the paths by which your (excellent) research might influence practice 
in typical classrooms, who is responsible for each step, and how likely it is to get through.  What changes in 
research might make its influence more direct? (see Burkhardt and Schoenfeld 2003) 
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Meetings with policy makers, both politicians and their senior civil servants, are 
crucial to improving the communication process.  In addition to the above kinds of 
input, they will respond well to: 

• Suggestions that are aligned with their existing policies – look hard for 
elements of declared policy to which you can attach the initiative you want, 
and adapt your proposals to maximise the alignment; 

• Evidence on the learning outcomes from curriculum components of a similar 
kind that have been tried elsewhere, from evaluations and/or independent 
research studies; 

• More comprehensive and detailed descriptions of the proposed changes, 
preferably with examples of assessment tasks, lesson materials and the 
professional development needs and methods; 

• Estimates of the likely costs of development, and of implementation – it pays 
to offer alternative models, with varying scales and pace of change, including 
some that start inexpensively; 

• Evidence of some public support for the changes proposed – policy makers are 
pressured to provide support for many things; they are more likely to respond 
to ideas that have public support. 

Mathematicians are a key group that may need particular attention.  In the US in 
particular, a small well-organised group („Mathematically Correct“) with 
conservative political support have led a highly effective opposition to reform.  Most 
research mathematicians have little understanding of the complex dynamics of 
learning and teaching mathematics.  Ignorant of the associative nature of learning, 
they tend to assume that the logical structure of mathematics provides the best 
learning sequence4.  Further, pure mathematicians work in a field in which logical 
consistency is the sole criterion, so are often naive about empirical evidence, 
downplaying its decisive role.  Perhaps most important of all, their unspoken priority 
is the education of students of high-ability like themselves.  They emphasise 
particularly fluency and accuracy in manipulating algebra, the key language of 
specialist mathematics that only a few will ever use in their adult lives.
Thus the mathematical literacy of the many is sacrificed to the very-real specialist 
needs of the few who will work in engineering, science or economics.  This important 
group can be catered for by additional options in specialist mathematics; the priority 
of the core mathematics curriculum should be high quality mathematical literacy.   
The following can help to get support: 

                                          
4  Except in the UK, this plausible assumption was the basis of many mathematician-driven „new math“ 
movements in the 1960s.  In one project that followed the Bourbaki reconception of pure mathematics, itself 
motivated by mathematics education issues, the curriculum began with a set-theory course for 5-year olds.  
The empirical evidence on these experiments was largely negative, but this is often forgotten.  
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• Local support from sensible university mathematicians who: are willing to 
spend some time learning about how school students learn; recognise that their 
limitations in this area; accept that mathematics education is an empirical field 
in which evidence is a better guide than  pure reasoning.

• Formal and informal involvement of the representative societies of research 
mathematicians and scientists, negotiating with their leadership to ensure that 
those they nominate satisfy these same criteria.  Formal approval by these 
societies of the processes by which reforms are developed and evaluated is an 
important asset. 

• Professional associations of those involved in the teaching of mathematics, 
science and social studies form a key constituency.  I mention them last 
because those who drive mathematics reform are often in close contact with 
some of these.  However, for mathematical literacy the mathematics-focussed 
associations are not enough; those in science and social science can be 
powerful allies, or foes.  Science teaching associations will be concerned that 
the mathematics needed for physics may suffer.  Many social studies teachers 
will downplay the need for mathematics, often reflecting their own insecurity 
with it.  Good ongoing communication, with reassuring evidence, is important. 

5.  The roles of assessment 
In trying to reform curriculum, assessment is often an afterthought – important for 
evaluating progress and, perhaps, for holding schools to account but not a core part of 
planning and development.  This attitude leads to a tragically missed opportunity.  
Why?  There are two key reasons, one already noted: 

• Assessment tasks provide a clear and vivid statement of the learning and 
performance goals of the change. Teachers, students, politicians and the public 
can understand them. In contrast, lesson materials are too bulky to be easy to 
comprehend – or for policy makers to read – while „standards“ alone, 
focussing on separate ingredients of mathematics, do not specify performance. 

• In systems with strong ‚accountability’ pressures on schools, most teachers 
„teach to the tests“. (WYTIWYG) Many people deplore this but the tests, 
whatever their limitations, are the main target that society sets for successful 
learning. Thus the tests effectively define the implemented curriculum.
‚Authority’ is often reluctant to accept this, perhaps because it implies a 
responsibility for designing high-stakes assessment that reflects all the 
performance goals of the curriculum in a balanced way – this costs more. 

However, viewed positively, this influence offers unmatched leverage for effecting 
changes in the implemented curriculum.  Because everyone likes simple tests, this 
leverage usually impoverishes the curriculum, narrowing the range of classroom 
learning activities.  Multiple-choice tests, dominant in the US, assess very short 
chains of reasoning, and favour elimination tactics focused on the wrong answers – 
performances that are only indirectly connected to curriculum goals.  It is argued that 
these correlate with better measures but that is rarely proved by research and, 
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crucially, ignores WYTIWYG.  England mostly uses short items with constructed 
responses – better, but again with short chains of reasoning, totally different from 
those needed for modelling or most other thinking with mathematics.
What of systems that do not have high-stakes tests?  They depend on teachers’ 
professionalism, and are protected against the negative effects of WYTIWYG.  
However, it would be unfortunate if they lose the benefits that high-quality 
assessment has to offer.  Professionals, generally speaking, are good at sustaining 
established practice; the introduction of improvements is more problematic, 
especially when these require new teaching skills.  The modified professional 
practice that is needed to encourage greater student autonomy in non-imitative tasks 
needs explicit support.  Assessment tasks are a key part of that support.  Change also 
requires pressure.  The anglophone countries tend to rely on pressure alone, with 
negative consequences; it remains to be seen if support alone can establish modelling 
or other curriculum reforms.  
6.  Tools for teachers 
Here I shall be brief since this area is relatively familiar. People in all fields are much 
more effective when they have well-engineered tools. What are they here? 

• Classroom teaching materials are part of the professional practice of most 
teachers, even in familiar areas.  For new curriculum elements that need 
extended teaching styles, classroom materials are even more important – as is 
the design and development challenge they present.
To develop such materials requires the ‚engineering research’ approach that is 
used to develop effective tools in other fields, from consumer electronics to 
new medicines (Burkhardt 2006).  What does this approach involve?  Input 
from prior research and from other designs with similar goals.  The design 
skills to turn these into draft materials that match the goals.  Rich and detailed 
feedback from a sequence of trials that informs each revision, until the 
outcomes with users, representative of the target populations, match the goals.  
Gathering this feedback needs the methods of insight-focussed research.   
Finally, ongoing feedback ‚from the field’ informs subsequent improvements. 

  This methodology is more elaborate than the ‚author’ model, more usual in 
education; however, it pays off – no-one would fly in an airplane or take a 
medicine that had been developed by the craft methods still used in education. 

• Professional development (PD) support has an important role to play.  
Methodology is important here.  Most PD is delivered ‚live’ or on-line and 
designed by those who give it.  It is usually evaluated by questionnaire, asking 
participants whether they found the experience valuable; feedback is powerful 
so the response is usually positive.  However, there is no feedback on whether 
the PD leads to any changes in teacher’s classroom behaviour – surely the 
main objective.  The few studies that have used classroom observation before, 
during and after PD found no significant changes in teaching style. 
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 It is not always like this.  When observational feedback is part of the 
development, it leads to a different style of the PD – less concerned with 
teaching general principles and more with specific experiences, in the course 
sessions and in the classroom between them.  Sharing these experiences among 
participants leads to general discussion on mathematics, learning and teaching, 
from which the principles emerge.  It is constructivist learning for teachers.   
Well-engineered materials are important here, too.  

 The issue of transfer needs more research.  How much of this kind of PD 
experience do teachers at various levels of sophistication need before they 
adopt the same broader teaching style in other teaching – of concepts and 
skills, for example.  While these can be taught by ‚direct instruction’, this is 
ineffective for resolving mistakes and misconceptions.  The investigative, 
discussion-based methods that are effective (see, e.g. Swan 2005) have much 
in common with those needed for teaching modelling. 

7.  Models for systemic change 
These components of successful change will only be effective if integrated.  
Piecemeal changes of the right kind have often been tried:  new textbooks, but with 
the same tests; more professional development, but on an occasional basis; changes in 
policy involving new ‚standards’; and so on.  Such attempts have proved inadequate, 
so that mathematics classrooms today are much like those our grandparents were 
taught in.  What are key characteristics of a model that is likely to prove effective?  
Experience in other domains suggests: 

• Coherence  Policy, curriculum specification, classroom materials, assessment 
and professional development support all need to be closely aligned, 
developed together, and clearly communicated. 

• Sensible pace of change  Politicians, and many in education, like ‚Big Bang’ 
solutions that will ‚fix the problem’ once and for all.  However, there is much 
to be said for gradual change.  It gives the many groups, particularly teachers, 
who have to absorb profound changes time to absorb them.  It also offers year-
by-year gains that reconcile the few-year timescale of elections that drives 
politicians with the decade timescale of significant improvement in education. 
This model has proved effective.  The Shell  Centre (1984-86) worked with a 
leading English examination board to introduce specific profound changes to 
the mathematics examination at age 16, providing assessment, curriculum and 
professional development materials.  These units were popular with teachers. 

• Realistic costing  In government initiatives the challenges are usually 
underestimated and the money provided for development is grossly 
inadequate.  This guarantees failure.  It is better to scale down or spread out 
the goals so that realistic costing can be reconciled with spending limits. 

Success is never, of course, guaranteed but this kind of sensible planning avoids 
guaranteed failure.  The need for further research and development is clear; the 
above analysis is a contribution to specifying such a program.  
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8.  Scenarios for the future: optimistic and otherwise 
History should make us cautious.  The most likely scenario is little or no change.  
Most of those involved will be happy to avoid extra challenges in their already busy 
lives. However, there are some things that allow us to be more optimistic. 
PISA is now the prime international comparison between countries’ performance in 
mathematics, and it is designed to assess mathematical literacy.  Politicians care 
about the results.   Some countries are making policy moves to bring modelling into 
mathematics.  Following the high-level Tomlinson (2004) and Smith (2004) 
enquiries, the British Government has made „Functional Mathematics“ a central goal 
for English schools.  Time will tell whether the government will make the moves 
needed to make functional mathematics a reality (Shell Centre 2005).
The problem of establishing modelling as a regular part of school mathematics 
remains work in progress – but progress there is. 
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MODELLING BUNGY JUMPING: WHY IS IT SO DIFICULT? 
Ana Paula Canavarro

University of Évora, Portugal 
Centre of Research in Education of Faculty of Sciences, University of Lisbon

Mathematics curriculum orientations of many countries recognise the importance of 
developing students’ capacity to use mathematical knowledge to better understand 
reality (Niss, 1996). But mathematical modelling is not a simple activity for students 
— neither for teachers. To model situations of reality we all need to develop 
competencies that were not present in maths classroom for many years. It involves 
new conceptions of mathematics classroom as a powerful knowledge that really 
applies to reality; the capacity of looking for a mathematical model that really 
explains the situation to model; the capacity of  working critically with technology.

THE TASK PROPOSED AND THE ANSWERS OF THE STUDENTS
Bungy jumping is a radical sport. We can obtain data from websites that allow us to 
determine points of the trajectory of the jumper (time of the jump in seconds, distance 
from ground). A class of 30 upper level students was given a table with data from a 
jump and was asked to model it and describe it in several aspects. Students used 
graphic calculators to visualise the scatter plot and to experiment different 
possibilities of functions for models. But only one student obtained a good function, 
from the family of y = a + (sin bx +c) / x. The others used 
polynomial functions grade 3 or 4, or simple trigonometric 
functions, despite many of them were aware that this kind of 
model does not describe the jump in real life (Canavarro, 2004). 

SOME QUESTIONS TO REFLECT ON
While working on that task, students seemed to be highly worried about obtaining a 
graph of a function that exactly fits the scatter plot of the real points given. The 
majority of students proposed as a model a function directly provided by graphic 
calculator, no matter if the function is a reasonable one to explain the jump. So, what 
are students’ conceptions of mathematical modelling? Do they really value the power 
of mathematics to better understand and explain reality? Do they recognise modelling 
activities as important mathematical activities of the classroom?  
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MATHEMATICAL MODELLING AND PARALLEL DISCUSSIONS 
Jonei Cerqueira Barbosa

State University of Feira de Santana (Brazil)
In this paper, I put attention on those students’ discussions which don’t play a role in 
building of the mathematical models. Using qualitative data from a situation in the 
classroom, I propose the notion of parallel discussions to term them and analyze its 
nature. Arguments are underlined for the potentiality of these discussions to produce 
mathematical investigations or discussions about aspects of life in the society.

MATHEMATICAL MODELLING AND STUDENTS´ PRACTICE 
Introduction
The debate about Mathematical Modelling and Applications has increased in 
Mathematics Education in many countries, what has generated an important agenda 
of research as that mentioned in the ICMI Study Document (Blum, 2002) 
One of the current focus is the students’ practice when they do mathematical 
modelling (to avoid repetitions, from this point on, I am only going to use the name 
modelling). Before developing the focus of this paper, I will discuss the theoretical 
perspective adopted, so that the reader can understand how this influences the other 
parts of the study.
A modelling perspective 
According to what is discussed in Barbosa (2003), I define modelling as a learning 
milieu in which the students are invited to question or investigate situations with 
reference to the reality through mathematics. Any mathematical representation of 
these situations is called mathematical model. For an activity to be defined as 
modelling it is necessary to be a problem for the students, that´s to say, they do not 
have previous schemata, and have reference in the reality. 
Modelling in school may have different features according to the objectives of the 
activity. Recently, Kaiser and Sriraman (2006) have characterized many perspectives 
in the field. Although it is not my objective to discuss them in this paper, it is 
important to point out that different perspectives generate different research agendas. 
One of the observed perspectives by Kaiser and Sriraman (2006) is the socio-critical 
one, characterized in Barbosa (2003, 2006a), which emphasizes on the Modelling as 
an opportunity for the students to discuss the role of mathematics in the society and 
the nature of the mathematical models. The development of the competences or the 
learning of concepts and mathematical procedures, seen in other perspectives as 
primary proposals, is considered in the social-critical perspective as a “means” to 
enable the discussion on the roles that mathematical models may play in society. 
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The argumentation in socio-critical perspective is based on the recognition that the 
mathematical models are used in the society as power instruments (Borba & 
Skovsmose, 1997; Keitel, 1993; Skovsmose,1994). This requires that the students 
“read” the mathematical models critically, noticing that the mathematical results 
depend on the “place” where they are produced and how they can be used. 
A framework for the analyses of the students´ practice 
Many of the studies about the practice of students in the modelling milieu have 
focused on the analyses of competences and skills (Haines & Couch, 2005; Henning 
& Keune, 2005), putting some emphasis on the enculturation of the students in the 
practice of professional modellers. Other studies, as in Zbiek and Conner (2006), 
have analysed students´ practice in terms of the opportunities for the conceptual and 
procedural development in mathematics. 
In this paper, I adopt another point of view, trying to extract implications from the 
socio-critical perspective to analyse students´ practice. However, it is not enough to 
generate theoretical understandings about this object, but a framework about 
students’ practice is necessary too. 
I will not expand the discussion about the notion of practice. In this moment, I will 
only define it as actions developed by individuals, which have its senses in the 
contexts in which they are produced. The fundamental hypothesis adopted here is that 
the human actions are linked to the cultural, institutional and historic contexts 
(Lerman, 2001; Wertsch, 1993, 1998). According to what Wertsch (1993) explains, 
“a social cultural approach to mind begins with the assumption that action is 
mediated and that it cannot be separated from the milieu in which it is carried out” 
(p.18).
Therefore, the comprehension of the actions in the specific milieu of modelling is not 
in the relations that students establish with the object (in this case, the problem-
situation), but in the external conditions. It’s not possible to dissociate the actions 
from the forms of mediation used, like the instruments and the language. According 
to Wertsch (1993, p.12), 

the relationship between action and mediational means is so fundamental that it is more 
appropriate, when referring to the agent involved, to speak of “indivudal(s)-acting-with-
mediational-means” than to speak simply of individual(s).  

The author argues that the human action employs means of mediation, in a way that 
the separation between the individual and the way of mediation is just analytical. 
Based on Vygotsky and Bakhtin, Wertsch (1993, 1998) puts emphasis on the 
communicative practices, understanding them as primary source to the human action. 
In Mathematics Education, Lerman (2001), among others, have made several studies 
using this assumption. This author elected the discourse category as the focus of his 
program of research. Discourse refers to all kinds of language, including gestures, 
signs, artefacts, mimics, and so on (Lerman, 2001). For him, analysing discursive 
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practices is central, because the meanings precede us and we are constituted from the 
language and practices associated in several contexts in which we participate. So the 
understanding of the actions of the students in the modelling milieu may be searched 
in its discursive practices. 
Students´discussions
As a result of the social cultural perspective, I understand the students´ practice in 
modelling as discursive. Previously, when focusing on the verbal interactions in the 
modelling milieu, I proposed a notion of interaction spaces as a unity of analyses 
(Barbosa, 2007). A space of interaction happens when students get together or 
students and teacher get together with the purpose of discussing the modelling 
activities (or even other kinds). 
Borromeo Ferri (2006) has proposed the notion of modelling routes to denote the 
individual modelling on an internal and external level. This notion underlines the 
possibility of students giving different directions to the activities of Modelling. 
Since I am realizing the discourse as object, the interest falls about the verbal 
interactions between students or between them and the teacher. Therefore, I will 
consider the modelling routes as a discursive instance, thus referring to the external 
level, differently from Borromeo Ferri (idem).  
What constitutes the modelling routes? This question generates a large agenda of 
research. In a previous study, inspired in Skovsmose (1990), I have proposed the 
notions of mathematical, technological and reflexive discussions as parts of the 
modelling routes (Barbosa, 2006a). Defining them, we have: the mathematical 
discussions refer to the pure mathematical procedures and concepts; the technological 
discussions refer to the translation of the elected phenomenon to study in terms of 
mathematics; and the reflexive discussions refer to the nature of mathematical models 
and the influence of the criteria used in the results. 
According to the purpose of the teacher, it is possible that one of these discussions be 
stimulated. In the specific case of the socio-critical perspective, it is interesting that 
the students are not restricted to the mathematical and technological discussions, but   
develop reflexive ones, because they constitute an opportunity to reflect upon nature 
and the role of mathematical models in the society. 
The consideration of the mathematical, technological and reflexive discussions does 
not exhaust the practice of students in the Modelling milieu, since other discussions 
might appear and may not fit, exactly, in none of these cases. Thus, in this present 
paper, I take the example of the classroom in order to analyse the nature of these 
other discussions of the students, that´s to say, those ones that are not mathematical, 
technological or reflexive. With this, I hope to theorize the practice as well as have 
more elements for the teachers to follow students´ actions. 
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METHODOLOGY AND CONTEXT
This study takes part in the tradition termed in Guba and Lincoln (1994) as 
constructivist, which hopes that the reality happens in the multiplicity of perspectives, 
implying in the return to the subjective activities to build an understanding of the 
social world. The study has a qualitative nature. It is about giving sense to interpret 
the phenomena in terms of the meanings that the people bring to them, taking the 
words as data (Guba & Lincoln, 1994).Here the word also has the status of object as 
the focus is the discourse. 
The data were collected through observation, that consists in collecting impressions 
of the world around through the relevant human faculties (Agrosino & Pérez, 2000). 
A group of students doing modelling activities was recorded by one of the members 
of our research group at State University of Feira de Santana (Brazil). 
The context was an in-service education program to maths teachers, in May 2006, in 
the city of Feira de Santana, Brasil, taught by Professor Andréia Maria Oliveira, who 
is also a member of our research group. The students are experienced teachers, but 
with no academic titles, who returned to the university to take certification in a 
governmental project.  
In that moment, the local city mayor had authorized an increase in the bus far from 
R$ 1,40 to R$1,50 (in Brazil, the currency is Brazilian Real, quoted as R$), which 
provoked big anger in the city. Taking advantage of the public debate about the 
subject, the teacher asked them to evaluate the impact of the increase in the price of 
the bus far in the monthly family budget. 
At first, the teacher distributed a copy of a newspaper article that talked about the 
increase in the price of the bus far, which was read and discussed with everybody. In 
the sequence, they were organized in groups, having as a task to find a solution to the 
problem. In this present paper, I will consider the recording of a group composed by 
Lila, Selma and Maria.  
The analyses of data was inspired in the grounded theory (Charmaz, 2006), using 
mainly some guidelines for coding. The recording was transcribed and coded line by 
line, trying to identify the extracts that referred to the mathematical, technological 
and reflexive discussions and those that did not fit in one of them. Next, the latter 
ones received codes, which were grouped in bigger descriptive categories. Then, the 
results were confronted with the literature, generating theoretical understandings for 
the purpose of this paper. The interpretations were discussed with the research group, 
which allowed later improvements. 
DATA PRESENTATION   
The group of students formed by Lila, Selma and Maria, immediately decided to 
search for a solution to the problem proposed by the teacher. Due to the limitation of 
space, I will just present two representative extracts of the data. It’s possible to 
identify utterances in them that can be placed under the definition of mathematical 
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discussions [M] and technological discussions [T]. However, there are other 
utterances that do not refer to these ones, which I will indicate as [?].

[T]  Lila:  What do we really want to know? We still have to figure out the monthly 
expenses. Four and a half weeks. 

[T]  Selma:  A family that earns a minimal wage or that participates, at least, with three 
or four salaries. 

[?]  Maria:  Gosh, the reality is really hard. 

[?]  Lila:  That´s why children have to study at schools nearby. It´s not possible. 
They go on foot. 

 Maria:  Say something Selma, 

[M]  Selma: We figure out 1,50 times six. The result is 9,00 

[T]  Maria:  The week has five days: Monday, Tuesday, Wednesday, Thursday and 
Friday.

[T]  Selma:  In a month there are  about 18 or 20 school days 

The teacher approaches the group. 

[T]  Teacher: Are you counting full price or half price of the bus far? [Students pay half 
of the bus far in Brazil] 

[T]  Selma:  We considered half price. 

[M]  Maria:  Half and 18 times 4. 

[?]  Selma:  What happens is that a worker pays 6%. The bus far law is like this: the 
employee pays 6% and the employer pays 94%[In Brazil, there is a federal 
programme informally called “transportation-ticket”, in which the 
companies pay the amount spent on employees´ public transportation; on 
the other hand, the employees have 6% taken off  their salaries]. 

[?]  Maria:  It is a transportation help.  

[?]  Lila:  It is not possible, it´s very expensive. 

[T]  Selma:  85,5? It is wrong! 

In this episode, it’s possible to notice that the enunciations indicated by [?] refer to 
the students´ perception about the largest context of the problem. They talk about the 
high price of public transportation for the poor people that receive a minimal wage. 
They remembered the transportation-ticket programme, which the employees receive 
tickets for the transportation. 
The students do not seem to consider these information useful for the solution of the 
problem, as they do not interfere in the group strategy. The extract suggests that the 
discussions defined as [?] go parallel to those called [M] and [T], since the first ones 
are not part of the building of the mathematical model. Nevertheless, they work as a 
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theme of the reality outside the school, life in society, and specifically, the possibility 
to access public transportation by the population. They do not fit into the definition of 
reflexive discussions, because they do not work as the relation between the 
mathematical model and the criteria used in its building. 
Nonetheless, I think that, from the socio-critical point of view, these discussions 
which are coded in the episode as [?] represent some reflection about the social 
reality outside the school. They bring to the mathematics class a debate about critical 
problems in the society. 
Later on when the teacher visited the group, another kind of enunciation appears 
which does not fit in [M] and [T], but different from the mentioned ones in the above 
extract as [?]. 

[T]  Teacher: Which variables can we consider in the problem? What happens 
when the salary is increasing? What will happen? We can discuss 
this.

[T]  Selma:  It decreases, if the person receives many salaries. 
[?]  Maria:  They are an inverse proportion. So, let´s go! 
[T]  Selma:  Do you want us to it in relation to the salary? 
       Teacher:  As you wish. 
[In the sequence, Maria´s utterance was not realized and did not influence in any 
of the previous utterance] 

In this extract, the students are discussing with the teacher the variables to be chosen 
to the problem. Selma´s enunciation, characterising the relation between the expenses 
with public transportation and the salary as an inverse proportion, was not heard by 
her colleagues. It happens like a parallel way, not influencing the building of the 
mathematical model, being just a link with some previous knowledge. Questions, like 
“Why?”, “What is an inverse proportion?”, etc., could be asked and some good 
mathematical discussions could have been developed. 
DISCUSSION 
The analyses of the above extracts place new elements to characterise the students’ 
practices in modelling. As previously suggested, the routes of modelling represent the 
discursive processes produced by the students that play a role in the production of the 
mathematical model. They can refer to the mathematical, technological and reflexive 
discussions, as cited in Barbosa (2006a). 
Nevertheless, as previously supposed, a lot of utterances do not fit in these categories. 
It is the case of the ones marked as [?] in the above analysed extracts. The students 
produced parallel enunciations about the conditions of access to the public 
transportation by the population. In another moment, Maria produced an utterance 
about mathematics when she referred to the inversely proportioned values. They 
didn’t change discursive way of the constitution of the model. In the analysed case, 
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they were “invisible”, since they are utterances produced and heard, but not taken 
into account in the following utterance.  
Since the utterance called [?] take place parallel to the route of students´ modelling, I 
will call them parallel discussions. They refer to those that happen in the spaces of 
interactions of Modelling, but do not belong to the Modelling route, since they do not 
play a role in building of the mathematical model.  
It is not the case when the students begin strategies and abandon them because they 
consider them as inappropriate. In this case, even if the arrangements do not generate 
the mathematical model validated by the students, they have it in focus, being part of 
the Modelling routes. 
The data suggest that for the utterance fits in the Modelling routes or parallel 
discussions, it depends on its use. If Maria´s utterance about the inversely 
proportioned values influenced, somehow, the building of the mathematical model 
discussed, it would not be classified as parallel discussion but as part of the 
Modelling route. Therefore, only after produced, we have how to know the kind of 
discussion.
The analyses of the extract suggest that the parallel discussions may refer to several 
domains. A first case refers to the context of the problem, exemplified in the data 
with comments about the access of the population to public transportation. In this 
direction, the modelling activity may allow some reflection about social situations, 
even if they are not reflexive discussions. The parallel discussions, in this case, 
produced perceptions about the social reality to the mathematics class.
On the other hand, as exemplified in the data, the parallel discussions may refer to 
mathematical objects. In this case, its legitimacy is based on the context of students´ 
practice. If they are in the mathematics class, speaking about mathematics is relevant, 
even if it does not have the purpose to build to the mathematical model. This kind of 
discussion shows how the modelling milieu may generate problems of pure 
mathematics. We may take this type of discussion as an opportunity for the 
conceptual procedural development of the students in the sense described recently by 
Zbiek and Conner (2206). 
The emergency of the parallel discussions has relation to the social and cultural 
context (Lerman, 2001; Wertsch, 1993, 1998). Since the school and the students 
themselves belong to a bigger social context, discourses that analyse the questions of 
life in the society may take place. On the other hand, the students may link 
mathematical knowledge with subjects previously studied. In both cases, these 
students´ actions may be legitimated by its context. 
In this point, we may recognise the parallel discussions as part of students´ practice in 
the modelling milieu, even if it is not linked to the purpose of the building of 
mathematical models. In short, I would like to suggest that students´ practice in 
modelling may be classified in Modelling routes and parallel discussions. I have 
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underlined here that these latter ones may be opportunities for the development of 
important discussions to the school environment. 
FINAL REMARKS
As I pointed out at the beginning of this paper, many studies about students´ practice 
in the modelling milieu have focused on the actions that conduct to the building of 
the mathematical model, using notions as competences, skills and routes of 
Modelling.
Proposing the notion of parallel discussions to denote the enunciation that do not play 
a role in the building of mathematical models, I would like to focus bigger attention 
on the practice of the students in this milieu As underlined previously, the parallel 
discussions have potentialities in the conduction of modelling activities. It is about 
opportunities for discussion about the aspects of life in the society and the pure 
mathematics, that may originate other mathematical activities in the school context 
and a discussion about aspects of life in the society.
The concept of parallel discussions generates new questions to the agenda of research 
in the scientific field. What are its conditions of production? Why aren´t they taken 
into consideration by the group? What other kinds of parallel discussions may 
happen? What is the way of parallel discussions in generating other activities? The 
research about these questions may help us build a picture of the students´ practice in 
the modelling milieu. 
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COMPARISON OF MATHEMATIZATION IN MICROCOMPUTER 
BASED LABORATORY (MBL) AND VERIFICATION –TYPE 

LABORATORY (VTL) IN PHYSICS 
Murad Jurdak and Saouma BouJaoude, American University of Beirut 

Norma Ghumrawi, Lebanese University 
 

This study addresses the question of whether and how the MBL features enhance 
mathematization in physics laboratory classes. For this purpose, two laboratory 
sessions on Hooke’s Law and Newton’s Second Law of Motion were conducted twice 
by the same physics teacher in two different grade 11 classes in the same school. The 
first time MBL was employed and the mathematics teacher of this grade participated 
in the two sessions. However, the second time the two laboratory sessions were of the 
verification type and were conducted in the absence of the mathematics teacher. 
Results show that MBL has a potential to promote mathematization in favourable 
instructional environments in physics laboratory classes.

