
WORKING GROUP 3. Building structures in mathematical knowledge 399 

Building structures in mathematical knowledge 400 

 Milan Hejný, Graham Littler  

Constructing Multiplication: Different strategies used by pupils 407 

 Joana Brocardo, Lurdes Serrazina, Isabel Rocha  

Students’ thinking about fundamental real numbers properties 416 

 Eustathios Giannakoulias, Alkeos Souyoul, Theodossios Zachariades  

Schema A ± B = C as the basis of arithmetic structure 426 

 Milan Hejný, Jana Slezáková  

Recognising an algebraic structure 436 

 Maureen Hoch, Tommy Dreyfus  

Creating a mental image of dice blackjack game 446 

 Antonín Jančařík  

Classification, manipulation and communication: Work with pupils and student teachers 456 

 Darina Jirotková, Graham H. Littler  

Investigating the processing structures of students’ inductive reasoning in mathematics 466 

 Eleni Papageorgiou, Constantinos Christou  

Empirical Hierachy of pupils’ attainment of measurement in early primary school years 476 

 Alexandra Petridou, Maria Pampaka, Constantia Hadjidemetriou  

How do students from primary school discovery the regularity 486 

 Marta Pytlak  

Reflection on activity – effect relationships in solving word problems 496 

 Ana Isabel Roig, Salvador Llinares  

Children’s perceptions on infinity: Could they be structured? 506 

 Mihaela Singer, Cristian Voica  

The role of spatial configurations in early numeracy problems 516 

 Fenna Van Nes, Jan de Lange  



Students’ ability in solving line symmetry tasks 526 

 Xenia Xistouri  
 



Group 3 – Structures 
 

Milan HEJNÝ       &      Graham LITTLER 
                     Charles University in Prague        University of Derby 

 
GROUP LEADERS 

Besides the authors of this report, Ladislav Kvasz (Slovakia) and Dvora Perez (Israel) 
were involved in the reviewing process as groupleaders. Unfortunately neither of these 
were able to come to Cyprus so Maureen Hoch (Israel) kindly accepted our request to 
take the responsibility of a group leader. 
 

PARTICIPANTS  AND WORKING CLIMATE 
18 persons from 10 countries (CY, CZ, ES, GR, IS, NL, PL, PT, RO, and UK) 
participated in WG3. All of them were active during each session. In comparisson to the 
G3 sessions in previous CERME conferences, the climate was more collaborative and 
supportive especially to the younger participants. During the sessions and free time 
working contacts were established to develop work across countries. The group 
benefitted from the good climate established by the Organising Committee.   
 

PAPERS DISCUSSED BY THE GROUP 3 
 

1. Constructing Multiplication: Different strategies used by children 
Joana Brocardo & Lurdes Serrazina & Isabel Rocha 

 
We propose a hypothetical trajectory to multiplication and test it with second grade 
pupils, which put problems in several levels. We emphasised the aspects related directly 
to the learning of multiplication using multiplicative contexts, the nature of tasks and the 
role of teachers. 
 
Questions for Discussion  

• When can we say that a given task is a multiplicative situation or a division one? 
• What are the main differences between multiplicative and division structures? 
• What are the difficulties by proposing open tasks? 
 

 
2. The scheme A + B = C as the basis for  Arithmetic structure 

Milan Hejný, Jana Slezáková 
 
• Fill the blank boxes with numbers in such a way that 

both the sum of three adjacent numbers in a row and 
in a column is always 6.  

 
Questions for Discussion  
Why do nearly all solvers use Trial and Error methods? 
Do you know how many doors there are in your house/flat?  
You should know since you have the scheme of your house/flat in your mind.  
Can you give similar usage of scheme from mathematical area? 

3     
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2    1 
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3. Recognising an algebraic structure 
Maureen Hoch, Tommy Dreyfus 

 
• We tried to answer these questions by analysing and comparing the learning paths 

of two students. The students’ structure sense did improve: they learned to 
recognise and use the structures in complex forms.  

• We asked the group to discuss why this ability did not always withstand the test 
of time.  

 
Questions for Discussion  

• What is algebraic structure at high school level?  
• What is structural about a2 – b2 or a2 + 2ab + b2?  
• How does a student learn to recognise structure?  
• Can structure sense be taught?  
• Structure sense was defined in earlier papers and is briefly summarised here. 

 
 

4. Creating a mental image of dice – the game blackjack 
Antonín Jan�a�ík 

 
• The experience of the author from workshop and seminars with teacher-education 

students, selected the game ‘dice blackjack’ as an example of more important 
games with perfect information. 

• In the experiments analyse the process of finding a winning strategy and creating 
mental structure of the game. 

• The results show that the understanding of the game comes at one specific point  
when the situations become more complicated.  

 
Questions for Discussion 

• Is it possible to find such a point in a different situation?   
 
 

5. Classification, Manipulation and Communication – work with pupils  
and student-teachers 

Darina Jirotková, Graham Littler 
 

• Levels of tactile manipulation have been defined - these are linked to the  ability 
of pupils to classify solids and to the individual pupil’s communicative ability. 

• Links between classification, manipulation and communication in 9 to 11 year old 
pupils when asked to divide a group of solids into two groups were found. 

• It was found that communicating about what the tactile perceptions were as the 
pupils manipulated the solids helped to build the structures. Three types of 
structure were developed.  

• It goes on to describe what the researchers found when they investigated student 
teachers’ knowledge of and competence in building structures in 3D geometrical 
structures.  
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• By structure we mean the linking of information gained about a solid through the 
tactile perception so that a solid or an attribute found in several solids can be 
described uniquely.  

Questions for Discussion 
• Are tactile manipulation, communication and classifying 3D solids linked in any 

way?  
• Is there difference between 3D geometrical knowledge structures of student-

teachers’ and 11 year-old pupil’s?  
• What attributes of solids are structure making? 

 
 

6. Investigating the processing structures of student’s inductive reasoning in 
mathematics 

Eleni Papageorgiou & Constantinos Christou 
 

• The study is aimed to empirically test a theoretical model formulated to identify 
and classify students’ processing structures when they solve inductive reasoning 
mathematics problems. We constructed a mathematical test in order to assess the 
components of inductive reasoning of sixth Graders. The data suggested that 
inductive mathematics reasoning is a process consisting of three factors: the 
“similarity”, the “differences” and the “similarity and differences” factors.  

• The proposed model provides a framework of students’ thinking while solving 
various formats of inductive mathematics problems, and a prototype for further 
investigation of the components of inductive reasoning.  

 
Questions for Discussion 

• Find the common feature of the numbers: 4, 16, 8, 32, 20, 100. 
• Underline the number that does not fit in with the others: 3, 9, 15, 30, 81, 5. 
• Complete with the right number 1, 5, 13, 29, …. 
• Find the number that disturbs the sequence 1, 1, 2, 3, 5, 7, 13, 21. 

7. Empirical hierarchy of pupils’ attainment of measurement in early 
primary years. 

Alexandra Petridou, Maria Pampaka, Constantia Hadjidemetriou, Julian Williams, 
Lawrence Wo 

 
This study describes a developmental ‘map’ of performance in the context of 
measurement in the early primary school years (ages 5-7). This study uses data from 
diagnostic, age-standardized tests from a sample of 5120 pupils in England. The map 
was constructed using Rasch measurement methodology and specifically the Partial 
Credit model. This model enables to describe typical misunderstandings and errors 
alongside a constructed hypothetical learning trajectory. We interpret the scale from 
the analysis as a hierarchy of five levels of measurement performance. We then 
compare this empirical hierarchy with the one described in the English National 
Curriculum for mathematics.  
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Questions for Discussion 

• Describe the strategies used by 5-7 year old pupils when measuring a toothbrush. 
• The paper is written from a professional psychological point of view. Would the 

conclusions change if a mathematical analysis was used?  
 

 
8. How students from primary school discover regularity 

Marta Pytlak 

The research experiments asked pupils to determine the sequence of values based on the 
perimeter and interior area of squares. The perimeter (8, 16, 24, 32,…) gives a linear 
sequence while the area ( 1, 4, 9, 16, …) gives a quadratic one. Comparing the first few 
elements of these two sequences a pupil, she/he hypothesises that the perimeter will 
always exceed the area. In the paper different ways  of approaching this problem are 
discussed.  
 
Questions for Discussion 

• What are the ways of discovering the regularity by 5th Grade pupils? 
• In what ways can a teacher stimulate the pupil’s process of thinking on the 

abstract level? 
• How can the interaction between pupils influence the development of structure of 

thinking in the process of discovering regularities? 
 

 
9. Students’ ‘reflections on activity- effect relationships’ in solving word problems 

Ana I. Roig & Salvador Llenares 
 

• This study focus on how the mechanism “reflection on activity-effect 
relationships” (Simon et al., 2004) is involved in the students’ problem-solving 
processes.  

• A five-question test paper was prepared and all the participants were interviewed. 
The results show that if the students don’t remember a mathematical tool that 
allows them to solve the problem, the process of recognising the underlying 
structure of the situations can be carried out by means of the “reflection on 
activity-effect relationships” mechanism. 

•  Different components of the mechanism were identified and the comparison of 
activity-effect relationships seems to be a determining factor in the characteristics 
of the solving processes. If the comparison remains at the projection phase, the 
underlying structure of the situation is not (or is partially) recognized. If the 
comparison is done at the reflection phase, the student achieves a complete 
structural understanding of the situation. 

 
Questions for Discussion 

• What is the least size of a square floor which can be made using tiles 33 cm � 30 
cm?  
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• What is the least size of a square floor which can be made using tiles 
m cm � n cm?  

10. Childrens’ perceptions of infinity – could they be structured? 
Mihaela Singer, Cristian Voica 

 
• The paper is focused on explaining what kinds of structures are activated when 

dealing with the intuition of infinity in school context. To get a better view of the 
students’ insights about infinity we used a variety of questions, covering the 
following categories: vocabulary, intuitive representations; how does intuition 
work? how does one prove the infinity of a given set? how does one compare 
infinite sets?  

• Starting with the sample data, we made a qualitative analysis concerning the 
following aspects: Children’s everyday meaning for infinity; Perceptions and 
arguments in understanding infinity; Children’s arguments in comparing infinite 
sets, and we come back to describe arguments for infinity starting from the 
structures point of view.  

• We can conclude that some of the young children have a structured representation 
about the infinite sets. This is happening as soon as they learn about the set of 
natural numbers, in primary grades. At the age of 10-11, when students are 
learning about the decimal numbers, they are able to identify structures helpful in 
arguing about the infinity of some sets or giving hints for the cardinal 
equivalency. Also, we see that, when the students’ arguments are consistent, they 
seem to be based on connections between algebraic and geometrical thinking. 

Questions for Discussion  
• Could pattern regularity be important at University level? If regularity as an idea 

is not grasped until university age, what can we do?
• What roles does structure play in young children’s everyday activities (building 

with blocks, learning to count, comparing quantities)? How do these roles 
compare and how may they be related to each other? 

 
 

11. Students’ thinking about fundamental real number properties 
Eustathios Giannakoulias, Alkeos Souyoul, Theodossios Zachariades 

 
• We focus on the difficulties concerning the identification of rational and irrational 

numbers, the importance of the decimal and fraction representation in this 
process, as well as the real numbers density. The data reported was collected by 
questionnaires administered to first year students who studied mathematics and 
had mathematics as a major subject in school. Data analysis provided us a 
classification of the students into four groups. We make an attempt to characterise 
each group’s common answers as certain thinking strategies (mental structures). 
Some groups consider rational only those that have a finite number of (non zero) 
decimal digits in their decimal representation.  
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• Many students in one group did not consider irrational numbers as real numbers. 
Problems across all of the groups were found concerning the dense structure of 
the real numbers. This paper concludes that several difficulties seem to remain 
after school graduation, while the students have developed interesting thinking 
strategies.  

Questions for Discussion  
• Compare the following pairs of numbers a) 2.999… and 3, b) 1.888… and 1.9. 
• Decide whether the following numbers are rational or irrational: 3.146 and 
2. 
• Which of the two above questions would you think university students found 

easiest? 

12. The role of spatial configurations in early numeracy problems 
Fenna van Nes & Jan de Lange 

 
• The mathematics Education and Neurosciences (MENS) project is a unique 

initiative to integrate research from the field of mathematics education with 
research from the fields of cognitive psychology and neuroscience in order to 
come to a better understanding of how the early talents of young children (aged 
four to six years) can best be cultivated for supporting the development of 
mathematical abilities in formal schooling. 

• The present paper investigates relationships between the development of early 
spatial thinking skills and emerging number sense. We examined how a child is 
able to distil a structure form a spatial arrangement of objects (i.e. domino dot 
configurations, finger counting images) and how the structure is applied to 
determine and compare quantities.  

• Fifteen four-year olds, fifteen five-year olds, and fifteen six-year olds were 
interviewed as they performed a series of number sense and spatial tasks. In the 
preliminary qualitative analyses, an association was found between a child’s 
ability to apply spatial structures to numerical tasks and their level of 
mathematical achievement. This association has triggered questions for 
subsequent research into the role of structure in the development of spatial and 
numerical thinking. 

Questions for Discussion 
• What roles does structure play in young children’s everyday activities (building 

with blocks, learning to count, comparing quantities)?  
• How do these roles compare and how may they be related to each other?  

 
 

13. Students’ ability in solving line symmetry tasks 
Xenia Xistouri 

 
• The aim of this study is to propose and evaluate a model of 4th, 5th and 6th grade 

students’ structure of knowledge in line symmetry. The model used is the 
Taxonomy of Structure of the Observed Learning Outcome (SOLO). The model 
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describes the structure of students’ aptitude to respond correctly to tasks of line 
symmetry, and thus it can be used by teachers to enhance students’ learning. 

Questions for Discussion 
• Can a hierarchy model for the structure of a concept be valid in every regular 

concept. 
• How useful can a model for the concept structure be for the classroom teacher? 
• Is there a more appropriate methodology for studying structures? 
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CONSTRUCTING MULTIPLICATION: DIFFERENT STRATEGIES USED 
BY PUPILS 

Joana Brocardo   Lurdes Serrazina  Isabel Rocha 
ESE de Setúbal  ESE Lisboa   ESE Leiria 

Abstract
The Project “Number sense development: curricular demands and perspectives” 
aims to study the development of number sense in elementary school (5 to 12 years 
old). This paper presents a discussion based on one of the six case studies developed 
by the project. We will focuses on the strategies used by 7-years old pupils when 
solving multiplication problems, namely on the awareness of existence of different 
strategies and the inclination to utilize an efficient representation or method. 

Introduction
Number sense has been considered one of the most important components of 
elementary mathematics curriculum. The development of personal strategies of 
calculation and its implications to solve problems in real situations are recommended 
by both international literature (Fuson, 2003) and Portuguese curricular documents.
The term number sense has been used by several researchers to mean a group of 
numerical competencies that, nowadays, are considered very important to develop 
with students. For us, the meaning of this term, adopted by McIntsoh, Reys and Reys 
(1992) includes all the main points. They consider that number sense comprehends: 

1. Knowledge and facility with numbers, witch includes multiple representations 
of numbers, recognizing the relative and absolute magnitudes of numbers, 
composing and decomposing numbers and selecting and using benchmarks. 

2. Knowledge and facility with operations, witch includes the understanding of 
the effects of operations on numbers, the understanding and the use of the 
operations properties and their relationships. 

3. Applying knowledge of and facility with numbers and operations to 
computational settings, witch includes the understanding to make connections 
between the context of a situation and the computation procedures, requiring 
knowledge of multiple computational strategies. 

Most countries have emphasized during the last twenty years, the development of 
number sense together with the development of strategies and computation 
procedures and their flexible applications both in real practice contexts and in new 
ones. In NCTM Standards, understanding number and operations, developing 
number sense and gaining fluency in arithmetic computation form the core of 
mathematics education for the elementary grades (NCTM, 2000). The Project 
National Numeracy Strategy also points out these ideas when states that England 
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changed the way in which mathematics is taught in many schools, with a new 
emphasis on mental mathematics, with new teaching approaches to help children 
develop a repertoire of computational skills involving work on mental calculations 
and strategies. (Askew and Ebbutt, 2000). 
Instead, Portuguese elementary school tradition emphasizes arithmetic algorithms 
and that way of facing number sense is far away from it. Some studies reflected on 
the effect of teaching written algorithms on the development of children’s mental 
strategies and number sense (Clarke, 2004). Encourage students to use only one 
method to solve problems limits their capacity to use flexible and creative thinking. 
In counterpoint, Clarke shows the benefits of developing concepts and strategies for 
mental computation prior to more formal written computation.  
A closely relation between research and practice is seen as an important element to 
help changing teacher’s practice. It is very important to work with teachers, to 
develop new materials with them, to refine these materials according to instruction 
experiments results in a process that leads to construct a conjectured local instruction 
theory (Gravemeijer, 1997).

The project Number sense development: curricular demands and perspectives 
The project Number sense development: curricular demands and perspectives aims 
to study the development of number sense in elementary school (5-12 years old). The 
team Project is composed by classroom teachers and researchers who work 
collaboratively in all phases of research. We developed related sequence of 3 or 4 
tasks – task chain - and implemented them in a particular classroom, covering 
different grades from kindergarten (5 years old ) to 5th grade (11 years). Each task 
chain was developed as an hypothetical learning trajectory in the sense used by 
Simon  (1995).  
Therefore, one of the components of the project Number sense development: 
curricular demands and perspectives, is to develop chains of learning activities that 
supports the development of number sense. Those chains has been thinking with the 
support of Simon`s model. For Simon, the teacher in order to plan his teaching, has 
to make decisions about contents and about the learning tasks. So, in this context, it 
is introduced by this author, the concept of hypothetical learning trajectory, a cycle 
of learning assigned with some tasks constructed by the teacher, attending to the 
mathematical ideas and processes that he intends to develop in the students. 
The learning trajectory is hypothetical because is thought as experimental and 
because is not possible to be sure that it will be a real and efficient way of learning. 
Of course, it is possible to make previsions because the teacher may anticipate the 
approaches, the discussions and solutions that may be stimulated by the potential of 
the tasks. 
It was in this context, that the task chain experimented in the case study presented in 

Working Group 3

CERME 5 (2007) 408



this paper, was developed and implemented. 
In addition the project has three other objectives:  

� To understand the main difficulties faced by pupils when they develop number 
sense;

� To study the curricular integration of these activities and the demands they 
pose to teachers; 

� To identify professional practices that facilitates number sense development. 
We developed six qualitative case studies. Each case study analyzed the 
implementation in a particular classroom of a related sequence of 3 or 4 tasks – task 
chain - and covered different grades from kindergarten (5 years) to 5th grade (11 
years).

Methodology 
We will present a discussion based on the analysis of one of the case studies 
developed by the project and implemented in a second grade classroom (20 seven 
years old children). These pupils had already worked addition and subtraction with 
numbers up to 100. 
The focus of the task chain experimented in this case, is a learning trajectory to 
develop the multiplication concept. It is composed by four tasks that were presented 
in the last semester of school year. This work was developed along four weeks, one 
task per week, explored every Monday morning.
Each Monday morning the classroom teacher organized a brief oral introduction to 
each task. He mainly tried to capture pupils’ attention to the context presented in 
each task. He also proposed a given period of time to explore the task in small 
groups. After that he organized a whole group discussion where all groups had the 
opportunity to share different approaches to the problems posed.  
This task chain focus the construction of a learning trajectory, which starts from the 
knowledge related to additive computation to develop the multiplication concept. 
More precisely it deals with relation between some table products and the 
understanding of specific properties of multiplication. This learning trajectory was 
also foreseen to introduce the double number line model and to enhance the concept 
of multiplication relating it with the rectangular model.  
Classes where tasks were developed were videotaped by one of the members of the 
research team, who also took some written field notes from her class observations. 
After that all videotapes were watched and more meaningful episodes transcribed 
and completed with field notes.  
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Data analysis was made task by task, first a description how task was presented to 
pupils, following how it was explored and discussed in classroom. It also includes 
the final discussion when it was not embedded with the exploration. It ends with a 
synthesis of each task centred in the processes used by pupils according to categories 
about number sense, adapted from Mcintosh, Reys and Reys (1992). 
After the analysis of each task of the chain, the hypothetical learning trajectory and 
the learning goals for each pupil, were confronted with the process followed by each 
one in order to try to establish a learning trajectory followed by these classroom 
pupils. 
In this paper we focuses our analysis in the category - Applying knowledge of and 
facility with numbers and operations to computational settings - which includes: (1) 
understanding the relationship between problem context and the necessary 
computation, (2) awareness that multiple strategies exist and (3) inclination to utilize 
an efficient representation and/or method. 