INTRODUCTION
Mastering mathematical skills and concepts is often viewed by curriculum developers 
and teachers as a prerequisite for understanding physics in the secondary school. 
Consequently, it is left to students to transfer and apply mathematical concepts and 
skills in new physics contexts. However, this conception of the pedagogical 
relationship between mathematics and physics is severely constrained by the domain 
specificity of mathematics learning in the sense that mathematics learning is specific 
to the context in which learning takes place (Niss, 1999). 
Freudenthal (1991) calls for having students start by exploring phenomena that call 
for and require organization through the use of mathematics. Physics offers a great 
variety of such situations that are amenable to be structured by mathematization 
which encompasses interdisciplinary activities like modeling and representation. 
According to Michelsen (2005), mathematization entails that “situations from physics 
are embedded in the contexts to be mathematized – a horizontal linking of 
mathematics and physics. Also the vertical mathematization must include a vertical 
structuring, that is the conceptual anchoring of the general model in the systematic 
and framework of mathematics and physics respectively” (p. 206). In traditional 
physics laboratories, the use of mathematization is constrained by instructional 
management factors, particularly data collection and mathematical calculations which 
consume most of the instructional time. On the other hand, because it provides the 
capability of real-time collection of data and a menu of mathematical models that 
may fit the situation, MBL is hypothesized to enhance mathematization in physics 
laboratory. 
Mathematization refers to a process used by students to solve real-life problems. 
According to the Programme for International Student Assessment (PISA) (2003), 
mathematization consists of five steps: 1) Starting with a problem situated in reality; 
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2) organizing it according to mathematical concepts and identifying the relevant 
mathematics; 3) gradually trimming away the reality through processes such as 
making assumptions, generalizing and formalizing which promote the mathematical 
features of the situation and transform the real world problem into a mathematical 
problem that faithfully represents the situation; 4) solving the mathematical problem; 
and 5) making sense of the mathematical solution in terms of the real situation, 
including identifying the limitations of the solution. (p. 37). 
 
Microcomputer Based Learning (MBL) 
Calculator-Based Laboratories (CBL) and Microcomputer-Based Laboratory (MBL) 
are the most frequently used tools to integrate science, mathematics, and technology 
in schools. These two tools function as “data grabbers” and consist of two types of 
hardware: Sensors or probes to collect physical data (such as temperature, humidity, 
distance, force, etc.) in real time and another device connected to the sensor that 
digitizes and stores the collected data. Using these tools, students have the 
opportunity to collect and work on first-hand experimental data. Collecting, 
representing, and interpreting data collected from experiments using the sensors may 
provide students with opportunities to work in authentic scientific settings similar to 
those in which scientists work and attempt to generate generalizations and 
idealizations reflected in mathematical models of real phenomena (Gillies, Sinclair & 
Swithenby, 1996). 
Research on the role of technology in mathematics education has focused recently on 
dynamic computerized environments and their effects on student achievement and 
attitudes (Funkhouser, 2002; Healy & Hoyles, 2001; Arcavi & Hadas, 2000). Kaput 
(1998) suggested that students can use MBL or CBL to collect scientific data and 
represent it mathematically allowing them to learn about “both the phenomena 
represented and the mathematics used to represent quantitative aspects of it, reflecting 
the connectedness of mathematics with experience and its power as a sense-making 
tool” (p.4).  
This study is a part of a larger project whose purpose was to investigate the barriers 
teachers face when integrating science and mathematics by using Microcomputer-
Based Laboratories (MBL).The study reported here addresses the question of how the 
MBL features enhance mathematization in physics laboratory classes. This will be 
done by examining a case in which MBL was used in two Grade 11 inquiry type 
physics laboratory sessions (henceforth referred to as MBL lessons) taught jointly by 
a physics teacher and a mathematics teacher as compared to two verification type 
laboratory sessions.(henceforth referred to as VTL lessons). Specifically, this study 
will attempt to identify and compare the type and extent to which mathematization 
activities occurred in the MBL and VTL sessions.  
The features of Microcomputer-Based Laboratory (MBL) seem to provide an 
environment which has the potential to facilitate mathematization. First, as a 
didactical tool, MBL provides students with the opportunity to collect and work on 
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real-world experimental data in real time. Second, though it does not provide much 
opportunity for actual model construction (i.e. trimming away reality), MBL provides 
a menu of mathematical models in the form of function formulas, graphs, and 
numerical tables that serve as a context for engaging students in thinking about 
mathematical models that can describe a set of data derived from a real world 
situation. Third, MBL provides data (mean square error in the model) that may 
engage the students in evaluating the adequacy and accuracy of a particular 
mathematical model. Fourth, the real-time data collection and processing provide 
time-saving that may be used efficiently in exploring and assessing the adequacy of a 
particular mathematical model.  

METHOD
MBL and VTL Lessons 
The MBL laboratory sessions involved students in formulating a question, designing 
an experiment in cooperation with the teacher, collecting data using the MBL set-ups, 
fitting the collected data into a mathematical model, discussing the modeling process, 
and drawing conclusions based on the experimental data, data manipulation, and 
modeling.    
The two verification type laboratory sessions addressed the same topics as that of 
MBL sessions but involved students in collecting and analyzing data to verify content 
matter taught in class, drawing graph using the collected data, and verifying already 
taught knowledge.  

Data Collection 
The study was conducted in two different Grade 11 classrooms in a private co-
educational school in a suburb of the city of Beirut in Lebanon in which English is 
the medium of instruction of science and math. Students in the grade 11 class come 
from middle to upper socioeconomic families and were following the International 
Baccalaureate program, a rigorous pre-university course of studies. Prior to 
conducting the study, the two teachers who participated in the study were involved in 
a three-day workshop whose purpose was to introduce them to designing 
experiments, and collecting and analyzing data by using computers. The two 
participating teachers were enthused by the workshop activities and decided to start 
using MBL in their classrooms. Consequently, they held secure entry to the school 
for the researchers. 
The study was conducted over the two academic years 2004-2005 and 2005-2006. 
During the first academic year, Hooke's Law and Newton's Second Law of Motion 
were taught to grade 11 students using MBL. The two MBL sessions were taught 
jointly by the mathematics and physics teachers and were videotaped. The following 
year, Hooke's Law and Newton's Second Law of Motion were again taught to grade 
11 students by the same physics teacher, but in the absence of the mathematics 
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teacher. The laboratory sessions in this case were of the verification type.  Again 
these two sessions were videotaped for the purpose of the study. 
Hooke’s Law and Newton’s Second Law of Motion constitute a part of the school 
physics curriculum and were taught according to the teachers’ yearly plans. In 
preparation for the MBL laboratory sessions, the teachers prepared lesson plans that 
were discussed in a group meeting with the researchers. Then the teachers 
implemented the lessons in the school physics laboratory. Two of the researchers 
attended the MBL sessions without any interference in the lesson proceedings. The 
VTL session were also conducted in the physics laboratory. However, the physics 
teachers used the lesson plans he typically uses in such laboratories. 

Data Analysis 
Prior to data analysis, a DVD copy of each of the four videotapes was prepared. The 
four lessons were transcribed word by word and time was recorded next to each 
utterance of the transcriptions to facilitate data analysis. The four DVDs of the four 
videotaped lessons along with the verbatim transcriptions constituted the raw data. 
Evidence to support each of the five steps of mathematization was sought from the 
actions of the teachers and their discourse with the students. The mathematization 
lens was used to look at and interpret the data.  

RESULTS
In this section we shall identify and compare MBL and VTL in terms of the extent to 
which the elements of mathematization.  

Starting with a Problem Situated in Reality 
In the two MBL sessions, the physics teacher (PT) always started with questions 
which encouraged the students to make conjectures about relationships between the 
physical variables under consideration in that particular laboratory session. For 
example, the PT started the session on Hooke's law by introducing the apparatus and 
asking students about the variables involved in the experiment to engage students in 
thinking about the physical relationships to be demonstrated. However, the questions 
by themselves do not constitute a situation which can be transformed into a 
mathematical problem. However, it was not clear whether these questions presented 
genuine problems to students.  
The first phase of the mathematization seems to be almost missing in the VTL 
sessions.  The PT started the session by reminding students of content and asking 
them to recall the law they studied in class. Soon after, the teacher reviewed all the 
content that relates to the law covered earlier. In other words, the starting point is 
memory work and not a real world situation.  
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Organizing the Problem According to Mathematical Concepts 
The mathematical concepts that were used in the two MBL sessions were limited to 
the concepts of variables and relations among them. This is understandable since the 
objectives of each of the two lessons (Hooke's Law and Newton's Second Law of 
Motion) were to have students acquire concepts, principles, and laws in physics. For 
example, the PT expressed the variables in symbols and even suggested a 
mathematical formulation of the relationship between the force (F) and the extension 
in the string (x) in the session on Hooke's law. In the session on Newton’s Second 
Law, the PT identified the variables only in words.  
However, the VTL sessions did not seem to provide similar opportunities for 
students, simply because the concepts had been acquired in class before students 
attempted to conduct any experiments. Because, there was little room for students to 
organize the problem according to mathematical concepts, they resorted to formulas 
they had memorized.   

Transforming the Real World Problem into a Mathematical Problem 
The features of MBL are critical in this phase of the mathematization process in the 
sense that they present constraints and opportunities. Using MBL did not seem to 
provide the opportunity for students to engage in "gradually trimming away the 
reality through processes… which promote the mathematical features of the 
situation" (PISA, 2003, p.37). Rather, MBL presents a menu of mathematical models, 
in the form of a formula, a graph or a table of values, on the screen without any 
control from either the student or the teacher, thus making the MBL act as a 'black 
box'. The fact that this feature is a constraint in the process of mathematization is best 
illustrated in the following example. In the laboratory session on Hooke's Law, 
discussions led the students to expect that the relationship between the force applied 
and the extension it produces to be positive and linear. However, the graph that was 
displayed on the screen was a straight line in the fourth quadrant. This generated 
discussion (and confusion) for the mathematics and physics teachers as well as the 
students since they could not rationalize why the software produced a representation 
that was not consistent with their initial expectations.  
On the other hand, the MBL presented an opportunity for mathematization by 
providing a menu of functional relations (with the mean square error of each) for the 
student to choose from, based on the concept of best-fit of data. This feature is unique 
to MBL because it provided students with an efficient method to explore the optimal 
mathematical model that best fit the data. 
VTL sessions did not provide evidence of any transformation of a real world problem 
into a mathematical problem. The fact that there has been no real world problem 
initially makes it impossible to observe this feature. Students seemed to start with 
mathematical representation almost exclusively by recalling already taught formulas.  
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Working within the Mathematical Model 
In the two MBL sessions, once the graph was displayed on the screen, the 
mathematics teacher (MT) took over the lesson. The general pattern followed by the 
MT consisted of the following activities: Through a whole-class instructional format, 
the MT started a series of questions to enable students to choose from the menu the 
appropriate mathematical model (functional relationship) and rationalize their choice. 
The MT seized the opportunity to consolidate the students' understanding of the 
mathematical concepts involved (linear function, inverse function).The MT shied 
away from explicitly linking the mathematical concepts to the physical concepts. 
The display of the mathematical model on the screen provided a context for a lively 
classroom discourse about the best-fit model. In many cases the discourse was 
triggered by discrepancies which resulted in cognitive tension between the teacher 
and students and among the students themselves. An example is the discrepancy 
between the standard (criterion) for best-fit in MBL and that of the teacher. The 
following excerpts illustrate each of the discrepancies. 

MT: What's the mean square error for the proportional fit?  
MT: 0.021, right? And for the linear fit? 
Student: 4.87x10-4 

MT: OK, if you move a little bit here…can you see the lower part of the yellow  
  line? Do you see where it continues? 
Student: Through the origin 
MT: Regardless of the square mean error, what should it be? 
MT: What's the y-intercept if the line passes through the origin?  
Student: Zero 
MT:         So, it becomes y= mx, proportional fit. Does it make sense now with your 
physical result? Can you link it to the physical result? 

A second discrepancy was between the model expected by the students and the one 
displayed by MBL. This is illustrated by an episode from the laboratory session on 
Hooke’s law. The students were led to believe that the relationship between the force 
and the extension in the string was positive and hence the graph would be in the first 
quadrant. MBL displayed the graph in the fourth quadrant. The MT tried to 
rationalize the discrepancy in terms of the definitions of the variables by saying: 

Is x the difference between the initial length and extended length or the extended length 
itself? 

On the other hand the PT tried to rationalize the situation in terms of experimental 
error. 

You see the computer was recording measurements every 0.5 cm but I wasn't sure if 
Mario was really seeing a displacement equal to 0.5 cm…And apparently there is a slight 
difference between what the computer is set to record and what actually has been 
happening at the cart. So there is a small error that the x here did not correspond to the x 
the computer program was set to have. I'm not sure if the pull by Joe all the time was 
constant because our nervous system sometimes does not allow us for a long period of 
time to be able to hold something for a long time exactly the same way. 
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Both interpretations did not convince the students and left them confused. 
The third discrepancy was between the PT and the MT in choosing the model and 
occurred in the laboratory session on Newton's second law of motion. The experiment 
consisted of keeping the weight (F, pulling force) constant while varying the mass 
(m) of the cart by adding mass to it. The PT selected the line representing v=at (v, a, t 
represent velocity, acceleration, and time respectively), whereas the MT tried to 
rationalize the choice of the model a=F/m (where F is kept constant). Though both 
models are tenable, the second one is more appropriate and powerful. Anyway, this 
discrepancy led to some confusion among students. 
The VTL sessions seem to provide an opportunity for students to practice the use of 
calculators in an attempt to find the values they needed to fill in the tables they were 
supposed to complete. Once students finished observing the demonstration presented 
by their PT, they broke up into groups where they used their calculators to find 'T' 
values (tension) and '�L' values (elongation/compression) during Hooke's Law VTL 
session. Similarly, students spent a very long time working in groups on a much more 
complicated procedure to calculate 'F' values (force) and 'a' values (acceleration) in 
the case of Newton's Second Law VTL.  
In both VTL sessions, time was not sufficient for students to plot the required graphs. 
Thus the PT had to sketch 'the expected' graph on the board and try to discuss it with 
students. Thus, in this phase students not only spent most of their time on 
mathematical calculations that were grounded mainly in conversions among units of 
measurement, but they did not even make use of the data due to time constraints.  

Making Sense of the Mathematical Solution in the Real World 
In the two MBL sessions, no significant attempt was made to make sense of the 
mathematical solution in terms of the real situation. Both teachers missed many 
opportunities to have students see the power of the mathematical modeling in making 
sense of the physical reality. One such missed opportunity was in the MBL session on 
Newton's Second Law, when the MT established that the model representing the 
force (F) and acceleration (a) was a straight line passing through the origin. However, 
no suggestion was made to actually weigh the mass of the cart and compare it with 
the slope of the straight line represented by F=ma. 
In the VTL sessions, the PT did not relate the mathematical model to the original 
situation, since there was none to begin with.  
 
DISCUSSION
The results of this study support the hypothesis that physics experiments conducted in 
an MBL environment provide the kind of real world situations that are amenable to 
mathematization. Thus mathematization, suggested by Freudenthal (1991) as a 
pedagogical theory for the meaningful learning of mathematics, may apply for the 
meaningful learning of physics as well. 
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Let me start by emphasizing that physics laboratory is intended to teach physics, and 
mathematization is only an opportunity that physics laboratory may provide. Our 
intention in this research was to investigate whether the MBL has a comparative 
advantage over VTL in increasing this opportunity. The data suggest that the features 
of MBL seem to provide an environment which has the potential to facilitate some 
aspects of mathematization in physics. However, this potential was constrained by the 
instructional design used in the MBL sessions. In the following paragraphs we shall 
identify the potential of each step of the five steps of mathematization in MBL and 
examine the degree to which the instructional design constrained this potential. 
MBL does not have any intrinsic potential in promoting the first step in 
mathematization i.e. setting a problem situated in reality. This step exclusively 
belongs to the instructional design used. With or without MBL, an inquiry-based 
instructional design may promote mathematization by starting with a reality-situated 
problem. In this research the instructional design of MBL provided students with the 
opportunity to collect and work on real-world experimental data, however, there was 
no explicit effort by the physics teacher to pause an authentic problem. On the other 
hand, VTL provided no opportunity to pause a problem since the student were just 
verifying principles they had already been taught. 
Similarly MBL does not provide a comparative advantage in organizing the problem 
according to mathematical concepts and identifying the relevant mathematics. 
However, there were some efforts by the physics teacher to organize the situation by 
expressing the variables in symbols and suggesting a mathematical formulation of the 
relationship. VTL, however, did not provide similar opportunities for students, 
simply because the concepts had been taught in class prior to the experiment. 
MBL does not provide much opportunity for actual model construction pertaining to 
step 3 of mathematization (trimming away reality and transforming the real world 
situation into a mathematical problem) and step 4 (solving the mathematical 
problem). However, MBL has the potential of providing a context to engage students 
in some aspects of model representation and evaluation. The limitation of MBL in 
model construction is that it does not provide opportunities for students to ‘trim away 
reality’ but rather provide a menu of mathematical models from which students can 
choose. Moreover, MBL does not explicitly engage the students in solving the 
mathematical problem but rather provide an opportunity to reflect on given solutions 
to select the one that best fits the situation. However, MBL has much potential in this 
regard. The first comparative advantage of MBL is that it gives the opportunity to 
manipulate the situation i.e. the experimental set-up, and immediately visualize the 
impact on the representation of the mathematical model. Second, MBL provides 
multiple representations (all represent the same situation) of a particular mathematical 
model in the form of function a formula, a graph, or a numerical table and the facility 
to navigate from one representation to another. Third, MBL provides a facility to 
assess the adequacy of a certain mathematical model through examining the mean 
square error of the best-fit curve. Fourth, MBL has the facility to collect and process 
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data in real time and thus providing time-saving that may be used efficiently in 
exploring and assessing the adequacy of a particular mathematical model. 
The potential of MBL in steps 3 and 4 of mathematization were partially realized 
because of the instructional design. First, not much use was made of the manipulation 
facility of MBL. Second, the mathematics and physics teachers conceived their roles 
as a context to “teach their subject”. For example, the mathematics teacher used the 
model as a context to teach functions and graphs without much reference to the 
situation they represent. Processing the mathematical model was also ridden with 
discrepancies which are due to lack of coordination between the mathematics and 
science teachers and a deficiency in internalizing the power and limitations of the 
technology.  
Two potentials of MBL were reasonably realized. First, Students were engaged in 
assessing the mathematical models that may best fit the data by looking at the   mean 
square error and, as evidenced by the results, this generated lively discussions and 
argumentations regarding the best-fit model. Second, the time-saving in MBL and its 
utilization in exploring and assessing the adequacy of a particular model were 
substantiated. Time analysis of data MBL session showed that most of the time (48% 
for each of Hooke's Law and Newton's Second Law of Motion) was devoted to 
analyzing and discussing the graph that resulted from plotting the data while most of 
the time (42% for Hooke's Law and 61% for Newton's Second Law of Motion) was 
devoted to performing the experiment in the VTL session. In contrast to model 
identification and assessment in MBL, VTL students spent most of their time 
performing procedural tasks with no or very little thinking- a constraint which 
weakened vertical mathematization (working within a mathematical model) in VTL.  
The MBL has a potential in promoting the last step in mathematization (making sense 
of the mathematical solution in terms of the real situation, including identifying the 
limitations of the solution) in that it allows the learner to test the model in reality. For 
example, the learner could check the model by measuring the mass of the body and 
compares with the slope of F=ma (Newton’s second law of motion) or identify the 
limitation of a mathematical model (limiting the range of values may produce a 
model which is different from the theoretical one). However, the instructional design 
of both teachers did not make use of this potential of MBL.  
A replication of this study, which avoids the pitfalls of the instructional design may 
hopefully confirm better the claims regarding the potential of MBL in promoting 
mathematization. 
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MODELLING TASKS FOR LOW ACHIEVING STUDENTS – 
FIRST RESULTS OF AN EMPIRICAL STUDY 

Katja Maaß
University of Education Freiburg 

The integration of mathematical modelling into mathematics curricula has been 
demanded for some time in response to international comparative studies such as 
PISA. However, low achieving students have more or less been ignored in this 
regard. In this study, beginner problems for such low achieving students have been 
developed and evaluated.

THEORETICAL BASIS
For a long period of time, pedagogical discussions have been calling for the 
integration of applications and modelling into mathematics curricula (Kaiser-
Messmer 1986(I), p. 82) so that students can understand and critically analyze their 
environment, as well as gain insights into the usefulness of mathematics to society 
(Blum & Niss 1991, p. 42). Numerous modelling problems have already been 
developed. However, most of these problems are relatively complex and not suitable 
for low achieving students. Keeping in mind the necessity to be able to master their 
everyday lives and to prepare for their later working life, these students in particular 
need to learn how to use mathematics to solve non routine problems.  
Most of these students, however, who are taught in a separate school in Germany, 
have enormous problems in using elementary mathematical knowledge and in reading 
and understanding texts. Experience shows that teachers think the best way to support 
these students is by explaining in detail every step they have to do in advance. So 
these students are not used to working independently, instead they ask for repeated 
explanations from the teacher.
Word problems are seen as one possibility to support the development of modelling 
competencies at primary school level and with students of all abilities (Verschaffel 
2002). A word problem is a text which describes a situation more or less familiar to 
the reader and which poses a quantitative question, an answer to which can be 
derived by mathematical operations performed with data given in the text or 
otherwise inferred. When trying to develop modelling competencies it is, however, 
important to choose word problems which do not meet students' expectations and 
which make students think about the context. (Greer, Verschaffel & De Corte 2002). 
In this context, Puchalska & Semadeni (1988) differentiate between problems with 
missing information, problems with surplus data and problems with contradictory 
data. The first category of tasks, called here under-defined tasks, are in fact - very 
simple - modelling problems, the second category, here called over-specified 
problems (as well as the third) may not always be modelling tasks. Their aim is to 
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force students to think about the context and not only to take the numbers out of the 
context and to connect them with an operator. Students thus learn to proceed from the 
real world to the mathematical model. 
When solving reality-related problems several steps have to be carried out. There are 
many different diagrams which may be used to describe modelling processes (Kaiser-
Messmer 1986 (I), p.82). The diagram selected here takes into account the special 
interests of low achieving students by identifying the understanding of the situation 
as a separate step. This appears to be important as it may not be easy for these 
students to understand the situation due to problems with language (reading) or 
problems of general understanding (Fig 1, Blum & Leiß 2005). 

mathematical  
model 

real
situation 

real model 
mathematizing understanding of 

situation

working 
within
the model 

mathematical  
solution interpreted

solution interpreting 

model of  
situation 

validating

REALITY MATHEMATICS 

Fig. 1: Modelling process according to Blum/Leiß 2005 

In order to carry out mathematical modelling a particular set of competencies is 
necessary:
1. Sub-competencies to carry out the single steps of the modelling process (Sub-
competencies in understanding the situation, in simplifying and setting up a real 
model, in mathematizing, in working within the model, in interpreting and in 
validating).
2. Metacognitive modelling competencies 
3. Competencies to structure real world problems and to work towards a solution with 
a sense of direction 
4. Competencies to form arguments relating to the modelling process and to write 
down this argumentation  
5. Competencies to see the possibilities mathematics offers to solve real world 
problems (Maaß 2006, p.139). 
Based on this theoretical framework the study aims to develop beginner modelling 
problems for low achieving students and to evaluate them. Additionally, the study 
establishes criteria for their development and describes the students’ modelling 
competencies.
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METHODOLOGY
The study described here is a qualitative study (Flick 2000). Semi-structured 
interviews were used for data collection. For every interview one student was taken 
out of their regular lesson into a separate room. He or she was given a worksheet with 
4 modelling tasks and was asked to work on the tasks and to think out loud. 
Assistance was given as little as possible, with most interviewers’ comments being 
simply motivational remarks (“try again”, “you will make it”) or to strategic help 
(“Try to think about the quantities you need!”). Additionally students were asked 
questions about their views about the tasks and mathematics. Each interview lasted 
about 1 hour. 
The data was analysed according to the qualitative analysis of content (Mayring 
2002). Categories for the analysis were partly chosen theoretically from the list of 
sub-competencies described in part 1. However, the positive attitude towards 
modelling examples (see sub-competency 5) will not be discussed here due to the 
limit of space. Metacognition was also neglected as it is unlikely that beginners will 
have many metacognitive modelling competencies. Additionally, during the analysis 
further competencies and aspects turned out to be relevant. These included basic 
mathematical skills (precondition for mathematizing) and understanding the text 
(precondition of understanding the situation).  Also some students merely guessed or 
gave up without carrying out any step of the modelling process. Based on these 
categories we wrote a description for each task to show in which areas mistakes 
occurred and a description for each student. Finally, case-comparing and case-
contrasting analyses were conducted and typologies were created. One tool to 
elucidate the results was the construction of ideal types (see Gerhardt 1990, p. 437). 
Overall, about 40 problems were developed and the data from 150 students between 
the ages of 11 and 16 was collected.  The sample group includes students of all 
grades and is large enough to justify the typology developed. Evaluation and analysis 
of the data is still in process. The study described is closely aligned to everyday 
practice in mathematics classrooms and may therefore be of interest and assistance to 
practising teachers. 
Selection and development of problems 
In this study under-defined tasks as well as over-specified have been chosen as 
beginner tasks for low achieving students. In view of the call for an increased 
emphasis on modelling in mathematics classrooms (see part 1) it seems important that 
the contexts of problems are as realistic and authentic as possible. However, the 
easier the problems are the more difficult it is to comply with the demands that they 
should be realistic. Therefore, compromises must be made. However, the 
compromises have to be appropriate taking into account the goal of acquiring 
modelling competencies. Here is an example for an over-specified task: 
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Alina would like to cycle to her grandma, who lives about 2 km away from her. On her 
way she pedals 220 times and cycles 150 – 170 m per minute. How long does it take her 
to get to her grandma?  

This problem has been developed for 11-year-old students. The context is a reality-
related situation possibly relating to their everyday life and the problem is useful 
from a pedagogical point of view. Students can easily understand the described 
situation and there is only one more quantity given than necessary. The aim of the 
task is to draw the students’ attention to the context and to teach them to differentiate 
between relevant and irrelevant information. An example for an under-defined task is 
the following mobile-task developed for students of the same age: 

“Hi, Mike. How are you? I’m on a ferry having lots of fun. Can we meet tomorrow 3 
pm? At the town hall? Yours Sarah” How long do you need to text this message? 

The context is also from an everyday situation that students are likely to have met and 
can therefore be easily understood by them. The calculation in some aspects can give 
a deeper insight into texting and therefore may be of interest to the students. 

RESULTS OF THE STUDY
To give an insight into the results we will have a closer look at two students, Mario 
and Hakan. Due to the length of the interviews only extracts are presented here. 
Following this, taking into account all data of all students, areas of difficulty for 
students are identified and a typology of student modellers is developed. Finally, 
criteria for the development of real world problems for mathematically weak students 
are suggested. 
Two case-examples 
Mario seems to have no problems in dealing with modelling tasks although he has 
never done any modelling before. In the following you see his solution of the bicycle-
task.

M: I just calculate 2000 m, divided by 150, I think. [calculates]  

M:  13, remainder 50. 

I:  What does that mean? 

M:  She needs about 13 minutes, I think, I think. 

I:  Why are you hesitating? 

M:  I don’t know, I don’t know, the 220 times are irritating me. 

I:  And if this information were not given? 

M:  It would be easier then. […] 

I:  How did you like the task? 

M:  It was good. 
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I:  Why? 

M:  It was easy. […] 

The text shows that Mario has no difficulties in identifying the relevant quantities and 
in setting up a real and a mathematical model. He finds a solution quickly and seems 
to know quite clearly what to do (sense of direction). Yet, he neither explains nor 
validates his calculation. The result is interpreted only because the interviewer asks 
for it. The additional quantity seems to make him feel uneasy. Nevertheless, Mario 
seems to like the task because he finds it easy. He has no problems with the mobile-
task either as the following quotation shows. 

M: I think, she needs 1 second for 2 letters. [counts] 

M: I think about 60 seconds. 

I: What did you do? 

M: I have calculated, that she needs for one, for two letters about a second and 
then I have put two letters together and then I have counted. […] 

I:  Do you like the task? 

M: Yes. 

I:  Why do you like it? 

M:  Because it is about a mobile. …And in our lessons we have never done 
anything with mobiles […] 

I:  Was the task unfamiliar to you? 

M:  Yes, we have never done such a task in lessons. 

I:  Was the task easy or difficult for you? 

M:  I found it easy, because I text very often and I need about 1 second for 2 
letters.

Again, Mario understands the context. He finds a model very quickly and calculates a 
solution in an appropriate way. He seems to know exactly what he is heading for and 
he interprets his solution. In contrast to the first tasks he gives reasons for his 
proceeding. Additionally, he is able to combine his personal experiences with the 
tasks. However, he does not validate his solution. His statement of interest this time 
relates to the context and not to the fact that he finds the task easy.
Mario’s dealing with the modelling tasks identifies Mario as a good modeller. 
Although there are some small deficits he has no problems in finding a solution. The 
situation is completely different for Hakan, who has enormous problems with the 
modelling tasks. Here we see how he deals with the bicycle-task.

I: Please tell me, what you are writing. 

H: How many kilometres she needs? 
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I:  Why are you writing: how many kilometres? […] In the task a different 
question is given. 

H:  Oh yes, how long does it take her to get to her? […] 220, the calculation is 
220 minus 150. 

I:  Why? 

H:  […] Minus 150 or 170. 

I:  Why do you want to calculate this? 

H:  Because we can find the result this way. […] 

I:  Why? 

H:  We can also calculate 150 plus 170. 

I:  Yes, you can calculate this, but do we get the answer by doing so? 

H:  Yes. 

I:  Do we get the time then how long it takes her? 

H:  Yes, she has to pedal 70 times. 

I:  Please think about it again. Which quantities do you need to calculate how 
long it takes her to get to her grandma. […] 

H:  Or 150, no, 170 minus 150. No. 

I:  What does 150 – 170 mean? 

H:  Whether she 170 und 100, about 170 and 150 pedal, pedal. […] 

H:  We can also calculate 2 times 170. […] 

I:  Do you like the task? 

H:  No. […] I haven’t understood what to do. […] 

I:  Was the task unfamiliar to you? 

H:  Yes […] We have never calculated such a task. 

Hakan does not seem to be able to distinguish between relevant and irrelevant 
quantities and so he is not able to set up a model and calculate a solution. He seems to 
have problems in understanding as well. At first, he does not read the question 
carefully, later it shows that the meaning of 150 – 170 m is not clear to him. He 
chooses numbers randomly, connecting them by any operator without reason.  He is 
not able to identify how to proceed and is therefore unable to justify any procedure he 
might undertake.  Reasons for this may be a lack of understanding of a mathematical 
term (150-170 m) or a lack of competency such as being unable to set up a 
mathematical model. Hakan seems to have enormous problems with the mobile-task
as well. 

H:  [reading the task, thinking] … This cannot be calculated. 
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I:  Do you think so? Why? 

H:  Because there are no calculations in it. 

I:  How long do you need to text one letter? 

H:  2 seconds. 

I:  Can you calculate now? 

H:  I guess, she needs about 6 minutes to text this message. […] 

I:  But if you say she needs 2 seconds for one letter: Can you calculate how 
long she needs? 

H: Yes, I could calculate then. [counts the letters] […]218. 

I:  What is the answer? 

H:  She needs 218 seconds. 

I:  Do you like the task? 

H:  Yes […] it was easier than number 1. 

At first, Hakan wants to give up, because he does not see what can be calculated. 
Although the interviewer informs him about the relevant quantity he does not use it at 
first. He tries to guess a result. When the interviewer intervenes again, he starts 
calculating and finally is able to give a result, however he makes mistakes in 
counting. This tasks again shows that he seem to have a lot of difficulties in setting 
up a model. Moreover, he does not validate his results and he does not give any 
reasons for his choice of procedure. He interprets his results only when asked. 
The two extracts of the interview show Hakan’s problems in dealing with modelling 
tasks. The most important issue seems to be that he has enormous problems in setting 
up a model even when he seems to more or less understand the situation. 
Looking at the solutions of all students, the bicycle problem seemed to be really 
difficult for most of them and therefore met with negative reactions. This may be due 
to the students not understanding the meaning of the two quantities “220 times” and 
“150-170 m”. Some students described the problem as not familiar and suggested 
leaving out the unnecessary details. The mobile-task did not seem to be as 
complicated as the bicycle-task and so was more popular with students with some 
being interested in the context. However, almost all students described the task as 
very unfamiliar, because no numbers were given. Quite a few students tried to solve 
the task by guessing. 
Areas of difficulty 
Altogether, the analysis of all students and all tasks showed the following areas of 
difficulty in the students’ attempts to solve the problems:  
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1. Understanding the situation: The most important reason for such problems were 
difficulties in understanding the text. Partly, students did not understand single terms 
of the text and partly they read too quickly to understand the situation.
2. Setting up a model: Many students had problems developing a model. Often, 
students were not able to extract the relevant quantities (see, for example, Hakan). 
Others recognized which bits of information were relevant, but were not able set up a 
model.  
3. Working within the mathematical model: Some problems could not be solved, 
because the students lacked the required elementary mathematical knowledge.  
4. Interpretation mistakes: The students succeeded in interpreting the results of easy 
tasks. However, they mainly interpreted results when demanded or prompted to do so 
by the interviewer. 
6. Validating: The study shows that students generally did not validate their results. 
7. Sense of direction: Some students seemed to calculate anything just to get a result 
without really knowing what to do.
8. Argumentation: Overall, it became clear, that many students were weak in 
providing justification for their method and answers. Some simply avoided this 
probably because they are not be used to doing this in mathematics.  Others seemed 
unable to provide such argumentation at all.   
9. Guessing: Some students try to solve a problem through simple and unfounded 
estimating.  
10. Giving up: Some students were quick to give up as soon as they had difficulty in 
proceeding with a problem.
The last two areas of difficulty were often easily overcome by motivational assistance 
from the interviewer. 
The students’ reactions to the problems 
The majority of the students reacted positively to most of the realistic problems 
because they were often a welcome change to the type of tasks they commonly meet 
in mathematics. However, whether or not they understood the problem seemed to 
have a big influence on how the students liked them (see Mario and Hakan). If 
students said something about the context, then the comments were mainly positive. 
Especially, those tasks in which the sense of the calculation was evident to them were 
regarded as positive. Contexts, in which the students were unable to imagine the 
situation, led to negative reactions. In addition, the presented problems often seemed 
to be too unfamiliar to the students because of either a lack or an excess of 
information provided in the problem. Overall, under-defined tasks seemed to be more 
unfamiliar to students than over-specified tasks.
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Types of modellers 
Case-comparing and case-contrasting analysis let to the following ideal student-types 
concerning problem solving methods for modelling: 
1. The good modeller figures out the answer to a modelling problem independently. 
This type of student is also interested in the problems (see, for example, Mario).
2. The unsure modeller needs assistance or a hint before he or she can solve a 
problem. Careless mistakes may appear in all areas. 
3. The weak modeller has deficits in all areas of modelling. He or she tends to reject 
modelling problems.  
4. The student who does not understand the context has trouble in understanding the 
formulated situation.
5. The situation-non-transformer: This student either cannot transform the given 
situation into a sensible calculation or he focuses merely on calculating by taking any 
numbers without being faithful to the meaning of the problem (see, for example, 
Hakan).
In the examined sample group, the unsure modeller and the situation-non-transformer 
could be reconstructed quite often. Weak and good modellers were found less 
frequently, but were nonetheless evident. The student who does not understand the 
context was very rare.
Criteria for the development of real world problems 
Criteria for the development of real world problems for weak students without 
experience in modelling can be set up based on the results of the study. These criteria 
form a complex network.  
The mathematical knowledge that is necessary to solve a problem should be analyzed 
carefully and should be adjusted according to the competency level of the students. 
The text of the real world problem should not be too complex to be understood by the 
students. Students seemed to be more comfortable with over-specified tasks than with 
under-defined tasks, maybe because they are more comfortable with discarding 
information than with estimating information. The problem should be written in a 
context that is familiar to students and so that they understand the purpose of the task. 

CONSEQUENCES
The most important result of the study is that low achieving students are in fact able 
to solve modelling problems: this ability was demonstrated by both good and the 
unsure modellers. The study shows quite clearly that the goals related to the 
integration of modelling into mathematics lessons  can be achieved for low achieving 
as well as for more capable students. 
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However, the study also identifies some of the problems some students have. The 
analysis of mistakes carried out here could inform diagnosis of students’ weaknesses 
during class and therefore make useful intervention possible.   
The study also identified criteria that should be considered when developing 
modelling problems for beginners and aspects that need to be considered when using 
such problems in class. As the understanding of the task seems to be the dominating 
criterion for students modelling tasks need to be chosen carefully to ensure 
accessibility for students so as to avoid an initial negative reaction. Additionally, 
students are more likely to be able to solve the problem if they understand the 
purpose of their calculation and if they can relate personally to the problem. 
Gradually tasks should be introduced that are more difficult in order to allow low 
achieving students in mathematics to make progress in modelling.   
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IN ELEMENTARY AND SECONDARY SCHOOL 
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This study examines 6th and 8th grade students’ mathematization processes as they 
worked on a mathematical modelling problem. We report on an analysis of the 
mathematization processes and developments of two groups of students, one 6th and 
one 8th grade, as they worked the problem, with special emphasis on the similarities 
and differences between the two groups. Results provide evidence that all students 
developed the necessary mathematical constructs and processes to actively engage 
and solve the problem through meaningful problem solving. Among the differences 
between the two groups, 8th grade students were involved in higher level of 
mathematical communication, projected and effectively employed higher order 
mathematical concepts and processes and reached better and more refined solutions.  

INTRODUCTION
In the present study we aim to study how students in elementary and secondary school 
work on modeling problems. According to our knowledge, so far only a limited number 
of research studies focused on students’ developments through their work on modeling 
problems in elementary school (English, 2006; Doerr & English, 2003). Findings from 
these studies indicated that students in elementary school can effectively work in 
modeling problems and therefore, researchers stressed that modeling problems should 
be included in elementary school’s mathematics. The present study aims to build on 
these prior findings, by tracing similarities and differences between two groups of 
elementary and secondary school students, while working on a modeling problem. The 
identification of these similarities and differences is expected to further contribute to 
the appropriate introduction of modeling problems in elementary and secondary school 
mathematics.

THEORETICAL FRAMEWORK 
An increasing number of mathematics education researchers have begun focusing 
their research efforts on mathematical modelling, especially at the school level. This
is evident in numerous research publications from groups of researchers in Australia 
(English, Galbraith and colleagues), Belgium (Verschaeffel and colleagues), 
Denmark (Niss, Blomhøj and colleagues), Germany (Blum, Kaiser and colleagues), 
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Netherlands (de Lange and colleagues) and the U.S. (Lesh, Schoenfeld and 
colleagues), among many others.  
A very promising idea, coming from Blum and Niss (1991) documented the 
importance of modeling as a problem solving activity. Blum and Niss (1991) reported 
that there is a strong need to implement worthwhile modelling experiences in the 
elementary and middle school years if teachers are to make mathematical modelling a 
successful way of problem solving for students. Recent research indicated that 
student work with modeling activities assisted students to build on their existing 
understandings, and to develop important mathematical ideas and processes that 
students normally would not meet in the traditional school curriculum (Zawojewski, 
Lesh, & English, 2003; Lesh & Sriraman, 2006). As students work in these activities, 
they engage in important mathematical processes such as describing, analyzing, 
coordinating, explaining, constructing, and reasoning critically as they mathematize 
objects, relations and patterns (Mousoulides, Pittalis & Christou, 2006). 
A number of researchers stressed the appropriateness of modeling activities for 
elementary and middle school students (English, 2006; Doerr & English, 2006). 
English and Watters (2005) reported that there was considerable evidence, in their 
research with young learners, that students’ mathematical ideas had improved after 
they worked in a sequence of modeling activities. Since students’ work in modeling 
activities is not narrowed only in working with ready made models, students need to 
construct models in a meaningful way for solving a real problem. This construction 
can lead to conceptual understanding and mathematization (Lesh & Doerr, 2003; 
Lesh & Sriraman, 2006). Doerr and English (2003) reported that modeling activities 
provide opportunities for elementary school students to explore quantitative 
relationships, analyze change, and identify, describe, and compare varying rates of 
change, as recommended in the Grades 3-5 algebra strand of the Principles and 
Standards for School Mathematics (NCTM, 2000). In addition, English (2003) 
pointed that elementary probability ideas emerging when young students linked the 
conditions and constrains of problems.  
Another important parameter is students’ use of their informal knowledge in solving 
modeling problems. Mousoulides and colleagues (2006) reported that students’ 
informal knowledge helped them relate to and identify the important problem 
information (e.g., understanding and interpreting the conditions for the solution of a 
problem). The interplay helped students in finding solutions for the assigned 
problems and refining solutions accordingly to meet the necessary real world 
restrictions and criteria (Doerr & English, 2003; Zawojewski, et al., 2003).
As a concluding point, modeling activities provide a pathway in understanding how 
students approach a mathematical task and how their ideas develop; these activities 
appear to provide a strong basis for teachers to interact with students in ways that 
would promote their learning (Kaiser & Sriraman, 2006; Doerr & English, 2006). The 
latter is among the core aims of mathematics education. 
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THE PRESENT STUDY
The Purpose of the Study 
The aim of the present study is to explore the similarities and differences between 
elementary and secondary school students, while they work on an authentic modeling 
problem. To this end, it is expected from both groups of students to work with 
authentic mathematical problems, using their prior mathematical knowledge to 
investigate, make sense and understand these problems. In other words, in the focus 
of the present study is the tracing of the aforementioned similarities and differences 
in an attempt to explain why these similarities and differences might appear and to 
explore possible reasons for that. The results of the study are expected to contribute 
to current research in the area of introducing modeling as an appropriate and 
successful approach in mathematical problem solving for elementary and secondary 
school students.

Participants and Modeling Activities 
Thirty seven students (22 females and 15 males) from two intact 6th and 8th grade 
classes in two urban schools in Cyprus participated in one modeling activity, 
presented below. All students had little experience in solving problems in a 
mathematical modeling context, since both classes are participating in a larger project 
on the effectiveness of mathematical modeling in problem solving.   
For the purposes of this study, student work on one modeling activity will be 
presented, namely the “The Best City” activity. The activity is a modified version of 
one activity derived from a list found in Lesh and Doerr (2003). The purpose of the 
activity was to provide opportunities for students to organize and explore data, to use 
statistical reasoning and to develop appropriate models for solving the problem. 
Additionally, the activity provided a setting for students to focus and work with the 
notions of ranking, selecting, aggregating ranked quantities and weighting ranks.
The application of the “The Best City” activity (see Figure 1) followed three stages: 
(a) the warm-up stage in which students read an article with the purpose to familiarize 
themselves with the context of the modeling activity and to answer readiness 
questions through a whole class discussion, (b) the modeling stage in which students 
were engaged in constructing models to solve the activity, and (c) the presentation 
and discussion stage in which students presented their solutions and reflect on other 
student solutions.
Procedure
The students spent around 160 minutes (four 40 minute sessions) in completing the 
modeling activity. The activity started with a whole class discussion on the warm-up 
task and readiness questions on the related article (this stage lasted around 20 minutes 
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for both groups of students). The second part of the modeling activity was the 
modeling stage. During this stage, which lasted around 80-90 minutes (for both 
groups), students worked in groups of three or four to provide solutions for the 
activity. After completing their work, each group presented its solutions to the rest of 
the class for questioning, comparing with others’ solutions and constructive feedback. 
Finally, a whole class discussion focused on the key mathematical ideas and 
processes that were developed during the modeling activity. This last stage of the 
activity, namely the presentation and discussion stage lasted around 45 minutes for 
the 6th grade group and around 60 minutes for the 8th grade group of students.

Data Sources and Analysis 
The data for this study were collected through (a) videotapes of students’ responses 
during whole class discussions, (b) audiotapes of students’ work in their groups, (c) 
students’ worksheets and final reports detailing the processes used in developing 
models and solutions, and (d) researchers’ field notes. Videotapes and audiotapes 
were analyzed using interpretative techniques (Miles & Huberman, 1994), for 
evidence of students’ mathematical developments towards the mathematical concepts 
appeared in the modeling activity. The analysis of the data was completed in several 
steps. First, all transcripts were reviewed by two researchers to identify the ways in 
which students interpreted and understood the problem, their approaches to selecting, 
categorizing, and aggregating the different factors, and their mathematization 
processes as they quantified factors, transformed factors, such as the next year’s 
budget, and combined factors for creating “super factors” for kids and adults (see 
transcripts in results session). Second, all of the students written products in their 
worksheets were analyzed to identify and compare the mathematization processes 
used in their model development to obtain solutions to the problem and to compare 
solutions among the two groups (6th and 8th grade) of students.
Due to space limitations, we mainly present the results of one group of students in 
each grade, as they worked on the modeling stage of “The Best City” activity. Each 
group of students in each grade was selected on the basis of their provided solutions 
and their whole work. We have to report here that the selected groups were 
representative of the two classes, in a way that other groups in their classes reported 
similar work on the provided problem.   
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Use the data in the table below to find the best city, Anastasia can live in. When you reach 
an answer, write a letter, explaining and documenting your results, to Anastasia.  

Parks Nursery
Schools

Schools Cinemas Restaurants Shops Road
quality
(%)

Next
year
budget*

Lakecity 2 2 7 1 3 23 45.5 Same 

Relaxcity 3 1 4 3 12 16 36.8 More

Safecity 2 4 5 4 4 26 57.2 Less

Dreamcity 0 5 10 0 6 12 19.7 Less

Nicecity 3 2 8 2 5 20 25.8 Less

Livecity 4 3 7 3 8 15 76.2 More

* Next year’s budget is compared to this year’s budget.  

Figure 1. The Modeling Stage in “The Best City” activity. 

RESULTS
The results of the study are presented as follows: First, consideration is given to a 
“microlevel analysis” of the developments displayed by each group of students in 
working with the modeling activity. Following, this fine-grained microlevel analysis, 
a “macrolevel analysis” of the mathematization processes displayed by both groups 
of students is presented, to obtain possible similarities and differences between the 
different grade groups.

Microlevel analysis 

Identifying and clarifying factors 
Both groups commenced the question for finding the best place Anastasia could move 
on, by brainstorming on the factors presented in the table (see Figure 1), questioning 
the meaning and importance of these factors. In 6th grade group, a student pointed that 
parks and cinemas are important for a person: “Dreamcity neither has parks nor cinemas. 
I think that Dreamcity is the worst place for Anastasia”. Similarly, students in 8th grade 
group reported that Dreamcity was the worst place for Anastasia, since: “No cinemas, 
no parks, few shops and bad roads”. On the contrary, while 6th grade students did not 
discuss the meaning of increased or decreased next year budget, there was a long 
debate among 8th grade students to clarify what is the meaning of this factor, and 
most importantly, how this factor is related with other factors and most importantly 
how budget can influence other factors: “Look at Relaxcity. There are few parks but only 
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one nursery school … this could change, since Relaxcity’s next year budget will increase 
[…] People there can use these money to improve city’s facilities”.
A long discussion between the members of the 8th grade group questioned the 
representativeness of their ideas and solutions, related to the importance of certain 
factors. One girl pointer out that “having parks is it not important for me…having shops 
and cinemas is more important”. The same girl highlighted that Anastasia was a college 
graduate and therefore “many schools and nursery schools are not as important for her as 
shops, restaurants and cinemas”.

Beginning mathematization 
After their first impressions, one student in the 6th grade group suggested that the 
group should focus on comparing two cities at each time. In doing so, students 
compared one factor every time to find out which city was “better” than the other 
one. “Dreamcity has more restaurants than Safecity. Its streets are, also, better than 
Safecity’s”. There were also attempts to compare more than two cities: “Livecity has 
more parks than all other cities and the road quality in Livecity is much better than 
road quality in other cities”.
On the other hand, students in 8th grade group presented more sophisticated ideas, 
such as “Adding horizontally the numbers for each city” and “finding the number of 
buildings and facilities in each city”. In doing so, students made simple calculations and 
compare their results: “Let’s sum the total number of buildings and facilities for each 
city. This is a way to find which city is the best one for Anastasia”. It has to be 
reported here that students attempted to take into consideration road quality and budget 
factors: “Safecity’s budget will be decreased next year and look at its roads. Quality is 
only 25%. Road quality can not improve, since they will not have more money to 
spend on it”. 

Working with factors 
As seen above, 8th grade students started mathematization earlier than 6th grade 
students. However, it was clear that both groups of students experienced difficulties 
in their efforts to work with factors such as next year’s budget and the quality of 
roads and to combine these factors with other factors. At a later stage, one 6th grade 
student reported in his worksheet: “We added the buildings in each city. Budget is an 
important factor. It means what they will do next year. We decided to keep this factor by 
itself, since we could not add it with buildings and roads”. Similarly, 6th grade students 
kept the road quality factor as it was, but in their discussions they referred to road 
quality by reporting that “Dreamcity has bad quality of roads and Livevity has good 
quality of roads”.
A number of differences appeared in 8th grade group’s discussion. As the group 
discussed the meaning of budget and tried to summarize the number of buildings in 
each city, their next attempts focused on trying to recode the road quality data. 
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Students categorized road quality as “above average”, “average” and “below 
average”. This was helpful in transforming the different numbers into three categories 
and therefore in making use of this factor, in contrast with 6th grade students. More 
specifically, they added 15 points to the total number of buildings if city’s road 
average was above average (>60%), 10 points to average cities (from 40% to 60%) 
and 5 points to below average cities (<40%).
An interesting strategy was presented by 6th grade students after the first presentation 
of their solutions to the whole class. Instead of finding the total number of buildings 
for each city, they grouped factors as those being important for young people and 
those that are more important for adults. Therefore, factors like cinemas, restaurants 
and shops were categorized as “adult factors”.

Macrolevel analysis of mathematization processes 
In this level of analysis, we primarily focus on the mathematization processes 
projected by both groups of students, during their work on the modeling activity.  

Categorizing and Merging factors 
As reported in more detail above, b oth groups of students categorized factors as 
either related to buildings (schools, restaurants), facilities (parks, roads) and budget.
Of importance is the sub categories reported by the 6th grade group, who assigned 
labels as “buildings/facilities for children and teenagers and for adults”.
The approach presented by 6th grade students suggested that: “We need to find a way 
to merge all these columns (referring to the table). My idea is to sum the first 3 
columns for each city and then the last 3 columns. If we use this method we will have 
2 factors; the first will refer to children/teenagers and the second one to adults”. This 
idea was adopted and students were able to refine their prior solutions, since: “the 
second factor is more important for Anastasia; she is probably single and she does not 
have children”. 
An interesting strategy was presented in 8th grade group’s discussion. They 
transformed, for example, the existing number of parks to numbers from 1-6, by 
assigning 1 to the city with the maximum number or parks, 2 to the second city and 6 
to the city with the least number of parks. Accordingly, they assigned numbers from 
1-6 for each factor, except for next year’s budget. Students continued, by adding 
these numbers to obtain a general factor. They clearly stated that: “the best city is the 
one with the minimum number”. When students were encouraged to also include next 
year’s budget, one student reported that: “Our solution would be much better, but this 
is not easy. How can we change this qualitative information (more, less, same) into 
numbers”? A second student added that it was not the case to add some points for 
cities with increased budget and subtract from cities with decreased budget, because 
“more” for one city’s budget is not necessarily the same like “more” for another 
city’s budget.
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Aggregating and Ranking factors 
In ranking the factors, 8th grade students first applied a point multiplication system, 
which was changed two times during student work in the modeling problem. The first 
system that was applied in an attempt to rank the different factors was to multiply 
each factor by a number from 1 to 8 (since they had to consider eight factors). The 
most important factor was multiplied by 8, the second most important by 7 etc. At a 
second attempt, students decided to “group” factors in terms of their importance. As a 
result, students grouped the eight factors in three groups and assigned a system 
similar to previous one, multiplying by 1, 2, and 3, considering the importance of 
each factor. More specifically, in this “cycle” of possible solutions, they multiplied 
by 3 the “building group”, by 2 the “facilities group” and by 1 the budget.
On the contrary, 6th grade students ranked the different factors only in a qualitative 
manner; they considered some factors being more important than others, but that 
distinction was done only in a qualitative way. For example, one student from the 6th

grade group wrote: “Livecity is a better place than Dreamcity. Livecity might have fewer 
nursery schools, schools and shops than Dreamcity, but these things are not so important. 
Budget is important, Livecity’s budget will increase and Dreamcity’s will decrease”.

DISCUSSION AND CONCLUDING POINTS 
There is a number of aspects of this study that have particular significance for the use 
of modeling in mathematical problem solving in elementary and secondary school 
mathematics. First, primary and lower secondary school students can successfully 
participate and satisfactorily solve mathematical modeling problems when presented 
as meaningful, real-world case studies. As presented earlier, the activity did not 
narrow students’ freedom and autonomy to approach and analyze the problem taking 
into account their prior and informal knowledge. Modeling problems, like the one 
used in this study, enable different trajectories of learning, with students’ 
mathematical understandings developing along multiple pathways. Students present 
different trajectories of learning and because modeling problems can be solved at 
different levels of sophistication, students can use a diversity of solution approaches; 
as a result, students of different achievement level can contribute to, and benefit from, 
the learning experiences these modeling activities offer.  
A second aspect of the study is located in the similarities between the two groups of 
students as they worked in the modeling activity. Students’ work in both groups was 
impressive; they analyzed the problem using different viewing angles, set and test 
hypotheses, evaluate, modify and refine their models and solutions. Quite important 
was students’ engagement in self evaluation; both groups were constantly questioning 
the validity of their solutions, and wondering about the representativeness of their 
models.  
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The third significant aspect lies in the differences between 6th and 8th grade students 
in using and sharing their mathematical ideas and understandings. Although modeling 
problems are valuable because they provide a rich framework for developing and 
presenting students’ mathematical skills, only 8th grade students explicitly presented 
and communicated a number of mathematical concepts and processes, and effectively 
applied them in solving the problem. The 8th grade group sufficiently used weighting 
and aggregating data, ranking factors and assigning scores in subgroups of factors. 
On the contrary, although 6th grade students presented implicitly a number of 
mathematical processes, they did not manage to effectively apply them in solving the 
problem, but they partially use them without much success.  
Another difference between the work of the two groups of students was from the 
perspective of communication and assessment. Although in both groups, students 
adequately communicated their ideas and solutions, it was clear that in 8th grade 
group, students progressively assess and revise their current ways of thinking. As a 
result, by listening to and reflecting on their peers’ suggestions and models, they 
undertake constructive assessment. The latter helped students to reach better and 
more refined solutions. It is not the case that 6th grade students did not communicate 
sufficiently, but this communication was mainly focused on subsets of information 
and on discussions on single factors, and therefore was not productive in terms of 
refining and improving student models.   
In preparing students for being successful mathematical problem solvers, both for 
school mathematics as well as beyond school, teachers need to implement rich 
problem solving experiences starting from the elementary grades and continue to 
lower and higher elementary grades. Results from research work like this study that 
provide both teachers and curriculum designers with details on how students at 
different grade levels access higher order mathematical understandings and processes.  
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A META-PERSPECTIVE ON THE NATURE OF MODELLING 
AND THE ROLE OF MATHEMATICS

Irit Peled1

University of Haifa 
Abstract This is a theoretical paper, offering an analysis of some dimensions of
the process of fitting mathematical models to situations. The analysis looks at 
problem characteristics from a meta-perspective that involves determining the 
degree of decision making that is expected of the solver. It offers to classify 
problems by degree of explicitness of the mathematical model in the problem, 
and by problem type of context, i.e. scientific, social, etc. In the latter case 
problems are found to differ in the degree of freedom involved in fitting a 
mathematical model and in the role of this model, e.g. describing and predicting 
results in scientific contexts. The analysis counters traditional conceptions in 
social context, legitimizing alternative solutions not just on realistic grounds.
Theoretical background 
Changing goals (or not)  
In their review of (then existing) literature on modelling and related subjects 
such as problem solving, Blum and Niss (1991) discuss the change in arguments 
that were used to promote modelling and applications in mathematics curricula. 
Earlier arguments talked about the development of general problem solving 
strategies, critical thinking, and primarily on the use of modelling to increase 
motivation and develop richer concepts. Later arguments viewed modelling 
itself not merely among tactical devices to improve the situation for traditional 
mathematics instruction, but as an integral part of the discussion of 
mathematics education as a whole (ibid, p. 47). 
It remained, though, a difficult challenge to convince curriculum writers and 
teachers to change their perspectives. Since teachers viewed the construction of 
mathematical concepts as their ultimate goal, they could accept the 
implementation of modelling tasks as a tool but found it hard to accept 
modelling as a goal. 
These beliefs have not changed much since decade-ago studies. Although, 
mainly due to the Pisa study, teachers and curriculum writers are using more 
modelling tasks, many still do it more as a required "preparation" for Pisa than 
through new convictions or goals.  
According to comparative studies the situation is different in different countries. 
Thus, for example, Ikeda and Kaiser (2005) report that while teachers in the UK 
use modelling tasks more meaningfully, both German and Japanese teachers use 
                                          
1 This research was supported by the Israel Science Foundation (grant No. 59/06). 
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real world and modelling examples mainly for introducing, exercising and 
illustrating mathematical concepts rather than acquiring modelling skills. Even 
teachers who use modelling tasks and declare their belief in the importance of 
modelling, might, in fact, prefer simple tasks or view the process mainly as an 
application (Kaiser, 2006). Similar findings are reported by Boaler (2004) in 
observing teachers with identical explicit reform beliefs but a wide range of 
implicit beliefs. Boaler (ibid) describes Mr. Life as a prototype of a teacher who 
does believe in giving challenging problems and yet worries that children will 
have difficulty solving them as such, and therefore proceeds by giving hints and 
more guided instruction.  
Indeed, children, and as a matter of fact pre-service and in-service teachers as 
well, do find it difficult to solve inquiry type problems when encountering them 
at the first time. Possibly, one of the reasons for why there is such little change 
in teacher goals and attitudes towards modelling lies in the fact that it takes time 
for children to develop and exhibit modelling behavior and modelling habits. As 
can be observed in a three year study reported by English and Fox (2005), there 
was a big difference in the quality and nature of children modelling behavior 
between their third year and earlier years in the project. Observing such changes 
in children would probably be a necessary, though not sufficient, cause for 
triggering teacher change. 
As concluded in research on teacher beliefs about modelling (e.g. Schorr & 
Lesh, 2003; Kaiser, 2006), the situation calls for special efforts in teacher 
education of in-service and pre-service teachers in order to change teacher 
beliefs. In an answer to this call, this study suggests that we might start with a 
theoretical epistemological analysis of modelling. It proposes a meta-
perspective analysis leading to insights on the nature of modelling through an 
examination of the relationship between mathematical models and situations.   
Instructional goals and definitions 
In discussing the two instructional goals that are central to this work, 
constructing mathematical concepts and developing modeling skills, I will use 
the term mathematical model. Researchers use the word model in many 
different combinations and connections, resulting in similar terms that have 
different meanings. Therefore I will start by clarifying what I mean by 
mathematical models and add definitions of other types of related models to 
emphasize the difference.  
Mathematical concepts together with a variety of mathematical tools (e.g. 
graphs) will be called mathematical models. This term is used here in order to 
call attention to the role of mathematical concepts as organizing tools and to 
promote this perspective.  
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The construction of mathematical concepts that serve as mathematical models 
involves the use of didactical models, i.e. routes that are combinations of 
didactical objects and instructional trajectories as defined by Thompson (2002).  
Once an initial repertoire of mathematical models is constructed, they can be 
used to analyze situations and solve problems. These actions that include 
organization of situations and their mathematization with the help of 
mathematical models and tools define the modelling process. The engagement 
in such actions facilitates the development of modelling skills.  
The two goals, constructing mathematical models and developing modelling 
skills, are related and support each other. In order to analyze situations 
mathematically, some initial mathematical models and tools should be 
available. The child makes choices from her mathematical repertoire and 
sometimes integrates different mathematical concepts. In turn, this act of 
modelling contributes to the further development of meaning and integration of 
the concepts applied in this process.    
Still, there is also some tension between these two goals, especially when it 
comes to determining the nature of problems or tasks constructed to achieve 
them. On the one hand, when a specific concept is learned, tasks are designed 
with the purpose of demonstrating the use of this concept and therefore often 
consist of 'end of chapter' applications of that concept. There might even be 
some effort to teach a repertoire of examples that would serve as prototypes for 
using that concept. On the other hand, when the goal is to develop modelling 
skills, tasks have to provide the opportunity to choose among variety of 
mathematical models.  
The common desired problem solving activity for the first goal involves an 
almost automated application of a mathematical model. As described by Peled 
and Hershkovitz (2004), the application of a mathematical model might be 
carried out without much deliberation over the rationale for using this model. 
Such a behavior would not be considered a good habit for the purpose of 
developing modelling skills, i.e. good decision making processes that involve 
educated argumentation about mathematical choices.
Problem explicitness and mathematical decision making
It might seem quite trivial to offer a problem classification that would 
differentiate between traditional problems and modelling problems. Nesher 
(1980) noted long ago that traditional problems have only the essential 
information needed for solving them, and therefore have a sterile stereotypical 
nature.  However, while one might tell traditional problems from modelling 
problems by looking at the style of the narrative and on features mentioned 
earlier (everyday situations, inquiry, etc.), the purpose of this classification is to 
focus the attention on the following main issues: Does the problem give the 
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child an opportunity to go through a decision making process in choosing 
mathematical models and tools?  
Problems can range from being very explicit about the mathematical model that 
can be used to not giving any hint about it. On one end of the explicitness scale 
we have problems that explicitly say what mathematics to use and thus the 
solver has no say at all about it. In the following problem, for example, the 
solver is explicitly told to apply a mathematical model of ratio:

When the animal-lover, Mr. Henry, died he left 240 thousand dollars to be 
divided among two animal shelters using a 2:3 ratio between the amount that 
Cat Best Home gets and the amount that Dog House gets. How much money 
should each shelter get? 