Understanding the relationship between problem context and the necessary 
computation
One of the conclusions of a previous study carried out by Brocardo, Serrazina, 
Kraemer (2003) shows a strong tendency of Portuguese pupils to a mechanical use of 
algorithms: they read the question and they ask themselves which computation 
should they do. They do not analyse the meaning of question and the answer they 
propose.
In this case was not observed this kind of procedure. Pupils tended to analyse the 
context and to relate it with the computation they performed. This tendency seems to 
be related with the teacher’s concern to enhance pupils’ interpretation of the 
proposed problem, as he did when he proposed the first task:  

Teacher: And now you can read what is presented in the task and, first of all we 
are going to interpret it, ok? Is there any word you can not understand?

At the beginning , although pupils had a concern to analyse the context, many times 
that analysis tended to be more important than the mathematical work related with 
the problem that was been discussed. For instance, in the first task, the discussion of 
the meaning of the word aperitif drove pupils to talk about meals (main course, 
desert, aperitif) and about the sort of aperitifs that they had already tasted.
In the following tasks this aspect was less relevant. The pupils did not take so much 
time to talk about task lateral aspects. However, they always made some comments 
to the task context. We will show in the next section the strategies they used.

Awareness that multiple strategies exist 
Our data show a progressive awareness of different strategies. Pupils strategies 
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repertoire was enriched along the work developed with this task chain.   
In the first task pupils had to calculate the number of sausages' slices. Most of them 
used additive strategies:  

1 sausage - 2 slices 
2 sausages - 4 slices
3 sausages - 6 slices 

The additive strategy was also used in a more sophisticated way: two groups related 
the questions like this:

If I need 24 slices of cheese then I have to add 24 to know the number of 
sausages.
To know the number of slices of tomatoes I have to add 24 to the number of 
sausages.

Some pupils had difficulties in organizing their thought. So, the teacher decided to 
introduce the double number line:  

1    2    3   4      …             

 3   6    9  12   …   slices of tomato            

This strategy was easily understood by the pupils that begun to use it to solve some 
of the questions posed in the next tasks.

In the second task most of the pupils used this strategy, for instance, to find the 
number of boxes they need to pack 100 eggs:  

1    2    3   4      …                                                number of 6-packing            

6   12    18  24   …                           number of eggs           

This strategy was also used to support the explanations that teacher had to provide to 
some of the pupils. For instance, in the 3rd task, as some of the pupils had difficulties 
to express how they could explain that Manuel took 4 pills in one day, the teacher 
used the representation: 
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hours        0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
pills       0                      1                         2                             3                           4 

The double number line was also the support that teacher used to compare the 
number of pills that Carolina and Manuel took in one day.  

hours               0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

pills                 0                      1                         2                             3   4 
  0                              1                                      2                                     3 
      Carolina 
Manuel

The concept of multiplication and its relation with the 
rectangular model was progressively developed. In the last 
task, when they were asked to propose different possibilities 
to pack 30 Chiclets, most pupils used the concept of 
multiplication relating it with the rectangular model and 
begun to present several solutions:

 - 1x30 
- 2x 15 
- 3x 10 
- 5x 6 

The use of certain strategies seemed to be related with the context. For instance, the 
drawing of the blisters supported the strategies used by Francisco and his peer:   

1    7   13   19 
2    8   14   20 
3    9   15   21 
4    10   16   22 
5    11   17   23 
6    12   18   24 
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Francisco: I already knew that Manuel took 4 pills per day and Carolina took 3 
and then I did 4 pill boxes …. 4 blisters and then I did. 
Teacher:  In one row. 
Francisco: In one row… aah… one day, and the other row it was the other day 
… (…) 
Francisco: Because the rows have 4 pills and it was 24, he needed 24 days to 
take all the pills. 
(…)
Francisco: And then I did the same thing …but  Carolina took 3 pills per day 
and I did this: 

   1     2    3   4           9   10  11  12         17   18 19  20          25  26  27  28 

   5    6    7    8         13   14 15   16         21   22  23  24         29  30 31   32 

Inclination to utilize an efficient representation and/or method 
Besides the progressive awareness of different strategies, an aspect which was 
emphasized by teacher was the use of more efficient strategies. 
Data shows that this is a more difficult level for most of the pupils. Many of them 
can persist to use a long process – like jumping one by one in the double number 
line.
During the two first tasks only one group seemed to be interested in thinking in the 
“most efficient process”. However the reflection proposed by the teacher when 
whole class analyses the different strategies used by the small groups, seemed to be 
an important way of facilitating the inclination to use a more sophisticated strategy.  
An example of this was the discussion that Tiago and Rodrigo strategy facilitated:

To calculate the number of days that Manuel and Carolina needed to take all 
pills they wrote on the blackboard this:
Manuel      Carolina 
1 day 24 h     1 day 24 h 
6 days one blister    8 days one blister 
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12 days two blisters    16 days two blisters 
24 days four blisters    32 days four blisters 

The teacher helping whole class to understand what Tiago and Rodrigo presented 
commented:  

Not to jump one by one …you may do large jumps …for 6 days how many 
pills? … 24 …24 with 24 is … right! Can you see? Now you have to do another 
jump. 6 days more is ? … So, more 24 … do bigger jumps. 

and used this representation. 

Days   0      6       12           24 

Blist.   0      1        2             4 

Concluding remarks 
We tried to illustrate that along the exploration of these 4 tasks, pupils develop a 
clear and powerful understanding of multiplication. They begun, in first task, to use 
additive strategies that corresponded to an activity in the task setting: interpretation 
and solutions depend on understanding of how to act in the setting (Gravemeijer, 
2005). During discussion the teacher facilitated the change of ideas and strategies 
among pupils. He also had the initiative to introduce different approaches that 
facilitated the development of more powerful strategies.  
In the second task most of the pupils already used models of the explored situation as 
an approach to the task.
In the fourth task pupils clearly used different models and they could relate 
multiplication with the rectangular model. 
According to Dolk and Fosnot (2001), counting one by one is not multiply. The 
development of new strategies as doubling and the use and understanding of 
properties of multiplication facilitate the growing capacity of children thinking in 
terms of number relations and enhance the number sense. In this sense we can say 
that these pupils developed number sense: they could use different models; they 
could begin to use the ones that were more "powerful"; and they could relate 
multiplication with rectangular model. However not all students were able to reach 
the same flexibility and level of understanding. For some of them successive addition 
and jumping by ones continued to be strategies they preferred (or were able) to use. 
The context seems to have an important role in this process. 
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STUDENTS’ THINKING ABOUT FUNDAMENTAL REAL 
NUMBERS PROPERTIES 

Eustathios Giannakoulias, Alkeos Souyoul, Theodossios Zachariades 
Department of Mathematics, University of Athens 

This paper presents a part of a research concerning school graduate students’ diffi-
culties in their understanding of real numbers and fundamental calculus concepts. 
Particularly, we focus on the difficulties concerning the identification of rational and 
irrational numbers, on the importance of the decimal and fraction representation in 
this process, as well as on the real numbers density. Based on these difficulties, the 
data analysis suggested a classification of the students into four groups with certain 
characteristics. Several difficulties seem to persist even after school graduation, 
while the students have developed interesting thinking strategies. 

INTRODUCTION
There are numerus pieces of research that confirm several cognition problems about 
the real numbers (Zazkis and Sirotic 2004; Moseley, 2005). Particularly, many stud-
ies show that students face difficulties in identifying rational and irrational numbers. 
The distinction between the different categories of numbers remains fuzzy and 
strongly dependent on their semiotic representations (O’ Connor, 2001; Munyazik-
wiye, 1995). The order and density of real numbers also cause cognitive problems 
(Merenluoto and Lehtinen 2006; Vamvakoussi and Vosniadou 2006). Most of the 
studies about the above mentioned difficulties concern elementary or junior high 
school students (ages 6-15). In this paper we examine school graduate students’ com-
prehension of the structure and the representations of real numbers. Using a method-
ology, which is based on statistics, we have divided the whole set of students into 
four groups and we compare the structure of understanding among the groups. One of 
the main aims of the paper is to compare different levels-degrees of understandings of 
real numbers. 

THEORETICAL BACKGROUND 
Real numbers appear in school mathematics education through a process of enrich-
ment of the set of natural numbers. The set of natural numbers expands to the set of 
the integers in order to include negative numbers. The integers extend to the set of 
rational numbers so as to provide ratios of integers. Finally irrational numbers join 
the set of rational numbers and construct the set of real numbers. Each of the sets 
mentioned above appears normally in a context of a necessary expansion of each set 
in order to solve problems that the subset cannot interfere with. Every bigger set pre-
serves some of the properties of the subset (but not all) and it has its own new proper-
ties. Research on numbers education shows that the process described above hides a 
number of problems in students’ understanding. It has been shown that students’ 
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knowledge of real numbers is often highly compartmentalized, and not linked to their 
broader mathematical knowledge (Moseley, 2005).  
Some cognitive problems concerning the number concept arise from the fact that in 
school mathematics numbers are not (and cannot be) defined in a formal way. Pupils 
in school instead of a definition for real numbers, have some concept image, in the 
sense of Tall and Vinner (1981), acting as a definition. An essential component of the 
fundamental change from elementary to advanced mathematical thinking is described 
schematically in the following: 
Concept image � Definition 
Definition � Concept image 
Sometimes the formal definition of a concept comes in a later step of the didactical 
process, after the students have already been familiar with the concept in an intui-
tive/informal context. In this case the concept image determines the formal definition. 
On the other hand, in formal mathematics the definition is used to prove the proper-
ties of the mathematical concept which it defines. In this case the definition deter-
mines the concept. This reversal is an epistemological obstacle which can cause great 
difficulty (Pinto, Tall 1996). 
The number concept image in school mathematics involves multiple representations 
for numbers such as, points on what is called the “real line”, decimals, fractions and 
some other numbers –the irrationals– that cannot be expressed as fractions. Problems 
involving the ability to move between different representations of the real numbers 
are discussed in Zazkis, Sirotic (2004) and Pinto, Tall (1996). In a conceptual change 
framework (Vosniadou, 1994; Vosniadou and Verschaffel 2004) students form syn-
thetic models when they face problems of rational numbers. The natural numbers’ 
discrete structure usually acts as a barrier when students have to cope with the ra-
tional numbers dense structure (Vamvakoussi and Vosniadou, 2004). The counter-
intuitive nature of incommensurability and density, seems to cause some of the prob-
lems in real numbers’ understanding (Fischbein et al. 1995). Incommensurability and 
density in the real numbers set are considered to have poor intuitive representations. 
This results to a counter-intuitive nature for the irrational numbers. 
Understanding of the real numbers structure is a presupposed knowledge for univer-
sity mathematics. Students should be familiar with the real numbers in order to face 
the fundamental calculus concepts. Most of the studies in mathematics education, 
about numbers understanding, concern primary or junior high school students (6-15 
years old). The study presented in this paper focuses on two research questions: 

� Do some of the above mentioned problems rersist after school graduation? In 
particular, we focus on the distinction between the elements of the basic sub-
sets of the real numbers, on the role that the fraction and decimal representation 
plays in this distinction, as well as on the dense structure of the real numbers 
set. 
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� Do school graduates have certain thinking structures about the real numbers 
and in what extend do these appear? 

METHODOLOGY
Data reported in this paper were collected by questionnaires administered to 215 first 
year students who studied mathematics and had mathematics as a major subject in 
school. The tests were administered during the students’ Calculus course early in 
their first semester. They had not yet been taught in a university level, the structure of 
real numbers. So, it is assumed that they answered the questionnaire using their 
knowledge from school. The questionnaire is part of a larger diagnostic test that we 
have devised, in order to identify problems that first year mathematics students face 
in the fundamental calculus concepts. 
Students’ fully correct responses were marked with 1 and the incorrect responses with 
0. The quantitative data analysis was made with the use of latent class analysis (LCA) 
with categorical variables (Barholomew et al. 2002, Kline, 1998). This analysis, 
which is part of mixture growth analysis, is a statistical method for finding subtypes 
of related cases (latent classes) from multivariate data. The results of LCA were used 
to classify cases to their most likely latent class. That is, given a sample of subsets 
measured on several variables, one wishes to know if there is a small number of basic 
groups into which cases fall. The statistical software used for the analysis was 
Muthen & Muthen Mplus, which is appropriate for discrete variables. More informa-
tion on the statistical method used can be found in Bartholomew et al. (2002), 
Muthén (2001), and Muthén & Muthén (2006). 

QUESTIONNAIRE
The questionnaire was divided into four parts. The questions are displayed providing 
also the percentage of correct answers in the parentheses. The first part consisted of 
four questions asking the students to distinguish the basic subsets of real numbers. 

A1. Write a natural number (99.1%) 

A2. Write an integer number that is not natural. (96.3%) 

A3. Write a rational number that is not integer.(97.2%) 

A4. Write an irrational number. (92.6%) 

Questions in the second part are related to the order and the density of the real num-
bers. 

Compare the following pairs of numbers.  

B1.1 0.999… 0.999 (80,9%) 

B1.2 1.888… 1.9 (95,8%) 

B1.3 2.999… 3 (10,7%) 
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In each of the following pairs of numbers write a number lying between them (if such 
number exists). If there is no such number, write “there is not”. 

B2.1 0.1  0.11 (71,2%) 

B2.2 1.888… 1.9 (58,1%) 

B2.3 2.999… 3 (90,2%) 

B2.4 1/3  2/3 (86,5%) 

B3. Is there any rational number q being greater than 3/5, having the property: ‘there is 
no number between q and 3/5’? If there is such a number, write it. If it does not exist, 
write ‘there is no such number’. (65,5%) 

B4. Can you find two real numbers such that there is no other number between them? If 
you can find a couple of numbers with this property, write the numbers. If you believe 
that there is not such a couple, write ‘there are no such numbers’.  (59,5%) 

In the third part students have to characterize the following statements as ‘true or 
false’. In this part of the questionnaire the students have to identify five different 
numbers as real, rational, irrational. For the numbers 
2 and 2/3 which are not given 
in decimal representation the students have to answer three more questions about 
their decimal representation. 

C1.1 
2 is a real number. (86%) 

C1.2 
2 is a rational number. (95,8%) 

C1.3 
2 is an irrational number. (95,3%) 

C1.4 
2 has a decimal representation with infinite decimal digits. (78,1%) 

C1.5 
2 has a decimal representation with finite decimal digits. (80,9%) 

C1.6 
2 does not have a decimal representation. (84,7%) 

C2.1 3.46 is a real number (96,7%) 

C2.2 3,46 is a rational number.. (85,1%) 

C2.3 3,46 is an irrational number. (85,1%) 

C3.1 0.78634… is a real number. (90,2%) 

C3.2 0.78634… is a rational number. (79,1%) 

C3.3 0.78634… is an irrational number. (78,1%) 

C4.1 0.777… is a real number. (89,8%) 

C4.2 0.777… is a rational number. (30,2%) 

C4.3 0.777… is an irrational number. (32,6%) 

C5.1 2/3  is a real number. (95,3%) 

C5.2 2/3 is a rational number. (75,8%) 
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C5.3 2/3 is an irrational number. (74,9%) 

C5.4 2/3 has a decimal representation with infinite decimal digits. (79,5%) 

C5.5 2/3 has a decimal representation with finite decimal digits. (76,3%) 

C5.6 2/3 does not have a decimal representation. (93,5%) 

The fourth part has two general questions about the decimal representation. 
D1 Every real number has a decimal representation. (63,7%) 

D2 Every number having a decimal representation is real. (67,9%) 

RESULTS
In the modelling process we used a method of successive steps. That is, we tested the 
model under the assumption that there are two (BIC 6406.705), three (BIC: 
6385.987), four (BIC: 6355.086) and five (BIC: 6477.895) groups of subjects. The 
best fitting model with the smallest BIC was the one involving four groups. The clar-
ity of the classification was indicated by the Entropy summary measure which had its 
maximum value for the models tested. The average latent class probabilities for the 
groups are 0.964, 0.985, 0.992 and 0.967 respectively, which enable us to conclude 
that the four classes are quite distinct, thus indicating that each class has its own char-
acteristics. 
We should note that there are many questions in which students have a high percent-
age of success while there are some questions that ask similar things (for example 
whether a certain number is rational or irrational). This results to extremely highly 
correlated variables. In general, the use of such variables should be avoided in LCA 
as they can result to more classes having no real meaning rather than explain these 
high correlations. In the present analysis this did not happen and we have not ex-
cluded these questions for the following reasons: We do not want to lose some valu-
able information. Some students think that the rational and irrational numbers are not 
distinct sets, some other that a real number can be neither rational nor irrational, or 
finally that a number can have no decimal representation. Furthermore, in our study, 
LCA was used as an exploration tool and it provided us with a very interesting cate-
gorisation which enabled us to focus on certain similarities. We then went back to the 
individual questionnaires; we examined the similarities provided by the analysis more 
closely and confirmed their existence. Such a categorisation was not achieved by 
omitting some of the questions. 
Table 1 displays a summary of the results for the class analysis. Each of the columns 
represents a group and each of the rows represents a question. The number of each 
cell displays the probability that a student in a particular group answers correctly in 
the corresponding question. We have to note that this is not equal to the fraction of 
the students in the group that have answered correctly the corresponding question al-
though we will treat them as such. This happens because the model class for the latent 

  

Working Group 3

CERME 5 (2007) 420



  
class patterns is based on estimated posterior 
probabilities and does not result to integer 
counts for the groups. For example, based 
on the most likely latent class membership, 
the first group consists of 63 students, while 
the model class count for this group is 
62.269. Low performance (0-50%) is dis-
played in grey, average performance (50%-
75%) in normal and high performance 
(75%-100%) in bold. 
We first present a description of the main 
characteristics of each group. The first 
group consists of 63 students and has the 
highest performance among the groups. 
They answer correctly in most of the ques-
tions of the first part, something that does 
not happen for the second part where a prob-
lem with questions B3 and B4, related to the 
density, is observed. Question B1.3 is the 
most difficult question in the whole ques-
tionnaire. In this question the first group has 
significantly higher score than the other 
groups, but it still remains very low. Most of 
the students in the first group identify as real 
all the numbers of the third part (C1.1, C2.1, 
C3.1, C4.1 and C5.1). They recognise that 
whenever a number can be turned into frac-
tion of integers it is a rational number (C5.2 
and C5.3). They also know that whenever a 
number is given in decimal representation it 
can be turned into fraction if the decimal 
part has a recurring pattern in its decimal 
part (C2.2, C2.3, C3.2, C3.3, C4.2 and 
C4.3). The lowest performance is observed 
in questions C3.2 and C3.3 where 9 of the 
20 students who answered this question 
wrong, gave the response that they do not 
know whether 0.78634… is rational or irra-
tional as there is not enough information 
provided in order to decide. The didactical 
contract suggests that if there was some re-
curring pattern, it should have shown before 

  group group group group
A1 1 0,986 1 0,972
A2 1 1 0,978 0,805
A3 1 1 0,955 0,889
A4 0,966 0,976 0,912 0,771
B1. 0,781 0,916 0,733 0,74
B1. 0,9 0,976 0,978 1
B1. 0,244 0,067 0,067 0
B2. 0,807 0,738 0,671 0,544
B2. 0,603 0,638 0,551 0,47
B2. 0,889 0,918 0,979 0,798
B2. 0,878 0,898 0,841 0,808
B3 0,694 0,697 0,65 0,515
B4 0,7 0,59 0,56 0,47
C1. 0,935 0,961 0,801 0,604
C1. 1 1 1 0,749
C1. 1 1 1 0,722
C1. 0,827 0,825 0,934 0,426
C1. 0,914 0,852 0,868 0,47
C1. 0,796 0,916 0,893 0,735
C2. 1 1 0,935 0,887
C2. 0,903 0,878 0,87 0,684
C2. 0,903 0,878 0,848 0,712
C3. 0,983 1 0,846 0,637
C3. 0,716 1 0,974 0,272
C3. 0,684 1 0,974 0,272
C4. 0,983 1 0,846 0,609
C4. 0,848 0,019 0 0,301
C4. 0,91 0,007 0,023 0,328
C5. 1 1 0,89 0,859
C5. 0,984 1 0 0,83
C5. 0,984 1 0 0,774
C5. 0,871 0,707 0,978 0,613
C5. 0,84 0,679 0,916 0,605
C5. 0,933 0,93 0,956 0,923
D1 0,615 0,574 0,8 0,599
D2 0,85 0,781 0,516 0,383
Table 1
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the dots “…”. They however support that there could be a recursion in the digits that 
are not shown on the paper. Questions of the fourth part were posed in a theoretical 
way and in general they seem to confuse many of the students, even those of the first 
group. There is a subgroup of about 40% of the students in this group who support 
that real numbers which do not have a decimal representation exist. 
The second group consists of 72 students. In the first two parts they have a perform-
ance similar to the first group. They too have difficulties with the questions regarding 
density. Students of the second group also identify as real the numbers of the third 
part (C1.1, C2.1, C3.1, C4.1 and C5.1). However they have a problem in rational-
irrational identification. Although they recognise as rational the numbers that can be 
turned into fraction (C5.2 and C5.3), they additionally use another incorrect criterion 
when they have to decide whether a given number is rational or irrational from its 
decimal representation. For the students of this group a number is rational if it has a 
finite number of decimal digits different from 0. So, 
2, 0.78634… and 0.777… are 
all irrational numbers as they have infinite decimal digits (C1.2, C1.3, C1.4, C1.5, 
C2.2, C2.3, C3.2, C3.3, C4.2, and C4.3). An interesting point is that about 30% of 
these students do not even make the division 2/3 in order to answer questions C5.4 
and C5.5. They know that 2/3 is rational so they conclude that it has finite decimal 
digits. The rest of them consider 2/3 as rational although they can see that it has infi-
nite decimal digits. This means that the fraction criterion is stronger than the infi-
nite digit criterion. As we will see, this is the major difference from the third group. 
The performance of Group 2 in the fourth part is slightly poorer that that of group 1, 
where there were also many students who supported that real numbers which do not 
have a decimal representation exist. 
The third group counts 45 students. In part A students do not have any particular 
problem. In part B, students answer in the same way with the students of the second 
group, facing difficulties with the density questions. Most of the students in this 
group identified the third part numbers as real (C1.1, C2.1, C3.1, C4.1 and C5.1). 
They identified as rational, numbers those that have finite decimal digits different 
than 0 (C2.2 and C2.3). They also identified as irrational numbers, those that have in-
finite decimal digits different than 0, without checking recurrence (C1.2, C1.3, C1.4, 
C1.5, C3.2, C3.3, C4.2 and C4.3). Finally they concluded that 2/3 equals 0.666… 
(C5.4, C5.5 and C5.6) and therefore 2/3 is an irrational number (C5.2 and C5.3). Stu-
dents in this group believe that rational numbers can be written with finite decimal 
digits, while the decimal representation obscures the fraction representation. The dif-
ference from group 2 lies in the fact that in the third group the digit criterion domi-
nates the fraction criterion. Students in the third group have the highest score in D1 
and this is fully compatible with their answers in questions of the third part, as deci-
mal representation plays a major role in their concept image for real numbers. On the 
contrary, half of these students believe that there are numbers having decimal repre-
sentation which are not real numbers. (D2).  
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The fourth group has 35 students who in general have lower performance than the 
students in the other groups. This can be seen even in the easiest questions contained 
in part A. This group also has lower performance in most of the questions of part B. 
A high percent of the students of the fourth group have a different view of real num-
bers. They identify as real only the numbers which have a finite number of decimal 
digits different than 0 (C2.1, C5.1, C5.4 and C5.5). Numbers which have infinite 
decimal part are identified as not real (C1.1, C3.1 and C4.1). We can also remark that 
they identify the set of rational numbers with the set of real numbers (questions 2 and 
3 in C1, C2, C3, C4 and C5). This is compatible to the group’s low percentage of 
success in question A4. Students’ answers in question C5 also show that 2/3 is con-
sidered rational with finite decimal digits. This resembles the second group’s view, as 
the fraction criterion also prevails over the digit criterion. The fourth group has low 
scores in the fourth part. Their percentage of success in D2 is very low and this 
agrees with their answers in the third part of the questionnaire, as they do not identify 
irrational numbers as real (although they have a decimal representation). Students in 
the fourth group are also uncertain about whether real numbers having no decimal 
representation exist (D1). 

DISCUSSION
The identification of rational-irrational numbers appears to be difficult for the major-
ity of the study subjects. Only students of the first group check for recurring digits 
when they are asked to identify a number in decimal representation. Although all of 
the students have been taught a general way to convert a rational from decimal to 
fraction representation, this knowledge (if such exists) remains unconnected to the 
real numbers structure.  
There is also an interesting remark for the whole sample. A 45% of all the students 
fall in a contradiction by giving the following combination of answers: 

� 2.999… is less than 3 (an expected answer for question B1.3). So 2.999… is dif-
ferent than 3. 

� In question B2.3 they answer correctly that there is no number between 2.999… 
and 3. 

� Finally, in question B4 they also answer correctly that there is no pair of numbers 
having no number between them, instead of giving 2.999… and 3. 

This contradiction is regardless of the students’ distribution into each of the groups. 
The percent of students falling into contradiction for each group are 44.4%, 47.2%, 
45.1% and 34.3% respectively. 
Another interesting point comes from the identification criteria priority. Students in 
groups 2 and 3 use the finite digits criterion in order to identify rational numbers. In 
group 2 the fraction criterion dominates over the digits criterion while in group 3 the 
fraction representation is not adequate to guide the identification. A high percentage 
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of the students in group 4 consider as real numbers only those with finite decimal dig-
its. This leads them to exclude irrational numbers from the real numbers structure. 
Throughout school mathematics, there is no formal definition for the real numbers 
set. Taking into account Greek school textbooks, school graduates’ concept image for 
the real numbers is expected to be the set of numbers in decimal representation. Ques-
tions D1 and D2 show that there is a general difficulty with decimal representation of 
real numbers. Only 39% of the sample has answered correctly in both D1 and D2. 
Question B3 is closely connected to the density of the rational numbers. Question B4 
tests students’ knowledge on real numbers density. A 42.3% of the students have an-
swered to both of these questions correctly. Density is highly related to the under-
standing of the decimal representation’s structure. However, only 18% of the students 
have answered correctly to all of the questions B3, B4, D1 and D2. The 48.7% of 
these students is in the first group, 30.8% in the second, 15.4% in the third and 5.1% 
in the fourth. This shows that students from the first group have a better understand-
ing of the real numbers structure. 
Concluding, we argue that several problems remain in graduate students concerning 
the rational-irrational numbers identification as well as the real numbers density. The 
importance of the decimal or fraction representation in the process of identification 
provided a classification of students into groups with several unique characteristics. 
On the other hand some other problems on real numbers structure appear unrelated to 
this classification. 
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SCHEMA A ± B = C  
AS THE BASIS OF ARITHMETIC STRUCTURE 

Milan Hejný, Jana Slezáková
Charles University in Prague, Faculty of Education 

Abstract: An image of a triad of numbers, one of which equals the sum total of the 
two remaining ones, is regarded as the basic schema of arithmetic thinking. This 
schema is studied through several semantic and structural models. More thorough 
examination is given to key semantic models that only consist of operators of both 
types – operator of change and operator of comparison. 
Acknowledgement: The research was supported by GACR grant 406/05/2444. 
Key words: schema, semantics vs. structure, number as a status, address, operator of 
change, operator of comparison, additive triplet, concept-process-procept, language 
of arrows.  
INTRODUCTION  
The paper presents some results of the ongoing research done by the above authors and 
D. Jirotková. The research is aimed at creating educationally effective environments 
through which a child can penetrate into the realm of arithmetic. It is an attempt to offer 
teachers an alternative to the traditional educational strategy based on routine drill and 
memorising on the part of the pupils. 
The theoretical frame of the research is based on procept theory (Gray & Tall, 1994) and 
the theory of generic model (Hejný & Kratochvílová, 2005).  
The key concept of the research is Additive Triplet Schema. The main objective of this 
article is to describe and analyze the above-mentioned mental construct.  
SCHEMA
When someone asks you about the number of doors or carpets in your flat or house, you 
will probably not be able to give an immediate answer. However, in a little while you 
will answer the question with absolute certainty. You will imagine yourself walking 
from one room to another and counting the objects in question. Both of the required 
pieces of information and many other data about your dwelling are embedded in your 
consciousness, as a part of the schema of your flat. We use schemas to recognize not 
only our dwellings, but also our village or town, our relatives, interpersonal relationships 
at our workplace, etc. 
Specialized literature gives various connotations of the term “schemata”.  The following 
quote by R. J. Gerrig provides a rather loose definition that serves our purposes. 
“Theorists have coined the term schemata to refer to the memory structures that 
incorporate clusters of information relevant to comprehension … . A primary insight to 
schema theories is that we do not simply have isolated facts in memory. Information is 
gathered together in meaningful functional units.” (Gerrig, 1991, pp. 244-245)  
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ADDITIVE TRIPLET  
By the term “additive triplet” we mean an orderly triplet of numbers (A, B, C – not 
necessarily in that order), one of which equals the sum total of the two remaining ones. 
The relation can be written as follows: A±B=C. We focus primarily on preschool 
children and early learners, which is why the term “number” shall herewith stand for a 
non-negative integer, smaller than 100. Negative numbers and fractions will enter the 
picture at a later stage. The term “additive triplet” was inspired by the idea of an additive 
family, as introduced by Repáš and �ernek’s textbooks (Repáš et al, 1997).  
The standard model of an additive triplet is expressed in Arabic numerals (e.g., 2, 3, 5).  
The child will then become acquainted with the additive triplet via many other 
representations, and the aggregate set of all these representations helps create the 
additive triplet schema within the child’s consciousness. 
Note. In this study, we only explore the additive triplet schema, we shall abbreviate this 
term to schema.  
FRAME OF ANALYSIS 
Schemata are explored in a multiple of layers. We attribute the most significance to the 
layer that classifies schemata into two main categories:  the semantic schemata – which 
are rooted in the everyday experience of the pupil, and structural schemata – which are 
not rooted in such a way, being only confined to the realm of mathematical terms, signs 
and ideas. The boundary between these two categories is blurry. 
The second layer focuses on the process – concept polarity, in terms of the procept 
theory formulated by E. Gray and D. Tall (1994). With every schema, we try to establish 
the degree to which it contains concepts or processes, sometimes even trying to 
recognise the shape of the particular procept.  
The third layer is devoted to language. We examine the way in which numbers and 
operations are represented. Numbers are represented by sets of objects (apples, fingers, 
matches, …), sets of pictures/images, dots, commas, or arrows. They can also be 
represented by ephemeral vehicles, such as words, handclaps, steps or bell chimes.  And, 
last but not least, they can also be expressed by Arabic numerals (we are not considering 
Roman numerals or other systems for the moment). The key pupil activity is translation
– the process of transforming the situation from one language to another. 
Other layers like problem-solving strategies or adjustability of the level of difficulty of 
the problem are not considered in this article. 
THE LAYER OF SEMANTIC MODELS
The typology of semantic models of additive triplets is based on the typology of 
semantic anchoring of numbers (Hejný & Stehlíková, 1999). We distinguish between 
four basic semantic types of numbers: status (number, magnitude), address (in terms of 
place or time; the temporal address can be either linear or cyclical), the operator of 
change and the operator of comparison. These are abbreviated as follows: status = St, 
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address = Ad, operator of change = Ch, operator of comparison = Co. The symbol O will 
stand for the operator, when there is no need to specify its particular type.  
The above-mentioned quadruplet of semantic anchors of numbers can be subdivided into 
eight basic semantic types of additive triplets:  
1. St + St = St 2. St – St = St    3. St � Co = St  4. Ad � Co = Ad  
5. St � Ch = St 6. Ad � Ch = Ad    7. +Co � Co = Co 8. +Ch � Ch = Ch.  
Three of these types are illustrated as follows: . 
4. (Ad � Co = Ad) Jan is 8 years old. Rita is 1 year older/younger. Rita is 9/7 years old.  
6. (Ad � Ch = Ad) Cid used to live on the 5th floor. He moved 2 floors up/down. Now he 
lives on 7th/3rd floor;  
8. (+Ch � Ch = Ch) The number of bus-passengers increased by 7 persons at the first 
stop. At the second stop it increased/decreased by 5 persons. At these two stops the 
number increased by 12/2 bus-passengers. 
Key semantic model. The key semantic model, whose mastery is the decisive step 
towards understanding the schema, can be written as ±O � O = O. Many years of 
experience, substantiated by the experimental research of Ruppeldtová (2003), clearly 
indicate that problems that use only operators are among the most demanding 
problems for first- to fourth-grade pupils.  
This is caused by the differing perceptions of the statuses and addresses on the one 
hand, and the operators on the other. The status and address are both closed data. 
Information such as “there are 5 chairs around the table” does not generate any 
further questions concerning numbers. The operator is, by contrast, an example of 
open data. The information “there are two chairs fewer” provokes the question as to 
what was the original number of chairs and how many chairs are there now. These 
two numbers are virtually present in the operator of change. The accuracy of the 
above thesis is confirmed by the behaviour of pupils who are assigned such operator 
problems. When given such a problem, they keep asking for virtual data and for 
explanations on to how to deal them. These pupils clearly have not had enough 
experience with numerical situations that feature solely the operator of change. That 
is why the current situation might be improved by incorporating operator problems 
already in first-grade primary school curricula. In order to achieve this goal, we 
elaborated a “walking” environment (see below) which we are currently testing in 
several classes.  
THE LAYER OF STRUCTURAL MODELS  
A triplet of numbers (A, B, C) may be inserted into a non-semantic context. The 
carriers of numbers can be words, body movements or a set of symbols that we 
choose to call scaffolding. By placing three numbers in their assigned spots on the 
scaffolding we have created a concrete model. If we place only two numbers in their 
appropriate spots, we have obtained a problem that can be formulated as “Find the 
third number”. The standard scaffolding is __ + __ = __; the concrete model is 2 + 3 
= 5, and the problems are e.g. 2 + 3 = __ or  __ + 3 = 5.  
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The standard model is generally known. We shall touch on five models which we 
find interesting in terms of both research and education. The first one will be carried 
by words and body movements, while the remaining four will have the graphic 
scaffold as their carrier. The second and the third model are also associated with 
movements.   
1. Walk. The teacher (and later one of the pupils) gives a command and another pupil(s) 
walks according to it. Sample commands: 1. Three steps forward, go! 2. Two steps, then 
one step, forward, go! 3. Three steps forward, then two steps backwards, then one step 
forward, go! After this warm-up stage, the additive triplet is introduced by the following 
scene: Two pupils, A and B, are standing side by side. Pupil A receives the following 
command: Three steps forward, then two steps forward, go! Pupil B receives the 
command: Five steps forward, go! Both pupils, A and B, eventually end up standing side 
by side again. The entire scene is accompanied by words and body movements, and can 
be classified as a walk representation of the additive triplet (2,3,5). We shall henceforth 
write this performance as W(2,3,5). The problem originates by concealing one of the 
three numbers on offer. The given situation therefore leads to three problems: W(?,3,5),  
W(2,?,5), W(2,3,?). The concealed number has been replaced by a question mark. 
Backward steps are symbolized by negative numbers.  
2. Footprints. By recording the walk in symbolic terms, we have created yet another 
model. A number of experiments have been performed with the sole aim of finding 
appropriate symbols for the ‘footprint’. In the end, arrow symbols were chosen as the 
most appropriate for children of 6 to 8 years of age. One such model is illustrated by 
figure 1a. We shall henceforth write this model as F(2,3,5). A substantial difference 
between models W(2,3,5) and F(2,3,5) resides in the fact that the first one is ephemeral, 
while the second one is permanent. Words and steps will fade away, but Figure 1a will 
remain.  
Both of the models bear the strongest resemblance to the semantic model ±Ch � Ch = 
Ch. In the course of our work within these models, we in fact employ negative numbers 
without having to use the minus sign or to explain anything. This aspect is quite 
different from other symbolic models.  
By introducing the arrow-language to the environment ‘walk’ the environment of 
footprints is created. As soon as these two environments merge in pupil’s mind his/her 
understanding of the walk + footprint model of triple reaches the procept level.  
The wide range of variously oriented arrows hereby creates as many as eighteen types of 
footprints task. Three of these are illustrated by Figures 1b, 1c and 1d, which we write as 
F(3,-2,?), F(-1,?,3) and F(2,?,-6).  
�� ��� ��� �� �  ��  
����� 

 
 ��� 

 
������ 

Figure 1a         Figure 1b         Figure 1c   Figure 1d 
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3. Staircase. Similar to Walk model tasks in Staircase model are also carried by words 
and body movements. On the floor of a class there is a number line as a stage for 
staircase performances. Sample tasks: 1. Stay at 5; four steps forward, go! What will be 
your terminal? 2. Stay at 9; four steps backward, go! What will be your terminal? 3. Stay 
at 5; your terminal should be 9; how many steps you have to do? Later on these tasks 
will be written as shown on Figure 2. Figure 2a shows a concrete type of staircase. We 
shall henceforth write this illustration as S(5,4,9). Tasks 2 and 3 described above can be 
written by Figure 2b and 2c or in the shorthand by S(9,-4,?) and  S(5,?,9).  
5 ���� 9  9 ����   5  9 
Figure 2a          Figure 2b                Figure 2c 
This model bears the strongest resemblance to the semantic model A ± Ch = A. The 
middle number, represented by the set of arrows, is a carrier of the dynamic element, 
while the numbers on the outside are the carriers of the static elements of the triplet.  
4. Triplet, or 3-plet. Figure 3a shows an example of a concrete triplet. We shall 
henceforth write this illustration as T(6;1,5). When we have deleted all three numbers 
from the model, we will be left with the scaffolding of the triplet. Figures 3b and 3c 
show two problems within the context of a triplet. The first one is written as T(?;1,5), the 
second one as T(6;1,?).  
 
   6                                                                                         6                                    
Figure 3a        Figure 3b           Figure 3c 

5. Fourplet, or 4-plet and 3-string. There are two important issues of extensions of 
triplet. The first extension introduces the term 4-plet (quadruplet) – a group of four 
numbers, the first of which equals the sum total of the remaining three (see Figure 4). In 
the same way, we could introduce 5-plet, 6-plet, …, n-plet, but we are not going to do it 
here. The second extension introduces the term string. It can generally be said that any 
n-plet can be transformed into an (n-1)-string whose length is m (m > n). For example, 
the 4-plet in Figure 4 can be transformed into a 3-string whose length is 9 (see Figure 5). 
The sum total of any 3 adjacent numbers within this quadruplet equals 7. 
 