On the other end of the scale we have problems that do not give any explicit 
clue as to the mathematics that could be used: 

Haifa (whole-week) film festival offers viewers a discount in the form of a 
fifth free ticket for every 4 paid tickets. Would it be worth my efforts (money-
wise) to convince a friend to buy tickets together? 

In between the two extremes there are problems with different degrees of 
explicitness. However, just as in discussions on the difficulty of a given 
problem (e.g. Hiebert et al., 1996), the degree of explicitness, too, depends on 
children's experience. For example, in the following problem the use of ratio 
and proportion is implicit. Still, in many cases students would have solved 
problems of this type, and thus they might recognize it immediately as a case of 
proportion: 

When I joined the party I could sit at a table where (taking myself into 
account) 3 pizzas were served to 7 friends, or a table with 4 pizzas and 9 
friends. Given that I love pizza, where should I have chosen to sit? 

Still, the above example can be said to be closer to the "very explicit" end of the 
scale. Other problems, such as many of the Pisa tasks, are closer to the Festival 
problem, but more explicit than it. Although these tasks require some 
understanding and organization of the situation, they often lead and expect the 
solver to use certain mathematical models. This is not surprising in view of the 
fact that Pisa tasks have to be scored.
That's how it is in real life and this is how you do it in math 
One of the more obvious features on which traditional problems, realistic tasks 
(Verschaffel, Greer, & De Corte, 2002), Pisa tasks or model-eliciting tasks 
(Lesh and Doerr, 2003) differ from each other is in the nature of introducing 
real life situations in the problems.  
Realistic problems introduce reality using a minimalistic narrative. They look 
very similar to traditional problems, and indeed, unless one (a child or a 
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teacher) undergoes some special instruction, one would often come up with an 
"automatic" solution as expected in standard problems. Taking, for example, the 
following item from Verschaffel, Greer and De Corte (2002), a chapter in which 
the authors review their own studies and others' replications on this subject: 
John's best time to run 100 meters is 17 seconds. How long will it take him to 
run 1 kilometer? 
Most students and teachers in these studies solve the problem by multiplying 
17x10, disregarding the probable fact that John cannot keep up his best speed 
for the entire kilometer. 
Following the introduction of these problems with my own students (including 
in-service and pre-service teachers), they would often react by saying: This
[taking fatigue into account] is how you do it in real life, but this [using 
automatic multiplicative structure] is how you do it in math. 
I have found this reaction to be indicative of some deep misunderstanding of the 
role of mathematics. Such an attitude can also be found in Koirala (1999) where 
teachers are given a problem in a much less traditional form. The problem deals 
with a situation where two shoppers buy 3 pairs of shoes altogether getting the 
cheapest pair for free, and have to decide how to split the cost. Teachers solved 
the problem by offering a variety of realistic solutions. However, the article's 
message (and title) seems to be that one should take care of not loosing the 
mathematics. The attitude is that these are possible realistic solutions, but there 
is only one best solution to the situation, namely, offering the same percent 
reduction to both shoppers.  
While math educators do not agree with teacher reactions towards a realistic 
solution in the runner's case and have tried to change them, the attitude towards 
realistic solutions in problems, such as the shoes case, where there is some 
expected good mathematical solution, are different. In the latter case realistic 
solutions are accepted with some understanding on the grounds that: that's how 
you behave in life, but are not considered as sound mathematical solutions.
In the following section I will argue against this conception in an effort to show 
that realistic solutions of this type deserve the same mathematical status as the 
expected mathematical solution. I will also develop an analysis that is geared 
towards understanding the role of mathematics in problems such as the runner's 
problem. 
 Context and degrees of freedom in modelling 
While in an earlier section I have dealt with the extent of telling solvers what 
math to use, this section intends to call our attention to situations where certain 
mathematical models are imposed creating an impression that such model fitting 
is engraved in stone. The ambivalent attitude towards realistic solutions 
evidently stems from such impositions. 

Working Group 13

CERME 5 (2007) 2144



As has long been claimed in problem solving literature, it is often easy to tell 
which mathematical model a curriculum writer believes should be used in a 
given problem simply by looking at the title of the chapter. Such 'end of chapter' 
problems can be found, for example, in a chapter on arithmetical average: 

The Grades Problem: Ms. Mollekula, the chemistry teacher, is preparing her 
students' grades for their report cards. She goes over Oren's grades in class 
exams during the last semester realizing that he got two 6-es, one 8, and four 
9-es. What will Oren's grade be? 

Similarly, in a chapter on ratio and proportion one might find a problem such 
as:

The Lottery Problem: Two friends, Anne and John, bought a $5 lottery ticket 
together. Anne paid $3 and John paid $2. Their ticket won $40. How should 
they split the winnings?

Apparently, the problem composer believes that the answer to the first problem 
should involve calculating a weighted average of the grades, and that the lottery 
ticket solution should involve splitting the winnings into two parts according to 
the purchasing ratio. In accordance with the previous discussion on teacher 
attitude, it is expected that other solutions might, in the best scenario, be 
accepted as good realistic solutions, but nevertheless not what the teacher and 
the textbook would accept as a relevant answer. 
However, it is this article's claim that both problem composer and teacher, who 
view these problems as having one ideal mathematical solution, are wrong. To 
establish this claim, another problem will be introduced: 

The Lemonade Stand Problem: During the Country Fair Abby and Bill put 
up a lemonade stand. Bill bought disposable cups for $5 and Abby bought 
some concentrated lemon-juice cans for $10. These were all their expenses. 
They sold lemonade for a total of $150. How should they split the money? 

The Lemonade problem would usually be solved by reimbursing expenses to 
each partner, i.e. $5 to Bill and $10 to Abby, and then splitting the remaining 
amount evenly between the two.  
Looking at the general problem situation, we can see that in both Lottery 
problem and Lemonade problem the two partners invested a certain amount of 
money. Yet, in the first case the common answer is proportional sharing of the 
winnings and in the second the profits are evenly split. 
The reason for this difference lies in a moral argument: In the lottery ticket case 
there is a hidden assumption that the partners should get the same amount of 
profit for each invested dollar. However, these partners could have reached 
another agreement, and it would not be less 'mathematically correct'. Similarly, 
the Lemonade stand partners could have viewed the expenses as an investment 
and could have decided to split the profits proportionally. In fact, when I gave 
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the Lemonade problem to my students immediately after the Lottery problem, 
most of them were influenced by this priming and solved it by using 
proportion…  
What is the nature of these problems that enables us such mathematical 
freedom? To answer this question the above problems will be compared with 
the following problem:  

The Mixture Problem: Having mixed 3 cans of yellow paint with 2 cans of 
blue paint, Ron got a nice shade of green. When he ran out of paint and 
needed 40 more cans to finish painting his fence, he wanted to get the same 
shade of green by mixing yellow and blue again. How many of the 40 cans 
should be yellow, and how many should be blue? 

The Mixture problem can be solved by applying a mathematical model of ratio 
and proportion. The rationale for this application lies in our knowledge about 
the way color mixing 'behaves'. The following points summarize some of the 
differences between the first three problems: Grades, Lottery and Lemonade 
and the Mixture problem: 

- The mixture problem describes a scientific phenomenon that could be 
observed and learned, while there is no phenomenon to observe in the 
first three problems. 

- In the mixture problem the solution can be viewed as an experimental 
prediction that can be tested by making the mixture. In the three problems 
there is no meaning to talking about 'a prediction'. 

- The first problems, present a social-moral situation where the participants 
can make any decision that fits with their values. The mathematical 
model 'comes into action' after such a decision has been made. Before 
that, it can only act as 'an idea', i.e. familiarity with existing mathematical 
models might influence the set of models from which the choice is made. 
Thus, the solver has quite a lot of freedom in fitting a mathematical 
model. 

- In the mixture problem there are, in the sense of this discussion (see 
reservations in the next comment), no degrees of freedom in choosing the 
mathematical model. It is the phenomenon that 'dictates' the mathematical 
structure.

- It should be noted that in a scientific case the observer might not have a 
good mathematical model available, or might go through a developmental 
cycle in fitting the mathematical model as described by Lesh and Harel 
(2003). In addition, the model fitting might depend on the 'experimental' 
conditions. For example, the behavior of the colors and hence the 
mathematical model might be different for large quantities.
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- Letting the textbook dictate the use of a specific mathematical model in 
problems such as the three social-moral problems, actually means that we 
let math determine life events rather than describe them. 

This analysis brings to mind Blum and Niss (1991) differentiation between 
normative models used for economic items such as taxes and cases involving 
value judgments, and between descriptive models used to describe physical 
phenomena. Indeed, different types of models should be used for these different 
types of contexts: a normative model for social-moral context and a descriptive 
model for a scientific context.  
Our analysis shows that these different types of models carry with them 
different constraints. While descriptive models are expected to best fit a 
phenomenon, normative models depend on social agreements. This difference 
results in different degrees of freedom in fitting a mathematical model in these 
two types of problem contexts. 
It should be noted that only two types of problems have been discussed here. 
However, similarly to having problems at different points on the explicitness 
scale, problems can also be found at different locations on a degree-of-freedom 
scale. For example, in Peled and Bassan-Cincenatus (2005) we give an example 
of a context which is more extreme than a scientific case, leaving no (zero) 
degrees of freedom. Further analysis will be done in a more extended paper. 
Coming back to Koirala's (1999) 2+1 shoe sale example, there is no justification 
in saying that one mathematical model fits the situation better than the other. 
There is no observed phenomenon, and the buyers can decide on their own 
criterion. One might discuss the rationale for the criterion, and prefer one 
rationale over the other, but this does not change the mathematically 
symmetrical status of the offered solutions. 
Concluding Remarks 
This paper has started establishing a tool for analyzing the nature of the 
modelling process from the perspective of explicitness of the mathematical 
model and the freedom one has in mathematizing the situation as a function of 
the type of context.
This offered classification can be used with teachers and curriculum writers for 
several purposes. For example, it can be used to evaluate the modelling 
challenge in given problems, and it can be used to discuss the meaning and the 
roles of mathematical models.  
The analysis of degree of explicitness is expected to increase teacher awareness 
of the (small) amount of challenge in problems. Existing text books, even in 
programs declaring themselves as adapting new trends, still offer a lot of 
traditional problems. These problems are sometimes disguised as reform 
problems by being more complex or using everyday context. The decision 
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making criterion should help reveal the actual amount of mathematical thinking 
that is left for the child. 
With the help of this classification, my graduate students, most of whom in-
service mathematics teachers, were asked to identify problems of different 
degree of explicitness. Using commonly used math textbooks, the students 
reported on finding mainly problems of very low degree of decision making, i.e. 
high degree of explicitness. 
The classification of problems by type of context is expected to change teacher 
attitude towards children's solution and increase both teacher and children 
understanding of the role of mathematics. For example, in the runner's case 
teachers and children are expected to view the role of mathematics as describing 
and predicting the observed phenomenon.  
Further analysis can benefit from looking at other fields and contexts where 
mathematics is being used. For example, in our work on proportional reasoning 
(Peled and Bassan-Cincenatus, 2005) we found Talmoodit laws that deal with 
inheritance and offer a mathematical model for money allocation that is not 
based on proportional sharing. We have also found a variety of other cases that 
look similar to problems that are solved using proportion and yet, using 
economics, operations research, or game theory models, alternative solutions 
are offered.
To summarize, this study offers a theoretical analysis of modelling which is 
relevant to researchers, curriculum writers, teachers and students. Going back to 
the need, stated in the introduction, to change teacher goals with regard to 
modelling, the basic assumption taken here is that this analysis would increase 
teacher awareness and facilitate teacher understanding of modelling. Dealing 
both with modelling and with the role of mathematics, it would result not only 
in goal change but also in a change of conceptions about modelling and about 
mathematics.  
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THE ROLE OF MATHEMATICAL KNOWLEDGE IN A 
PRACTICAL ACTIVITY: ENGINEERING PROJECTS AT 

UNIVERSITY LEVEL 
Avenilde Romo Vázquez 

Université Paris 7  –  Denis Diderot 
This paper deals with mathematics education in engineering School. In 
particular, we are interested in the role these mathematics play in the 
professional work of engineers. We have chosen to realize this study in  
Engineers Professional Institute in France. This Institute uses an educational 
model closely related to the industrial world. During their formation students 
are required to study a practical question. This activity intends to reproduce the 
industrial engineer working context. Therefore, our research is focused on these 
so-called « projects ». In this paper, we present the inquiring methodology and 
we give an idea of the first outcomes. 
The research problem 
What place should be given to mathematics in the engineers’ formation? Which 
contents should be approached in this formation and how should they be 
approached and articulated with other domains of the formation? 
These questions have already been asked and treated in different institutions.  
For example, Belhoste et al. (1994) who studied the formation given by the 
French Ecole Polytechnique between 1794-1994, have shown that the designing 
of mathematics syllabus recurrently gave rise to discussion.
One of these questions was to decide whether the most important mathematics 
domain to the engineering formation would be geometry or calculus. This point 
was clearly related with the most general debate, theory (general method) vs 
practice (application):

Pour Lagrange, l’analyse est une méthode générale qui s’applique à la géométrie 
et à la mécanique, et, sur ce point, il est en accord avec Monge. Mais pour Monge, 
ce sont les applications qui donnent la vérité de la méthode… » (Belhoste, 1994) 

Nowadays, these questions are modified by the technological development, 
technology taking an increasing place in the engineers’ work: 

Before the advent of computers, the working life of an engineer (especially in the 
early part of his or her career) would be dominated by actually doing structural 
calculations using pen-and-paper, and a large part of the civil engineering degree 
was therefore dedicated to giving students an understanding and fluency in a 
variety of calculational techniques. For the majority of engineers today, all such 
calculations will be done in practice using computer software. (Kent, 2005) 
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In other words, the development of powerful software changes the mathematical 
needs because this software encapsulates some of the usually taught 
mathematics. Mathematics may even appear to be useless to some engineers.
What is the importance and which role given to the mathematics educations in 
this new context? 
During last years, various researches concerning the nature and the role of the 
mathematical knowledge in the workplace have been realized (Noss et al., 2000; 
Kent & Noss, 2002; Magajna & Monagan, 2003; Kent et al. 2004). These
researches focused on mathematics and the engineers’ work is just a limited 
amount of those, but from them, we got an outline of the state of the art in this 
domain about the questions considered as crucial and the theoretical frameworks 
developed to approach them.
These works point out the existence of gaps between the educational programs 
and the real world in which the engineers work. For example, the institutional 
speech asserts that undergraduate engineers need a solid mathematical education, 
but the researches show that for graduate engineers mathematics is of little use 
in their professional work.

Once you’ve left university you don’t use the maths you learnt there, ‘squared’ or 
‘cubed’ is the most complex thing you do. For the vast majority of the engineers in 
this firm, an awful lot of the mathematics they were taught, I won’t say learnt, 
doesn’t surface again. (Kent and Noss, 2002) 

In the same way Prudhomme's research reference recognized the difference 
between mathematics education in the engineering school (or college) context 
and mathematics in a workplace context. According to Prudhomme (1999), this 
gap between educational and working contexts can be explained by the fact that 
in the first case mathematics follows a disciplinary logic: The knowledge and its 
use are built for a disciplinary aim, to answer a prescription of the teacher, 
without knowing if they really become means to resolve real problems because 
the solutions have been virtual. (Prudhomme, 1999). The workplace logic says 
that knowledge built in the first logic can’t be used in the second.
It appears that knowledge built in disciplinary logic is inappropriate for the 
working context. Noss and Al. (2000) have developed this point in a research 
focused on mathematics in workplace: 

From a mathematical point of view, efficiency is usually associated with a general 
method that can then be flexibly applied to a wide variety of problems. This is 
clearly not the case in the workplace. Even if a number of tasks could potentially 
be solved with a similar approach, practitioner prefer to use different approaches 
for each task, partly based on the resources at hand. The crucial point is that 
orientations such as generalisability and abstraction away from the workplace are 
not part of the mathematics with which practitioners work. 
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In our research we intend to contribute to the analysis of the observed gaps and 
to investigate the role that educational practices and technology play in these 
gaps. We especially study how one innovative practice in a French engineering 
Institute intends to articulate theoretical and practical knowledge. 
In this paper we mainly focus on an innovative practice, the so-called 
‘engineering projects’ and the methodology that we have implemented to 
observe it. In the same way we present some data obtained during the 
observation. The analysis of the obtained data is in process, but we think that the 
above mentioned analysis can be realized in the frame of the Anthropological 
Theory of Didactics (ATD) proposed by Chevallard (1999). In this paper we 
briefly justify our election.  
Institutional study 
In order to realize our study, we have chosen the Institut Universitaire 
Professionnalisé d’Evry. This Institute uses an educational model of practical 
education closely related to the industrial world. This educational model is very 
interesting for our work, because it is possible to study mathematics taught in an 
engineering school (college) and at the same time mathematics in use within the 
practical part of the formation which is closer to the industrial world.  
In the first part of our study, we realized an institutional study, for this we have 
used the Prudhomme’s classification, which he introduces in order to analyse 
the engineering college curricula. In this classification two types of knowledge 
are considered: purely scientific knowledge and technological knowledge. This 
last mentioned includes the knowledge related to the technique, in the 
theoretical or practical sense. For example, Robotics, Mechanics. 
Taking into account Martinand’s terms reference, Prudhomme organizes these 
types of knowledge as "disciplines of service" for the purely scientific 
knowledge and "disciplines of formation" for the technological knowledge. 
Hence mathematics is taught as a purely scientific domain and yet as a 
discipline of service, which will become operational in the disciplines of 
formation. 
In our research, we will specially focus in the disciplines of formation, not only 
in the mathematics as a discipline of service. In particular, we focus on an 
innovative practice, the so-called Projects, which intends to strongly connect the 
official educational universe of disciplines and the professional world of 
engineers.
The projects  
The projects are realized by a group of three or four students, very independent, 
respecting a didactical organization which tries to reflect the real organization in 
workplaces.
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The engineering projects are carried out by teams of students in their fourth 
year of engineering school, over five weeks. The subject of every project is open; 
there is no previous requirement established by client. The final production and 
the route towards it have to be built together in the same process.  Therefore 
students have to organize and plan their work, to look for solutions; this 
generally supposes that they adapt or develop their knowledge.

The projects are realized in two phases. After the first one the students write an 
intermediary report; in this report they describe the pre-project which is in 
general justified by a study of the subject. They present the technological 
solution they have chosen among those they have found during their exploratory 
work. In the second phase the pre-project must lead to a concrete product. 
In this kind of projects, the manager is a college teacher, who plays the role of a 
client who requests a product from a student’s group. All the terms and 
conditions of the project are described in the schedule of conditions (cahier des 
charges) which is negotiated between the client (teacher) and the distributor 
(students). The students are supposed to work on their own to come up to the 
client’s request.
The project is assessed from on a double point of view, combining workplace 
and engineering school requirements. The client must be convinced that the 
technological solution is the best. But this evaluation is also academic; the 
students present their work to a jury composed of college teachers. The jury 
evaluates the use of tools in relation whit knowledge taught in the engineering 
college. Moreover the students are often asked to justify some of their claims. 
Projets Observation methodology 
We have realized two observations of the projects. To realize the observation of 
projects, we used Dumping methodology. In the first phase of project (two 
weeks) we carried out questionnaires and semi-structured interviews with the 
students and the clients – tutors. After this phase, we collected institutional data, 
specifications (document), intermediary reports and documents used for the 
development of projects. This allowed us to get familiar with projects. 
For the second phase we chose only three projects, our aim to be able to realize 
a deeper and precise observation. To select these projects, we based on the 
intermediate reports following two criteria: 1) the presence of explicit 
mathematical knowledge and 2) the project domain such as aeronautics, 
mechanics, electronics, etc. 
In the third week of the project, we met with the students’ teams (three teams for 
three projects) for an interview about the intermediary report; the aim of this 
interview was to understand the project and to investigate on the role of the 
identified mathematical contents. We asked the students to do a brief exposition 
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of their project. The aim of this exposition was to identify the role that they 
were giving to the mathematical content expressed in their intermediary report. 
From this, we identified the work division inside the team, and we realized that 
only one student has the responsibility to develop the mathematical activity.
After these meetings, interviews were realized with each student individually. 
Some Data from projects observation 
In this part, we will present the data collected in the first and second observation 
in each one of their phases. As well the methodological tools used to obtain the 
data.
The data from the first and second observation are very different. We consider 
that this difference comes from the methodology we have employed. The first 
observation allowed us to assess the methodology; for the second observation 
the methodological changes allowed us to collect more interesting data.  
In the first place we’ll present the data obtained in the first phase of the projects, 
which in our research correspond to the identification of the mathematics used 
in an explicit way in the first part of the project. We’ll do it in a comparative 
way between the first and second observation; afterwards we show a 
classification of mathematics identified in this phase.  
Later on we’ll present the role of the computer software, strongly used in the 
second phase of the projects. With special attention to what we call 
‘intermediary element’. The reason of that name is because these kind of 
elements could be placed in element between the mathematical knowledge 
taught at College of Engineering and the one used in the practical activity 
(project).

First Phase 
In the first phase of the projects we identify the mathematics used in an explicit 
way. Here we present the data collected. In order to identify them we have done 
questionnaires and semi-structured interviews. 
Elementary Mathematics (First Observation) 
In these projects, mathematics is used in an explicit way, and is relatively 
elementary such as: functional relations, trigonometry and the application of 
formulae, calculations. We noticed this use of elementary mathematics in 
student’s answers to questionnaires and in the intermediary reports. Within this 
observation we did the first interview with 6 teams, the aim (or objective) was to 
know the possible use of mathematics. It was our first contact with students and 
projects.
Q1 There will be mathematics in the project?  
-mathematics, not, only of empirical formulae
- Calculations of resistance 
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Q2 what it is empirical formulae?  
-the empirical formulas it is those which one uses in practice
-where it is not necessary make the demonstrations 
-You learn how to use them with the experience  
- It is not necessary to understand them, you should only know-how,  
-and how it is applied 

After the interview, we choose 3 teams where the topics were diverse and to 
observe more than 3 teams was not possible. We did an analysis of intermediary 
reports within the Anthropological Theory. Other than to relate the techniques 
described by the students to task out of our field was not easy. 
Elementary mathematics and complexes mathematics (Second observation) 
In these projects, elementary mathematics is explicitly used but also some more 
complex mathematics such as: Differential Equations, transform of Fourier, 
elements of dimensional analysis, finite elements. In this observation we firstly 
met 16 student’s groups and we studied 16 intermediate reports. The students’ 
answers showed the complexes mathematics used in several projects. 

Type of knowledge, tools and skills Acquired experience in the class 
Software used Solidworks –CAO 

Ansys for structure calculations 
Calculations made Fluids Mechanics, vibrations, finite elements 
Use of formulae, graphics representation, 
geometrical representation 

Formulae, graphics, abacs, schemes 

Other mathematics (functions, linear 
algebra, differential equations, 
probability, statistics…) 

Functions, Differential Equations 

New knowledge for the next step Yes, documents provided by the tutor 
concerning new topics 

Useful university knowledge for the 
project

Mechanical Conception, RDM, vibration, 
Fluids Mechanics 

Also useful mathematics lessons for the 
project

No, Probability don’t seem useful at the 
moment 

A questionnaire was done in the first contact with the students. It was the same 
for the 16 teams and the questions were much more precise. After this 
questionnaire, we realized some semi-structured interviews based on 
questionnaire with some of the teams. 
In this observation, the intermediate report analysis allowed us to choose three 
teams of the second phase. We choose three projects of the same domain or field 
that was important to be able to understand better the projects and the role of the 
mathematics in these.
In the same way we identified explicit mathematics in the intermediary reports. 
For example, this extract is from the project: Design and realization of a system 

Working Group 13

CERME 5 (2007) 2155



of measurement for the blower. The differential equations are used in order to 
calculate the flexion of blade. This method of calculations is theorized in 
structural calculus, which is a discipline of formation. 

Where does mathematics used in the projects come from? 
In both observations, we observed that in certain subjects belonging to the 
sciences of the engineering field such as the Resistance of Materials, Mechanics 
or Electronics, there is a strong implication of mathematical elements which is 
not recognized as such by the students, because they use software that works for 
them. 
After the first observation we classified the different types of mathematics 
knowledge used in projects. 
Mathematical knowledge out of context it is the whole of school mathematical 
knowledge, i.e. knowledge which is given during the courses of mathematics. 
Mathematical knowledge in the context of the engineering sciences is
mathematical knowledge present in the constitution of engineering sciences, 
such as mechanics, dynamics, the structural analysis, the resistance of materials, 
etc.
The ‘meta-tool’ (Bissell, 2004) belongs to this kind of mathematical knowledge. 
This term refers to highly sophisticated tools from the mathematical models, 
used in the fields of electronics, telecommunications and control engineering.
Mathematical knowledge in the context of the engineering practice is that 
which is used in a systematic way. They are presented in the form of method, 
like a process recognized socially to solve specific tasks. 
Mathematical knowledge in the technological context is that which the use of 
software mobilizes i.e. mathematical knowledge necessary to uses software. 
In fact, we noticed that computer software like RDM (the Resistance of 
Materials), Solidworks, Catia and others, work on the basis of advanced and 
complex mathematics. These computers software play a fundamental role in the 
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project development, they allow users to realize calculations, simulations and 
mechanical systems designs. 
In second observation the computers software such as: Matlab, Ansys, Labview 
are used.
Uses of MatLab 
We identified the use of MatLab in the project: Development of a conveyor belt 
for the aerodynamic study of a light ultra vehicle. To study the aerodynamics’ 
phenomena of a vehicle, it is necessary to reproduce the real conditions. In this 
project the aim was to build a conveyor belt to reproduce the velocity floor. The 
group of students designed a conveyor belt as figure 3. The students use Matlab 
to simulate the system or one of their parts, in particular the simulink option. 
This option allows to manipulate a system (figure 4). 