     7                                              7 

Figure 4                                    Figure 5 

METHODOLOGY 
There are four different ways of putting together a database that has been generated 
by researching the additive schema build-up mechanism in various types of school 
environment, with pupils aged 6 to 8. The database can be built up by means of: 

1 51 5 1  
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1. episodic communication, imparted by the teachers who have familiarised 
themselves with the new approaches by attending various seminars; 

2. systematic record-taking done by four teachers with whom we have cooperated for 
a long time;  

3. “in vitro” experiments, carried out by the authors; 
4. testing various types of induced environment at seminars attended by future 

teachers.  
In this article we list one episode of the 1st type, two recorded situations of the 2nd 
type, one experiment of the 3rd type and several comments of the 4th type. The 
systematic record-taking activities of the two collaborating teachers were carried out 
in two 1st grade classes. The first one – we may designate it as “class A”, consists of 
18 pupils, while the second one – we may designate it as “class B”, consists of 22 
pupils. The pupils are 6 to 7 years old.  
EXPERIMENTS 
Walk. Experimental teaching indicated that the command “Two steps forward, go!” 
can be carried out in three different manners: 1. without putting one’s legs together 
(the performing pupil ends up with his/her legs apart), 2. putting one’s legs together 
(which is not classified as a step), 3. one-by-one (“step” as employed here stands for 
two body movements – the step forward and putting the other leg in line with the first 
one). In the beginning we assumed that there was just one way of carrying out the 
order, i.e., by putting the legs together as the final movement. However, the pupil 
experiments demonstrated that the varying perceptions of the walk commands need to 
be thoroughly analyzed. The following example illustrates typical class behaviour. 
Illustration 1. Pupils in class A were quite correct in counting the steps that the 
teacher, or the performing pupil, had taken. When the teacher had made five steps, a 
female pupil named Hana said, “Our teacher took six steps.” Dan disagreed, claiming 
that she had only taken five steps. The experiment was repeated, with the children 
counting aloud. A part of the class finished the counting with the number five, but 
another part said six, when the teacher put her legs together in her final movement. 
There was a dispute between the two parts of the class, one part defending the “five 
step” thesis, while the rest stood behind the “six steps” proposition. Dan said, “But 
the movement that you count as six is in fact not a step, because it does not bring the 
teacher’s body any further. “Well, yes”, Eva conceded. The pupils accepted Dan’s 
argument and from there onwards they used the word “step” to stand for the entire 
movement, including the act of putting the legs together. Despite this, some weaker 
pupils tended to count the incomplete movement as a step, when there was a larger 
number of steps. This mistake would occur even half a year afterwards. 
Illustration 2. In class B, a teacher introduced the process of walking by always 
putting the legs together. She was surprised to see two girls walk in a “one-by-one” 
manner. When she was telling us about it, she described the girls as very poor 
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mathematicians. We had the same experience with university students – primary pre-
service teachers. One of these students also used the “one-by-one” walk. The teacher 
asked the students to evaluate this method of walking and especially weaker students 
supported this method, arguing that this method was more certain than walking by 
putting the legs together.  
Commentary. A. From a strictly mathematical viewpoint the only correct method of 
walking is “one-by-one”. The formulation 1 + 1 + 1 = 3 consists of the three ones, which 
represent the same object. If you put both legs together at the end of the walk, your final 
step is different from the two previous ones. That is why this method is not quite correct 
in mathematical terms. Moreover, when we do not put the feet together at the end, the 
situation is not quite clear, because we actually step backwards as well. This happens for 
example when we step according to the relation 3 - 2 = 1. However, there is a more 
relevant educational viewpoint, which we shall explore in the following sections. 
B. The walk where the legs are eventually not put together has three basic deficiencies: 
1. The walking process remains incomplete.  2. The command “Two steps, another two 
steps, forward, go!” consists of two disparate parts. The first pair of steps starts from a 
basic position, while the second one starts from a forward straddle. 3. After the 
introduction of the addresses (staircase) it is not quite clear which of the addresses the 
walking pupil is actually standing on (he or she has one foot on the n address, while the 
other one is on the n+1 address).  
C. Deficiencies of the walk where the legs are eventually put together. 1. Some children 
count the final movement that brings the two legs together as a regular step (see 
Illustration 1). 2. Those children who do not classify this body movement as a step are 
able to see that the last step differs from the first step and from the steps in between. 3. 
Model W(2,3,5) is de facto not a representation of equality 2 + 3 = 5, because the 
movement that represents the process of adding up a 2 + 3 sum in fact resides in two 
movements of putting legs together, while the movement that represents the result 5 only 
puts the legs together once.  
D. Educational application. 1. We introduce the walking activity by a one-by-one 
method. 2. If some pupils shift towards the more economical method putting the legs 
together, we should tolerate this new convention, but stop short of codifying it. This also 
corresponds with the use of an abacus, when one child counts to five by shifting every 
single ball, whereas a more advanced pupil separates the whole group of five balls. 
E. There is reliable evidence that the Walk environment generates strong motivation. 
After one seminar for teachers, where we had been presenting our experience with 
walking in steps, one teacher wrote us the following comment, “Today I tried the 
walking game with children and they were absolutely taken in. This afternoon I put 
sticky notes on the floor to indicate the length of individual steps and am very much 
looking forward to tomorrow, as we continue this activity. Even today, the kids were 
falling over backwards to be asked to perform. They actually made a waiting list as to 
who will be the first to perform tomorrow. The walking method is an excellent idea.” 
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F. The strong motivation of Walk model indicates that the pupils feel the need for an 
operator perception of numbers. In the case of first and second-graders in primary 
schools, this numerical model seems to belong to Vygotsky’s zone of proximal 
development. This also indicates that the “walking environment” is capable of 
effectively fulfilling the educational objective. 
Illustration 3. Second-grade pupils were assigned a problem concerning a 3-string whose 
length was 4 (see Figure 6). The assignment was: Fill the blank boxes with numbers in 
such a way that the sum total of three adjacent numbers should always equal 7. We were 
surprised to find that the pupils have considerable difficulties comprehending the notion 
of “three adjacent numbers”. This indicated pupils should practise the correct application 
of the term for a longer period of time.  
          7 4 1   

Figure 6 
Commentary. G. Recently we found out that the idiom in question can be mediate to 
pupils by tasks of the following type: Find three adjacent letters in the word ‘father’. 
How many solutions of this task you can find?  
Illustration 4. Primary pre-service teachers did not seem to find it difficult to solve 
problems such as the one shown by the previous illustration. It did not take them very 
long to discover a pattern that permeates the string: periodical repetition of three 
numbers (e.g. 4, 1, 2, 4, 1, 2, 4, 1, …). Figure 7 shows the way in which Jana solved the 
problem with a 3-string whose length was 8. The numbers 8, 2, 6 had been pre-printed 
and the remaining ones were filled in by Jana. She began the problem-solving procedure 
by considering the number in the last box. She said the number could not be larger than 
8 – 6 = 2. She then proceeded by trial and error, gradually trying out all the three 
potential numbers, 0, 1 and 2. The last number eventually proved to be the correct 
solution. An important aspect of this problem-solving process resides in the fact that in  
  
 
 
Figure 7  
order to arrive at the correct solution, the girl did not use the overall pattern of these 
strings that she had discovered earlier. 
Commentary. H. It is interesting to observe that in spit of the knowledge of the 
periodicity of each 3-string Jana did not apply this knowledge when solving the task. 
Why? Since the schema of the quadruple is not yet created in girl’s mind.  
Illustration 5. Two second graders, Fin and Tom, top maths pupils in their class, were 
assigned several problems with a 3-plet whose length was 4. The solution of one such 
problem is shown by Figure 8a. Then they were given the next problem (see Figure 8b). 
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They spent some time searching for a solution and we finally ended up by asking them 
to do it as their homework. A week later, we discussed the problem with Tom. He said. 
“My mum said it didn’t make any sense.” Even so, he agreed to make one more attempt 
at finding the solution, at the request of the researcher. He tried to switch the respective 
positions 2 and 3, but the result ended in yet another disappointment. “It won’t do”, he 
concluded. The researcher then took a card with number 2 on it and put it on the left 
desk, then put a card with an inscribed number “3” on the right desk and handed Tom 
two blank cards. She said, “Write a single number on each card, so that the sum of these 
two numbers, added to the number on the left, would make a total of 9, and that these 
numbers, added to the number on the right, would make a total of 9.” After four 
unsuccessful attempts, Tom said in a disappointed tone, “I don’t know. I cannot cope.” 

2 4 3 2 

               

  3 2               9                                                                  9 
         Figure 8a                                                             Figure 8b 
Commentary. I. Illustration 3 shows that the process of building up a scheme of triads 
inserted in graphic contexts may encounter didactic problems outside the realm of 
arithmetic. This discovery is currently being explored in more depth by further 
experiments.  
J. By successfully solving problems such as the 3-string whose length is m, a pupil 
gradually grasps the issue; this happens in several stages:  
1. Comprehending the condition “the sum total of each three adjacent numbers equals 
number x”.  
2. Discovering the fact that if m = 4, then the numbers on the outside of the string are 
identical.  
3. Discovering the pattern (the periodicity of numeric triplets) for larger m.  
4. Discovering a way to use the pattern to solve problems, in which there is a wider span 
between the two pre-assigned numbers in the string. These stages function as guidelines 
for our current experiments. 
K. The surprisingly groping approach on the part of Tom shows that a pupil of his age 
may find it very difficult to automatize a schema. Tom does not realize that the two 
numbers that he writes on the blank card could be replaced by a single number, i.e., their 
sum total. If he knew that, he would quickly find out that if a sum total were added to a 
figure of two, it would produce a figure different from the same sum total added to a 
figure of three. This means that Tom does not see the possibility of writing the number 7 
to stand for 6 and 1. He has not internalized the additive triplet schema yet. We think 
that the explored phenomenon can be used for diagnosing the quality of a schema as a 
base element of arithmetic structure.  
CONCLUSIONS
This article describes several results of ongoing research aimed at triggering and 
embedding arithmetic structures in a pupil’s consciousness. It points out the key role of 
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additive schema, which can only be established if the pupil has had rich experience with 
various types of generic models. The paper describes the kind of educational 
environment that we think would get rid of the difficulties the pupils tend to have when 
trying to solve operator problems. And finally, the paper includes several observations 
that will be the subject of our future research. 
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RECOGNISING AN ALGEBRAIC STRUCTURE 
Maureen Hoch and Tommy Dreyfus 

Tel Aviv University 

This paper follows two students through a sequence of tasks and observes how they 
acquire the ability to recognise the structure a2 – b2 and apply the substitution 
principle: if a parameter is replaced by a product or a sum the structure remains the 
same.

INTRODUCTION
What is algebraic structure at high school level? What is structural about a2 – b2?
How does a student learn to recognise structure? Can structure sense be taught? In 
this paper we try to answer these questions, by analysing and comparing the learning 
paths of two students. We talk about relearning since the structure a2 – b2 is one that 
these students have met earlier. The information on these two students is part of a 
larger body of data obtained by observing ten 11th grade students (age 16) learning or 
relearning four algebraic structures during three-session individual teaching 
interviews designed to improve structure sense.  
Structure sense 
The term “structure sense” was coined by Linchevski and Livneh (1999). 
Subsequently the idea was developed and refined by Hoch and Dreyfus (2004, 2005, 
2006) who arrived at the following definition. 

A student is said to display structure sense for high school algebra if s/he can: 

· Recognise a familiar structure in its simplest form.  

· Deal with a compound term as a single entity, and through an appropriate 
substitution recognise a familiar structure in a more complex form. 

· Choose appropriate manipulations to make best use of a structure. 

See Hoch and Dreyfus (2006) for full definition and examples. See also Novotná, 
Stehlíková, and Hoch (2006) who adapted structure sense and defined it for 
university algebra. An important feature of structure sense is the substitution 
principle, which states that if a parameter is replaced by a compound term (product or 
sum), or if a compound term is replaced by a parameter, the structure remains the 
same. In this study we look at two aspects of structure sense for high school algebra – 
recognising a familiar structure in simple or complex forms, and applying the 
substitution principle.
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Algebraic structure 
The term “structure” is widely used and most people feel no need to explain what 
they mean by it. In different contexts the term structure can mean different things to 
different people (see for example Dreyfus and Eisenberg, 1996; Hoch and Dreyfus, 
2004; Stehlíková, 2004). 
The term “algebraic structure” is usually used in abstract algebra and may be 
understood to consist of a set closed under one or more operations, satisfying some 
axioms.  In this paper we are concerned with algebraic structures met in high school. 
Hoch (2003) discussed and analysed structure in high school algebra, considering 
grammatical form (Esty, 1992), analogies to numerical structure (Linchevski and 
Livneh, 1999) and hierarchies (Sfard and Linchevski, 1994) culminating in a 
description of algebraic structure in terms of shape and order. 
In this research we took a similar approach, relating to any algebraic expression or 
equation as possessing structure, which has external components such as shape and 
appearance, and internal components determined by relationships and connections 
between quantities, operations and other structures. Five structures were examined: a2

– b2; a2 + 2ab + b2; ab + ac + ad; ax + b = 0; and ax2 + bx + c = 0. Hoch and Dreyfus 
(2005, 2006) identified students’ difficulties with these structures. Dreyfus and Hoch 
(2004) looked at the structure of equations. In this paper we look at the structure of 
expressions, specifically the expression a2 – b2.
The structure a2 – b2

How does this view of algebraic structure apply to a2 – b2? In appearance, it is an 
expression with two terms, each of which is a perfect square, connected by a minus 
sign. The internal structure is that of a quadratic expression which can be factored. 
Thus the general formula, a2 – b2, is equivalent to (a – b)(a + b). Students in Israel 
first meet a2 – b2 in 8th grade as a special case of (a + b)(c + d), the extended 
distributive law, and again in 9th grade when they learn to factor special quadratic 
expressions. An assumption of this research was that students at advanced and 
intermediate levels are familiar with this expression and proficient in working with it 
in its simplest form. Whether this assumption was justified will be seen later. 

METHODOLOGY
The first step in designing a teaching unit to facilitate the improvement of structure 
sense was to develop a sequence of appropriate tasks. These tasks were designed with 
a certain age and ability of students in mind. The process of selecting the subjects 
included a pre-test, which was administered to two whole classes. The intervention 
comprised a series of three one-on-one teaching interviews, so called because they 
were planned as a careful mixture of clinical interview with tutorial session. These 
sessions took place a few days apart from each other. A post-test was administered 
individually a few days after the third session. A brief post-mortem discussion took 
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place with the student after the immediate post-test. Several months later a delayed 
post-test was administered.  
Task design 
The tasks included sorting, comparing, factoring expressions, solving equations, and 
creating new examples, with the aim of encouraging the student to learn to look for 
and recognise the five structures mentioned above in their simplest form, and in more 
complex forms where the compound term is a product or a sum.  

The first task is to sort several algebraic entities including 49 – y2 and x2 – 16, each 
printed on a separate card, and presented altogether in random order, into groups of 
similar items. One aim here is for the student to differentiate between equations and 
expressions. Subsequently the student is asked to sub-divide the two groups and 
characterise the resulting five structures: describe common properties and find names 
and formulae. 
We will now describe only the tasks relating to the structure a2 – b2, which can be 
divided into four groups as shown in Table 1. In the teaching unit these tasks were 
given in the order described, but were mixed with similar tasks involving the other 
structures. The expressions are also printed on cards, but are presented to the student 
one at a time, in the given order. The expressions are presented at first in simplest 
form (G1 in Table 1), then with compound terms which are products (G2) and then 
with compound terms which are sums (G3). In G1 the student is asked to suggest a 
name and formula for the structure. In G2 and G3 the student is asked to factor and to 
name the structure. If the student is unable to factor, then s/he is asked which 
structure the expression possesses, and encouraged to use the structure to help to find 
the factors. 

G Expressions Tasks Structure sense 

1
249 y	

162 	x

Create similar expressions 
Describe common 
features
Factor
Find a name and formula 

Recognise a familiar structure in its 
simplest form 

2
42 3625 yx 	

622 4916 zyx 	

Factor
Recognise and name 

Substitution principle - product

3
� � � 22 78 �	� xx �

�
� �42 1�	 xx

� � � 44 33 		� xx

Factor
Recognise and name 

Substitution principle - sum 

4
22 ba 	

Some of above 
Name the structure 
Create similar expressions 

All of above 

Table 1: Tasks involving a2 – b2
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Another task is for the student to describe the structure, given by its general formula, 
in words and make up expressions similar to those shown (G4). The student is asked 
to create expressions that s/he considers might be difficult for a friend to recognise. 
The idea here is that the need to explain a structure in words causes the student to 
reflect on it more carefully, and that the act of creating more examples deepens his or 
her personal relationship with the structure. 
The tasks were designed to encourage students to verbalise in order to make explicit 
what was previously only implicit  - the structures and their properties. 
Student subjects 
The tasks were aimed at developing structure sense in 11th-grade intermediate to 
advanced level students. The focus group consisted of 10 students chosen on the basis 
of their low structure sense score on the pre-test and their willingness to participate in 
the research.
Here we report on two of these students, chosen for the fact that neither of them 
displayed any knowledge of the structure a2 – b2 on the pre-test. Anne studied in the 
advanced class, Brian in the intermediate class. 
Pre-test and post-tests 
A pre-test of twelve items was designed, based on the four structures a2 – b2;                
a2 + 2ab + b2; ab + ac + ad; ax2 + bx + c = 0 and on three types of structure sense: 
simple recognition and dealing with compound terms which are products or sums. 
For the immediate and delayed post-tests the same items were used with different 
numbers and /or letters.  
Teaching interviews 
One-to-one teaching interviews were decided on, as being the most promising method 
of encouraging the students to verbalise about how they worked on the tasks. The 
researcher sat with each of the 10 students individually, for three sessions of 
approximately 45 minutes each, over a period of up to two weeks. The interviews 
were audio taped and a post-test was administered in a fourth individual session. 
Throughout the sessions the student was encouraged to verbalise about what s/he was 
thinking and doing, with emphasis placed on the correct naming of each algebraic 
entity and structure.
The interviews were designed to proceed as follows. Initially the student was 
instructed to “talk aloud about what you are thinking and try to explain your decisions and 
actions. Feel free to write down anything you want on the blank paper.”  The researcher 
presented the student with a task and verbal instructions, e.g. “factor”. Depending on 
how the student completed the task, the researcher then asked a series of pre-arranged 
questions, designed to lead the student to the desired conclusion. Sometimes the 
researcher had to ad-lib, relying on her experience as a teacher. Once the desired 
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conclusion was reached, the next task was presented, and so on. At the end of each 
session the student was asked some self-reflective questions – what s/he felt s/he had 
learned and how it might help him/her. 

RESULTS AND DISCUSSION 
Pre-test and post-tests
Tables 2 and 3 summarise the results of the pre-test and post-tests on the three items 
involving the structure a2 – b2.

Pre-test Immediate post-test Delayed post-test 
281 x	

= (9 – x)(x – 9) 

225 y	
correct

281 y	
correct

224 36 zyx 	

= � � � � �yzyzxx 3611 22 		� �

42249 zyx 	

= � �227 zxy 	
then correct

224 1625 zyx 	
correct

� � � �44 33 �		 xx
= � � � � � � � �2222 1313 ��			 xxxx

� � � �44 22 		� xx

= � � � �� �222 22 		� xx  then 
� � � � � � � �2222 2222 �			� xxxx

� � � 44 75 		� xx �
correct

Table 2: Anne’s performance in pre-test and post- tests 

In the pre-test, neither Anne nor Brian was able to factor any of the expressions 
correctly. This was surprising in the light of the assumption mentioned earlier that 
these students would have well-based knowledge of the formula.  

Pre-test Immediate post-test Delayed post-test 
281 x	
x�� 9

225 y	
correct

281 y	
correct

224 36 zyx 	
blank

42249 zyx 	
correct

224 1625 zyx 	
= � �� �22 55 xx �	  then 

� � � �24 45 yzx 	

� � � �44 33 �		 xx

00
081128112 44

�
�	�	�	 xxxx

� � � �44 22 		� xx
correct

� � � �44 75 		� xx
blank

Table 3: Brian’s performance in pre-test and post-tests 

We can see that on the pre-test Anne clearly attempted to factor and was aware that 
raising to the fourth power is equivalent to repeated squaring, but otherwise seemed 
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to be very confused. Brian, on the other hand, converted two of the expressions to 
equations by adding “= 0”. One of these equations he solved correctly and in the 
other he opened brackets, seemingly according to an over-generalisation of the 
formula (a – b)2 = a2 – 2ab + b2.
In the post-test, immediately after the three-session intervention, Brian factored all of 
the expressions correctly but Anne only succeeded with 25 – y2, and, after some 
prompting, 49x2y2 – z4. She recognised � � � �44 22 		� xx  as being difference of squares 
but was unable to factor it. From this we might surmise that the intervention had 
succeeded in considerably improving Brian’s structure sense, at least concerning this 
particular structure, and to a lesser extent had led to an improvement in Anne’s 
structure sense. 
However, in the delayed post-test, several months later, Anne factored all of the 
expressions correctly while Brian only succeeded with 81 – y2.
Clearly both students have learned something about the structure and about the 
substitution principle. In Brian’s case the learning appears to be immediate but short-
lived. In Anne’s case, the learning seems to be deeper, not appearing immediately, 
but somehow absorbed and emerging later. Will an examination of the teaching 
interviews help to explain this? Perhaps Brian had more to learn and thus might have 
been expected to retain less. Brian’s immediate success and later failure is less 
surprising than Anne’s initial failure and later success. 
Overall Anne was the stronger student and retained most of what she learned. Her 
improvement in structure sense does not seem to be dependent on a particular 
structure. She maintained the same overall score between the two post-tests, due to 
the fact that in the immediate post-test she succeeded in applying the substitution 
principle to certain structures, and in the delayed post–test she succeeded in others. 
Brian’s results are more in keeping with the results of the rest of the group, and with 
what would normally be expected – immediate improvement, only part of which is 
sustained over time. 
Teaching interviews 
Let us examine how Anne and Brian dealt with the expressions 49 – y2 and x2 – 16. 
When asked to create two similar expressions, Anne wrote  and . It 
appears that Anne understood this structure but her comment suggests otherwise: 

252 	x 642 	x

Interviewer: What do these expressions have in common? 

Anne: That you solve them by taking the square root.  

After a short discussion about what constitutes an expression, and what one might do 
with an expression Anne was still unable to overcome the visual impact of these 
square numbers: 

Interviewer: Why did you connect these two together? [Points to 49 – y2 and x2 – 16] 

Working Group 3

CERME 5 (2007) 441



Anne: Ah, they just seemed to me to be simpler? 

Interviewer: What do you mean simple? 

Anne: Well simply you just take the square root. Raise it to … Oh no, it’s 
impossible. 

Anne seemed to be relating only to the appearance, with no conception of any inner 
structure. Although she did not actually state it, there is a hint here that she was 
thinking of turning the expression into an equation, which she knew how to solve. 
When asked to factor she suggested extracting a common factor, but when urged to 
write it down she immediately factored x2 – 16 correctly. This is interesting since she 
could she not factor 81 – x2 in the pre-test. Did she suddenly remember the formula? 
Perhaps she just made a lucky guess, as suggested by … 

Interviewer: You factored correctly here. [Points to � �� �44 �	 xx ] Do you remember 
from which formula that came? 

Anne: Em. a plus b squared? [Writes � �2ba � ]

Anne was once more asked to look at the expression and was able to describe it as 
two squares with a minus sign, but unable to come up with a name, which the 
interviewer provided. But later … 

Interviewer: Okay. So now let’s try to find a formula for the difference of squares. 

Anne: Em … a … em 

Interviewer: Let’s find a formula with a and b which will 

Anne: a squared minus b squared. 

Where did this formula appear from? Did Anne have a store of formulae in her head, 
which she produced on a trial and error basis? Or had she been constructing it while 
going through the earlier process of description? 
Brian’s learning process was somewhat slower. He sorted the two expressions         
49 – y2 and x2 – 16 into the same group. He was aware that they have something in 
common, but at this stage he did not know how to articulate it. When asked to create 
two similar expressions, he produced  and . It would appear that he 
noticed only the squares but not the minus sign.  

812 �x 362 �y

Interviewer: Can you explain to me how you got to these two expressions? 

Brian: These two have a root, [Points to  and ] that’s 16 and 49.   249 y	 162 	x

Interviewer: What does that mean – they have a root? 

Brian: It’s possible to extract the root of 16 and also of 49. 

Brian’s description was similar to Anne’s, referring to the square numbers as having 
roots. The interviewer asked if x2 – 7 belongs to this group. Brian was not sure, and 
tried to describe numbers like 16, 49, 36 and 81 saying that “they have real roots” and 
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using other terms like “nice” roots and “realistic” roots until eventually he reached 
“whole”. He concluded that x2 – 7 does not belong to this group. After some 
discussion of factoring Brian recognised the importance of the minus and was able to 
create new examples of this structure. But still he was unable to describe it or talk 
about square numbers. He even called the expression an equation. We have seen this 
so often with students that we wondered whether it was just a careless way of talking. 
However we see also from Brian’s confusion in the pre-test, and from Anne’s 
reference to solving an expression that this is not just a question of semantics but a 
deeper conceptual problem. Eventually Brian too arrived at the formula, and a name 
for the structure, but with a great deal of prompting. 
Next the expressions 25x2 – 36y4 and 16x2y2 – 49z6 were introduced. From the 
students’ reaction to them we see whether they can recognise the structure in more 
complex form and apply the substitution principle when the compound term is a 
product.
Anne quickly identified 25x2 – 36y4 as having structure a2 – b2, “These are both 
squares”. However, when asked to factor, she wrote � �222 65 yx 	 . She had to be coaxed 
to remember how to factor a2 – b2 and from there she had no difficulty in correctly 
factoring 25x2 – 36y4. She also identified 16x2y2 – 49z6 immediately as a2 – b2 but 
hesitated over the factoring. She wrote � � � �232 74 zxy 	  and when asked if that is the 
factoring was unable to answer, despite having shown earlier with other expressions 
that she knew what factoring means. Again, after light prompting, she factored 
correctly. This is interesting as it shows that Anne had no difficulty recognising the 
structure and applying the substitution principle, but that she did have a problem with 
the factoring.
Brian could not factor or identify 25x2 – 36y4 so it was put aside. After working with 
other structures he was presented with 16x2y2 – 49z6. He said “Eh ... they both have 
roots” and wrote � � . When asked if this is the factoring he hesitated. He 
identified that the expression has the structure a2 – b2, but like Anne he was unsure 
how to factor a2 – b2. Once the formula was established he contradicted himself, 
saying that the formula could not be applied in this case because “there’s no root”.
After extensive prompting he managed to factor correctly. On returning to            
25x2 – 36y4 he identified the structure, but wrote 

� �232 74 zxy 	

� �265 yx 	 before factoring it 
correctly.
Later the expressions (x + 8)2 – (x - 7)2, x2 – (x + 1)4 and (x + 3)4 – (x - 3)4 were 
introduced, necessitating recognition of the structure in more complex form and 
application of the substitution principle when the compound term is a sum.  
When asked to factor (x + 8)2 – (x - 7)2 Anne’s first response was “impossible” but 
then she identified the structure and with only slight coaxing, and one small error, she 
succeeded in factoring. She identified x2 – (x + 1)4 correctly but again factored as       
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� �� 221�	 xx �  before realising her mistake and factoring correctly. But finally success – 
she factored (x + 3)4 – (x - 3)4  flawlessly. Brian looked at (x + 8)2 – (x - 7)2 as the 
sum of two expressions with structure (a + b)2. When asked to look at the whole 
expression he immediately recognised the structure and factored it correctly. He 
identified x2 – (x + 1)4 correctly and with only minimal help succeeded in factoring. 
And like Anne he factored (x + 3)4 – (x - 3)4  flawlessly. 
Finally the students were asked to describe the structure a2 – b2, and create 
expressions similar to those shown in Table 1. Anne’s description was “Difference of 
squares. At the two edges there’s squares. And they are … squares”. She produced these 
expressions:  and � �462 64144 yzx 	 � �88 1620 		� xx . Brian simply named it “Difference
of squares” and wrote � � � �264222 81144 yzyx 	  and � � � �22224 256289 �	� yzx . It is 
interesting to notice that Brian used only square numbers or expressions for the 
parameters a and b in his examples. It is not clear whether he used them, as he said, 
“To make it more difficult” or whether he believed they are necessary.

CONCLUSION
Both students clearly learned to identify and factor the expression a2 – b2, and to 
apply the substitution principle. They displayed similar difficulties with articulating 
the features of the structure, and with applying the simple formula but both overcame 
these difficulties. The fact that they could both easily factor the expression               (x 
+ 3)4 – (x - 3)4 , not only in the teaching interview but also on a post-test, is 
impressive as factoring this has been shown to be extremely difficult for students 
with similar background (Hoch and Dreyfus 2005).  
Although both were unable to factor any of the three expressions in the pre-test, Anne 
displayed a better understanding of factoring, and seemed to pick up on the structure 
faster, although it took her longer to learn the basic formula                        a2 – b2 = (a 
– b)(a + b). Brian seemed to be slower at recognising structure, and if we look at how 
he built the new expressions in the last task we might suspect that he had not quite 
grasped it. This might have been expected as Brian learns in an intermediate stream 
while Anne learns in an advanced stream. However, the results of the post-tests are 
surprising. Brian excelled in the immediate post-test, while Anne excelled in the 
delayed post-test. Brian’s result in the delayed post-test is disappointing but a certain 
loss of knowledge or skills over time was only to be expected. What is surprising is 
Anne’s performance in the two post-tests. Is it possible that the experience of not 
succeeding in the immediate post-test, and a short discussion of her mistakes which 
followed that post-test, constituted another learning experience and succeeded in 
consolidating the structure in Anne’s mind? 
We have dealt here with only two students and one structure. It will be interesting to 
compare these stories with those of all 10 students and all four structures. 
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CREATING A MENTAL IMAGE OF DICE BLACKJACK GAME 
Antonín Jan�a�ík 

Charles University in Prague, Faculty of Education 
The structure of students’ mental image of the Dice BlackJack game is studied and 
some cognitive and meta-cognitive phenomena of this structure are presented and 
briefly described. The motivation of this experiment is based on the experience from 
experiments and workshops with future mathematics teachers.
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INTRODUCTION
In his research, the author of this article – a mathematician – is concerned with 
alternative methods of acquainting students, future mathematics teachers, with “the 
world of mathematics”. To this aim the author uses non-traditional means – above all, 
games and puzzles. From his seminars and workshops for students and teachers, the 
author the means that seem to be appropriate as they illustrate in a practical way some 
of the key concepts and methods. One of them is the Dice Blackjack game. This game 
is usually used by the author as an example of a more complicated mathematical 
game at the stage when students have formed an image of what a winning strategy 
might be, and once they have learnt basic methods of combinatorial theories through 
simple games, such as the NIM game. 
The rules of the game are very simple. There are two players. The first player throws 
a die to begin, after that there is no more die throwing; both players take turns in 
flipping (turning) the die. The values on the top side of the die are added up (for both 
players). The player who goes over the total sum of 21 loses. 
The game may progress in the following way: the first player gets 6, the other flips 
the die to 5 (total 11), the first flips to 6 again (total 17) and the second flips to 4 
(total 21), and then the first player flips to 1 and loses, because the total is greater 
than 21. The last move would see the player lose regardless of the number he flips to, 
because the sum must be greater than 21 at this point. However, the player could have 
chosen in his first turn to flip to 1 (making the total 12) and thus gain a possibility of 
victory with no regard to the move of his adversary (for an analysis of this situation, 
see below). 

THEORETICAL BACKGROUND 
Using games in mathematics education is not a new idea. The author believes that 
games provide a unique opportunity for integrating the cognitive, affective and social 
aspects of learning. They can be used to introduce new ideas and lay the foundations 
for processes and thinking strategies (Booker, 2004). Games are a suitable motivating 
tool (Ein-Ya, 2005) and at the same time a foundation for communication among 
students (Cañizares, 2003). The use of games in statistical education (Teles, 2006) 
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could be used as an interesting comparable example. Next, let us consider the 
mathematical background of games. 
Combinatorial game theory is a relatively new discipline. It dates back to 1902 when 
an analysis of the game NIM was published (Bouton, 1902). The discipline 
underwent a tremendous development in the second half of the 20th century. The 
research of that period is tied to people like Guy, Berlekamp, and Conway (see 
Berlekamp, Conway and Guy, 2001), with especially the latter’s results having had 
great influence even on fundamental fields of mathematics (Conway, 2001).  
The basic tool of the Combinatorial game theory used for searching for winning 
strategies is the fact that an evaluation of one’s position in the game is possible 
without looking at the whole game but only at the current state of the game. Since 
there is, apart from the initial die throw, no other influence of probability, the result 
of the game is, at the point when the thrown die stops, already determined, in other 
words, the winner is known (assuming no one makes any mistakes). Therefore, there 
must be a given valid method for each player to win, or the winning strategy.  
Finding the winning strategy is the same as finding critical positions. A critical 
position is a position in which the current player can only win with the help of his/her 
foe’s mistake, and a winning position is a position in which the player will win 
regardless of his opponent’s moves provided he/she makes no mistakes. A more 
accurate definition: A critical position is such that all following moves lead to a 
winning position, a winning position is such that at least one move leads to a critical 
position. 
In the Dice Blackjack game, a position is a set of two numbers, one is the total sum of 
the game, the second is the number on top of the die from the last move. The game 
given in the Introduction has the following positions: (6, 6), (11, 5), (17, 6), (21, 4). 
To evaluate a position, we only need to know the evaluation of those positions, that 
we can attain with one move. Therefore we begin the game evaluation from those 
positions that can be decided easily. In the case of Dice Blackjack, such a position 
occurs when the total sum is equal to twenty one. In that case, the player to move 
must lose whatever number may be on top of the die. The position (21, x) is therefore 
critical for all x values. Next, we can evaluate positions with the total sum of 20. 
Obviously, if 1 can be played (1 is not on the top or bottom side of the die), the 
position is won. Let us assume the use of a standard die with the opposite side sum of 
7. We have four winning positions, (20, 2-5), and two critical positions, (20, 1) and 
(20, 6), because in their case the die flip must breach the total sum of 21. A similar 
method can be used to evaluate all other positions (Table 1).  
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 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 C C W W W W W W W C W W W W W W W W C W W W
2 C W W W W C W W W C W W W W C W W W C W W W
3 C W W C C W W W C C W W C C W W W C C W W C 
4 C W W C C W W W C C W W C C W W W C C W W C 
5 C W W W W C W W W C W W W W C W W W C W W W
6 C C W W W W W W W C W W W W W W W W C W W W

Table 1: Evaluation of all game positions

The positions marked in colour can be attained in the initial die throw. Since only two 
of them are critical, the second player has the advantage, having a probability of 2:1 
to make his/her first move at a winning position. The basis of the winning strategy for 
the player who is to move at a winning position is to select a move each time so that a 
critical position is attained. 

METHODOLOGY
The experiment presented here was embedded in term-long work with a group of 
students within a game theory seminar. Its aim was to describe the phases of the 
creation of a structure of a mental image of the Dice BlackJack game and to 
distinguish basic phenomena that are important in the process of this structure 
creation.  
Two students, year 4 future mathematics teachers took part in the experiment 
described below, both were male. They already had some experience with games; 
they had dealt with some types of NIM games. Thus they knew what a winning 
strategy was and had some idea how to look for it. 
The experiment went as follows. In the first 2 minutes, the students were reminded 
what a winning strategy was (based on the NIM 1-2-3 game). Next, the rules of Dice 
Blackjack were explained. The students were asked to comment on their thought 
processes and to communicate with each other while looking for a solution. Below 
we will use the names Peter and Paul for our two students and Ex to mark the speech 
of the experimenter (author). 
The whole experiment took about 45 minutes. The author was present and intervened 
several times. He answered questions about the game, asked the students to write the 
results on a blackboard and suggested minor improvements of the written record. In 
one case he influenced the experiment by alerting the students to a mistake using a 
question, and thus guided them to remove the mistake. Once the experiment was 
done, a short interview was held. 
The experiment was started with a try-out game which was not, however, finished. It 
stopped at the point when any one player was about to reach the sum of 21. At this 
stage, the students asked the experimenter to further specify the rules of the game. 

PAUL: Can I just flip it or can I also turn to the bottom side? 
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After the initial game, the students started discussing certain situations that they tried 
to complete. They simulated a situation, when there is already a certain sum and they 
tried to finish the game. This was repeated twice. The students started at sum 9 and 
finished the game, next they started at 14 while at the same time looking for the 
winning strategy. Since the situation was complicated (there were many possibilities), 
the students decided to discuss the options systematically. The following dialogue 
(Dialogue 1) describes this spontaneously arisen strategy change: 

PETER:  Well, let’s start at 21, depending on what’s on the up-side. 
PAUL:  If it’s 21, then you’ve always won. If it’s 20 and a six or 1 on top, you’ve won. 

… If it’s anything else, then you’ve lost. 
Ex:  Could you put these results down? 

While writing, the students decided which positions to mark as winning and which as 
losing (Dialogue 2): 

PAUL (writing): If it’s sum 20 and 2,3,4,5 on top… (hesitates). 
PETER:  This way it means that it’s the … situations when … 
PAUL:  The player to move loses. 
PETER:  Right, because you’d get … 
PAUL:  If you’ve 2, 3, 4, 5 then the player to move wins (writing). 
PAUL:  With 21 numbers one through six lose (edits the record). 
PAUL:  19, if it’s 1,3,4,6, then you win. 
Ex:  Why is it won in this case? 
PAUL:  Because the player would play the two.  
PETER (examining the die): The sum is 19, you are on the move, on the top is 1, you 

play a 2, 3 is on top, that’s the same. 
PAUL (writing):  The other numbers, one, six, that’s lost. 
PETER:  You sure it’s lost? 

Since the students’ record was very untidy, the experimenter suggested another form 
of record. The original record had one group of winning positions and another group 
of losing positions for each line. The new record was much like the table above. The 
students accepted the suggestion; they used 0 and 1 to mark the losing and winning 
positions, respectively. They copied their results into the table and began discussing 
the position (19,2) (Dialogue 3).  

PETER:  So when there’s a two on top? 
PAUL: Then you play 1 and you get to (points to the zero in table cell (20,1), thinks 

and goes to a table to try out the position using a die). 
PETER (setting the die):   Nineteen and two on top. 
PAUL:  That means it’s won for the first player. (Goes back to the blackboard, writes). 

At sum 18, the positions with numbers 1, 2, 5, 6 were immediately marked as 
winning. Positions with 3 and 4 were discussed using all possibilities. With sum 17, 
again the positions that win with one move were marked first. Next, an analysis of all 
possibilities was not done but the losing positions were found in the table and it was 
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determined whether these positions can be attained. At sum 16, the same method was 
used, however only the attainable positions were discussed (Dialogue 4): 

PAUL:  You get to 17 through 1, you get 18 through 2 … 

At sum 15, again the one-turn winning positions were marked first and then the table 
results were discussed diagonally (16,1), (17,2),… The students discovered that the 
position (18,3) was marked with a zero. 

PAUL: You get to sixteen with 1, to seventeen with 2, and to (moves the finger in the 
table) uh-oh. 

PETER:  (Looking at the die) Well, you can get there. 
PAUL:  That means it’s winning. 
PETER: Oh, yeah. 

Paul records the results in the table and circles them. Then he moves on to line 14. 
PAUL:  You can’t add a seven. 

He is thinking the situation over. 
PAUL:  If you get to 15 with a one, then you’ve lost. (Shows the zeros in the table) 

You need to get here, here and here. So if you can play two, then you’ve won. 

This thesis was then doubted and both students spent a long time finding the 
connections between the winning and the possible moves. Most hypotheses were 
accompanied by pointing to the table; the students commented on them very little. 
The following dialogue followed after approximately five minutes (Dialogue 5): 

PAUL:  If you can play one or two, then it’s these numbers (points to the table), if five 
or six, then it’s these numbers (points to the table again). So this diagonal 
direction is important (fills in all results). 

Similarly, all other lines of the table were filled in, with increasing speed, up to the 
line zero. After filling the table, the students hesitated what to do next. Upon the 
experimenter’s request they first marked 6 lines as an answer, after one throw of the 
die they specified that the only relevant positions were (1,1) through (6,6) and they 
answered that the game favored the second player. Finally, the students played one 
game at their own request using the correct strategy based on the table. 
The experiment was recorded with a camcorder and evaluated by standard methods of 
Grounded Theory (Strauss, Corbin, 1998). The evaluation was based on an analysis 
of the video recording, on an interview with the students after the experiment (the 
students’ self-evaluation) and on the experimenter’s previous experience. Discussions 
and experiment analyses done with the help of other experts were also a valuable 
asset and they were used as a source of further knowledge and data to be used in the 
analysis. The theoretical basis for the interpretation of the structure of mental image 
creation analysis results was the theory of the generic model (Hejný, 2003 and Hejný, 
Kratochvílová, 2005). 
At this stage of introduction to game theory, the students only know some isolated 
models – examples of mathematical games. They do not possess the knowledge of an 
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abstract model of a “mathematical game” and must therefore look for solutions step 
by step, while of course using the methods that proved useful in their studies of NIM; 
for example, they begin the analysis starting at the end (see Dialogue 1). 
The aim of the experiment was to observe the students’ methods of finding a winning 
strategy and to characterize a method of creating a mental image of the game. Since 
this paper is limited in length, the following text is concerned mainly with the 
analysis of the cognitive and meta-cognitive phenomena directly connected with the 
structure of the game. The communication phenomena are not analyzed deeply. 
Communication obstacles in student communication should be discussed in a separate 
analysis.  
Next, some cognitive phenomena arising from the analysis will be given. 
CONCEPTUAL PHENOMENA 
Understanding the rules: Understanding the rules is a necessary prerequisite to 
further work. It depends mainly on the experience with other types of games. One of 
its important aspects is the understanding of the initial position, the possible moves, 
the roles of the individual players and the rules of finishing the game – understanding 
especially when the game finishes and what determines the winner. 
Understanding the winning game strategy: A winning strategy is a very abstract 
notion. Its understanding is carried out on several levels.  