                                       

Diagram

Figure 3 

 

Figure 4 

The diagram that appears inside figure 4 is a mathematical model. In this case 
the diagram models the electric motor of the system. This diagram comes from a 
discipline of formation: Course d’asservissements. This diagram could be an 
intermediary element between the mathematical knowledge taught at College of 
Engineering and the one used in the practical activity (project).
At this time, our work is in the process of analyzing the obtained data. To 
realize this data analysis according to an institutional study we have decided to 
use the Anthropological Theory of Didactics (ATD) proposed by Chevallard 
(1999). For this theory, the knowledge is considered like an emergent of 
institutionally located practices. The ATD proposes the praxeologies or 
disciplinary organisation as a tool that allows to model knowledge.  
This approach allows us to treat our questions in terms of relations between 
institutions and to characterize the relations that each one of these institutions 
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have with mathematics, across the notion of institutional relation. This notion 
allows us to describe and compare the way in which mathematics live in the 
different devices of formation with the help of the mathematical and didactical 
praxeologies notions. 
Conclusion
The project’s observations allow us to study a practical activity closer to 
professional world within scholar world.  
The data obtained show the complexity of the engineer’s practical activity. The 
projects are realized with high technical knowledge and those are a confluence
of knowledge and tools. With regard to mathematical knowledge, we noticed 
that there are several kind of mathematical knowledge:
1) mathematical knowledge out of context 
2) mathematical knowledge in context of the engineering sciences, included 
‘meta-tools’
3) mathematical knowledge in context of the engineering practice
4) mathematical knowledge in technological context 
In regard to our previous diagnosis, we need a deeper analysis to assume that the 
role of the different kinds of mathematical knowledge in the projects is 
technological in Chevallard’s sense, and the mathematical knowledge is the 
theoretical support of the projects. We stressed that we don’t considered the 
mathematical knowledge in the classical sense. 
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DERIVATIVES IN APPLICATIONS: 
HOW TO DESCRIBE STUDENTS’ UNDERSTANDING 
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University of Groningen, Netherlands 

The research described in this paper is part of a larger study, in which we will follow 
students for a period of three years (from grade 10 until grade 12) and describe the 
development of their understanding of derivatives in applications. A framework and 
instruments have been developed for this research. The framework is based on work 
by Zandieh (2000) and Kendal and Stacey (2003). We developed a framework that 
focuses on representations as part of understanding derivatives, but includes 
applications as well. To validate our framework a task-based interview has been 
administered to six students of different grades. The results show that our framework 
offers advantages in describing students’ strategies, but there are also some 
limitations.

INTRODUCTION
In the Dutch mathematics curriculum for secondary schools, the role of applications 
increased over the past 15 years. When the concept of the derivative is introduced to 
students in grades 10	12, most textbooks provide students with opportunities to learn 
the concept in different contexts. In grade 10, the first chapter on the rate of change 
often starts with a variety of contexts related to velocity, steepness of graphs and, for 
example, increasing or decreasing temperatures. Textbooks provide tasks on the 
average rate of change, average velocity and the slope of a secant line. The step 
towards instantaneous rate of change is kept intuitive, as most textbooks avoid the 
use of the formal limit definition, or only mention it on one page without using the 
notation with a ‘limit’. After this introduction the power rule is introduced. There are 
exercises with the power rule, but also applications about, for example, velocity of 
cars. In grades 11 and 12 many differentiation formulas are introduced, and most 
chapters on derivatives contain applications. The expectation of the curriculum 
designers was that this context-based approach provides students with a better 
understanding of the concept of the derivative and enables them to use their 
knowledge and skills flexibly in different settings. Aim of our research is to describe 
the evolution of students’ knowledge and skills in grades 10	12 within this context-
based learning environment. To measure this evolution an adequate framework and 
corresponding instruments were required. The main question of the research 
presented in this paper is: How can students’ understanding of the concept of the 
derivative in different applied contexts be described in a structured way? 
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THEORETICAL BACKGROUND 
Understanding the concept of the derivative 
The concept of the derivative is multi-faceted, and it is complex to determine to what 
extent a student understands the concept. Many publications on understanding 
concepts use words like scheme, structure, connections and relations. Hiebert and 
Carpenter (1992) describe understanding in terms of the way, in which information is 
represented and structured. The degree of understanding depends on the number and 
strengths of connections between facts, representations, procedures or ideas. A 
mathematical idea, procedure, or fact is understood thoroughly if it is linked to 
existing networks with stronger or a larger quantity of connections. Tall and Vinner 
(1981) used the term concept image for the ‘total cognitive structure that is associated 
with a concept’. Anderson and Kratwohl (2001) defined conceptual knowledge as the 
interrelationships between the basic elements within a larger structure that enable 
them to function together. Thus to describe students’ understanding of derivatives, we 
have to investigate which connections and relations between relevant concepts are 
made by the student. A better understanding might be reflected by more and better 
connections.  
Connections between representations 
Many researchers have emphasized, that not only the distinct types of representations 
are important, but that translations between these and transformations within these, 
are also important (Dreyfus, 1991). Zandieh (2000) developed a framework for 
analysing students’ understanding of the concept of the derivative. One of the 
components in her framework is the use of multiple representations. The five 
representations in Zandieh’s framework are: (a) symbolical, such as the limit of the 
difference quotient, (b) graphical, such as the slope of the tangent line, (c) verbal, 
such as the instantaneous rate of change, (d) paradigmatic physical, such as speed or 
velocity, and (e) other representations. Kendal and Stacey (2003) also emphasize the 
importance of analysing how students work with different mathematical 
representations. Central in their ‘derivative competency framework’ are the 
numerical, symbolical and graphical representations. Both frameworks highlight the 
importance of different mathematical representations, but in Zandieh’s framework 
translations between representations and non-mathematical applications cannot be 
visualized well (Roorda et al., 2006). 
In line with the above mentioned research we judged that we needed a framework in 
which translations between representations can be visualized (Roorda et al., 2006). 
In our framework three categories of representations are used: (a) symbolical, (b) 
graphical; (c) numerical. We rejected verbal ways of representation as a separate 
category, because it turned out to be redundant: a student can talk about derivatives 
from a formulae viewpoint (such as difference quotient, derivative), from a graphical 
viewpoint (slope, steepness), or from a numerical viewpoint (such as average 
increase, instantaneous rate of change).  
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Connections within representations 
As mentioned above, not only translations between representations are important but 
also transformations within one representation (Dreyfus, 1991). Zandieh’s framework 
uses three object-process layers. The three object-process layers are ratio, limit and 
function, as can be seen in the symbolic definition of the 

derivative
0

( ) ( )f'( ) lim
h

x h f xf x
h�

� 	
� ; f �  is a function whose value at any point is 

defined as the limit of a ratio. For each layer a student can mention these objects and 
processes. When a student knows how to use a certain object, but he or she does not 
know the underlying process, Zandieh speaks of pseudo–objects. An example of a 
pseudo-object is that a student knows the value of a limit, the end result of a process, 
without the recognition of the process that leads to that result. A difficulty is that 
many problems involving the concept of the derivative can be solved using only 
pseudo-object understandings (Zandieh, 2000).  
A requirement for our framework was to visualize transformations within a 
representation, and not only transformations, which are connected to the process – 
object pairs, but also transformations which are connected to pseudo-structural 
understanding. 
Connections between applications and mathematics 
In our country, the derivative and differentiation rules are part of the mathematics 
curriculum for secondary school students in grades 10	12 in the non-vocational 
streams (approx. 40% of all). Simultaneously with calculus, in the physics lessons 
there are tasks about velocity, acceleration or radioactive decay. In the chemistry 
lessons students learn how to calculate reaction rates, and during economics lessons 
students work on maximising profits, using marginal costs and marginal revenues. 
Many students have difficulties to transfer knowledge and skills between subjects. 
However, physics teachers frequently complain that students cannot use what they 
have learned in their mathematics classes (Basson, 2002). To cope with the transfer 
of knowledge, Zandieh (2000) included a column named physical into her 
framework. She argued that the context of motion serves as a model for the 
derivative. For example, ‘velocity’ is the derivative if the function is ‘displacement’, 
and ‘acceleration’ is the derivative if the function is ‘velocity’. Kendal and Stacey 
(2003) linked the physical representation to the numerical representation. Building 
further on these extensions, in the new framework for understanding the concept 
derivative we want to visualize the connections between applications and 
mathematics more explicitly than was done in previous frameworks. 
Framework 
In our framework we start from the three mathematical representations and we 
connect these to representations from other subjects: economics, chemistry and 
physics. In each representation there are four ‘layers’.  
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Figure 1: Three mathematical representations and different applications 

As mentioned before, understanding of the concept of the derivative is displayed 
through the quantity of connections and relations between procedures, facts, 
representations and applications. In our analysis, we will use arrows (as connectors) 
to visualize the connections in the scheme above. Arrows can exist between 
representations and within representations, because during the problem solving 
process a student may switch, for example, from a function (F1) to the derivative 
function (F4) to solve a problem. In figure 1 only one arrow between each application 
and the mathematical representation is drawn. However, in fact there are many 
arrows. If a student for example in a economics problem, focuses on the graph, draws 
a tangent line, and calculates the slope which he then interprets in terms of the 
original economical context we will denote this as E1�G1�G3�E3. 
When a student only mentions a strategy without executing it, we will apply a star. 
For example, “I think I can use a tangent line” is denoted as G3*.  

METHODOLOGICAL DESIGN 
The framework was used to design tasks and questions for students. In the fall of 
2005, task-based interviews were carried out with six students, (two grade-10, two 
grade-11, and two grade-12 students), each interview taking 60 minutes. The 
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interviews were videotaped and transcribed. We used our framework to analyse the 
work of these students with the aim to evaluate its usefulness.  
In this paper we will report on two tasks, named Emptying a Barrel and Tickertape. 
These tasks were selected because of their similarity from a mathematical point of 
view, in particular task 1 and task 2b.  
 
Task 1: Emptying a barrel: A barrel is emptied 
through a hole in the bottom. For the volume of 
the liquid in the barrel you can deduct a formula 
by using Torricelli’s law. The formula is 

21
6010(2 )� 	V

Figure 2: A barrel with a hole

t . In this task a graph is also given.  
The question is to calculate the highest out-flow 
velocity.  
In terms of our framework the task contains a 
general situation (S1), a graphical (G1) and a 
symbolical model (F1). 
 
Task 2 Tickertape: This task is about a small car, 
which is pulled by a falling weight. A person 
used tickertape to make a time-distance table for 
this car. The resulting table is given in the task. 
In the table the distance is given with increments 
of 0,08 second. In addition, a graph of these 
measurements is given, together with a formula 
for the distance as a function of time ( 2100s t� ).  
The first question is to calculate the average 
velocity (task 2a); the second question is to 
calculate the velocity at  (task 2b). 0,6t �

Figure 3: Tickertape

This is a physics task (Pa1), which includes a graphical (G1), a numerical (N1) and a 
symbolical (F1) representation. 

RESULTS
In this section, the analysis of students’ strategies in terms of our framework are 
presented. For the two presented tasks we describe the strategy and the observed 
transitions made by the students. The three most interesting cases (Hans, Edward and 
Jill) are discussed.  
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Hans’ strategies: In task 1 Hans calculated immediately the derivative 

1
602( )

3
	� � 	

tV t   

Hans:  This [points at the derivative] is the out-flow velocity. If this number 
[points at t] increases, this number [points at the formula] will decrease, so 
in the beginning he’s going fastest. And you can see it from the graph, too. 

Interviewer: Why? 

Hans: Because the graph is steeper here [points at the first part of the graph] than 
here [points at the last part]. 

As we observe, Hans used the graph only superficially (G1�G2*). By substituting 
t=0 into the derivative he found the out-flow velocity (in our analysis: 
S1�F1�F4�F3�S3). When asked to double-check his answer, he calculated the 
volume at t=0 and t=1 (S1�F1�N1�N2�S2). Hans did not mention a limiting 
process to get a more accurate answer, nor did he use options of the graphic 
calculator to find the slope of the tangent line.  
In task 2a Hans first calculated s(1,20), the distance after 1,2 seconds. Then, the 
average velocity is 144/1,2 =120 cm/s. When asked to double-check his answer, he 
turned to formulas from his Physics lessons and calculated the acceleration using 

. The formula  with t = 1,2 gave him the velocity at the end of the 
tickertape. This number is divided by 2, to obtain the average velocity. 
F m a� � � �v a t

In task 2b the formula  gives him the velocity at � �v a t 0,6t � . On his paper 
however, he made a small error by writing 1,76 m/s instead of 1,176 m/s (figure 4). 

 

 

Figure 4: Selection of Hans’ work 

When asked to double-check his answer through another calculation method, Hans 
used again an argumentation from Physics, calculating the average velocity on the 
interval  and then multiplying this number by two. This method yields a 
correct answer because of the uniformly accelerated movement. Hans was confused 
because of the difference between the two answers. When the interviewer asked “If
you had money which answer would you bet on?”, Hans choose the first one. So his 
strategy was entirely physical. Hans’ work can be displayed as Pb4�Pb1�Pb2 and 
Pa2�Pb3 with his use of physical formulas. He ignored the graph and the table 
totally. Although the interviewer frequently offered him opportunities, he did not talk 
about derivatives at all. Summarizing Hans’ activities: he often used formulas, but 

[0; 0,6]
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rarely used his graphic calculator. Hans could easily switch between representations. 
We were surprised that, in the second exercise about the speed of a car he hardly used 
the formula and did not use the graph at all. 
Edward’s strategies: In task 1 Edward differentiated V and substituted 0t �  
(S1�F1�F4�F3�S3). He double-checked his answer by drawing a tangent line on 
his graphic calculator and he read off the slope (S1�F1�G1�G3�S3). 
In task 2a an interesting strategy 
appeared. To calculate the average 
velocity, Edward first differentiated 

2100s t�  and then found the average 
velocity by the physical formula 

1

2
v vv �

� 2  (figure 5). When asked to 

check, Edward hesitated for 2,5 
minutes and in the end he said “I don’t 
see a shorter way”. 

Figure 5: Selection of Edward’s work 

Task 2b is solved in the same way as task 1: (0,60)s�  for the velocity at , and 
Edwards denoted this as v(0,60) (Pa1�F1�F4�Pa4�Pa3). He double-checked by 
drawing a tangent line, which is an option of his graphic calculator 
(Pa1�F1�G1�G3�Pa3). Edward again concluded that 120 cm/s is the correct 
answer, because the velocity halfway equals the average velocity. Summarizing 
Edwards activities: In task 1 en 2b Edward immediately differentiated the given 
formula. In both tasks he checked his answers with the graphical calculator, which 
has an option ‘Tangent’. He ignored the table in task 2, and the table-options in his 
calculator. Although Edward is using mathematical techniques in tasks 1 and 2b, in 
task 2a, on the average velocity, he only mentions physical formulas. 

0,60t �

Jill’s strategies: In task 1 Jill calculated immediately the derivative, and substituted 
. (S1�F1�F4�F3�S3). She made an error, instead of multiplying 0t � 1

6040 � 	 , she 
is subtracting, and her answer is 59

6039	 . She wonders if this is the right answer.  

Jill:  this means that the velocity at the start is fast……. 

Interviewer:  why do you have doubts about your answer? 

Jill:  Because it seems to be wrong, but perhaps the tangent is indeed nearly 
vertical…[….] 

Interviewer: Do you know another strategy or can you double-check your answer? 

Jill: ehm…..I only know differentiation, because how much it decreases, is the 
tangent and you calculate that by differentiation…no I don’t know another 
strategy. 
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Then Jill detected her error. After her correction ( 32
3 m / min	 ) the interviewer 

recalled the reasoning about the tangent. Jill is arguing that 59
6039	  could have been 

the right answer, because the time is in minutes and at 0t �  the tangent can be nearly 
vertical for a second. The interviewer asked for the last time: 

Interviewer:  Can you check if your answer ( 32
3 m / min	 ) is correct? 

Jill:  [thinking]..perhaps I can use half-life (has to do with radio-active decay), 
something from Physics…I don’t know….perhaps I have to rewrite the 
formula …..no I don’t know. 

In her argumentations Jill thought about the tangent, and also about the change of the 
volume in the barrel during one second. In our framework we describe this as 
S1�G1�G3* (a graphical argument, without a calculation), and 
S1�G1�N2*�G3* (a numerical/graphical argument without a calculation). 

Task 2a was solved straightforwardly by Jill, using the table (Pa1�N1�N2�Pa2). 

In task 2b Jill first tried to work with the formula 21
2s at� . The formula presented in 

the task is 2100s t� . Jill concluded that 50a �  (an error because 
1
2 100 200a a� � � ). Then she calculated the velocity with v a t� � , but of course the 
wrong acceleration results in a wrong answer. To double-check she said “the velocity 
is de derivative of this function ( 2100s t� ), so 200v t� ” (Pa1�F1�F4�Pa4). Jill 
was confused and chose her first answer to be the correct one. Summarizing, Jill 
heavily relied on the symbolical representations. She knew that one can calculate the 
‘tangent’(she is not talking about slope) with a derivative. But even when she is not 
sure about her answers she didn’t use any kind of graphical of numerical calculations 
to double-check her (wrong) answers.  
As a result we present the connections of these three students in terms of our 
framework by an ‘arrow-scheme’. For example, we can compare task 1 and task 2b 
which are equivalent from a mathematical viewpoint. 

Hans: Task 1: G1�G2*, S1�F1�F4�F3�S3; S1�F1�N1�N2�S2;  
Task 2b: Pb4�Pb1�Pb2 , Pa2�Pb3. 

Edward: Task 1: S1�F1�F4�F3�S3;  S1�F1�G1�G3�S3;   
Task 2b: Pa1�F1�F4�Pa4�Pa3, Pa1�F1�G1�G3�Pa3. 

Jill: Task 1: S1�F1�F4�F3�S3; S1�G1�G3*; S1�G1�N2*�G3*;  
Task 2b: Pa1�F1�F4�Pa4 

CONCLUSIONS
In her doctoral dissertation Zandieh (1997) stated that 

“As a student solves a problem involving the concept of derivative, the student makes 
choices about what context or representation will be helpful in solving the problem. The 
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student also makes decisions to work with the derivative as a function or at a point, and a 
student may use a difference quotient to estimate a derivative value. In these ways a 
students’ concept of derivative is observable through his or her problem solving choices”. 
(p. 219) 

With our framework we tried to analyse students’ concept of the derivative by 
looking at the strategies to solve application problems. The framework presented in 
figure 1 and the resulting arrow-schemes describe the strategies in a structured way 
by indicating patterns between cells. This facilitates the interpretation of students’ 
statements and operations. Our framework also gives a clear description of transitions 
between applications and mathematical representations which students make during 
problem solving. These transitions are an important feature of understanding 
derivatives (Dreyfus, 1991). 
The arrow-schemes can, for example, be used to compare students. The three students 
all went along the arrow-scheme F1�F4�F3, using the derivative. Task 2b led to 
different strategies; for example Hans is only using knowledge he learned in physics, 
ignoring completely the graph and the table in this task. Another way of looking at 
the arrow-schemes is to compare tasks. Task 1 and 2b are similar from a 
mathematical point of view. Edwards’ strategies to solve these two tasks look very 
similar. In both tasks he prefers to differentiate the formula (F1�F4), and check his 
answer by drawing tangents on his graphic calculator and reading off the slope of the 
tangent line (G1�G3). Hans treats the tasks in a totally different way. Jill uses 
derivatives in both tasks, however in the first task she mentions a graphical and a 
numerical argument, as well. 
Patterns in the arrow-schemes can be highlighted. For example, the arrow-schemes 
from Jill and Hans show their preference for working with the symbolical 
representation, because the arrow-schemes contain many ‘F’. Graphical or numerical 
arguments were scarce in their calculations. However, our arrow-schemes also reveal 
a limitation of our framework. Although Hans scarcely used a graphical or numerical 
calculation, we cannot conclude with certainty that this part of the framework is not 
part of his understanding of derivatives. We can only conclude that Hans did not 
apply graphical knowledge in these two application tasks; he might use it in other 
contexts.  
Our framework includes both frameworks discussed in this paper. The knowledge is 
visualized by arrows, and although all arrows look similar, they have different 
connotations. Some arrows correspond with process-object pairs, such as described in 
the framework of Zandieh (2000), for example the arrows F(n)�F(n+1). Other 
arrows show if the student can use a procedure, for example F1�F4. There are also 
arrows that show students’ abilities to switch between representations, for example 
F(n)�G(n). The framework also highlights important connections between 
mathematical representations and applications.  
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Although there are limitations in the framework presented in this paper, it enabled us 
to highlight major transitions in students’ thinking during a one hour task-based 
interview. Of course, we can only describe parts of their understanding, which were 
visible to the researcher. Nevertheless we can conclude that with our framework 
many aspects of understanding derivatives can be visualized in a structured way.  
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The functional algebraic modelling at Secondary level
Noemí Ruiz1, Marianna Bosch2, Josep Gascón3 

ABSTRACT:
We adopt the definition of algebraic modelling formulated by various authors in 
the Anthropological Theory of the Didactic as a basis to define functional-
algebraic modelling. We then analyse both the conditions needed to teach and 
learn this activity at the end of secondary level (16-18) and the constraints that 
hinder its development in the classroom. The analysis is supported by a teaching 
experimentation carried out in a “workshop of mathematics modelling” centred on 
the study of a business situation (how to make money by selling T-shirts?) using 
the symbolic calculator Wiris. The conclusions presented concern the difficulties 
originated by the modelling activity as well as those coming from the use of 
symbolic calculators as a normalised tool of the mathematical activity. 

1. INTRODUCTION 
At compulsory secondary school (12-16), letters generally only play the role of 
unknowns (in equations) or of variables (in functional language). They rarely act as 
parameters. And when they appear in formulas, for instance in geometry, statistics, 
etc., they only function as rules to carry out computations, a kind of shorthand of 
verbal expressions. They never appear as the result of algebraic work nor do they 
act as “algebraic models” in which unknowns and parameters are exchangeable. 
This absence on interplay between parameters and variables is one of the indicators 
of the pre-algebraic character of mathematics studied at secondary school (Bolea, 
Bosch, Gascón 2001) and can be related to the interpretation of elementary algebra 
as a generalized arithmetic which is dominant in school institutions (Gascón 1993, 
1999). Following Bolea et al. (2001), we consider that elementary algebra has to 
be introduced at school not as a delimited body of knowledge, but as a generic 
modelling tool. In this sense, it has to be used as a tool to: 
(a) Describe the relation between different types of problems or techniques; 
(b)  Formulate and approach questions related to the existence and uniqueness of 

the solution of a certain type of problems and the structure of the solutions set; 
(c)  Generalize the techniques used and the results obtained. 
In short, the proposal is to introduce elementary algebra not as an object of study in 
itself but as a tool to develop, enlarge and interconnect previously studied 
mathematical organisations-MO (with their types of tasks, techniques, technologies 
and theories), that is, to study them in depth. In this sense, algebra can be 
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considered as a tool of progressive mathematisation. Actually, the multiple 
transpositive constraints that hinder the process of algebrization and impede 
carrying out an algebraic modelling activity (Bolea, Bosch & Gascón 2004), can be 
considered as constraints to the process of school curriculum mathematisation.  
2. DEVELOPING THE ALGEBRAIC TOOL: THE FUNCTIONAL 
ALGEBRAIC MODELLING 
Despite the strong pre-algebraic character of school mathematics, it must be 
pointed out that the mathematical activity becomes fully algebrized from a certain 
educational level onwards. The development of the mathematical activity requires 
the complete functioning of the algebraic instrument, although it may remain 
implicit. For this reason we must assume the existence of a process of algebrization 
of school mathematics starting at primary school, continuing through compulsory 
secondary school and culminating at university. 
In this work we introduce the notion of functional-algebraic modelling as a 
development of the algebraic instrument, i.e. as a development of the instrument 
that allows enlarging the mathematical organisations which appear throughout 
secondary school, especially in the passage from compulsory school to college 
and, more particularly, in the relations between algebra and differential calculus. 
Thus functional-algebraic modelling allows: 

(a) Unifying certain types of problems thanks to models that can be formulated 
in terms of families of functions.  

(b) Using new mathematical techniques to answer questions that go beyond the 
calculation of a particular solution to a problem. 

(c) Proposing new types of problems involving the reciprocal incidence 
between the changes of variables that define the underlying modelled 
system as a family of curves. Questions related to the ratio of variation will 
appear, preparing for the introduction of the differential calculus.4  

Let’s not forget that the algebraic instrument stems from Pappos’ classical analysis 
which, according to Descartes, consists in the method to find the dependence 
between all the variables that intervene in a problem, leaving aside whether they 
take on a known or an unknown value. The development of this instrument leaded 
to establish a close relation between “geometric” and “algebraic” problems with 
the creation of analytical geometry. The fundamental principle of analytical 
geometry consists in the discovery that undetermined equations (in principle, 
algebraic ones) with two unknowns: f(x,y) = 0 correspond to geometrical places 
determined by points, the coordinates of which satisfy the given equation. This 
interpretation does not only introduce analytical geometry but also the fundamental 
idea of algebraic variables, essential for the development of calculus as it occurred 

                                                      
4 The characterization of functions has to be found in its “type of variability”. This is the reason why differential 
equation models are so important. A natural way of understanding functions as models is to consider them as 
primitives in the general sense of the word, that is, a solution to a differential equation. (García 2005) 
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throughout the 17th century (Urbaneja 1992). We can consider this type of 
modelling, where the algebraic variables x and y measure any kind of magnitudes, 
as the seed of the functional-algebraic modelling. The progressive interplay 
between parameters and variables will help this type of modelling develop into the 
rationale of the differential calculus. 
To clearly explain the general notion of functional-algebraic modelling, we will 
consider three levels corresponding to three progressive steps of mathematisation. 
2.1. First level of functional-algebraic modelling
One of the characteristics of the pre-algebraic character of school mathematics 
comes from the separation between “algebraic” and “functional” language, which 
is especially made clear in the role played by formulas and the fact that they are 
rarely interpreted as “functional” models to study properties of the modelled 
objects. In fact, the strict separation between school algebraic language (confined 
in formulas) and functional language is a consequence of the process of didactic 
transposition that organises the mathematical knowledge to be taught into different 
blocks of contents and makes it difficult to integrate mathematical objects coming 
from different “themes” or “domains” (Chevallard 1985, Bosch & Gascón 2006).  
We will call the first functional-algebraic modelling level of a mathematical 
organisation (MO) the one that materializes in models expressed by means of 
isolated functions of one variable and the corresponding equations (or inequalities). 
For instance, if a product is sold at a unitary price of 6 €, it’s unitary cost is 2,5 € 
and there is a constant production cost of 150 €, at this first level the benefits of the 
situation can be modelled by the function:  

B(x) = 6x – (2,5x + 150). 
The kind of mathematical tasks included in these models are the ones that require 
an analysis of the relations between the components of an isolated function and of 
the global behaviour of the function: What value of x gives B > 1000? How to 
interpret the constant term –150? Etc.
2.2. Second level of functional-algebraic modelling
We have already mentioned that, at secondary school, the letters which are part of 
an algebraic expression only play the role of unknowns (in equations) or the role of 
variables (in functional language), while parameters are hardly existent. In any 
case, the systematic interplay between their different roles is completely ignored. 
Moreover, the activity of nominating and re-nominating variables, that is, the 
introduction of new letters while working with algebraic expressions, essential in 
the algebraic work, only appears in some activities completely stereotyped as a 
“change of variable” (for example, in solving bi-squared equations). This situation 
continues throughout the last year of secondary education. It makes the step from 
working with algebraic expressions to studying families of functions and to using 
these families as models of relations between magnitudes extremely difficult.  
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We call the second level of functional-algebraic modelling of a MO the one that 
materializes in models precisely by means of a family of functions of one variable 
and the corresponding parametrical equation. At this second level of modelling, 
there exists a clear distinction between “parameters” and “variables” in such a way 
that their roles cannot yet be considered exchangeable. Families of one-variable 
functions are being studied but not functions of two (or several) variables. Some 
examples can be suggested by the following expressions:5  

Bc(x) = 6 x – (cx + 150);   BL(x) = 6 x – (2,5x + L) 
This kind of models includes the tasks and techniques necessary to study real 
functions of one variable and to solve equations and inequalities with a parameter.  
2.3. Third level of functional-algebraic modelling
We will call third level of functional-algebraic modelling of a MO the one that 
materializes in models expressed by means of families of functions of 2 or more 
variables and the corresponding algebraic formulas. It is this third level of 
modelling in which the roles of “parameters” and “variables” are exchangeable. 
How the joint variation of 2 or more variables has an effect on the variation of a 
function is being studied. Examples of this third level are the following: 

B(c, L, x) = 6 x – (cx + L);   p(x, c, L) = 
 2000 + L 

x  + c  

As functions of 2 or more variables have explicitly been put aside from secondary 
education, the mathematical activity to be carried out to construct, use, study and 
interpret this kind of models is completely absent from current secondary school. 
To sum up, in Spanish secondary education there are very few techniques to carry 
out the mathematical activity we have called functional-algebraic modelling. Till 
10th grade, the only thing that exists is the algebraic manipulation of elementary 
formulas and some techniques to solve equations and inequalities (if they are easy), 
stereotyped techniques that are limited to represent graphs and even more limited 
to interpret formulas and to connect them to graphs. Eventually, it turns out that 
functional-algebraic modelling is practically inexistent at this level and that, in 
current conditions, only activities belonging to the first functional-algebraic 
modelling level could be carried out. 
3. THE DIDACTIC PROBLEM CONSIDERED 
We consider the didactic problem of how to modify the ecology of the 
mathematics teaching system to make students capable of carrying out a 
functional-algebraic modelling activity throughout post-compulsory secondary 
school (11th and 12th grade). We thus intend to locally create the conditions that 
allow using functional-algebraic modelling as a study technique to enlarge and 
deepen the questioning of school mathematical organisations. 

                                                      
5 They all are models of the form fp(x, y) = 0 where fp is a family of 2-variable functions with p as a parameter and 
where one variable can be isolated.  
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To progress in that direction, the work we present puts forward both the design and 
conclusions taken from the experimentation in different courses of a study process 
based on the combination of two didactic strategies: 

(a) Propose the study of a problematic question that arises in an economic 
system, initially defined by means of some fixed values. The study of the 
system requires the students to progressively convert data values into 
parameters and to take into consideration the functional relations between 4 
variables of the system (sales, costs, incomes and benefits). 