� The first, lowest level is the ability to apply a winning strategy – to understand 
that a given method guarantees victory and to be able to apply that method.  

� The second level is shown in the ability to modify the strategy based on a 
change in the input parameters.  

� The third level is the ability to actively discover the winning strategy in a new 
situation; this is the level of understanding that the analyzed experiment 
stresses.  

� The final level is working with a winning strategy at an abstract model level. 
Here we can also talk about, for example, finding the sufficient and necessary 
conditions for the game to have a winning strategy – for the game to be 
determined.  

The students in the above experiment worked with the notion of winning strategy on 
the third level, they were individually able to discover winning strategies in simpler 
game types and to modify them subsequently. 
Understanding the determination factor of the game: In the case of Dice 
Blackjack, we need to separate the influence of the probability of the initial dice 
throw from the determined rest of the game. The initial dice throw is probable, but 
the rest of the game is determined and it is therefore possible to discover its winning 
strategies. The evaluation of the game is based on the evaluation of all initial throws 
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and their respective probabilities. The main manifestation of understanding the 
determination factor of the game is (1) coming to terms with the fact that the game 
does have a winning strategy and (2) the decision to look for it, since a winning 
strategy can only be discovered in determined games. 
In order to find a winning strategy, it is absolutely necessary for the students to 
understand the concept of critical position. In relation to the determination factor of 
the game, it is important to understand the fact that every position is either critical or 
winning. Looking for a winning strategy can thus be transformed into the problem of 
evaluating all positions. The understanding of the notion of critical position can be 
observed in the students’ decisions about the individual positions – the isolated game 
models. A manifestation of understanding the critical position notion and mastering 
the rules was observed in the fact that the students did not need to finish the first trial 
game as soon as it became “clear” who is to win. A manifestation of the 
understanding of the existence of the need to evaluate all positions was seen in the 
switch to a systematic evaluation of all game positions (Dialogue 1 and 2). 
PROCEDURAL PHENOMENA
The procedural phenomena played a major role in forming the mental structure of the 
game. The first one concerns gaining an insight into the situation by playing trial 
games. During the trial games, the non-clarities of the game rules become apparent. 
If there are any doubts, the game is stopped and questions are asked. In this, key 
concepts like move, victory and loss are also explained. Students come to know the 
influence of the basic properties of the die on the game – the player to move can only 
select four (not six) options. The sum of two consecutive moves cannot be seven. An 
important phenomenon is the recognition of a lost game before it is finished. This 
recognition comes from the students’ experience as players. In the trial game, the first 
notions of strategy are formed. Students assume that the strategy is a complicated one 
and therefore they do not try to analyze all the possible procedures of the game, but 
rather to look for a solution in shortened games. 
Another important procedural phenomenon is the study of the procedure of 
shortened games. Shortened games give us an opportunity to study the regularities 
of the game. An important discovery is the fact that a position is an arranged pair, the 
total sum and the state of the die. Our experience from the above seminar shows that 
this discovery is usually made at the position (19,2). In shortened games, students 
also discover that the evaluation of a position is based on the subsequent positions. At 
this moment, they discover that the winning strategy can be formulated by a 
systematic evaluation of all possible game positions. Based on their experience with 
isolated models, the students move on to a systematic analysis of all game positions.  
The forth phenomenon is the sophisticated evaluation of all game positions. While 
moving to a systematic evaluation of the positions, it was found that a more 
sophisticated situation in some cases forced the students to verify the matter on a 
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practical level (Dialogue 3 – the students came back to the table and simulated the 
analyzed situation by throwing a die). 
The discovery that the winning move can even be a move which does not directly 
achieve a victory is very important. During the course of the experiment, such 
situations were marked by students by circling the number in the table. The students 
first evaluate the position based on an evaluation of all further possible procedures of 
the game. They gradually discover that the evaluation of a position can only be 
determined once some of the subsequent positions are evaluated (Dialogue 4). In 
time, the students discover that the evaluation is determined by attainable positions, 
and they can find these positions (Dialogue 5).  
The key situation in this process is the situation (14,X). At this moment, there are no 
more points of support, that is the points that definitely win a move. All positions 
must be evaluated based on the preceding results only. For this reason, this situation 
is crucial for the formation of the mental image of the game. If this position is 
handled successfully, the solving strategy advances by a considerable stretch. The 
students already have a sufficient insight into the whole situation and they can 
fragment the entire process without worrying about getting lost. At this point, there is 
a move from isolated models to a generic model of the game. An important fact is 
that the students stop to differentiate between the situations where one and where 
more moves are required to win. At the same time, they can apply an evaluation 
algorithm smoothly and use it to determine a complete evaluation of game positions. 
They can also modify the algorithm for variations of the game (for example, a game 
using a different end sum).  
Finally, we will briefly mention five meta-cognitive phenomena. 
META-COGNITIVE PHENOMENA
Selecting a solver strategy (starting at the end): When choosing a strategy, there 
was an apparent influence of the experience with the NIM game, especially the 
discovery that shorter game solutions can be applied to more complicated games. 
Creating and noting isolated game models: Since the given game is overly 
complicated, the students switched to analyzing simpler situations. The isolated 
models of the easier situations were crucial for obtaining an insight into the situation. 
Searching for a generic model: An important point in switching from isolated 
models was the decision to analyze all the positions systematically, including a 
systemization of recording the results. 
Method of describing the winning strategy: While choosing a method of recording 
results, the students again derive from their previous experience. Records in a table 
make further procedures much easier. The algorithm of the winning strategy derives 
from a correct interpretation of the table. 
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Checking results: With the students participating in the experiment, a need for 
checking the results by playing games according to the winning strategy and thus 
confirm the correctness of the results was apparent. 

CONCLUSION
The author carried out several similar experiments as the one above and they brought 
a result which was very surprising for the author. Contrary to his expectation, the 
students who took part in the experiment were able to obtain a winning strategy on 
their own with only marginal interferences by the teacher faster than other students 
for whom the author employed the transmission way of work, that is he guided them 
step by step. Not only was the time taken for obtaining the winning strategy shorter 
but the understanding of the game was deeper at the same time. This fact needs to be 
further studied in the same context of games and winning strategy search. 
In the analysis of the experiment, it became apparent that there was a key position in 
the game, namely (14,x). This position was crucial for understanding the game and 
finding a winning strategy. The key position (14,X) can be characterized as follows: 

� This position is more difficult to grasp than the previous ones and plays a 
major role in a model of the game. 

� This position greatly differs from the preceding positions and the mastering of 
it is decisive for the mastering of the whole game. 

It can be assumed that the key position (14,X) will play a similarly crucial role during 
the process of creating a mental image of this game. The author’s experience from 
seminars with students suggests that this position often played an important role in 
the process of understanding the winning strategy of this game. More experiments are 
planned for testing this hypothesis. 
If the important role of a key position is confirmed, it can be assumed that the key 
positions can be found in other situations as well and that their mastering will play a 
similarly crucial role. Searching for and characterizing the crucial positions while 
creating generic and abstract models will be the subject of further research.  
From the point of view of a teacher when working with students, it’s very important 
to focus on the understanding and, if possible, on the unassisted derivation of 
solutions in case of these key positions. 
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CLASSIFICATION, MANIPULATION AND 
COMMUNICATION: WORK WITH PUPILS AND STUDENT 

TEACHERS
Darina Jirotková, Graham H. Littler  

Charles University in Prague, CZ; University of Derby, UK 
Abstract. Pupils’ tactile manipulation of 3D solids is closely linked to their 
geometrical understanding. The links found between manipulation and 
communication when pupils are solving classification tasks are described in the 
first part of the paper. The second part opens new research working with future 
teachers to determine their abilities to create structures within the family of 3D 
solids. No significant knowledge difference in the ability to build geometrical 
structures between 10/11 year old pupils and student teachers was found. 
Key words: tactile perception, manipulation, classification, communication
INTRODUCTION AND AIMS 
In our previous research aimed at learning about pupils understanding of 
geometrical solids using games and non-standard tasks1, we found that pupils’ 
ways of tactile manipulation of solids could be classified into three levels: 
global, random and systematic (Littler & Jirotková, 2004). This paper reports a 
further development of the research, the aim of which was to see whether, by 
asking the pupils to communicate their thoughts as they carried out classification 
tasks, there were links between manipulation and communication. We found 
these actions were related and reflected the pupils’ geometrical insight and 
understanding. The results from the research from the pupils’ work prompted us 
to work with student teachers to see whether or not their knowledge of 3D 
geometry mirrored that of the pupils. Our long term research has shown that 
many pupils have only a limited knowledge of both two and three dimensional 
shapes (Jirotková & Littler, 2002, 2003), and by comparison of syllabuses, text-
books and teachers’ comments in several countries we have found that little time 
is given to geometry in primary schools. Moreover, the dominant part of this 
time is given to transmissive methods of teaching. Where three-dimensional 
shapes are dealt with in primary schools, the teachers generally concentrate on 
terminology rather than concept building processes.  
Fujita and Jones (2002) state that the teaching and learning of geometry is a 
major problem in mathematics education and cite Villani (1998) and the Royal 
Society (2001) reports which consider that good teaching methods are needed to 
be developed together with appropriate activities and resources if there is to be 
an improvement in pupils’ knowledge and understanding of the subject. Much of 
current research focuses on the difficulties pupils have understanding 
geometrical theory particularly at the secondary level, and neglects the relevance 

                                                 
1 By non-standard tasks we mean tasks which cannot normally be found in text-books in CZ and UK. 
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of the practical nature of the subject. We believe that this problem has its root in 
the primary school where the pupils are not given tasks which will deepen their 
understanding of objects and their relationships.  
We have found that by solving tasks using tactile perception only, pupils are 
able to create a mental picture on the basis of the information delivered to the 
brain by tactile perception and then describe this picture. To be able to do this 
successfully, it requires many experiences of handling solids and describing 
what they perceive using appropriate language before the solid becomes a 
‘personality’ for them (Vopenka, 1989). As a simile a wine-taster would have to 
taste many wines a considerable number of times building up a suitable 
descriptive vocabulary before s/he was able to undertake a ‘blind tasting’ in 
which the task was to classify and describe the wines by region, grape and date. 
Pupils take on a similar role when they are asked to describe a solid by tactile 
sense only. They have to recognise the attributes which characterise the solid 
and then find suitable words to describe these attributes. Previous work has 
shown that the tasks we set the pupils help to develop their structural approach 
to 3D solids, identifying three kinds of geometrical structures – single solid, 
cross solid and web structures (Jirotková & Littler, 2005)2.  
FRAMEWORK AND LITERATURE 
In her thesis, Jirotková (2001) guided by M. Hejný considered some of the 
mental processes, mechanisms, in solving 3D geometrical tasks. The defining of 
these processes came from the analysis of pupils’ responses to the tasks. The 
mechanism most applicable to the research task is the Mechanism of Tactile 
Classification (MTC).
The mechanism of tactile classification is our construct of the pupil’s mental 
process by which s/he divides a group of solids tactilely into two groups such 
that at least one of the groups has solids which all have a common attribute. We 
identified three types of this mechanism: 

MTC1. The pupil makes a mental note of the first tactile perception, which 
is associated with certain geometrical phenomenon recalled from his/her 
long-term memory. This phenomenon becomes the criterion for 
classification. This process of classification is started by tactile perception 
and is completed by recall of certain geometrical concepts from the long-
term memory. It could be graphically expressed by the diagram below: 
MTC2. The decision regarding the choice of criterion takes place before 
any tactile perception occurs and is based on the pupils’ knowledge of 
solids, which is immediately recalled from long-term spatial memory. 

                                                 
2 ‘single-solid structures’ are the structures of the attributes within a solid itself ,‘web structures’ are developed 
when several solids are linked in pairs or small groups by some attribute but not to each other  and ‘cross-solid 
structures’ are those structures which linked several solids to each other by each having the same attribute. 
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S1 - the first solid chosen.  C –an attribute is recognised and used as the criterion for selection. S  - a solid is 
taken. 

MTC3. The pupil sets up his/her criterion, A, on the basis of their initial 
tactile perception of the solids. After making the first selection, he/she 
tactilely perceives another solid, which matches the first criterion but has 
another dominant attribute. If the next solid also has this other dominant 
attribute then this attribute takes over as the criterion, B, by which the 
solids are selected but still put in then original group.  

If the decision for classification is based on the question: ‘has the solid got the 
attribute A or not?’, then we call this complementary classification. One 
subgroup is characterised by property A, the remainder of the set, the 
complement, is characterised by not A.  If the decision for classification is 
based on the question: ‘has the solid got attribute A or B?’, then we call this 
attributal classification – each subgroup within the given set is defined by a 
particular criterion. Often the pupils’ method of classification is not clear. 
Our earlier work with 11 year-olds (Littler & Jirotková, 2004) in which we 
analysed video recordings of the pupils whilst they were undertaking the task 
enabled us to distinguish three different processes of tactile manipulation which 
we call the Type of Tactile Manipulation.  
The type of tactile manipulation is the process by which a pupil manipulates a 
solid to determine its ‘shape’ and transfers this perception into a mental image 
of the solid. We delineated three types of manipulation: global, random and 
systematic. These manipulation processes mirror closely the first three levels of 
insight into three-dimensional geometry given in van Hiele’s theory (1986) 
which would apply to most primary age pupils and are juxtapositioned below. 
Global. The pupil holds the solid in (both) hands getting a perception of the 
whole solid (a gestalt), the solid is rotated in the hands but there is no attempt to 
focus on any attribute. 
Level 1. The solid is seen as a whole and usually as a specific shape. The 
properties/attributes of the solid play no part on the recognition of the shape. 
Random. The pupil usually holds the solid in one or both hands and uses their 
fingers to feel certain attributes. There is no order to the checking of attributes. 
A vertex might be touched and this followed by a fac, rather than follow through 
to see how many vertices a particular face might have. 
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Level 2A. The shape is identified by a single attribute rather than the whole 
shape.
Systematic. The pupil holds the solid in one or both hands and feels 
systematically for attributes with fingers. In this process the pupil checks all the 
faces say, then checks how many edges each face has or how many vertices and 
so built up a composite mental image of the solid. 
Level 2B. The solid is recognised by several of its properties/attributes, which 
are seen as independent of each other. 
Level 3. The attributes are considered logically and the relationship between 
them recognised.
(Van Hiele’s level 2 was split into two parts by Pegg (1997)) 
If the pupil’s understanding of 3D solids is at the Van Hiele level 1 then their 
manipulation will be global and they are likely to describe using everyday 
language. A better mental image might be achieved if the solid was familiar to 
them but they are likely to give the name only, such as cube and not describe its 
attributes. Pupils with Van Hiele level 2 understanding use random manipulation 
and we believe the mental image generated is not clearly defined. Those pupils 
who apply systematic manipulation and build up their mental picture of the solid 
sequentially are at Van Hiele’s level 2B or 3 of 3D geometrical understanding. 
They sometimes feel the solid completely before gaining information about the 
attributes of the solid in a logical sequence. This enables them to get a clear 
mental image of the solid, even though they may not have met the particular 
solid before. It also helps them to keep the attributes in their short-term memory, 
which enables them to recognise cross-solid structures (Jirotková & Littler, 
2005) when classifying their solids. It can be seen that as a pupil moves from 
general to random and systematic manipulation, they move from a general 
descriptive recognition of a solid to an analytical one (Rønning, 2004). Using 
tactile perception only it is much more difficult than is the case when visual 
perception is allowed since such things as similarity, equality of lengths can be 
seen, faces of solids recognised as two-dimensional shapes and pattern 
recognised (Callingham, 2004). 
The new aspect of this research is the requirement of the pupils to ‘commentate’ 
on what they are thinking and doing as they go through the process of 
classifying the thirteen solids through tactile manipulation. The importance of 
communication in the diagnosis and education process (Hejný, 2003; Sfard 
2002) was an aspect of an earlier paper (Jirotková & Littler, 2003). We were 
aware that most pupils’ mathematical vocabulary comprised everyday language, 
specific words only used in mathematics and words which have different 
meanings in mathematics and general language usage. We were interested to see 
whether the language the pupils used was related to their tactile manipulation 
and therefore to their classification of the solids. Their mental image has to be 
described and the quality of the image together with the pupil’s ability to 

 

Working Group 3

CERME 5 (2007) 459



communicate and use appropriate language will determine whether or not a 
second person can recognise the solid so described.    
THE EXPERIMENT WITH PUPILS 
Methodology 
Over the last two years the authors have used the same task in the United 
Kingdom and the Czech Republic with 11 year pupils (grade 5), 10 year pupils 
(grade 4) and an 8 and a 6 year old pupil. The basic task has remained the same 
during this period, namely to divide a set of thirteen solids into two groups with 
at least all the solids in one group having a common attribute. In the last year we 
have asked the pupils to give a commentary on their thinking as they 
manipulated the solids. These commentaries have been transcribed and viewed 
against the relevant video to see what the pupil was actually doing as s/he spoke 
and to determine what connection there is between these two processes. 
The solids used (of a suitable size for their hands) in the task were: 1. Cube; 
2. Square based prism; 3. Rectangular prism; 4. Triangular prism; 5. Non-
convex pentagonal prism; 6. Hexagonal prism; 7. Tetrahedron; 8. Square-based 
pyramid; 9. Truncated rectangular-based pyramid; 10. Non-convex pentagonal 
pyramid; 11. Cylinder; 12. Cone; 13. Truncated cone. 
The solids were chosen to present the pupils with some that they would 
recognise from everyday life or school; cube, cuboids, cylinder and cone, some 
which they might have met; pyramid, tetrahedron, hexagonal prism and right-
angled triangular prism, and those which we thought might be new to them: non-
convex pentagonal prism and pyramid, truncated cone and pyramid.  
These solids were either hidden behind a screen through which the pupils put 
their arms or the pupils were blindfolded. All the experiments were video 
recorded. These were transcribed and the actions of the pupil as seen on the 
video were recorded in written form. The transcriptions and the description of 
the pupils’ actions were used in the analysis for this paper. The task was 
undertaken individually by each pupil in a quiet room, the researcher explaining 
what the task was, which included the pupil giving a commentary on what s/he 
was thinking as they made their decisions. At no time from the pupil entering 
the room to completion of the task, were they able to see the solids. 
Results and discussion 
We have initially divided the results and discussion into the three different 
aspects of our research - classification, communication and manipulation and 
hope to show the linkages found between these aspects.  
(i) Classification. The first solid the pupils picked up had a great impact on the 
criterion they used for selection. For those pupils at the MTC1 stage, this first 
solid gave them a strong characteristic, which they were able to sustain 
throughout the task. For instance a pupil felt the rectangular based prism first 
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and used the criterion: These solids have only got quadrilateral faces. The other 
group may have quadrilateral faces but they have other faces as well. His 
complementary classification comprised the cube, cuboids and truncated prism. 
Some pupils process was at MTC3 stage, one of the 10 year old girls was using 
the phenomena of ‘four-sideness’ to begin with (audio-tape), but when she 
handled the cone she construed this as irregular and from then on put those 
solids which she thought of as regular with her four-sided group. These included 
the square-based pyramid, tetrahedron and the cylinder. It was noted that her 
interpretation of ‘irregular’ varied from meaning I have not met this solid before 
to saying what she thought was irregular about the solid – this is a cone too but 
it hasn’t got a bottom(truncated cone, apex down). From the analysis of the 
commentaries there was no indication of pupils using MTC2. 
(ii) Communication. Our analysis of the commentaries showed a difference 
between the geometrical language used by the 11 year old pupils and those of 10 
years. The 11 year-olds clearly indicated that when they used a 2D geometrical 
term it was being applied to a face, as in the example above. When they referred 
to the solid they generally used 3D terms. However there was geometrical 
confusion in the minds of two girls who used ‘square or rectangular base’ for 
their criterion. If the square based pyramid was laid on a triangular face they did 
not want to put this solid in their original selection, since it was now a 
triangular–based solid. 
The 10 year-old pupils used a much wider selection of language: some 
geometrical 2D and 3D terms were used correctly (triangle, rectangle, square, 
hexagon, circle, cube, cuboid, cylinder, cone, pyramid); there were geometrical 
terms with distorted meaning (pentagon – miscount of sides on hexagonal face, 
polygon for polyhedron, side for edge); some terms were the pupils’ construct 
(circular triangle for cone, four-cornered triangle for trapezium); every-day 
words were common (points, flatness, curves, tent for triangular prism, diamond 
for hexagon); and some made use of descriptions (“bottom missing” and “cut-
off at the end” for truncated cone, “stereotype solids” for cube, cuboid, part 
missing, piece taken out of it, piece bitten from it for non-convex pentagonal 
prism or pyramid). These pupils did not use the word face but from the video it 
could be seen that when they used phrases such as like a triangle they were 
feeling a triangular face.  
For these younger pupils, quadrilaterals were either squares, rectangles or ‘four-
sided’. Similarly it was the minority of this age-group who used cuboid and 
cone. The girl who described the cone as a circular triangle was rotating the 
cone by its vertex with one hand whilst the other felt the curved surface. Two 
pupils used everyday language most of the time, one girl only using two 
geometrical terms during the task, circle and square. She used the word points 
six times and flatness four times. Pointedness seemed to be the dominant 
attribute for her when describing her tactile perception and yet her final 
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description of the two groups was this one(group) with curves and this one with 
flatness. It was interesting to hear another pupil of Afro-Caribbean origin 
describe the tactile perception of the sides of the hexagon to be like a diamond, 
which could be because the women in that society wear many rings each having 
multi-facetted ‘gems’. Many pupils found the non-convex pentagonal solids 
confusing, it’s funny was one comment and there were several descriptions of ‘a 
piece missing’. 
(iii) Manipulation. The first point we noted was that only one boy (11 years) 
from all those tested took the trouble to feel all the solids carefully, to get a 
mental picture of the solids, before starting to solve the task. He counted the 
number of edges, faces and vertices as he traced the outline of each solid with 
his finger and only when he had completed this did he attempted to divide the 
solids into two groups. In our most recent experiments the pupils (10 years) 
either laid their hands over the tops of all the solids without feeling individual 
ones and/or took the first solid their hand encountered and began to analyse it. 
This pupil showed that his manipulative skills were most advanced, his 
commentary indicated he had clear within-solid and cross-solid structures 
developed and that his level of communication was high and mirrored his 
manipulative level.     
The majority of the 11 year-old pupils and some of 10 years were at the 
systematic level of manipulation. As reported earlier the communication of the 
11 year-olds showed great mathematical sophistication and this paralleled their 
manipulative skills. Many felt the solid as a whole and then held it with one 
hand whilst investigating the dominant perception with the other, for instance 
with square-based pyramid, they usually felt the square face first and then the 
triangular faces, then counted the number of edges before making their decision. 
In general, the solids were picked up separately but occasionally a pupil picked 
up more than one solid for comparison. Very often the 10 year-old pupils used 
only 2D language in their commentary which reflected the way they 
manipulated with the solids, usually at the random level. It was noticeable that 
they made a decision about a solid and did not refer to it again, whereas the 11 
year olds kept re-feeling the solids about which they had made their decision, to 
compare their attributes with the one being investigated. Three of the 10 year old 
pupils were at the random manipulation level, their feeling of the attributes 
having no order. Their communication was generally in everyday or descriptive 
terms. The solids easily recognised by these pupils were the cube, cuboids, 
cylinder and square based pyramid since the tactile perception of them was 
quickly matched to an image in the long-term memory. These shapes were 
personalities for the pupils in Vopenka’s terms. 
(iv) General comments. It was clear that there was a link between the level of 
sophistication of the language used and the level of manipulative skill of the 
pupil. The level of manipulation indicated the soundness of the grasp of both the 
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within solid structure and the cross solid structure. This was shown by those 
pupils who manipulated the solids well and were able to communicate about the 
common attribute especially. Our task helped the pupils to look for the attributes 
of the solids hence building up the within solid structure and finding the 
common attribute in a number of solids enabled the pupils to have experience of 
noting a particular attribute in several solids and then giving this as the ‘generic’ 
attribute for a group of solids (Hejný, 2005). Even the younger pupils formed 
the within solid structure quickly by working through the task.  
Following our analysis of these experiments we considered whether or not the 
lack of geometrical structure, which we had found in many pupils, was remedied 
as they progressed through secondary school. We thought that the primary 
school student teachers in our universities might give us research data on this. 
EXPERIMENT WITH STUDENT TEACHERS 
Methodology 
We worked with 28 students in the Czech Republic who were at the beginning 
of a geometry course in the second year of their study and 32 students in 
England undertaking the one-year post-graduate certificate of education course. 
We first gave them a questionnaire in which we asked them what they 
considered most important in geometry. The overwhelming response was that 
they had to be precise and careful, particularly when drawing constructions; they 
needed to be able to draw well; they had to remember theorems and formulae. 
With each group, we discussed 2D and 3D shapes and they had the opportunity 
to handle the thirteen solids we had used with the pupils. Several sets of the 
solids were placed around the room so that the students could use them if they 
wished. Finally we presented them with a worksheet, which was a picture of the 
thirteen solids.  
The task we gave them was to use the worksheet to establish as many 
links/relationships/common attributes as they could between the various solids, 
joining them by different coloured lines and writing down the relationship 
implied by the links in a key. When this was completed they were then asked to 
choose two of the solids and to list those attributes which were the same and 
those which were different. 
Results
(i) Classification: There were very few students who used a point on the paper 
to show a many to one relationship, or for instance, showing the transitivity 
between the six solids which all possessed the attribute ‘had at least one face a 
square’. The majority of them drew a single line between each solid to link 
them. The attributes used to describe the relationships were faces, non-convex 
solid and truncated solid, both of the last two phrases had been given in the 
previous discussion. There were no relationships given which one could classify 
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as invisible feature such as ‘needs two measures to calculate its volume’. The 
cube was described by seventeen different words or phrases. The question of 
whether the square was a member of the family of rectangles was answered 
clearly by the results. Most students considered the square as a separate shape so 
that the cube was not included in the relationship ‘Have all rectangular faces’. 
This last point was more clearly defined in the results of the Czech students 
where the square is not considered a special case of a rectangle. The truncated 
pyramid and cone were often linked in the relation ‘is a pyramid’, and only one 
student included the tetrahedron in those who used the relation ‘has triangles’. 
The student teachers found the second task difficult since their answers showed 
a lack of analytical approach to the comparison of the two solids. The choice of 
solids was interesting, some choosing very different solids in the hope of 
defining differences easily and others choosing similar solids to determine 
similarities easily. Both types found the counter analysis difficult. One student 
who chose the square based prism and the truncated pyramid wrote that the 
attributes which were the same were ‘6 sides, 8 corners and 12 edges’; those that 
were different were ‘the truncated pyramid is smaller at one end and the long 
sides taper inwards’.  
(ii) Communication: During our discussions before setting the task, many of 
the students commented that they did not recognise many of the solids and so 
could not give them names. They exhibited all the problems we had encountered 
with pupils such as often using words from everyday language to describe the 
solids and their attributes. In addition they used different words when speaking 
about the same attribute indicating that they were not sure of the correct 
meanings of the words. The analysis of the students’ responses to our tasks 
showed that their vocabulary ranged from everyday language such as ‘Have 
pointed tops’ and  ‘Have flat tops’; incorrect mathematical vocabulary such as 
using the word ‘side’ when they were speaking about a face of a solid; and 
correct mathematical terminology – ‘Are truncated solids’ and ‘Has 12 vertices’. 
Conclusions
Until the pupils worked with ‘our tasks’ many of them had not consider solids 
analytically and so were unable to build up the geometrical knowledge 
structures listed earlier in the paper. Their knowledge was fragmental and their 
vocabulary limited to common solids and 2D shapes. The work which we did 
with student teachers would suggest that nothing done in secondary geometrical 
syllabuses helps develop these structures. We found the same use/misuse of 
mathematical language in the two different age-groups and the student teachers 
in general did not show they had firm within, or cross solid structures in their 
minds. 
We believe that primary school geometry should focus on the concept building 
processes in the widest possible meaning. Therefore we recommend that our 
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tasks could be used to advantage with primary school pupils and with student- 
teachers in their mathematics pedagogical courses. We would repeat that we feel 
the benefit of using tactile perception in many of these tasks is that it enables the 
pupils/students to build up their geometrical structures more quickly. 
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INVESTIGATING THE PROCESSING STRUCTURES OF 
STUDENTS’ INDUCTIVE REASONING IN MATHEMATICS 

Eleni Papageorgiou & Constantinos Christou 
Department of Education, University of Cyprus 

The study aimed to empirically test a theoretical model formulated to identify and 
classify students’ processing structures when they solve inductive reasoning 
mathematics problems. Based on previous theory (Klauer, 1999), we constructed a 
mathematical test in order to assess the components of inductive reasoning of sixth 
Graders. The data suggested that inductive mathematics reasoning is a process 
consisting of three factors: the “similarity”, the “differences” and the “similarity 
and differences” factors. Each of these factors involves the integration of other 
subordinate procedures. The proposed model provides a framework of students’ 
thinking while solving various formats of inductive mathematics problems, and a 
prototype for further investigation of the components of inductive reasoning.

INTRODUCTION
The purpose of this research is the validation of a new model, which describes the 
components of students’ mathematics inductive reasoning. The new model is based 
on Klauer’s definition of inductive reasoning (Klauer, 1999). Although Klauer’s 
definition refers to general psychological tasks of inductive reasoning, the proposed 
model provides an integral approach to mathematics inductive reasoning tasks.  
Reasoning, in general, involves inferences that are drawn from principles and from 
evidence, whereby the individual either infers new conclusions or evaluates proposed 
conclusions from what is already known (Johnson-Laird & Byrne, 1993). Inductive 
reasoning is the process of reasoning from specific premises or observations to reach 
a general conclusion or overall rule. It usually refers to the given instances and does 
therefore reach conclusions that are not necessarily valid for all possible instances 
(Klauer, 1999). Thus, the inductive reasoner can only use probable conclusions to 
predict further instances (Sternberg, 1999). In this paper we refer to the mathematical 
inductive reasoning of students of the primary education when they solve various 
formats of mathematics inductive tasks.  
The process of drawing inductive conclusions about general laws in mathematics 
starts with single observations, which are combined with the strength of previous 
observations in order to arrive to a conclusion. However, the derived conclusion is 
not necessarily accurate or logically valid. Nevertheless, in many cases the inductive 
inferences are valid and provide an important basis for the understanding of 
regularities in mathematics. Regularities as well as uniformities are the basis for the 
generation of concepts and categories, which play a fundamental role in our every–
day life (Klauer & Phye, 1994). Thus, the focus of our study is on the inductive 
reasoning as it is required in primary mathematics problems and in most intelligence 
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tests (e.g. analogies, classifications, series completion problems, matrices etc.). The 
student’s task is to discover the pattern of relations or attributes among several 
elements given in a problem.  
Specifically, the study aimed (a) on the integration of the processes students use when 
they solve various mathematics problem types into one common classification 
scheme prescribed by a model, and (b) on the development of an instructional 
program, which specifies the thinking skills typical of inductive reasoning. This paper 
presents the results of the first purpose of the study and delineates the verification of 
the inductive reasoning model.  

THEORETICAL BACKGROUND 
The process of inductive reasoning has been a topic of considerable interest in 
mathematics education, and is one of the most important goals of the curriculum of 
mathematics (Serra, 1989, NCTM, 2000). Indeed, inductive reasoning plays a critical 
role in mathematics and in problem solving situations (Koedinger & Anderson, 
1998). However, in primary school, the stimulation of thinking skills is not pursued 
explicitly. It is usually assumed that these skills develop as a by-product of the 
teaching of content as defined in traditional curricula for different subjects (Hamers, 
De Koning, & Sijtsma, 1998). As a result, most students cannot comprehend the basic 
concepts of mathematics and have a lot of difficulties in solving problems. To remedy 
this limitation, a range of programs for training of thinking has been developed 
(Klauer, 1999; Hamers & Overtoom, 1997).  For example, Klauer (1988) developed a 
training program that can be used to both teach and assess the students’ inductive 
reasoning and problem solving abilities. Klauer’s program was based on an analytic 
definition of inductive reasoning. Specifically, Klauer defined inductive reasoning as 
the systematic and analytic comparison of objects aiming at discovering similarities 
and/or differences between attributes or relations (Klauer, 1999). This definition 
results in the identification of six classes of inductive reasoning problems according 
to the cognitive processes required for their solution: the generalization, the 
discrimination, the cross-classification, the recognizing relationships, the 
differentiating relationships and the system construction problems.  
The generalization problems are characterized by the need to find similarity of 
attributes for different objects in order to make up a group, while the discrimination 
problems are related with noting differences among objects with respect to attributes, 
in order to identify the object that does not fit in with the others. The cross-
classification problems are characterized by a classification scheme, in which at least 
two attributes must be considered simultaneously. All combinations, which are 
possible, will occur: similarity in both features, dissimilarity in both features, 
similarity of one of the features with differences in the second feature, and vice versa. 
The solution strategy of the cross-classification problems requires a determination of 
both common and different attributes. The recognizing relationships problems’ subset 
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includes analogies and sequences’ problems and involves the identification of 
similarity among relationships. Specifically, analogy problems require the 
determination of a specific relationship between a given pair of objects. Then the 
solution strategy consists of mapping the relationship onto an incomplete pair in 
order to establish a new pair of objects that exhibit the same kind of relationship. 
Similarly, the solution strategy of sequences’ problems is related to the sequential 
check on the relationships that exist between the pairs of objects in a given series, in 
order to complete the series with a missing object, or the recognition of a pattern 
among objects, in order for them to be arranged sequentially. The differentiating 
relationships problems are concerning sequences that include an object which 
disturbs the sequence. This class of problems involves the recognition of differences 
in relations, and therefore they require the sequential check of the relationships 
existed between consecutive objects in a given series in order to identify and exclude 
or correct the object that disturbs the sequence. Inductive problems that are included 
in system construction subset consist of series of objects arranged in a nxm matrix 
(n 2). One of the cells of the matrix is empty, usually the right down, and the 
solution strategy is related with the determination of at least two relationships that 
must be recognized and applied in order to generate the correct content of the empty 
cell (Klauer & Phye, 1994). 




It is obvious that the above six classes of inductive reasoning problems are 
interrelated, since all of them can be solved by a core strategy of inductive reasoning, 
namely the process of comparing. Klauer (1999) developed an analytic and a 
heuristic strategy, both of which share the core process of comparing. The analytical 
strategy compares objects with respect to their common attributes or relations. After 
evaluating all objects regarding the similarities and dissimilarities of all attributes or 
relations, the problem solver will discover the rule, and consequently the solution. 
The strategy assumes that the problem solver is able to recognize all attributes or 
relations inherent in the problem. Specifically, the generalization and the recognizing 
relationships problems’ solution is considered to be based on finding similarities 
among attributes or relations, while the solution of the discrimination and the 
differentiating relationships problems is considered to be based on finding differences 
among attributes or relations. In the same way, the cross-classification and the system 
construction problems’ solution is based on finding similarities and differences 
among attributes or relations (Klauer, 1999). Mastery cross-classification and system 
construction is considered to be the final stage of inductive reasoning.  
Even though many research projects were developed to validate this classification 
system proposed by Klauer (Roth-van der Werf, Resing, & Slenders, 2002; Klauer, 
Willmes, & Phye, 2002; Hamers, et al., 1998; Klauer, 1992, 1996; De Koning, 
Hamers, Sijtsma, & Vermeer, 2002), all of them have been developed in a general 
content domain. Accordingly, the literature does not provide any coherent picture of 
the reasoning processes required for the solution of the problems included in specific 
academic subject areas. Considering the importance of inductive reasoning in 
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mathematics education, there is a need for a framework of cognitive processes that 
can be used in solving mathematics inductive tasks, in order to foster children’s 
inductive reasoning ability in mathematics. The model proposed in the present study 
adapted Klauer’s classification scheme specifically for the content of mathematics. Its 
focal point is on the structures of the problems and the corresponded cognitive 
processes that are necessary to solve them. 

THE MATHEMATICS INDUCTIVE PROBLEMS 
One of the main purposes of the present study was to develop a model that 
encompasses the whole spectrum of inductive reasoning processing structures. Thus, 
the proposed model presupposes that the whole set of inductive mathematics 
problems is consisted of problems of classification, analogy, series and matrix (Van 
de Vijver, 2002) and/or similar varieties and combinations of these problem-formats. 
The proposed model was hypothesized that the set of inductive mathematics tasks can 
be classified into two main subsets, according to their reasoning structure. That is, 
classification tasks which are dealing with scanning attributes, and analogy, series 
and matrices tasks, which are dealing with scanning relationships. Classification tasks 
required detecting similarity and/or differences among attributes, while analogy, 
series and matrices tasks required detecting similarity and/or differences among 
relationships. Thus, it was hypothesized that three kinds of cognitive procedures are 
required for the solution of the tasks of the two subsets, i.e., detecting similarity or 
differences or both (Klauer, 1999).   
In order to specify the cognitive processes required for the solution of the problems 
included in each subset and therefore to classify the problems according to their 
processing structures, it was hypothesized that detecting similarity strategy is applied 
on problems required one to note an attribute common to each number or geometric 
figure included in the problems in order to form a class (generalization); on problems 
required the comparison of properties of numbers or geometric figures of a given set, 
in order to distinguish the attribute have in common some of the given numbers or 
figures (generalization); on series problems required the sequential check on the 
relationships that exist between the pairs of figures or numbers in a given series, in 
order to complete the series with a missing figure or number (recognizing 
relationships); and on analogy problems required the determination of a specific 
relationship between a given pair of numbers or figures and the application of that 
relationship onto an incomplete pair in order to establish a new pair of numbers or 
figures that exhibit the same kind of relationship (recognizing relationships). 
Detecting differences was hypothesized that it is applied on the problem format 
required the identification of the number or geometric figure that does not fit in with 
the others with respect to attributes (discrimination) and on number or geometric 
figure series problems that required the exclusion or the correction of the member 
that does not fit in with the others with respect to the recognized relationship, in order 
to define a correct series (differentiating relationships). The procedure consisted of 
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detecting similarity and difference was hypothesized that it is applied on problem 
formats required the completion of a specific classification scheme represented by a 
2x2 matrix, where at least two attributes of numbers or geometric figures included in 
a specific cell must be considered simultaneously (cross-classification), and on 
matrices where at least two relationships is to be verified (system construction).   

METHOD
Participants
Participants were 139 Grade six students (71 females, 68 males), from seven existing 
classes at elementary schools in an urban district of Cyprus. The school sample is 
representative of a broad spectrum of socioeconomic backgrounds. 
Instrument
Inductive mathematics reasoning was determined using a test that involved all six 
problem formats. Specifically, each student completed a 40-minute written test, 
which contained 25 inductive reasoning mathematics problems. The test included 12 
classification problems, which are dealing with grouping objects with respect to 
attributes, and 13 problems that are dealing with the seriating of objects on the basis 
of their relationships. Five of the problems required detecting similarity of attributes, 
two problems required detecting similarity of relationships, four problems required 
detecting differences in attributes, five problems required detecting differences in 
relationships, three problems required detecting similarity and differences in 
attributes, and six problems required detecting similarity and differences in 
relationships. Examples of all the problem formats used in the test are shown in Table 
1.
Data Analysis 
Inductive mathematics reasoning was determined using a test that involved all six 
The assessment of the proposed model was based on a confirmatory factor analysis, 
which is part of a more general class of approaches called structural equation 
modeling. EQS computer software (Bentler, 1995) was used to test for model fitting. 
In order to evaluate model fit, three fit indices were computed: The chi-square to its 
degrees of freedom ratio (x2/df), the comparative fit index (CFI), and the root mean-
square error of approximation (RMSEA). These indices recognized that the following 
needed to hold true in order to support model fit (Marcoulides & Schumacker, 1996): 
The observed values for x2/df should be less than 2, the values for CFI should be 
higher than .9, and the RMSEA values should be close to or lower than .08. 
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Types of 
problems

Class of 
problems

Tasks Cognitive operation
required

 Generalization Find the common feature of the 
numbers: 4, 16, 8, 32, 20, 100  

Similarity of 
attributes 

 Discrimination Underline the number that does not fit 
in with the others:  3, 5, 9, 15, 30, 81 
Justify. 

Differences in 
attributes 

 Cross 
Classification 

Write the number 24 in the appropriate 
cell. Justify. 