(b) Use the symbolic calculator Wiris (www.wiris.com) to instrumentalise the 
mathematical techniques needed to approach the types of problems that arise 
during this activity. We try to take advantage of the resources of Wiris to 
make the work of creation, graphic representation and manipulation of 
algebraic expressions and functions easier for the students, bearing in mind 
the interpretation of all these manipulations in the context of the system. 

The experimentation was organised as a “mathematical modelling workshop” in 5 
different schools of Barcelona’s metropolitan area, four classes of 10th grade and 
one of 11th grade. It took place during the first term of 2006 and went on for 10 or 
11 sessions of 50 minutes. The workshop teacher was the usual teacher of each 
class and one of the members of our research team did the observations of almost 
all the sessions, which were audio and video recorded.6 In all cases, most of the 
sessions took place in the “computers room” of the school, even if some sessions, 
especially the first and the last ones, took place in the normal classroom. We will 
present an outline of the experimentation taking the successive mathematical 
models involved as a guideline of the description. 
4. HOW WAS PERFORMED THE MODELLING PROCESS 
The “worshop” starts with a question raised in an economic system (the production 
and sale of T-shirts) about how to obtain a given benefit. The study of this question 
gives rise to a functional-algebraic modelling process in which the interplay 
between parameters and unknowns is essential. 
Initially, the system can be characterized considering 4 variable magnitudes: the 
number of produced and sold items (x), the incomes (I), the production costs (C) 
and the benefits (B). The three functions I = I(x), C = C(x), B = B(x) can be defined 
and related through the equality: B(x) = I(x) – C(x). 
If we consider a single product sold at a constant unitary price p, the incomes 
function is given by I(x) = p·x. As far as the costs function is concerned, different 
models are possible. The simplest hypothesis is to consider costs linearly 
depending on the number of produced items C(x) = c·x + L, where c is the unitary 
cost and L other possible fixed costs (the rent of the workplace, for instance). It is 
also possible to consider that the unitary cost is not constant but increases linearly 
with x, which gives rise to a quadratic function of the form: C(x) = (c + �x)x + L. 
                                                      
6 A preliminary experimentation took place with two of these classes in the first term of 2005.
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The coefficient �� here indicates a “low” value of the type 1/K with K > 0 so that, 
for x values much lower than K, �x can be neglected making costs almost linear 
while quadratic increasing remains only for “big” sales.  
The workshop was divided into two parts. The first starts with a consultation from 
a youth association that wants to earn 3000 € by printing and selling T-shirts 
(linear costs). The second one is about a similar proposal made by a sports firm 
printing and selling bigger amounts of T-shirts (quadratic costs). Only the case of 
the linear cost function is being considered here and we will describe the modelling 
process followed by the students through a sequence of mathematical organisations 
where each one models the previous one and is modelled by the following one.7 
Youth association: buying and selling T-shirts
The students are given the following chart about the costs and incomes obtained by 
a youth association selling T-shirts during May, June and July:  

MONTH May June July August 
Sold T-shirts 100 329 264  
Total costs (€) 550 1122,5 960  
Total incomes (€) 520 1710,8 1372,8  
Benefits (€) -30 588,3 412,8  

The aim of the work is to write a report for the youth association telling them what 
strategies can lead to the desired benefits of 3000 €. 
The initial conditions of the business can be obtained from the given data: a 
constant unitary cost c = 2,5 €, a constant unitary price p = 5,2 € and a constant 
fixed cost L = 300 €. The first question to consider is: 

Q0: In the given initial conditions, is it possible to obtain a benefit of 3000 € in 
August by selling a reasonable number of T-shirts?  

With the help of the teacher, the situation is modelled by the one-variable function 
B(x) = 5,2x – 2,5x – 300 and the associated inequality 5,2x – 2,5x – 300 > 3000. 
However, the students first spontaneous strategy is to answer the question working 
in OMeq, the first-level algebraic MO of one-unknown equations, solving 5,2x – 
2,5x – 300 = 3000 and deducing the “limit value” x = 3300/2,7 � 1223, which is a 
big amount certainly not “reasonable” for the youth association.  
The negative answer to Q0 creates the need to modify some data of the initial 
situation, turning them into parameters. The following question Q1 comes up: 

Q1: Is it possible to obtain the desired benefits by changing only one initial 
condition of the situation: unitary price, unitary cost, fixed cost (rent)?8  

It can be specified into the following questions: 
Q11 (p as free parameter): Suppose the costs are constant (c = 2,5  y L = 300). 
How much does the unitary prize p have to increase in order to obtain a benefit of 
3000 € selling a “reasonable” number of T-shirts (x < 450)?  

                                                      
7 In the case of a quadratic cost function the sequence of praxeologies is similar and can be found in Bosch, Gascón 
& Ruiz (2005). 
8 After discussion, p < 8, c > 1 and L > 100 are considered as “reasonable” values. 
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And the same with the other two cases: c or L as free parameters. 
The spontaneous answer given by the students consists in considering the 
“extremal” cases (c = 1, L = 150 or p = 8), which let them remain in OMeq. To 
force the passage to OMf(x), the teacher has to refer to the consultancy situation 
(“we cannot expect the youth association to always find these extreme 
conditions”, etc.) and introduce a functional technique and the corresponding 
reformulation of the result obtained: 

3000 = (p – 2,5)·x –300,  3000 = (5,2 – c)·x –300,         3000 = (5,2 – 2,5)·x –L 

x = 
 3000 + 300 

 p – 2,5  ;          x = 
 3000 + 300 

 5,2 – c  ;   x = 
 3000 + L 
 5,2 – 2,5   

       

x(p)

x(c)

x(L)

To obtain more than 3000 € of benefits by modifying only one parameter, we have: 

p = 8 � x > 600;       c = 1 � x > 786;        L = 100 � x > 1149. 

The work in MOf(x) establishes that the desired benefit cannot be obtained by 
changing only one parameter. A new question Q2 arises based on the necessity to 
modify two parameters: 

Q21 (p and L as free parameters): If c = 2,5 remains constant, what relation between 
p and L is needed to obtain a benefit of 3000 € selling a “reasonable” number of T-
shirts (x < 450)? Does a “reasonable” pair of values p and L exist?  

And the same with the other two cases: (c,p) or (c,L) as free parameters. 

Here the work takes place in MOfp(x) and the study of the relations: 
 

3000 � (5,2 – c)·x –L, 

x �  
 3000 + L 
 5,2 – c  ;

Isoquants of c = c(x,L). Isoquants of L = L(x,c). 
 

3000 � (p – 2,5)·x –L, 

x �  
 3000 + L 
 p – 2,5  ; 

Isoquants of p = p(x,L). Isoquants of L = L(x,p). 

Isoquants of c = c(x,p). 

3000 � (p – c)·x – 300 

x �  
 3000 + 300 

 p – c   

 
 Isoquants of p = p(x,c). 
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Admissible solutions can only be reached when p and c are taken as free 
parameters. Thus p – c appears to be the interesting parameter to consider. 
A last a more general question can then be formulated in the following terms: 

Q3 (all three parameters free): What changes can be applied to the initial 
conditions (c = 2,5, p = 5,2, L = 300) to obtain 3000 € of benefit selling a 
“reasonable” number of T-shirts (x < 450)? 

An exploratory study with Wiris through the variation of graphs shows that a 
reasonable answer to Q0 requires the condition: p – c � (3000 + L)/x. 
Due to the fact that, at the considered level, students are not able to use analytic 
techniques to approach Q3, the study cannot go beyond the transformation and 
interpretation of this formula. The following schema summarizes the sequence of 
questions and praxeologies that may appear throughout the study of Q0: 

ResultQ3Q1 Q2 Q0

OMfp(x)  
 

 
 
 
During the design and carrying out of the instruction, the symbolic calculator Wiris 
is considered as an instrument that decreases the difficulty or the cost of certain 
problematic tasks such as graphing functions, solving equations (with and without 
parameters) and doing algebraic transformations of formulae. It thus facilitates the 
exploratory and experimental dimensions of the study. Furthermore, Wiris has 
appeared as a useful tool to distinguish between the system considered and the 
mathematical model of the system, encouraging both the formulation of questions 
about the models used and the interpretation-justification-evaluation of the results 
obtained, in short, the work of “coming back” to the system initially considered. 
5. RESULTS AND OPEN QUESTIONS 
(A) The need to study long-term mathematical questions 
A basic characteristic of an algebrized mathematical activity and, in particular, of 
functional-algebraic modelling, is the requirement of long-term goals that can only 
be reached through systematic work extended in time. This was a trait of our 
instructional proposal: starting with a question that was not immediately solvable 
but required the construction and progressive enlargement of the models 
considered. This requirement appeared to be an important obstacle to the 
experimentation and can be explained, partially at least, as a consequence of the 
way the study of mathematics is interpreted in secondary schools, that is, in terms 
of the dominant cultural notion of study. It is in fact a conception clearly 

OMform OMeq OMf(x) 

First level of functional-algebraic 
modelling 

Third level of functional-algebraic 
modelling 

Second level of functional-algebraic modelling 

OMf(x1,..xn) 
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compatible with the limited, rigid and isolated character of mathematical 
organizations studied in such institutions (Bosch, Fonseca, Gascón 2004). It is also 
reflected in the way students carry out limited tasks and change the activity several 
times, even during the same session. On the contrary, our proposal is based on an 
activity that needs to integrate different mathematical objects in a functional way, 
working with a set of MOs that usually appear in an incomplete and isolated way. 
Thus, the type of study designed, with its long-term objectives, the non-definitive 
answers and the rising of new questions, go against the dominant epistemologic 
and didactic conception of the teaching and learning of mathematics.  
(B) The connection between numerical and functional language 
To carry out the passage from an arithmetic solution to the construction of a 
functional-algebraic model, it is necessary to turn “numerical questions” into 
questions the answer of which is not a concrete number but a relation between 
variables. At the beginning of the workshop, the students had real difficulties with 
this, always trying to find “the number solution”, as they are used to doing. It was 
the teacher who had to clearly highlight the new didactic contract that was being 
established, using the “reality” of the situation to justify it. In any case, it seems 
that it is necessary to work more on the “question of the questions”, ie the kind of 
problem that is really approached, the kind of solution that is “receivable”, etc. 
(C) Management of the study process and students autonomy
The development of a functional-algebraic modelling activity requires a bigger 
degree of autonomy from the students than is usually needed. This kind of activity 
(even at the first levels) wants the student to take his/her own initiatives related to 
the kind of questions to solve, the tools to use and, even, the direction that the 
study process can take at a given moment. How to organize an appropriate new 
sharing of responsibilities (didactic contract) between the teacher and the students 
remains an open problem at this level. How can we determine the optimum degree 
of responsibility students have to be assigned with at every educational level? How 
can the teacher manage this new kind of study process? Etc.  
(D) The role of Wiris to facilitate functional-algebraic modelling 
The symbolic calculator Wiris was used during the workshop to use mathematical 
techniques in a more fluent way and with less difficulty than their “paper and 
pencil” versions. Wiris was thus supposed to help students carry out a richer 
exploratory activity. It was used to carry out a lot of trials and the exploration of 
different cases (different values of the parameters). However, we did not succeed 
in making students question the techniques used (their scope, economy or 
efficiency). This is an essential point because any modelling activity requires the 
systematic interpretation of intermediate results and the questioning of the 
adequacy between model and system. What did appear, with the help of Wiris, was 
a certain degree of articulation between the algebraic work with formulas and the 
graphs obtained by considering any letter of the formula as independent variables.  
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Because it goes towards the didactic organisation of current secondary schools, our 
proposal has highlighted various constraints that hinder the study of a long-term 
question and the use of functional-algebraic models to deal with it. A symbolic 
calculator like Wiris helps to overcome some of these constraints. Anyway, our 
experimentation has shown that, to go beyond the “second level of functional-
algebraic modelling”, a profound change in the didactic contract prevailing in 
secondary schools is necessary. This change also seems essential to give sense to 
the differential calculus that is taught at the end of secondary school and at 
university level.  
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MATHEMATICAL MODELLING IN SCHOOL - EXPERIENCES 
FROM A PROJECT INTEGRATING SCHOOL AND UNIVERSITY 

Björn Schwarz, Gabriele Kaiser 
Faculty of Education, University of Hamburg, Germany 

Abstract: The paper describes a project about modelling in school hold jointly by 
mathematicians and mathematics educators at the university. Core of this project are 
modelling examples carried out at school by students who are supported by future 
teachers. The paper describes the frame of the project and two modelling examples 
concentrating on the students’ attempts of solving it. Finally, some experiences of 
modelling in school are discussed in the context of the modelling examples described 
in the paper. 

1. Introduction 
In the recent didactical discussion on mathematics education modelling is regarded as 
one way to satisfy aims of a mathematical education providing more than just 
algorithms and schematic calculation. Mathematical modelling offers students the 
chance to understand mathematics as an area of knowledge which is relevant for 
everyday life. Furthermore, through working on modelling problems students can 
develop the ability to use mathematics in real life situations. This aim, as for example 
formulated in the PISA study, is obviously one of the main aims of mathematical 
education integrated in a sustainable concept of general knowledge.
One way to establish modelling in school is the integration of modelling courses into 
pre-service teacher education. A project carried out at the University of Hamburg is 
following this direction. Core of this project is joint work of students and future 
teachers in school on authentic modelling problems over a longer period of time. In 
addition to that, the future teachers are supervised by staff of the faculty of education 
and the faculty of mathematics.  
This paper reports on experiences made during several cycles of the project. First, in 
the second chapter the project is described in general. In the third part two examples 
of problems worked on in school during the project are described in detail while 
concentrating on the students´ attempts of solving. Starting from these examples, 
more general experiences about modelling in school are described in the fourth 
chapter.

2. Description of the project 
The project “Mathematical modelling as bridge between school and university” was 
established in 2000 and has been completely conducted four times since then, 
followed by an overall extensive evaluation (for details see Kaiser, Ortlieb, & 
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Struckmeier, 2004, 2005). Currently, the fifths round is carried out. Each seminar is 
planned and offered as a joint seminar of the department of mathematics and the 
department of education and lasts for two semesters and consists of several parts.  
The theoretical framework of the project has already been described extensively 
elsewhere, thus we restrict ourselves to a few central remarks (see for example 
Kaiser, & Schwarz, 2006). The project relates to the current debate on modelling in 
school and calls for the inclusion of real world examples or modelling examples in 
mathematics teaching in order to foster the following goals: Real world or modelling 
examples

� should enable students to understand the relevance of mathematics in everyday 
life, in our environment and for the sciences; 

� should enable students to acquire competencies which help them to solve real 
world problems coming from everyday life, our environment or the sciences.  

The project emphasises the usage of authentic problems in order to show and to 
persuade students that mathematics is really used in the world outside school. This 
implies a holistic approach in which the students carry out a whole modelling process 
(for details of the discussion concerning holistic versus atomistic approach see 
Blomhoj, & Jensen, 2003). In detail it means that the students are working through 
the various phases of a modelling process, such as describing a real world problem 
from a real situation, developing a mathematical model on the basis of a real world 
model, generating mathematical results which then have to be discussed in the 
context of the real world model and to be validated in the real situation (for a more 
detailed description see for example Blum, 1996 or Kaiser, 1996).
The aims of the project are twofold: On the one hand, the project aims at introducing 
modelling into ordinary mathematics teaching in school (limited to upper secondary 
level; for experiences with modelling in lower secondary level see Maaß. 2005). On 
the other hand, the project wants to offer future teachers the chance to gain 
experiences through teaching modelling in school.
In more detail, it can be stated that the project aims at various targets concerning 
students and future teachers. On the one hand, students as well as future teachers are 
to learn about mathematical modelling by doing it themselves. This does not only 
mean dealing with the different phases of the modelling process but also experiencing 
how to handle open problems in general. In relation to that it also means learning to 
stand the phases of uncertainty and ambiguity which are characteristic for 
mathematical modelling. Furthermore, the students’ and future teachers’ beliefs and 
attitudes towards mathematics of are to be broadened; they should realize in how 
many different ways mathematics forms part of our everyday’s life. On the other 
hand, the university seminar is a supplementary course in the area of mathematics 
didactics and mathematics for future teachers. The aim here is to offer an opportunity 
to future teachers to develop experiences with teaching in school with 
coinstantaneous possibilities to reflect theoretically their work. Beyond this, of 
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course, the seminar is an attempt to establish modelling in school in two ways: 
bringing it directly into school during the time of the project and to raise the future 
teachers’ awareness for modelling in teaching mathematics.  
Core of the project is the common work of future teachers and students in school. 
Normally, two to four students attend a mathematics course in the upper secondary 
level of German schools, year 11 or 12 (17-18 year-olds), preferably an advanced 
mathematics course for two lessons a week. During these lessons the students work 
on one modelling problem for about 2-3 months. The project starts with a meeting of 
all participants at the university where the problems the students will work on are 
presented. Often this presentation is done by applied mathematicians working in 
industry by describing problems from their current work or a project the applied 
mathematicians is currently involved in. At the end of the project all participants 
meet again and the students present their results in front of the whole audience or 
with a stall in an exhibition. Furthermore a university course is offered for the future 
teachers. Here mathematical questions of modelling and didactical questions are 
discussed and the future teachers have the opportunity to reflect and discuss their 
experiences in school with the other future teachers and the university staff.  
The problems are throughout authentic questions and often solutions are unknown not 
only to the students but to the experts as well. In addition, the problems are not or 
only little simplified which makes working on them even more difficult for the 
students. In some cases only a modelling situation was presented and the students had 
to develop their own questions to work with.

3. Description of two modelling examples 
In this section two modelling examples are presented in detail. For this, the 
descriptions of the solutions do not focus on complete prime solutions but on 
attempts really developed by the students.
3.1. The pricing of an airline 
The first problem deals with the pricing of the low-price-airline “Air Berlin”. This 
airline sells its tickets basically by an online booking system and obviously the prices 
are not constant or subjected to defined and published algorithms. So the question 
was how Air Berlin fixes its prices. This problem means reconstructing an algorithm 
or a formula by given data, here the prices of flights which can be observed by 
internet research. Alternatively, the students could solve another problem 
thematically related to this. This second problem was to find an own price system for 
an airline. The following ideas were worked out at the Gymnasium Harksheide in 
Norderstedt (a town near Hamburg) by an advanced mathematics course in year 12 
(students’ age 17 -18) with 11 students participating.  
At the beginning the students decided to try to reconstruct the price system of Air 
Berlin. For this they collected data by observing the development of prices for several 
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flights offered by the airline. The prices as expected seemed to vary not regularly 
which made the solution of the problem quite difficult. The students developed a list 
of factors which could affect the price of a flight. These factors were among others: 
� date/departure time of the flight 
� date of booking (referring to the flight-date) 
� number of free seats 
� place of departure and destination 
� market situation 

The problem was that not all of these variables could be observed by the students. 
The market situation for example might have a strong impact on the prices but can 
not be measured or researched. However, the students tried to develop an algorithm 
for predicting the prices. Doing this, they divided themselves into two subgroups. 
One group tried to find a formula for the prices depending on the time of booking, the 
other group concentrated on the factor of free seats. The first group was quite 
successful in developing a model describing the prices of national flights in relation 
to the booking time. The other attempts did not lead to results fitting to the collected 
data. Because of this disappointment the group decided to change the problem and 
work on the question of developing their own price system.
For this, the group split again into two sub-groups and they followed two different 
attempts: The first group decided to describe the development of flight prices by 
means of an exponential function, due to experimental considerations with real 
values. Thus, as model for the development of prices this group developed the 
function ( ) cxf x e� � b  with b as initial price and c as description of price behaviour 
(meaning a steep or slow rise). For the determination of the parameter c, the students, 
assisted by the prospective teachers, referred to the mean value theorem of integral 

calculus formulating the following equation: , in which a

represents the average price of a flight. The meaning of the factor -1 cannot be 
explained by us. We suspect that the students introduced the factor in order to adapt 
their description to the data.

tadxbe
t

cx ��	�4 )1(
0

The second sub-group agreed on a description of price trends starting 30 days before 
departure by means of the exponential function , (where t is the 
number of days until flight time), with the assumption that the basic prices vary 
between  25€ and 125€ and that no flight shall cost more than 300€. As growth factor 
a, based on the collected data, the group experimented with factor 1.024 and 1.03. 
Then, this attempt was modified further and generalised by taking into consideration 
the amount of remaining free seats by inserting m(10-s) as additive factor with s as 
number of remaining free seats and m as multiplicative factor representing a not yet 
fixed lump sum. The basic price was fixed depending on flight distance for which 

tapricebasictf 	�� 30)(
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they referred partly to the real flight distances of Air Berlin and further assumptions 

with pricebasicz
�

16
, where z is the distance of the flight in km.  

Both attempts were carried out simultaneously with two modifications:  

� Consideration of dependence on season, modelled by means of a cosine 

function:
20.25 cos( ) 1.25
100

d(
� � , where d is a factor depending on the time of 

flight which was determined by analysing older data. Obviously this term can 
never be smaller than 1 what makes it meaningful as a multiplicative factor for 
the complete price. 

� Rounding up to the following decade 
The first sub-group produced as model for the development of prices:

� �2( , ) (0.25 cos( ) 1.25)
100

cxdf d c e b(
� � � � �

The second sub-group produced as model for the development of prices:  

� �302( , , ) 0.25 cos( ) 1.25 10
100 16

td zf d t s a m s( 	: ; :� � � � � � � 	2 < 2
= > =

;
<
>

The students did not use the notation with several variables and it is unclear whether 
they realized the problems resulting from their model containing more than one 
variable or not. 
3.2. The pricing of an internet café 
The second problem which was to be introduced here, “Pricing of an internet café”, 
deals with the question how to calculate - reasonably and with the aim of profit - the 
prices of an internet café. The solution presented here is developed by a group of 
students in year 11 from the Albert-Schweitzer-Gymnasium in Hamburg within the 
framework of the project. 
Generally, the students’ solutions were characterised by far-reaching and to some 
degree strongly simplifying assumptions. On the one hand, this stimulates questions 
about the model’s proximity to reality, but on the other hand, it makes executing an 
entire modelling circle process possible. 
As result of a first discussion within the group, the students compiled the price 
influencing factors such as marketing, rent, maintenance, internet access and so on, 
described as regular cost, and non-recurring costs such as equipment, licenses and so 
on. It is remarkable that only the costs to be covered exclusively by the entrepreneur 
were listed as price influencing factors. The students did not find out autonomously 
but only after being asked further aspects like competition and demand which surely 
influence a product’s price decisively too. Taken together, within the framework of a 
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real model three primary price influencing factors were determined: competition, 
costs to be borne by the owner and demand.  
To calculate the range of costs, the students first did some research by using the 
internet but finally decided to estimate the costs just roughly. Still on the level of 
creating a real model, the students furthermore decided not to take the second factor, 
competition, into account in order to keep the problem simpler. 
Especially for being able to create a reasonable relation between the third factor, the 
demand and the price as well, as for being able to construct a model adequate to the 
context, basic knowledge of economical structures and relations was necessary. 
Contrary to the usual proceedings of this project, where students usually work 
independently on a problem, in this case the technical knowledge was introduced by 
the university students in conventional lessons during a specific learning unit. The 
learning unit comprised topics like price response function and break-even-point 
which is the moment the internet café starts being profitable. Even in this learning 
unit the students turned out to be active participants; they analysed critically the 
presented contents and already related them to the modelling problem. This 
demonstrates that the students really adopted the problem.   
Starting from what they have learned in the specific learning units, the students then 
formulated two modelling assumptions for the relation of price and demand on the 
level of the mathematical model:   
� With a price of 0 € per hour  for using the internet there would be a demand of 

10,000 hours
� With a price increase around 0.10 € for an hour online the demand decreases 

respectively about 5%. 
These modelling assumptions mentioned above are very strong but correspond with 
simple economic methods. Starting from these assumptions the students were able to 
construct the so-called price response function within the framework of a 
mathematical model:  

10( ) 10,000 0.95 xN x �� �

in which x indicates the price for one hour internet access in €/h and N(x) is the 
number of demanded hours at a price of  x €/h. The exponent was chosen for being 
able to indicate prices in € per hour.
The sales volume is calculated based on the amount of demanded hours multiplied 
with the price for one hour internet access. With S(x) as sales volume at a price x one 
receives the so-called sales volume function: 

� � � � � � xxxSxNxxS 1095.0000,10 ���+��

At this point the students did not make any statement about what time period the 
calculation refers to, meaning during which time the 10,000 hours with a price of 0 € 
would be demanded and during which time the sales volume would be achieved. 
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However, in any case, this information is insignificant for the further solution; it only 
becomes important if the point of break-even has to be defined.
Based on the context described above, the optimal price was to be determined as the 
point at which the sales volume function reaches its maximum. Although the students 
had experiences with differential calculus, they did not know the derivation of an 
exponential function and so here they asked actively for help from the university 
students. Afterwards, the students determined the maximum of the sales volume 

function on their own as 
1

10 ln(0.95)
x 	
�

�
, thus the optimal price becomes 

approximately €.1.95x R
While validating their results, some of the students were not satisfied with the 
obtained results because in their opinion the assumptions and as a consequence the 
related results were made too arbitrary. So, in the further development of the project 
the students modified their assumptions and tested the influence of various 
modifications on the result. 
This criticism indicates that the students have achieved learning success not only 
concerning the related concrete contexts or mathematical contents but also in the field 
of modelling methods which should be valued as an important and satisfying result of 
the project. 

4. Analysis of the two described modelling problems 
In order to analyse the different modelling approaches developed by the students and 
as a mean to describe our experiences made we use a description of the modelling–
cycle proposed by Blum (1996) or Kaiser (1996), which in various studies has been 
proven to be a useful tool for these kinds of analyses. In the following section the 
description of experiences of modelling in school is structured by three elements of 
this modelling cycle. The corresponding examples are taken from the modelling 
approaches described n chapter 3, but the reflections described are not bound to these 
modelling problems.  

(1) Developing a real-world-model / mathematical model 
Students tend to omit the separation of the phases of developing a real model and a 
mathematical model or they even do not consider the real model. The distinction 
between a mathematical model and a real model is obviously useful for didactic-
diagnostic purposes but mostly not for a first attempt in school. Instead one can often 
observe one of the following three approaches: 
i) The students mix together the two phases and develop descriptions on the level of a 
real world problem and related mathematical concepts at once. That approach can be 
seen while tackling the internet-café-problem: the description of possible price 
behaviour and the mathematical description of it are formulated coevally.   
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ii) The students do not formulate a real model, but instead develop a mathematical 
concept with implicit reflections on the real context. This mathematical model covers 
essential structures of the real situation. For example one group of students started 
solving the Air-Berlin-problem by formulating an exponential function to describe 
the price behaviour. Although this approach was not justified it obviously seems to be 
a reasonable attempt because of the idea of rising prices.  
iii) The students develop a mathematical concept not under the criterion of fitness to 
the question but under regard to their current present mathematical knowledge. A 
good example is the usage of the cosine–function for modelling the seasonal 
influences on flight times. Although there are probably times of bigger and smaller 
demand for flights depending on the time of the year the usage of the cosine–function 
is a very far-going presumption because of the regularity of the cosine–function. But 
this function is a familiar mathematical concept to the students and therefore was 
used.
In all three cases but especially in conjunction with the third case, another 
phenomenon can be observed obviously resulting from students´ experiences with 
conventional mathematical lessons: when working with authentic modelling 
problems students sometimes even expect the modelling problem to be just an 
enclosure of concepts they have already learned and which are given to them to apply 
exactly this knowledge. So from the very beginning they search for familiar 
mathematical concepts fitting more or less to the given situation. Furthermore, this 
sometimes explains the abandonment of developing a real model. It seems necessary 
for the teacher to clarify this miscomprehension and to refer to the openness of the 
question and its various possible solutions. 
This openness of solutions on the other hand can lead to a problem concerning the 
development of an adequate model. The students often try to capture all factors which 
could be relevant for the problem from the very beginning and by this they acquire 
quite complicated und almost insolvable problems. This tendency is commonly 
intensified by extensive internet-inquiries conducted by the students. It has proved of 
value to encourage the students to radically simplify the problem in the beginning. 
The problem can always be refined afterwards when the students have reached a 
higher survey over the complete problem and its modelling cycle while in contrast a 
very complex system of assumptions as a starting point often inhibits successfully 
modelling.  

(2) Solving the inner mathematical problems 
During this phase of the modelling cycle the students naturally often come up with 
particular mathematical questions. This especially emerges when the students have 
not developed a mathematical model under requirement of their mathematical 
knowledge. In both modelling examples described above, for example the students 
reached a point where they needed and asked for the help of the future teachers to 
solve such a question. This is not a problem as long as the students ask for help by 
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themselves; in contrast asking for special mathematical concepts can only result from 
long analysis of the mathematical problems and can be taken as a sign for intensive 
work carried out by the students. It is only important to make sure that the students 
are not pushed into a special mathematical concept by the teacher. Rather after 
dealing with the mathematical model the students should be able to outline what kind 
of mathematical appliance they require. This appliance then can be taught by the 
teacher.
Often during this phase of solving an inner mathematical problem, the students´ 
approaches are strongly influenced by the experiences the students gained from 
traditional mathematical lessons. This means that students are often only satisfied 
with their solution when they can produce a clear result in the sense of a single 
number. This can clearly be seen within the modelling approach of the students 
tackling the internet-café-problem: here the students tried to calculate a distinct price 
of an hour internet usage.

(3) Validation 
This phase is often largely neglected in the framework of mathematical modelling in 
school. Furthermore, the students sometimes interpret the validation of a model and 
so its critical reflection as decrying their work afterwards. It is up to the teacher to 
show them that validating is an essential part of mathematical modelling and that 
realizing the insufficiency of a model in the context of a problem is just a good work 
as formulating a model is. 
During the phase of validation the whole modelling cycle should be reflected again. 
With the survey of the complete cycle the particular assumptions and their influence 
on the result can be analysed and the effects of changing the assumptions can be 
regarded. Good examples are the students´ thoughts after modelling the internet-café-
problem: the assumptions seemed to be arbitrarily to the students and so they 
reflected the dependency of the change of the assumptions and the change of the 
results.

5. Conclusions 
Taking a first look on the problems of the project “Modelling in school” yields the 
impression that these problems are far too difficult to be dealt with in school. But as 
we pointed out they are worked on with quite remarkable results. This is an 
experience of the project in general. Modelling problems with a true reference on 
reality can be handled in school not only by more gifted students but by average 
ability students. In addition the project shows that this kind of authentic complex 
modelling examples can be dealt with in ordinary classroom lessons during normal 
teaching, although one has to consider that mathematics education becomes more 
challenging for all participants, students and teachers. Carrying out such teaching 
units requires good preparation from the teacher and puts higher demands on the 
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students. In addition, such kind of projects are quite time-consuming, a problem 
which must be taken seriously in times of central examinations.  
Concerning university teaching the evaluation of the project (see Kaiser et al., 2005) 
shows clear advantages of the project for both participating groups – future teachers 
and students. The future teachers have the chance to gain experiences with teaching 
and working in classes. This was welcomed by most of the participating students. The 
students often changed their image of mathematics. While impressions of 
mathematics as a static and schematic science were dominant before the project 
afterwards impressions of process and connections to reality are named much more 
frequently. And furthermore some skills not directly connected to mathematics have 
been trained such as organizing teamwork or preparing a presentation. The 
acquirement of these abilities was highly regarded as an important part of the project 
by many students.
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0BPERSONAL MEANING IN RELATION TO  
MODELLING PROBLEMS  

UKatrin Vorhölter

Graduate Research Group on Educational Experience and Learner Development, 
University of Hamburg 

The paper reports about a study examining the question which meaning students see 
in learning and doing mathematics. Because the term meaning is used for very differ-
ent concepts, the author's understanding of meaning is explained and a relational 
framework of personal meaning is developed. Furthermore, the design of the study as 
well as two modelling problems that were used for the data collection are described. 
Finally, some preliminary results of the study are presented. 

INTRODUCTION
Many students think that the mathematics learnt at school is meaningless to them be-
cause they do not see where they can apply mathematics in their lives. Showing stu-
dents some applications is one aim connected to the introduction of modelling prob-
lems in school. This can be done by pointing out how strongly mathematics is used in 
society and in the students' everyday life. As a result, their motivation to learn 
mathematics can increase. However, up to now there is neither any systematic inves-
tigation about the realisation of these aims nor is it known which aspects of model-
ling problems are meaningful to the students. The study presented seeks to find out 
which meaning students see in doing and learning mathematics and in which way 
solving modelling problems can promote or hinder the students in constructing a per-
sonal meaning. In this paper the theoretical background and the design of the study 
will be presented. Finally, preliminary results will be presented. 

THEORETICAL BACKGROUND
The study is embedded in the context of the Graduate Research Group on Educational 
Experience and Learner Development located at the University of Hamburg. Beside 
the theory of application and modelling, the concept of personal meaning (German: 
Sinnkonstruktion) developed by members of the Graduate Research Group is of high 
relevance for this study. Therefore, this concept will be explained and related to other 
concepts which are important for learning. After that, it will be described why and on 
what conditions modelling problems may have an influence on the students' construc-
tion of personal meaning. 
2BTerminology
In the context of the Graduate Research Group, the German term Sinnkonstruktion is 
used for what will be called personal meaning in this paper. Sinnkonstruktion is diffi-
cult to translate because it is based on deep epistemological and philosophical reflec-
tions. Although the English expression personal meaning does not cover the whole 
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German debate, the expression was chosen due to the lack of a better term. Like the 
English term meaning, the German term Sinnkonstruktion is used very often in vari-
ous contexts. Therefore, the term has to be specified in order to be able to reconstruct 
the influence of modelling problems on students' personal meaning. So in the follow-
ing the understanding of personal meaning will be described (for further information 
see Vollstedt, in press). 
As mentioned above, the study is embedded in the context of the Graduate Research 
Group on Educational Experience and Learner Development. For reasons of readabil-
ity, not the English translation 'Educational Experience and Learner Development', 
but the German term Bildungsgangforschung will be used in the following. 
3BPersonal Meaning 
As mentioned in the introduction, one of the aims of modelling and application in 
school is to give the students a possibility of finding out in which way mathematics 
can be meaningful to them. As Howson (2005) remarks, one has to distinguish at 
least between two different aspects: “those relating to relevance and personal signifi-
cance (e.g., 'What is the point of this for me?') and those referring to the objective 
sense intended (i.e., signification and referents)." (Howson, 2005, p. 18). In this 
study, only the first aspect, the relevance and personal significance, is dealt with un-
der the term personal meaning. In other words, the students' kind of personal meaning 
is the answer to the question, which relevance the students see in learning and doing 
mathematics for themselves and for their lives. This is exactly the meaning of mean-
ingfulness as Mitchell uses the term: "Meaningfulness refers to students' perception 
of the topics under study in their mathematics class as meaningful to them in their 
present lives." (Mitchell, 1993, p. 427). Because we assume like Thom that “'mean-
ing' in mathematics is the fruit of constructive activity” (see Thom, 1973, p. 204) we 
use the term construction of personal meaning  to stress the constructive part of this 
process.
Although the importance of meaning for learning is well known (Krapp, 2003; 
Mitchell, 1993), hardly any empirical studies exist on the students' personal meaning 
in certain mathematical issues and the conditions which can influence this process. 
The study described below is based on the following theses about personal meaning 
and its construction. They have been developed from existing literature from mathe-
matics education, Bildungsgangforschung and educational psychology.
� Things and events have no implicit meaning. This implies that everyone has to 

construct his or her own personal meaning so that it is possible that students 
develop different kinds of meaning concerning the same mathematical task or 
problem.  

� Although everyone has to construct his or her own meaning, the kind of mean-
ing students construct is not arbitrary.  It depends on the one hand on offers of 
meaning given by teachers, parents and society as well as, on the other hand, 
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on the students' personal experiences, abilities, dispositions, their wishes and 
intentions.

� Neither the construction of personal meaning nor the product of this process 
are necessarily conscious efforts. It is, however, possible to reconstruct them 
from oral data. 

� The kind of personal meaning students develop when dealing with a situation 
can differ from the one they construct after dealing with the situation. So the 
kind of personal meaning may change. 

As mentioned above, there are different factors which influences the construction 
of personal meaning. These can be captured by concepts like mathematical beliefs 
(see for example Maaß, 2004), mathematical thinking styles (see for example Bor-
romeo Ferri, 2004), different kinds of learning motivation (see for example Wild, 
Hofer and Pekrun, 2001) and developmental tasks (see for example Trautmann, 
2004). As shown in figure 1, these concepts arise from the three fields of mathe-
matics education, Bildungsgang-didactics and educational psychology.

4BEmpirical Results 
Jahnke-Klein, states that students always consider mathematical issues meaningful if 
the tasks and problems appear as 'worth to think about it'. The results of her extensive 
empirical study suggest that the construction of personal meaning can be supported 
and promoted by appropriate offers (see Jahnke-Klein, 2001). Here the question 
arises, in what respect and under which conditions modelling problems can be such 

concepts of
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personal meaning

individual

situation
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 Fig. 1: Relational Framework of Personal Meaning 
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worthwhile tasks, and thus, favourable for the individual construction of personal 
meaning.
This question cannot be answered yet. Different empirical studies show, however, 
that apart from the interest in the task context there are various other factors that af-
fect the students' handling of modelling problems (and thereby also their construction 
of personal meaning). So in addition to the task problem, the respective context of the 
task was determined as an important influencing factor. Depending both on the stu-
dents' previous knowledge and on their subjective evaluation, the task's context is un-
derstood differently (as is the task itself) so that the students work on it differently 
(see Busse, 2000). 
In addition, the respective mathematical thinking styles and the mathematical beliefs 
of the students have effects on the handling of reality-based tasks. Maaß reconstructs 
in her extensive empirical study that students who have a schematic and/or formal-
ism-oriented belief system show a rather rejecting attitude when working on reality-
based tasks (see Maaß, 2004, p. 283f.). In addition, Stillman observes that some stu-
dents solve tasks without engaging with the task context (see Stillman, 1998). Finally 
Busse shows that students dealing with reality-based tasks argue on different levels 
(see Busse, 2005). A further important result of Stillman's study (1998) is that there is 
generally no direct connection between the students' arguments with the special con-
text (commitment) and the obtained achievement (performance) of the students. 
Especially the different impacts of reality-based modelling problems on students' 
modelling approaches suggest that these tasks can influence the students' construction 
personal meaning in a similar way. Whether this influence actually exists and 
whether it is to be judged positively or negatively is to be analysed in this study.

METHODOLOGY AND METHODS 
In order to answer the research question, qualitative methods are used for two rea-
sons. The first one is that there are various things that can influence students' con-
struction of personal meaning. This high number of different influencing factors 
makes it difficult to use quantitative methods. The other reason, which is particularly 
more important, is that there does not exist a theoretical conceptualisation the con-
struction of personal meaning yet. So at the moment it is not really possible to find 
out different kinds of students' personal meaning because nobody knows which dif-
ferent kinds there are. 
As mentioned above, it is assumed that there are different kinds of personal meaning 
and that students themselves often do not realize their particular way of constructing 
a personal meaning. This is why the different kinds of meaning-making in normal 
mathematics lessons as well as those dealing with reality-based tasks have to be re-
constructed.
For data collection five classes of the tenth grade (age 16-17) of two different Ger-
man higher achieving schools (so-called Gymnasium) were chosen. One reason for 
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choosing students of this age is that these students are capable of reflecting on their 
experience during mathematics lessons. Further reasons, not less important, are that 
usually students at this age cannot apply the mathematical methods they have learnt 
in their mathematics lessons in every-day life and that students of this age often think 
that there are much more important things than school. 
The first step taken in the process of data collection was to ask the students to fill in a 
questionnaire with eight open questions. Most of them were handed back in. The in-
tention of the questionnaires was, on the one hand, to get a general impression of the 
students’ attitude towards mathematics and mathematics lessons and, on the other 
hand, to find out who was interested in and had time for being interviewed. As the 
interviews were done in the students' free time, students had to volunteer.  
After that, in each class a normal mathematics lesson was videotaped with two cam-
eras. The only advice given to the teachers for this lesson was that the lesson should 
be normal for the students. In the afternoon (or in the afternoon of the next day), a 
stimulated recall (see Gass and Mackey, 2000) and an interview was done with the 
volunteering students. The number of students varies from 2 to 6 students per class. 
During the stimulated recall they were shown the whole lesson and asked to comment 
on it. Especially they were asked to tell what they had been thinking during the les-
son. After that, they were asked further questions about what they had said during the 
stimulated recall and about their answers in the questionnaire. They were also inter-
viewed about their attitude towards mathematics, mathematics lessons, their feelings 
during mathematics lessons, and whether they thought they needed or would need 
mathematics outside school. 
As a next step, four modelling problems were created. As mentioned above, each of 
these tasks has another context and different mathematical methods are necessary to 
solve these tasks. The tasks were embedded in contexts and problems that seemed to 
be important or interesting for the students. 
After developing the tasks and testing them in another class, they were given to the 
teachers of the five classes having participated in the first part of the study. The 
teachers were requested to act in the following way: At first every student should read 
all four tasks and decide for herself or himself which one she or he would like to 
work on. Then students who had chosen the same task were to work on this task in a 
group of not more than five. The teachers were asked only to assist if the students 
asked for help. After a while the students should get the possibility to present and 
discuss their results in class. The group work of the students interviewed the last time 
was videotaped and another stimulated recall and interview was done with them. In 
total, there are stimulated recalls and interviews of 17 students relating to two differ-
ent mathematics lessons. 
In order to find out different kinds of personal meaning and the influence of reality-
based tasks, the data will be analysed by coding according to the rules of Grounded 
Theory (see Strauss and Corbin, 2003). Strauss and Corbin were first of all interested 
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in actions and not in biographical developments. Therefore in order to be able to ana-
lyse personal meanings (which are subjective mental processes), the coding paradigm 
will be modified.  

TWO EXAMPLES OF MODELLING PROBLEMS 
As mentioned above, four tasks which differ in context and in the necessary mathe-
matical methods were created. To give an impression of theses tasks two of them will 
be presented here. Because both tasks are based on newspaper articles which are too 
long to be presented here, the tasks are not shown in their original (translated) ver-
sion, but are summarised. A short comment on the context as well as a report of some 
students' reactions will also be given. 
The personal meaning the students construct while solving the chosen task need not 
be in relation to the mathematics used. So the personal meaning does not have to be 
in relation with the special task but can also be in relation with the characteristics of 
modelling problems in general. 
5BPension
Students who chose this task had to deal with the question, which amount of money 
they had to save each month in order to have 1000€ of today's purchasing power per 
month when they are pensioners. 
For answering this question they got an article in which the effect of compound inter-
ests as well as the effects of annual rate of inflation and return were mentioned. If 
asked, the teachers gave them further information about life expectancy. 
It was assumed that at least some of the students had heard about the problem of 
empty pension funds in Germany and the need for joining a private pension scheme 
for younger people. Because this modelling problem was given to sixteen year old 
students and some of them were soon doing their intermediate school certificate and 
starting their vocational training, this complex of themes was assumed to be interest-
ing for them or at least should be. 
The reactions concerning this task were very different. Some of the students who did 
not choose it thought that, in contrast to the other tasks, this one only consists of 
numbers and had not as much to do with their lives as the other tasks. However, many 
others argued that they do not have enough money at the moment to save some, or 
they simply did not want to think about financial security but live their lives. One girl 
commented that she would rather spend the money for new shoes than for her pen-
sion. So, many of the students were not interested in the task context. Nevertheless, 
some students were interested. Those students mostly had talked about this topic with 
their parents or other members of their families, or they had got an offer for a private 
pension scheme. Now they were interested in calculating on their own. 
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Noisy Snorer 
Coming from a newspaper article in which decibel values of different sound sources 
like breathing, screaming and snoring were given, the students were asked to calcu-
late the number of people who must talk at the same time to be as loud as a snorer. 
This was the only task in which different kinds of formulae were given as assistance 
for the solution. The first one was a rather complex one for calculating the sound of 
sources in decibel, which seems to be very difficult and incomprehensible for most 
students at first glance. The second one was a rule of thumb for calculating the deci-
bel value of two equal sound sources. If asked, the teachers gave the students values 
of further sound sources like quiet and normal talking. 
Many students like listening to loud music and use their mp3-players. Therefore they 
are often told about possible damages resulting of loud music. Furthermore, they of-
ten go to parties and hence know that it is often hard to understand each other on such 
events because of the volume of the music. So the aspect of volume is familiar to 
them. It was assumed that, in addition, the close connection to aspects of physics les-
sons could be interesting for at least some of the students. However, this connection 
did not seem that important to the students who chose this task. On the other hand, 
rather the aspect of volume and the consequences for health were interesting for 
them, as will be described in the next chapter.  

PRELIMINARY RESULTS 

The questionnaires, stimulated recalls and interviews have not been analysed yet in 
depth, so final outcomes cannot be presented here. However, as a first step of the ana-
lyzing process, every interview was summarized and some of them were coded 
openly. Therefore, some preliminary results in the form of case studies of two stu-
dents can be described. These are presented in the following two sections. 
Robin
Robin is a rather extraordinary student for he enjoys busying himself in detail with 
mathematics and physics in his free time. He especially likes reading physics texts 
and says that he 'does not like reading a text and not understand the content only be-
cause it contains something like logarithm'. Further examples mentioned by him 
make clear that Robin tries to explain many occurrences in his life with the help of 
mathematics. Robin constructs different personal meanings for doing mathematics. 
Apart from exercising logical reasoning, preparing for future life, and improving his 
mathematics marks, understanding the world is the most important one for him. 
Robin decided to choose the modelling problem 'Pension' because it 'seems not to be 
that easy' and he likes calculating with interest and compound interests. 
For understanding his judgement concerning the task, it is important to know that for 
him mathematics lessons are the place where he can learn mathematics. During these 
lessons he is requested to fulfil special rules. One important rule is that students are 
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asked to solve tasks in the right way. Because he only knows tasks which only have 
one right answer, he is convinced that students have to find this one correct answer. 
Due to this conviction, he values the modelling task negatively because he under-
stands that for solving this problem everyone has to make assumptions and therefore 
will get different solutions. His remarks concerning the task context indicate that he 
has busied himself with investment in different forms before and that his reflections 
about this context would have been more precise und subtle if he had dealt with this 
context in his free time and not during mathematics lessons. 
Working on this special modelling task therefore did not influence Robin's personal 
meaning of learning and doing mathematics. 
6BLarissa
Unlike Robin, Larissa seems to be a student who can be found more often in German 
classrooms. Her mathematics marks are relatively bad as well as her relationship with 
her mathematics teacher. For her, the meaning for learning and doing mathematics 
consists in pretending to be competent, not necessarily being competent. The reason 
thereof is her strong desire to move up to the next class level and to get a new 
mathematics teacher. The more astonishing (especially for her teacher) were the en-
thusiasm and the involvement with which she, together with the members of her 
group, tried to solve the chosen modelling task. the 'Noisy Snorer'. Her decision for 
this task was influenced by different factors: One was the assumed low level of diffi-
culty, the other was the task context: Larissa had just heard a report about a compari-
son between the volume of an mp3-player and an aircraft turbine which she could not 
believe. Furthermore an eardrum of some of her friends had burst some time afore 
and the friend claimed that it had burst just because he was boxed on his ear. She 
could not believe neither the report not the description of her friend. 
For her enthusiasm for and involvement in working on the task, Larissa gave the fol-
lowing reasons: After a long time of feeling incompetent during mathematics lessons, 
she got the impression of being able to solve a task, because she did not just have to 
find the right formula and use it in the correct way. Concerning this task it was neces-
sary to find a way for solving the task and to discuss it with others. Hence, not only 
the high-achieving but also the poor-achieving students got the possibility of finding 
a suitable answer to the problem. Furthermore, because of the task context and the 
given information, Larissa was enabled to value the report and the description of her 
friend in a new way. 
So Larissa's personal meaning was influenced by the modelling problem at least tem-
porarily: Pretending to be competent was not that important any more, but, on the 
contrary, getting the feeling of being competent was way more important. The ex-
perience to be able to value reports and descriptions with the help of mathematics 
pointed out a new kind of personal meaning for learning and doing mathematics to 
her. Whether these different kinds of personal meaning are permanent or only tempo-
rary can, however, not be said on the basis of the existing data. 
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1BFINAL REMARKS 
As shown above, no negative consequences were ascertained resulting from working 
on modelling problems, although Robin refuses the task itself. For Larissa, in con-
trast, the chosen modelling problem offered a meaning for learning and doing 
mathematics. 
Modelling tasks can, however, influence the students' personal meaning of learning 
and doing mathematics. The question whether these influences are merely temporary 
or by which methods they persist permanently cannot be answered currently. 
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INTERPRETING VELOCITY AND STOPPING DISTANCE;  
COMPLEMENTARITY, CONTEXT AND MATHEMATICS 

Pauline Vos and Gerrit Roorda 
University of Groningen, the Netherlands 

 
In the Netherlands, mathematics education is intertwined with applications. For 
example, in advanced calculus in secondary school many exercises contain a 
formula, which is set in a real-life context. In our research on application skills we 
confronted students from the science & technology stream with an interpretation 
exercise on the stopping distance as a function of a car’s velocity. Students were 
familiar with the context and they had been exposed to all underlying concepts. We 
analysed students’ difficulties with the interpretation exercise in light of the 
complementarity of the mathematical world and non-mathematical contexts. Out of 
four bright students, only one was able to reconcile mathematics with the context. 
This paper describes how complex the activity of ‘interpreting’ is, as students are 
drawn into contexts and need heuristics to stay within the mathematical world. 

INTRODUCTION
In the Netherlands mathematics education has been inspired by Hans Freudenthal and 
his colleagues, who developed a treatise known as Realistic Mathematics Education 
(RME). In the earlier decades, Freudenthal (1973) characterised mathematics as being 
an integral part of real-life, perceiving it as an activity and not as a set of rules. As 
such, mathematics is a creative and organising activity in which unknown 
regularities, relations and structures are to be discovered.  
 
 

Figure 1: Modelling activities 

Treffers (1987) described RME in terms of activities that connect contexts and 
mathematics. When starting from a problem set in a context, the student has to strip it 
from its details and find relations and regularities that result in a formula, a graph or a 
table. This activity is called mathematising and the resulting sketch, formula, graph or 
table is called: a mathematical model. The model is part of the mathematical world, 
and needs rewriting, restructuring and refining to obtain a mathematical result. This 
activity is called reformulating. Returning to the context, the (mathematical) answer 

Working Group 13

CERME 5 (2007) 2200



  
needs to be interpreted in its context. Finally, the result needs reflection whether it 
offers an answer to the initial problem. 
Since the late nineties, under the consecutive RME influences all Dutch mathematics 
curricula at primary and secondary level contain many application exercises. 
However, not all instructional strategies do comply with the original RME intentions, 
and some RME-based researchers have questioned an indiscriminate use of 
applications in textbooks (Wijers, Jonker & Kemme, 2004).  
In this paper we focus on the calculus curriculum at pre-university level in the science 
and technology stream. This domain contains many applications, not only in 
textbooks but also in the national exams, which students need to pass for entry into 
tertiary education. Generally, an exercise starts with a real life situation followed by a 
formula and then students have to find certain characteristics (a maximum, the rate of 
change at a certain point, etc.). Occasionally, they have to adapt the given model to 
suit a similar, but slightly different situation. The questions are often embedded 
within the context in such a way that the mathematical terminology is concealed. We 
have translated, as an example, the first question on the national exams for pre-
university Advanced Mathematics in May 2005: 

At a medical check-up people are asked to fully breathe out and then inhale deeply for 
five seconds. While inhaling, the amount of fresh air in the lungs is a function of time. 
For healthy people we use the following model: L(t) = 3.6 (1-e-2.5t).  

Here L is the amount of fresh air in litres and t is the time in seconds (0�t�5). According 
to this model, the maximum amount of fresh air in lungs of healthy people is 3.6 litres.  

[a figure shows the graph of the function] 

Calculate after how many seconds 90% of the maximum amount of air is inhaled. (..)  

What is the rate of inhaling (in litres per second) at t = 0? 

Analysing this exercise in light of the modelling cycle, we see that it omits the 
mathematisation activity: the students do not have to create the formula from 
collected pneumonic data. Also, the questions do not logically emerge from the 
context: why should one want to know when 90% is reached? Even the interpretation 
of the answers and reflection thereupon is deleted, although this could have been 
justified [1]. The sole activity within the modelling cycle is entirely within the 
mathematical world. As such, the exercise is not a modelling exercise, but an 
application exercise, in which the context is irrelevant to the mathematical activities, 
and in which the mathematics is not well-connected to the context. Students are asked 
to move into the mathematical world and they are not asked to move out of it again. 
The above exercise is only one example of current Dutch practice, and the CERME5 
paper by Roorda, Vos and Goedhart (2007) contains two more exemplary exercises, 
to which the same analysis can be applied. We could have selected many others. 
These exercises do not comply with the original objective of mathematics being a 

Working Group 13

CERME 5 (2007) 2201



  
creative and organising activity, in which unknown regularities, relations and 
structures are discovered. Our critique is in line with the conclusions drawn by other 
researchers, who describe the over-abundance of contexts in Dutch mathematics 
textbooks, the irrelevance of many contexts and the omission of the mathematisation 
activity (Wijers, Jonker & Kemme, 2004). Dekker et al. (2006) even speak of 
nontexts.
Set within the Dutch debate on a sensible use of contexts in mathematics education, 
we decided to start a series of surplace studies. We intend to study what and how 
students learn when being torn between mathematical concepts and non-mathematical 
contexts. We want to obtain a better insight into how our Dutch students learn 
mathematical concepts with and through contexts, how contexts can assist or hinder 
in concept construction, and what learning difficulties do arise when students move 
from contexts to concepts and back; that is, when mathematising and interpreting. 
Therefore, we have set up a range of studies on applications in mathematics 
education, in particular with respect to calculus in senior secondary schools (grades 
10-12). The present paper describes an exploratory study on ‘interpreting’, which is 
one of the activities that connect contexts and mathematics. 

THEORETICAL FRAMEWORK 
We already introduced Treffers’ diagram for modelling with its four activities: 
mathematising, reformulating, interpreting and reflecting. The diagram bears 
resemblance to diagrams used by Blum (2004) on modelling in mathematics 
education. The cyclic diagram is also used for modelling in science education, 
following system theory that contains a feedback mechanism. These frameworks 
contain a loop from the concrete to the abstract and back. 
Fundamental in these frameworks is the lack of overlap, and even the apparent 
distance between the real world (contexts) and the abstract world (mathematical 
concepts). How do contexts and concepts relate to each other in mathematics 
education? In the present paper, we will explore their relation in terms of 
complementarity. Complementarity as a notion has its origins in the work by Niels 
Bohr, who worked on a dilemma in physics. In the quantum world he needed to 
reconcile two perceptions of light, one as a particle and the other one as a wave. The 
two offer significantly different perspectives, but they can co-exist for explaining 
theories. As such, complementarity differs from notions such as dichotomy, or 
duality. The idea of complementarity was used in the epistemology of mathematics 
by Otte (1990) in describing how mathematicians think. He described the 
complementarity between intuitive and axiomatic reasoning.  
In the present paper, we build on Vithal (2006), who explored the notion of 
complementarity of concepts and contexts in order to explain her research data 
collected in South African mathematics classrooms. In the educational setting, 
complementarity means that concepts and contexts can hinder, but also strengthen 
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each other. We will use this notion to analyse how students switch between the real 
world and mathematics while working on application exercises. Are they able to look 
through the contexts and see the mathematics, and are they able to look through the 
mathematics and see the contexts? Does the context obstruct or reinforce the 
mathematics and vice versa? In our study, we exposed four students to a particular 
exercise, set in a context, in which they had to interpret mathematical representations. 
Thus, the exercise asked students to move from the mathematics to the context. 
Other researchers also studied how students move between mathematics and the real 
world. Crouch and Haines (2004) studied in particular the activity of mathematising 
(or abstraction), confirming the idea of a complementarity when they stated that 
“most students cannot keep the needs of the real world and the mathematical model 
in mind at once” (p. 203). They recommend that students need many strong 
experiences in building connections between the real and the mathematical world. In 
a similar vein, Maull and Berry (2001) also found that students do not reconcile well 
the given context with the mathematical model that they produce. Adding to these 
studies, we felt a need to focus in particular on the activity of interpreting as part of 
the modelling cycle. By giving students an interpretation activity, we hoped to study 
the complementarity of mathematics and the real world from a new angle. In many 
modelling exercises, the activity of interpretation is not explicitly asked for. 

THE EXERCISE 
To assess the activity of ‘interpretation’ we used one particular application exercise 
that differed considerably from the exercises that our students are exposed to in the 
current curriculum. It was set within a clear, familiar context but it did not contain an 
explicit formula, graph nor table. It asked for the interpretation of certain 
representations (symbols), of which all underlying mathematical concepts were 
familiar to the students. The exercise is on the stopping distance of a car, from 
Bezuidenhout (1998). For our students we translated the exercise into Dutch, with 
remweg being our word for stopping distance. Hence, R is the dependent variable: 

The stopping distance R(v) (in metres), which a vehicle covers after applying its brakes, 
is a function of the vehicle’s velocity v (in km/h). Assume that the maximum velocity of 
a vehicle is 200 km/h. Interpret the following equations in terms of stopping distance and 
velocity of the vehicle (also indicate the units that are applicable) 

1. R(100) = 80 
2. R’(80) = 1.15 

 
The exercise is clearly not a modelling exercise. The questions do not emerge from 
the context, there is no requirement to mathematize (to develop a formula, a graph, 
etc.), and the exercise does not even ask for calculations. Nevertheless, the exercise 
implicitly contains a modelling activity. Although unmentioned, the context can be 
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associated to the world of traffic safety, where speed limits are set according to 
stopping distances. Would an increase in the maximum speed lead to undesirable 
dangers on our streets? Maybe the Ministry of Transport asked a researcher to 
analyse stopping distances depending on different velocities. The researcher then 
organised an experiment with a car having different velocities; the driver applied the 
brakes firmly at a certain position, and then the stopping distance was measured. 
Starting from a table and a graph, a formula emerged, allowing the researcher to 
analyse the problem mathematically. As such, the imaginary researcher went through 
the modelling cycle, from the real world to the mathematical world and back. 
In the present exercise, the student has to step into the modelling cycle to move from 
a mathematical result to a real result (see Figure 1) by interpreting the function 
representations. As such, the student has to step out of the mathematical world, after 
being exposed to mathematical representations as well as to the context. In the first 
item, the function needs to be interpreted as a relation between two variables (at a 
velocity of 100km/h the stopping distance is 80m). For the second item, the rate of 
change of the one variable needs to be related to a change in the other variable, 
recognizing that R’(80) implies units of the type ‘distance per velocity’ (m per km/h). 
The exercise does not ask for reflection on the answers [2], nor on a meta-reflection 
of the full modelling cycle. 

METHODOLOGY
We wanted to use Bezuidenhout’s research to study Dutch students in grades 11 and 
12 level in the science & technology stream, which includes Advanced Mathematics. 
Bezuidenhout studied more than 500 university students, of which 75% gave 
meaningful (accurate/relevant) written responses to item 1, but only two students’ 
written responses were meaningful in the case of item 2. The vast majority of the 
students raised different ideas about the meaning of the number 1.15 in the equation 
R’(80)=1.15. They interpreted it as either an acceleration or a deceleration of 1.15 
km/h2 (or 1.15 m/s2) or as a velocity of 1.15 km/h (or 1.15 m/s).  
We wanted to see whether Dutch students in senior secondary education, after being 
exposed to the mathematics curriculum with its abundant use of contexts, would be 
able to find the correct interpretations in this particular exercise. At this level of 
learning, students have encountered many applications and they are familiar with the 
derivative function, with the rate of change and they are able to determine tangents to 
graphs. Unlike Bezuidenhout’s students, our target group had not yet entered higher 
education, Nevertheless, we considered the exercise suitable for them. Since we 
wanted to study their thinking process in more detail than only in writing, we 
interviewed them individually in a tasked-based setting. They were asked to think 
aloud, but they could also write their answers, and then describe what they were 
thinking while writing (stimulated recall). The interviews were videotaped, 
transcribed and thereafter analysed in terms of the complementarity of concepts and 
context in the modelling cycle. With each episode, we asked ourselves in which of 
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the two worlds (context or mathematics) the students were, and whether they were 
able to bring the two together. 
To minimise the effects of misconceptions through learning weaknesses, we 
administered the exercise to students who had been recommended by their teachers as 
being excellent. This would enable us to analyse the optimal level of interpretation 
proficiency under the current curriculum, in which interpretation does not have a 
prominent stance. We interviewed four students: Bas and Heiko from grade 11, and 
Rob and Julia from grade 12 (student’s names are pseudonyms). 

RESULTS
On the first item, all four students were able to correctly interpret the stopping 
distance at a certain velocity, without mixing the variables. Student Bas is exemplary: 

Bas: <points at the item> If he goes 100 km/h, then the stopping distance is 80m. 

It is interesting to note, that Bas did not say “if it goes..”. Instead, he personified the 
subject of the exercise, a vehicle, into a male person. Possibly, the context is so 
familiar that the students really imagined a person driving a car. On this item, all 
students were able to reconcile the complementarity between the mathematical 
representation of the function concept (the symbols) and its interpretation in the real 
world. Here, the mathematics and the context did not hinder each other. 
The second item, interpreting R’(80)=1.15 turned out to be a major hurdle. Student 
Rob gave a confusing answer:  

Rob: But what is the distance differentiated? <sighs> I first thought... this looked 
like an easy exercise. Eh... if you differentiate it, you will get meters per 
second. 1.15 m/s is what he stops. 

Obviously, Rob thought of differentiating distance to time, a familiar concept in 
Physics classes. Thus, he interpreted R’(80) with respect to the stopping of one 
vehicle. Another student, Bas followed a similar line of thought, although remaining 
closer to the differential as a rate of change: 

Bas: The speed... eh... if he drives 80 km/h then he will need 1.15... eh... m/s... 
what is it? <long silence, stares at the paper, bites underlip> 

Tutor: What are you thinking… ? 

Bas: Yes, R’, so the differential of the stopping distance, eh... delta x, which is 
sort of a speed but then at 80km/h. 1.15 m/s... if I see it right... I don’t know 
whether it is m/s or km/h. It is something like transforming km/h to m/s. 
<long silence, stares at the paper> The 1.15... it is what he slows down. 

Obviously, Bas first tried to relate the R’(80) to a concept: the rate of change. He 
mentioned delta x, but then quitted and interpreted the 1.15 as being related to the 
slowing down. Just like Rob, he is drawn into the context of a vehicle braking. The 
deceleration of a car is a familiar context, and the frequent use of it elsewhere (in 
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Physics lessons) draws the students into another concept, namely whereby the 
derivative of the velocity is the acceleration (or deceleration). Thus, the context 
diverted these two students away from the stopping distance as a function of the 
velocity. 
The third student, Heiko, reached a somewhat different conclusion: 

Heiko: If you differentiate the distance you will get the acceleration... and…  

Tutor: If you differentiate the distance… ? 

Heiko: Yes, the distance, that is the stopping distance.  

Tutor: Okay, and then you get the… ? 

Heiko: Yes! … But eh… then you will get the time which you will need for 
braking. While … <knocks on the table> this is the velocity. 

Tutor: This would mean that with a velocity of… ? 

Heiko: 80 km, it will take 1.15 sec to stop <sounds unsure, sighs>. 

Just like his fellow students, Heiko interpreted R’(80) = 1,15 in a context of a vehicle 
that slows down, but he contextualised the 1.15 as the time needed for braking. Heiko 
created an interpretation that seemed plausible in the context of a stopping vehicle. 
However, just like the others, he was hesitant and did not manage to correctly join the 
representation of the formula with the stopping distance, although in the first item 
they were able to interpret the function correctly. With the derivative in the second 
item, they moved to an associated but different concept and removed the stopping 
distance from the original context. 
We tried to make the above students express their thoughts, but obviously they did 
not like their failing. Heiko enquired about an explicit function, to which the tutor 
obliged: 

Heiko: Yes, if there was a formula given, I think it would have been easier for me. 

Tutor: Okay, so if it had been something like 8v2... or something similar… 

Heiko: <hesitates> I think then… I still would not know it. 

Unlike the above three students, there was one student, Julia, who tackled the 
exercise, although it took her long. She first thought along a similar line as the boys, 
mixing concepts from Physics into her thinking: 

Julia: This here, eh… <points at 2.> is the slowing down, how do I say this, the 
acceleration? Yes, in fact the deceleration in m/s. I think, this is simply… 
you should see this as a negative acceleration, an acceleration at 80 km/h 
…? <looks unsure> 

Tutor: Can you tell me more about how I should see this.  
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Julia: Well, you have… the change in velocity… but it is a bit weird, because if 

you drive 80 km/h, then... <drops her pen to the floor in distress> ... v is still 
the variable, so… that 80 must be velocity, but it is weird that this figure is 
positive, because with a stopping distance one will always... the velocity 
reduces, so I thought it would be negative... I don’t know why it is 
positive... 

Tutor: Maybe I have made a mistake in typing? <laughs> No, it is positive. What 
is written here, is as it should be. 

Julia: As it should be! 

Tutor:  You think it is a deceleration of 1.15m? 

Julia: 1.15 m/s2. That’s what I think… No, wait a minute, the stopping distance is 
in meters… oh wait a moment, yes, that’s what I think… Yes, in fact, I 
cannot think of anything else than deceleration. The stopping distance 
differs of course, ... how fast is one driving? It goes per speed  <waves her 
hand>. 

Julia was hesitant for two reasons. She expected a deceleration being shown by a 
negative sign, and she doubted the units of the deceleration from km/h to m/s. She 
even asked for confirmation whether the mathematics is correct. As a result, she 
remained attached to the mathematical world, because her interpretation (a 
deceleration) towards a context (a car slowing down) did not match with the 
mathematics (the minus sign and the units). Unlike the boys, she did not lose touch 
with the mathematics.  
At this stage, the tutor asked her about the manual gesture: 

Tutor: Right now, you were holding your pen above the paper. As if you were 
going to… ? 

Julia: Oh, I wanted, maybe a graph, so I can see clearer… <laughs> But I don’t 
know whether that is being required. Do you want me to spend more time 
on this exercise? 

Tutor: Yes, yes, continue. 

Julia: Well, then the R is here on this side, and here is the v <draws axes>. Then 
the graph could be something like this… <sketches a graph> … If you 
would differentiate this, then… then! … then you will get… if it would run 
like this…! Oh, this is the increase in the stopping distance at 80km/h! If 
one would drive a little faster... okay, that’s it! This means, that at a velocity 
of 80 km/h, if... with one kilometer faster… the increase in the stopping 
distance is 1.15m. <looks satisfied> 

Tutor: Why do you think like this suddenly? 
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Julia: If it is drawn, it is more logical, ehmm... the R’ is the slope, and it indicates 

that… that at this moment, if you drive faster, your stopping distance 
increases with 1.15. 

Obviously, Julia was encouraged by the tutor to make a sketch of a graph and to 
spend additional time on her line of thinking. The sketch of a graph kept her within 
the mathematical world and that triggered her to make a correct interpretation, which 
she even was able to explain in terms of marginal change. Thus, the heuristics of 
sketching a graph made her draw away from the context of a car slowing down, the 
brakes, the time needed to stop, the deceleration and the concepts learnt in Physics. 
The sketch made her stick to the function as a relation of two variables, and how a 
change in the one is related to a change in the other. As such, first her doubts and 
thereafter the sketch prevented her from returning too quickly into the real world and 
enabled her to reconcile the mathematical representation with the context of the 
stopping distance.

CONCLUSIONS AND RECOMMENDATIONS 
In the current Dutch curriculum, calculus exercises are embedded into contexts. 
Ideally, the contexts should be starting points for constructing conceptual knowledge. 
However, in today’s practice students are learning to delete the context in order to 
carry out certain mathematical techniques. As such, the current practice teaches 
students to separate contexts from concepts and hardly to link these.  
In our exploratory study we exposed four students to an exercise, in which the 
mathematical concept did not ask for mathematical techniques; the concept was only 
present in symbols. The task was to interpret the concepts of a function and a 
derivative in terms of a familiar context. The exercise came from Bezuidenhout 
(1998) and in line with his study, the majority of our students were diverted through 
an interplay of the context (a car and its speed), the concept (the derivative of a 
distance), and prior knowledge (Physics lessons). In our study we saw how three 
students associated the context and the derivative symbol to only one possible 
concept, the deceleration. Obviously, the original concept and context hindered each 
other. The well-known context made these students move too quickly out of the 
mathematical world. However, we observed one student, Julia, who added a graphical 
sketch to the symbolic representation, and thus created a stronger base within the 
mathematical world. This enabled her to see the context through the mathematics, and 
by reconciling the complementarity, she made a cognitive leap forward. At that stage, 
concept and context fell into place. 
Using the complementarity of concepts and contexts, we have treated the two as 
distinct but related to each other. The two can hinder each other, but the ability to 
reconcile concept and context is enriching. Therefore, students need exercises that 
ask them to simultaneously keep in mind the needs of the real world and of the 
mathematical world. Our study has shown that the reconciliation can take place in 
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interpretation exercises, though it remains to be seen whether reconciliation can also 
take place during mathematising activities or when students complete the full 
modelling cycle.  

NOTES
1. The answer to the final question is: a rate of inhaling of 9 litres per second. A possible question 
for reflection is whether that is a lot or not. 

2. A possible question for reflection is whether a stopping distance of 80 metres is a lot or not. 
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MEASURING PERCEIVED SELF-EFFICACY IN APPLYING 
MATHEMATICS  

Wake G.D., Pampaka M.
University of Manchester, U.K. 

In England a new course of post-compulsory study has been developed based on the 
premise that developing confidence and ability in applying and modelling with 
mathematics will better prepare students to elect to study courses that require 
relatively high levels of mathematics in their future studies in Further and Higher 
Education. In investigating this we have designed an instrument to measure 
perceived self-efficacy beliefs in applying mathematics.  Here we report principles of 
construction of the instrument together with initial analysis which suggests that it 
does allow measure of perceived self-efficacy beliefs in mathematics generally and in 
pure and applied mathematics separately with early evidence suggesting that the new 
course is successfully developing students’ confidence in applying mathematics. 

INTRODUCTION AND BACKGROUND 
The “mathematics problem” in England is deep seated: too few students are well 
prepared to continue their studies from schools and colleges into courses in Higher 
Education Institutions (HEIs) in mathematically demanding subjects.  Concerns have 
been raised by those involved in the sector and this is reflected  in national reports such 
as the Roberts Review (2002) which focussed on the supply of well qualified graduates 
in science, engineering and technology and the Smith Inquiry (2004) which 
investigated mathematics in the 14-19 curriculum.   
Within this contextual background this paper reports one aspect of the work of an 
ESRC (Economic and Social Research Council) research project, ‘Keeping open the 
door to mathematically demanding courses in Further and Higher Education’.  This 
mixed methods project involves both case study research investigating classroom 
cultures and pedagogic practices and individual students’ narratives of identity together 
with quantitative analysis of measures of value added to learning outcomes in an 
attempt to investigate the effectiveness of two different programmes of study.  Here we 
report the development of an instrument designed, as part of this latter strand of the 
project, to measure perceived self-efficacy in applying mathematics. 
Central to our research is a new qualification in the post-compulsory (post-16) sector 
that was specifically designed to better prepare students to continue with study of 
mathematically demanding subjects.  This recognises that the target students will not 
wish to study mathematics for its own sake: high achieving students, aged 16-19, 
wishing to study mathematics, engineering or physical science courses at university 
will follow non-compulsory courses leading to the “traditional” mathematics 
qualification – A Level mathematics.  It is the intention that the new qualification will 
be accessible to students who are likely to be starting from a lower base of prior 
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attainment in mathematics, but who nonetheless wish to go on to study a course that 
makes considerable mathematical demands at university.  This qualification, AS Use 
of Mathematics, is designed as equivalent to study of the first half of an A Level in 
the English system (although a full A Level “Use of Mathematics” is not currently 
available), and includes considerable preparation in the use of algebra, functions and 
graphs, with an option to study either “modelling with calculus” or “using and 
applying statistics”1.  Due to its potential students, the new qualification, therefore, 
attempts to ensure that those who study it will see an immediate or potential value in 
mathematics within their experience of other study, work or interests.  Therefore, 
mathematical modelling and applications are fundamental to courses leading to the 
AS “Use of Mathematics”.  Whilst students may not be explicitly taught “to model”, 
the philosophy is such that the mathematics, as learned and practised, involves being 
actively engaged in aspects of mathematical modelling and making sense of 
commonly used mathematical models with a particular emphasis on critical 
awareness of how modelling assumptions affect the validity of solutions to problems.  
This course contrasts with the standard or “traditional” AS / A Level route which is 
followed by the majority of 16-19 year-old students in preparation for further study in 
HEIs.  In this case applications and modelling play a much less prominent role: the 
emphasis is on a high level of technical facility with subject content in “core” or “pure” 
mathematics. 
Our concern, then, is to investigate practices that widen participation in the study of 
mathematics: consequently in evaluating the effectiveness of the different 
programmes, AS Mathematics (the first half of study towards a full A Level in 
mathematics and referred to here as AS Trad) and AS Use of Mathematics (AS 
UoM), one measure we are investigating is perceived self-efficacy in mathematics 
and in particular perceived self-efficacy in applying mathematics.

PERCEIVED SELF-EFFICACY 
It is now almost thirty years since Bandura (1977) proposed the construct of 
perceived self-efficacy:  “beliefs about one’s own ability to successfully perform a 
given behaviour”.  He later situated this within a social cognitive theory of human 
behaviour (Bandura, 1986), before more recently developing this further within a 
theory of personal and collective agency (Bandura, 1997). 
Perceived self-efficacy beliefs have been explored in a wide range of disciplines and 
settings including educational research where they have been investigated in relation 
to progression to further study and career choices (Lent and Hackett, 1987) and in 
relation to affective and motivational domains and their influence on students’ 
performance and achievement. One’s perceived self-efficacy expectations are 

                                          
1 The specifications and assessment associated with the new qualifications were designed by one of the authors (Wake) 
acting as consultant to the government’s Qualifications and Curriculum Authority. 
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accepted to play a crucial role in determining one’s behaviour with regard to how 
much effort one will expend on a given task and for how long this will be maintained.  
Behaviour therefore is crucially mediated by beliefs about one’s capabilities. Bearing 
in mind that outcomes which individuals consider as successful will raise perceived 
self-efficacy and those that they consider as unsuccessful will lower it, we 
hypothesise that those students following a “Use of Maths” course will increase their 
perceived self-efficacy in relation to applying mathematics in particular, to 
mathematics in general, and this will have a positive effect on their likelihood of 
further study that requires mathematics.  This may be particularly important in 
widening participation into mathematically demanding courses in Higher Education 
as the AS UoM course at present is often catering for those on the margins of 
studying mathematics in Further Education College courses. 
Perhaps most important and relevant to our study are research findings that suggest 
that perceived self-efficacy in mathematics is more predictive of students’ choices of 
mathematically related courses in programmes of further study than prior attainment 
or outcome expectations (see for example, Hackett & Betz, 1989 and Pajares & 
Miller, 1994).  Hence, our project’s need for an instrument to measure perceived self-
efficacy in applying mathematics.  Here we describe the underlying framework which 
we used in development of this instrument with particular reference to constructs 
relating to mathematical modelling (Blum, 2002) and “general mathematical 
competences” (Williams et al., 1999).  Whilst drawing on these constructs from 
mathematics education we have also taken into account, as we shall illustrate, the 
important advice Bandura offers those building  measures of perceived self-efficacy; 
namely, that they need to be clear in specificity of the tasks that respondents are 
asked to judge, paying particular attention to levels of task demand, strength of belief, 
and generality of the task.

CONCEPTUALISING APPLICATIONS OF, AND MODELLING WITH 
MATHEMATICS
For many years the work of the ICTMA (International Conference for the Teaching 
of Mathematics and its Applications) group has explored how mathematical 
modelling can inform teaching and learning of mathematics at all levels.  An 
important result of the work of members of this group is the conceptualisation of 
mathematical modelling and how this relates to applications of mathematics.  Whilst 
there is not room here to discuss this fully we would draw attention to some of the 
main features of mathematical modelling, how this relates to “applications of 
mathematics”, and how this is usually conceptualised in implementation of 
mathematics curricula in schools and colleges in England. 
Essential to using mathematics to model a real world situation or problem is the 
genesis of the activity in the real world itself.  Mathematising this situation, that is 
simplifying and structuring it so that it can be described and analysed using 
mathematical ideas and constructs, leads to the mathematical model.  Following 
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analysis using mathematical knowledge, skills, techniques and understanding the 
outcomes and results are interpreted in terms of the original problem, being checked 
to determine whether or not they are valid.  At this stage it may be decided that the 
model is adequate, or that it needs to be modified in some way, perhaps making it 
more sophisticated so that the results/solution to the problem are more appropriate.  
This can therefore be conceived of as a cyclical process with the “modeller” 
translating between real world and mathematical representation.  Some mathematical 
model types are commonly found and used to describe many different situations (for 
example, in the sciences models of direct proportion, exponential growth and decay 
and inverse square laws abound) and in some instances a recognition of this allows 
the modeller to short-circuit some of the process and work quickly between 
mathematical model and real world.  In the discussion document which set out the 
agenda for the forthcoming ICMI study of Applications and Modelling in 
Mathematics Education (Blum, 2002), care was taken to distinguish between use of 
the term “modelling” on the one hand, to describe the mathematisation as one moves 
from reality to mathematical model, and “application” on the other as one interprets 
mathematical analysis in real terms, sometimes from a given mathematical model.   
In recent years in England, scant attention has been paid to the process of 
mathematical modelling in “traditional” courses at this level with assessment 
encouraging a view of problem solving / applications being something that follows 
learning and, if possible mastery, of “basic” techniques.  As has already been 
suggested, the new AS Use of Mathematics attempts to bring to the fore the processes 
of modelling and particularly application as outlined here. 
THE SELF-EFFICACY INSTRUMENT 
In developing an organising framework around which to build our self-efficacy 
instrument we turned to the construct of ‘general mathematical competence’ (for 
further discussion of this see for example, Williams, Wake and Jervis, 1999).  This 
acknowledges that, as suggested above, in certain domains there are common ways 
of bringing mathematics together to solve problems and model situations.  So 
mathematical modelling as practised in a range of situations by learners or workers 
(for example see Wake, 2007) is not a wholly open practice but is often based on 
common patterns of working that we have identified and briefly outline below.
In summary, a general mathematical competence is the ability to perform a synthesis 
of general mathematical skills across a range of situations, bringing together a 
coherent body of mathematical knowledge, skills and models with attention being 
paid to underlying assumptions and validity.  Crucially then, the construct of general
mathematical competence moves us away from thinking of mathematics as a 
collection of atomised mathematical skills towards consideration of it as a practice in 
which we bring together and use mathematics (often in common ways) to analyse 
situations and solve problems.   
The general mathematical competences (g.m.c.s) developed were: 
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Costing a project: This requires the calculation of the ‘cost’, in monetary or other 
terms, of a (substantial) project or activity. Graphical / visual display of findings may 
be required. 
Handling experimental data graphically: Developing a graphical display of 
experimental data requires firstly the identification of suitable data, its collection, 
organisation and recording prior to any scaling or processing that may be required.  
Following actual plotting of the raw or processed data identification and validation of 
mathematical functions to appropriately model the data may be necessary.  
Interpreting large data sets: We increasingly have access to large sets of primary and 
secondary data. This g.m.c. requires initial sifting of data and identification of 
appropriate hypotheses, followed by the selection of the data required. Calculation of 
appropriate measures of location and spread and the development of appropriate 
visual / graphical display allow interpretation in terms of the original hypotheses. 
Using mathematical diagrams: This g.m.c. requires the ability to translate reality into 
a diagrammatic representation (including plans or scale drawings) and vice versa.
Using models of direct proportion: The use of models of direct proportion permeates 
many areas of mathematical application (e.g. other g.m.c.s require the scaling of data 
which requires an understanding of the concept of proportionality). This g.m.c. 
develops numerical, graphical and algebraic understanding of this key mathematical 
concept requiring that one can move with ease between these different modes. 
Using formulae: This g.m.c. pays attention to algebraic form and the use of algebraic 
formulae. It recognises that one often needs to be able to use formulae to process data 
and therefore requires that one is able to select appropriate data to use within any 
algebraic expression paying attention to units / dimensions of quantities.  
Measuring: In practical work in science and technology it is important that attention 
is paid to measurement of data. In particular it is important that due attention is paid 
to the use to which the raw and processed data will be put as this will inform not only 
what should be measured but also the required accuracy and units with which 
quantities should be measured. Calibration of instruments is covered in this g.m.c.  
A total of thirty items were developed with twenty four based on the seven general 
mathematical competences identified above and a further six being developed in 
“pure” mathematics areas.  The items were designed at three different levels, it being 
the intention that, as part of the long term project, the instrument will be administered 
to the same student population at the start and end of a single academic year and at 
one point just beyond this.  The different levels of items will allow for the increasing 
mathematical maturity of the cohort being studied. As usual in self efficacy studies, 
students were asked to choose the level of their confidence in solving each item (but, 
it was stressed, without the need for actually solving the item) using a Likert type 
scale.  Examples of “pure” and “applied” items are given in Figure 1. 
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Figure 1.  Sample pure (top) and applied (bottom) items from self-efficacy instrument. 

As these sample items illustrate, whilst they give a general description of the type of 
activity required, each ensures a greater degree of specificity by including an example 
of the type of task.  Whilst item C16 requires application of mathematical 
understanding and techniques this is taken to be in the discipline of mathematics itself 
and is categorised as “Pure” (see next section) whereas item C6 presents a problem 
within a “real” context and is categorised as “Applied”. Although this latter item is 
not explicitly presented as a modelling task its successful completion will require 
simplifying assumptions to be made, such as dividing the profile into a number of 
separate sections, using mathematics to analyse each sub-section, before making 
some attempt to assess the validity of the final solution. 
In summary, therefore, our instrument meets Bandura’s requirements, paying 
attention to the generality of the task, the level of its demand and strength of belief. 
PILOT STUDY 
The thirty self-efficacy items (ten at each level) were organised into three different 
versions of the questionnaire with each having link items ensuring that an item 
response theory (IRT2) model could potentially provide a good measurement model.  
The questionnaires were administered to a pilot sample of 341 students towards the 

                                          
2 The mathematical models of IRT calculate the probability of a correct response to an item as a 
function of the subject’s ability, the item’s difficulty and some other characteristics (depending on 
the relevant model)

Working Group 13

CERME 5 (2007) 2215



end of their different AS courses in 23 different Further Education institutions across 
England.
Rasch analysis, and particularly the Rating Scale Model, was initially used to 
establish the validity of the instrument (Bond & Fox, 2001). The Rasch model, in its 
simpler form (i.e. the dichotomous model in which the responses are restricted to 1 
and 0, or correct/incorrect) assigns an ability parameter to each student based on the 
number of his/her correct answers and a single difficulty parameter to each item, 
resulting from the number of students who answered that item correctly. Hence, it 
allows these estimates to be ordered in a common scale, using ‘logit’ as the 
measurement unit.
For this analysis we used the Rating Scale Model, which is the most appropriate for 
response categories in Likert type instruments that include ordered ratings such as 
ours (‘not confident at all’, ‘not very confident’, ‘fairly confident’, and ‘very 
confident’). The Rating Scale Model (like any Rasch Model) also provides some fit 
statistics to indicate the fit of the data to the assumptions of the model, and 
particularly the dimensionality of the construct. Tests of fit aided the evaluation of 
the scalability of the item set and showed acceptable fit suggesting that our 
instrument could be used to describe the desired construct, i.e. perceived 
mathematical self-efficacy (Wright & Masters, 1982; Bond & Fox, 2001). 
A next step in was to examine whether the items have significantly different 
meanings for the two groups, in which case differential item functioning (DIF) is 
present (as in technical guidelines suggested by Bond & Fox, 2001, p. 170-171). 
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Figure 2.  Item estimates (i.e. logits) for the two student groups (with the 95% 
confidence intervals) 

The graph in Figure 2 plotted the difficulty of the items (in logits) as estimated for the 
two student groups separately, and the lines show the 95% confidence interval. 
According to the model’s assumptions (and hence the ‘ideal world’s’ scenario) it 
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should be expected that these estimates should be invariant across the two groups, 
and all the items to fall inside the confidence intervals. In this case, however, it is 
demonstrated that certain items are outside these limits. Particularly, the items 
indicated at the top in Figure 2 are those that AS UoM students report to be 
significantly more confident in tackling than AS Trad students whilst AS Trad 
students report being significantly more confident than AS UoM students in tackling 
those at the bottom.
Given these findings, we hypothesized that there might be a latent sub-structure of the 
instrument that may be better modelled by a multi-dimensional model involving pure 
and applied dimensions.  Focussing our analysis on those students with the lowest 
prior attainment (our target group of 70 AS UoM students and 93 AS Trad students) 
we performed multidimensional analysis for two different cases: (i) within-item 
multidimensionality (two dimensions), and (ii) between-item multidimensionality 
(two and three dimensions). 
An instrument may, according to Wu, Adams and Wilson (1998), be considered 
multidimensional “within – item” if any of the items relates to more than one latent 
dimension.  Within-item multidimensionality was determined by scoring the items on 
a ‘Pure’ and an ‘Applied’ demand on the basis of judgement about the nature of each 
item (i.e. items with no significant pure maths or applied maths demand, as judged by 
experts, were allocated to ‘A’ or ‘P’ respectively while those with some of each were 
allocated to both dimensions). From a different perspective “between item multi-
dimensionality” occurs when an instrument contains several uni-dimensional sub-
scales.  In this case items were categorised into either two (2D model) or three (3D 
model) discrete categories as in Figure 3.  Significantly these categorisations point to 
items C23 and C24, for example, as having an applied nature and C3 and C21 as 
having a pure nature, and the analysis points to the AS UoM students being more 
confident in tackling the former and the AS Trad students the latter. 
Description 3D model 2D Model 
no "real" context, may be solved using straightforward 
techniques
no "real" context (context not important to problem), requires 
decisions about approach to be taken 

Pure (P) Pure (P) 

problem in "real" context - method clear 
problem  in "real" context requires synthesis of a range of 
mathematical understanding / techniques 

Applied (A) 

requires assumptions / decision making in approach to 
solution

Modelling (M) 

Applied / 
modelling (A/M) 

Figure 3.  Sub-scale categories used to investigate “between item multi-dimensionality” 
of the self-efficacy instrument. 

Using a ConQuest (Wu, Adams and Wilson, 1998) multi-dimensional analysis (after 
Briggs and Wilson, 2003) we evaluated the comparison of the unidimensional and 
multi-dimensional models via a chi-square test on the deviance statistic (Figure 4). As 
they state “because the multidimensional approach is hierarchically related to the 
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unidimensional approach, the model fit can be compared relative to the change in the 
deviance value, where the difference in deviance between the two models is 
approximately distributed as a chi-square” (p. 95) with the difference in the number 
of parameters as degrees of freedom, in each case. 

MODEL Deviance Number of 
parameters

Unidimensional 5670.886 33
2D –within-item 5662.499 37
2D- between - item 5723.387 35
3D- between - item 5721.527 41

Figure 4. Comparison of the Unidimensional and Multi-dimensional models 

Our analysis suggests that the within-item multidimensional model (as highlighted 
above) has a slightly better fit to the data than the uni-dimensional model, which in 
turn performs slightly better than either of the between-item models.  This suggests 
that our instrument might be successfully used to not only measure perceived self-
efficacy in maths overall, but should be able to identify sub-dimensions of perceived 
self efficacy in pure and applied maths. 

FUTURE DIRECTIONS 
Our initial study has allowed us to construct and validate an instrument that we can 
use to measure perceived self-efficacy in mathematics, as well as in constituent 
dimensions of “pure” and “applied” mathematics.  This will be used to track changes 
longitudinally in the perceived self-efficacy of students “at the margins” following 
AS UoM and AS Trad courses in Colleges across England.  Our focus, therefore, will 
be students with low prior attainment who in some institutions are even excluded 
from study of mathematics altogether.  Their perceived self-efficacy, along with other 
outcome measures and student disposition to study in Higher Education in general as 
well as disposition to study mathematically demanding courses, will be surveyed at 
the start of their AS Mathematics courses (UoM and “Trad”) as well as towards the 
end of the course and into the following year in a delayed post-test.
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