 6 18    

12      36 

16      22 

     4           8 

15 9     

21     3 

7 5      

25      31 

Similarity and 
difference in 

attributes 

 

 

 

 

 Recognizing 
Relationships 

Complete with the right number. 

1       5      13      29       ……… 

Similarity of 
relationships 

 Differentiating 
Relationships 

Find the number that disturbs the 
sequence:   1     1     2      3     5    7 
Justify. 

Differences in 
relationships 

 System 
Construction 

Complete the cell 
with the 
appropriate 
number. 

8 4 2 

24 12 6 

72 36  

Similarity and 
difference in 
relationships 

C
la

ss
ifi

ca
tio

n 
ta

sk
s 

Se
ria

tio
n 

ta
sk

s 

Table 1: Examples of the six types of problems included in the test 

RESULTS
In this study we proposed an a-priori model consisted of six first-order factors, three 
second-order factors, and one third-order factor. The first-order factors represented 
the structures of the cognitive processes required for the solution of inductive 
mathematics problems: Similarity of attributes (F1), similarity of relationships (F2), 
differences in attributes (F3), differences in relationships (F4), similarity and 
differences in attributes (F5), and similarity and differences in relationships (F6). The 
similarity of attributes (F1) and the differences in relationships (F4) factors were each 
measured by five tasks. The differences in attributes factor (F3) was measured by 
four tasks, the similarity of relationships factor (F2) was measured by two tasks, 
while the similarity and differences in attributes (F5) and similarity and differences in 
relationships factors (F6) were each measured by three and six tasks respectively. 
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The above six factors were hypothesized to construct three second-order factors: the 
“similarity in attributes or in relationships” factor (F7), the “differences in attributes 
or in relationships” factor (F8), and the “similarity and differences in attributes or in 
relationships” factor (F9). The second-order factors were hypothesized to represent 
the inductive reasoning procedures and are postulated to account for any correlation 
or covariance between the first-order factors. Finally, the F7, F8 and F9 factors were 
hypothesized to construct a third-order factor “inductive reasoning strategy” (F10) 
that was assumed to account for any correlation or covariance between the second-
order factors. 
Figure 1 presents the structural equation model with the latent variables and their 
indicators. The descriptive-fit measures indicated support for the hypothesized first, 
second and third order latent factors (�2/df=1.29, CFI=0.912, and RMSEA=0.046). 
The fit of the model was very good and the values of the estimates were high in all 
the cases. It is clear that the three-level architecture accurately captures the data. 
Specifically, the analysis showed that each of the tasks used in measuring inductive 
reasoning in mathematics loaded adequately on each of the six cognitive processes 
(F1-F6), as shown in Figure 1. This finding indicates that similarity of attributes, 
differences in attributes, similarity and differences in attributes, similarity of 
relationships, differences in relationships and similarity and differences in 
relationships can represent six distinct functions of students’ thinking in solving 
inductive mathematics problems. These six factors were regressed on three second-
order factors: the “detecting similarity”, the “detecting differences” and the 
“detecting similarity and differences” factors, which in turn were regressed on a 
third-order factor which concerned with the inductive reasoning strategy. Therefore, 
the three-level model, as it is presented in Figure 1, is consistent with the theory. 

DISCUSSION
Inductive reasoning considered as one of the most important goals of mathematics 
education, because of its fundamental role to the learning and performance in 
mathematics and in problem solving situations (Serra, 1989, NCTM, 2000). Even 
though research demonstrated the importance of inductive reasoning in mathematics 
and in problem solving, the literature does not provide any framework of the types of 
cognitive processes used for the solution of inductive mathematics problems. Hence, 
the goal of this study was to formulate and validate a theoretical model of cognitive 
processes used in various types of inductive mathematics problems. The design of the 
model was based on Klauer’s classification scheme of the structures of the cognitive 
processes required for the solution of inductive reasoning problems in a general 
content domain (Klauer & Phye, 1994; Klauer, 1999). Thus, this model  
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Figure 2: A structural model of the inductive mathematics problems 

*  P1-P25 refer to the problems assigned to students, F1=Similarity of attributes, F2=Similarity of 
relationships, F3= Differences in attributes, F4=Differences in relationships, F5=Similarity and 
differences in attributes, F6=Similarity and differences in relationships, F7=“Detecting 
similarity” process, F8=”Detecting differences” process, F9=“Detecting similarity and 
differences” process, F10=inductive reasoning strategy. 
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extended the literature in a way that similar processes are recognized and can be used 
for the solution of mathematics problems of inductive reasoning.  
The proposed model proved to be consistent with the data, leading to the conclusion 
that six distinct cognitive processes aiming at detecting similarity and/or differences 
in attributes or relationships are used for the solution of inductive mathematics 
problems dealing with attributes or relationships. Specifically, three types of 
strategies consisted of detecting similarity of attributes, differences in attributes, or  
both required for the solution of classification tasks. Classification tasks include 
problems that required one to form a class by selecting objects which have a common 
attribute or to determine the common attribute having the objects of a defined set; 
problems required one to identify the object that does not fit in with the others in a 
defined set; and classification problems represented by 2x2, 2x3 and 3x3 matrices. 
Similarly, three types of strategies consisted of detecting similarity of relationships, 
differences in relationships, or both, are used for the solution of analogy problems, 
sequences’ problems and matrices. 
Taking into consideration that inductive reasoning ability improves the learning of 
mathematics, this model offers teachers a framework of students’ thinking while 
solving various formats of inductive mathematics problems; it can be used as a tool in 
teachers’ instruction. For the research, the proposed model could be useful as a 
prototype for further investigation of the processes used older students while solving 
tasks of specific mathematical areas, such as finding a function. 
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EMPIRICAL HIERACHY OF PUPILS’ ATTAINMENT OF 
MEASUREMENT IN EARLY PRIMARY SCHOOL YEARS  
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This study describes a developmental ‘map’ of performance in the context of 
measurement in the early primary school years (ages 5-7). This study uses data from 
diagnostic, age-standardized tests from a sample of 5120 pupils in England. The map 
was constructed using Rasch measurement methodology and specifically the Partial 
Credit model. This model enables to describe typical misunderstandings and errors 
alongside a constructed hypothetical learning trajectory. We interpret the scale from 
the analysis as a hierarchy of five levels of measurement performance. We then 
compare this empirical hierarchy with the one described in the English National 
Curriculum for mathematics. Finally, we discuss educational implications of our 
findings.

INTRODUCTION AND BACKGROUND 
Measurement is one of those topics in mathematics which can be regarded as a prime 
candidate for the maths is useful description (Hart, 1981, p.21). This is because 
through measurement we apply mathematics in many aspects of our personal and 
professional lives. Therefore, measuring skills are considered to be life skills. 
Education stakeholders have long recognised the necessity and usefulness of 
measurement. The English National Curriculum for mathematics outlines not only 
objectives for developing numerical concepts but also objectives for developing 
measuring concepts. In fact, objectives that refer to measurement are included among 
the key objectives [1] for each yearly teaching programme for ages 5-11 in England. 
In Table 1 we present the key objectives that are relevant to the early years of primary 
education.
The purpose of this study is to construct a performance hierarchy in the context of 
measurement and specifically in relation to three aspects of measurement (length, 
capacity and mass) across early primary school years (ages 5-7). According to Hart 
(1981) the word ‘hierarchy’ is used in a number of ways when applied to how and in 
what order children learn mathematics. In this study the word hierarchy is used to 
describe a staged hierarchy of attainment or a hypothetical developmental scale based 
on empirical evidence.

Working Group 3

CERME 5 (2007) 476



Table 1: Key Objectives related to measurement as defined in the English National 
Curriculum

National
Curriculu

m Key 
Stages

Year
groups

Key Objectives

R -Use language such as more or less, greater or smaller, heavier or 
lighter, to compare two numbers or quantities.

Y1 -Compare two lengths, masses or capacities by direct comparison. 
-Suggest suitable standard or uniform non-standard units and 
measuring equipment to estimate, then measure, a length, mass or 
capacity.

KS1

Y2 -Estimate, measure and compare lengths, masses and capacities, 
using standard units; suggest suitable units and equipment for 
such measurements. 
-Read a simple scale to the nearest labelled division, including 
using a ruler to draw and measure lines to the nearest centimetre.

According to Copeland (1984), the investigation of the ways through which children 
come to measure is particularly interesting because “the operations involved in 
measurement are so concrete that they have their roots in perceptual activity (visual 
estimates of size, etc.) and at the same time so complex that they are not fully 
elaborated until sometime between the ages of 8 and 11” (p. 254). This means that 
children’s understanding about measures depends on concepts which are not 
completely developed until sometime towards the end of primary education. This has 
special implications for this study as the purpose is not just to present increasing 
levels of measurement understanding and capability but also to present associated 
errors and misconceptions that accompany this development. Errors and 
misconceptions provide not only insights into the growth of understanding measures 
but also useful diagnostic and formative information (i.e. information which can be 
used as guidance to bridge the gaps between current knowledge, understanding, or 
skill and the desired goal). Research evidence shows that high quality formative 
assessment does have a powerful impact on student learning (Black & William, 1998; 
Williams & Ryan, 2000). 
Research into hierarchies began with Gagne and his co-workers (Gagne & Paradise, 
1961). Since then a considerable amount of research in hierarchies (in different 
mathematical topics) has been carried out over the years, both empirical and 
theoretical (characteristic examples are Piaget’s stage theory on the development of 
measurement in children and Van Hiele’s levels of development in Geometry). The 
idea behind these research efforts was to identify and describe children’s 
mathematical development and then to link it to the cognitive level of the child. This 
study is closely related to the work of those researchers in mathematics education 
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who aimed to describe children’s mathematical development through assessment data 
(Gagatsis, Kyriakides & Panaoura, 2001; Callingham & Watson, 2004; Doig, 
Williams, Wo & Pampaka, 2006; Davis, Pampaka, Williams & Wo, 2006). These 
studies combine the idea of competency with the notion of development in order to 
provide a process that both acknowledges what students can do but also indicates to 
teachers the next step in the learning process (Callingham & Griffin, 2005).  
There are researchers however who oppose to this approach and suggest that the 
construction of learning hierarchies through assessment data might be flawed on 
educational and technical grounds (see Noss, Goldstein & Hoyles, 1989). We accept 
and acknowledge some of these hierarchies’ limitations (for example, the adoption of 
the notion of context-free assessment, lack of accountability for differentiation of 
topic exposure among schools, invariant sequence for all children). Nevertheless 
these hierarchical constructs are useful in describing generalities especially in 
England where the National Curriculum imposes a specific structure to the teaching 
of mathematics (Davis et al., 2006). Such schemes can also enrich diagnostic 
assessment and help teachers organise their teaching based on this information. 
This study aims to construct a developmental scale of pupils’ measurement 
attainment in the early primary school years by using data from a large-scale 
assessment project, the Mathematics Assessment for Learning and Teaching (MaLT) 
at the University of Manchester with Hodder Murray. The MaLT project developed 
age-standardised diagnostic assessment materials for pupils aged 5-14 to be used for 
both formative and summative purposes. Test development was based on: (i) 
assessment research literature so that important strategies and conceptions were 
included and assessed by the tests and (ii) the National Curriculum for Mathematics 
in England so that the tests would be in agreement with the key objectives and 
difficulty levels described for each year group in the National Curriculum. The 
standardization of the tests involved a nationally representative sample of pupils. A 
total of approximately 14000 pupils aged 5-14 from 120 schools in England and 
Wales participated in this project. Validation analyses took place at both the pretest 
and main test stages and included test and item-fit, subgroup DIF etc. For the 
purposes of the current study only pupils’ responses to measurement items included 
in the MaLT diagnostic assessment tools were used in order to construct a map of 
typical development.  Specifically, we report only the test items that are targeted for 
pupils aged from 5 to 7 (i.e.  Reception to Year 2 or Key Stage 1 as it is called in 
England). We have decided not to include items from the rest of the papers (i.e. for 
ages 8-11 or Key Stage 2 according to National Curriculum) as vertical equating 
becomes less reliable and problematic with changes in curriculum content. However 
measurement items from MaLT8 (i.e. for eight year olds) were also used in the 
analysis in order to create a link with items of Key Stage 2 (ages 8-11) items as we 
intend to develop a similar map for measurement concepts for ages 8-11, in the near 
future. MaLT8 items serve a linking purpose and will therefore not be discussed in 
this paper. 
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METHODOLOGY-CONSTRUCTING THE HIERARCHY 
For the purposes of this study 15 measurement items were used (that were included in 
the 5-7 year old MaLT tests) which assessed aspects of length, mass and capacity and 
they were taken by 5120 pupils. MaLT item responses were analysed using the Rasch 
model.  
The Rasch model is a mathematical representation of what happens when a person 
responds to an item. The cornerstone of the Rasch model is the invariance principle: 
that person–item interaction can be modelled by independent parameters for items 
(one ‘difficulty’ parameter for each item) and persons (one ‘ability’ parameter for 
each person). These two parameters represent the positions of the items and the 
persons respectively on the same latent trait. The Rasch model uses these parameters 
to determine the probability of a certain person succeeding on a certain item (more 
able/developed persons have a greater likelihood of correctly answering all items and 
easier items are more likely to be answered/reached correctly by all persons) (Bond & 
Fox, 2001). Both person ability and item difficulty parameters have a common 
measurement unit, the logit scale (an interval scale). This enables us to plot the items 
on a scale according to their difficulty and to locate pupils according to their 
‘ability/development’ on the same scale (usually called item-person map).  
In this study we were interested in plotting the pupils’ ability and the items difficulty 
on the same scale and also to plot the most significant common errors that were 
observed. In order to achieve that, we employed the methodology suggested by Doig 
et al. (2006). Instead of using a simple dichotomous Rasch analysis we used the 
Partial Credit model (Masters, 1982). While the dichotomous model allows us to have 
only correct or incorrect responses (all incorrect responses are treated as equal), the 
Partial Credit model allows us to have one or more intermediate levels of success 
between complete failure and complete success. This model however requires that 
part marks to be awarded in an ordered way i.e. each response to represent an 
increase in the underlying ability/development. In this study partial credit was given 
only in cases of items with significant common errors. Erroneous responses were 
ordered according to the mean ability of students making that error (obtained from a 
dichotomous Rasch analysis) i.e. errors made by students of higher ability were given 
a higher order. For more details about the specific methodology employed see Doig et 
al. (2006). 

RESULTS AND DISCUSSION 
The Rasch analysis of the data suggested that the data fits the model well (according 
to the fit statistics). This indicates that items and children behaved in a consistent way 
with Rasch measurement assumptions.
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The hierarchy 
Table 2 shows a scale of performance, common errors and levels of understanding of 
measurement. Items that were harder for the pupils are at the top of the map while 
easier items are at the bottom. Similarly more able pupils i.e. those that correctly 
answered more items are at the top of the map while less able pupils are at the 
bottom. 

Logits        High Ability Pupils    |    Harder Items
                                 | 

Common
Errors

Levels

                                 | 
5.0    | 

   | 
                                 | 
                        XXXXXX   |    8q11.2-M 
                                 | 

4.0                                  | 
                                 | 
                                 | 
                      XXXXXXXX   |    8q23.3-L 

L4
Making

estimations
Read

measuring
instruments
accurately

                                 | 
3.0                                  | 

                    XXXXXXXXXX   |       8q11.1
                           XXX   | 
                            XX   |    8q24-C  
                                 |    6q13.4-L,M,C  8q23.2

2.0                     XXXXXXXXXX   | 6q12.3-L
                             X   | 6q12.2
                        XXXXXX   | 

L3b
Suggesting
suitable

measurement
equipment

                             X   |    7q16a-C    8q23.1
                 XXXXXXXXXXXXX   | 

1.0                             XX   |   6q13.3
          XXXXXXXXXXXXXXXXXXXX   | 6q11.2-L
                                 |    7q20a-L  6q13.2
                      XXXXXXXX   | 
                                 | 

0.0                        XXXXXXX   |    7q16b-M  6q13.1

L3a
Suggest
suitable
units for 

measurement

                                 |       6q12.1
                             X   | 6q10-L
                           XXX   |
                            XX   | 

-1.0                         XXXXXX   |        6q11.1
                            XX   |    7q04-L 
                                 | 
                                 | 

L2
Measuring
using non-
standard

and
standard
units

                             X   |    5q06-M 
-2.0                                  |

                             X   |
                                 |    5q12-L   6q09-L 
                                 | 
                             X   | 

L1
Ordering

objects by 
direct

comparison
-3.0                                  | 

                                 | 
                                 | 
                                 | 
                       XXXXXXX   | 

-4.0                                  | 
                                 | 
                                 | 
                                 | 
                                 | 

-5.0                                  | 
                                 | 
                                 | 
                                 |    5q08-L 
                                 | 

-6.0                                  | 
                                 | 

L0   L1 
Simple

ordering of 
two objects 
by direct 
comparison

     Low Ability Pupils       |    Easier Items

National 
Curriculum 

Levels 
 
 
 
 
 
 
L4: They choose 
and use 
appropriate units 
and instruments, 
interpreting, with 
appropriate 
accuracy, numbers 
on a range of 
measuring 
instruments. 
 
L3: They use non-
standard units, 
standard metric 
units of length, 
capacity and mass, 
and standard units 
of time, in a range 
of contexts. 
 
L2: They begin to 
use everyday non-
standard and 
standard units to 
measure length and 
mass. 
 
L1: They measure 
and order objects 
using direct 
comparison, and 
order events.  

Table 2: A developmental map for MaLT measurement items for ages 5-7 
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The items are numbered with their test number, question number and the aspect of 
measurement which they assess (L stands for length, M for Mass and C for capacity). 
For example 6q10-L indicates that this item was question number 10 in MaLT6 test 
and it assessed length. Some items have also an extra component i.e. the step level. 
These items are the items which had more than one step towards a correct answer (i.e. 
included steps for diagnostic errors). Therefore the step level component indicates the 
step of the correct answer e.g. 6q13.4 indicates that question 13 in MaLT6 had 4 steps 
and the fourth step was the correct answer. The erroneous responses of these items 
appear in the ‘Common errors’ column: thus the first, second and third step of 
question 6q13 appear in the ‘errors’ column. These erroneous responses listed in 
Table 2 are most likely to be made by children near the ability adjacent.
According to Table 2 the hierarchy is defined by five levels from Level 0 (L0) to 
Level 4 (L4). The cut-off points for the levels were assigned where groups of items 
and pupils seemed to cluster, therefore forming empirical gaps between the item 
difficulty allocations on the logit scale. These clusters of items and responses were 
then examined qualitatively in order to identify any commonality in relation to their 
content. It is important to note here that we acknowledge that the cut-off points 
between levels are somewhat arbitrary. 
L0 and L1 items deal with the primary purpose of making a measurement i.e. to make 
comparisons between items according to the magnitude of some attribute. L0 items 
involve simple comparisons between two objects and the use of comparative 
language. L1 items involve comparisons of more than two objects. There is also one 
item on conservation of length (i.e. the length of an object is rigid when the object 
moves). Therefore L0 and L1 deal with two principles of measurement i.e. 
comparison and conservation. L2 items introduce the idea of the unit. At L2, the 
children are provided with the measuring unit (non-standard and standard) and they 
are asked simply to perform measurement. Three important principles underlie the 
understanding of iterated units of measurement according to the literature (Bladen, 
Wildish & Cox, 2000): ordering, transitivity and conservation. This suggests that 
pupils operating at L2 and above of our hierarchy should master these three important 
principles. Level 3 consists of two sub-levels: L3a and L3b. At L3a, pupils have to 
choose and suggest the appropriate unit to be used for a specific aspect of 
measurement, whereas at L3b pupils have to choose and suggest the appropriate 
measuring instrument in order to perform measurement of some aspect. These were 
mostly multiple choice items as pupils were usually provided with choices to choose 
from. L4 items involve estimation and reading of measuring instruments accurately. 
However this level of the hierarchy refers to items that were targeted for eight year-
olds, so will therefore not be discussed further. 
Generally, capacity items were found to be the hardest compared to mass and length 
items within each level whereas length items were found to be the easiest ones. This 
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is in agreement with current literature. This is also due to the fact that children at 
early primary school years are firstly introduced to length and mass and then to 
capacity. Therefore they have more experiences at this stage with length and mass. 
Comparison with the English National Curriculum hierarchy 
Next to the empirical hierarchy we also present the National Curriculum level 
descriptors for the area of measurement. The curriculum level descriptions set out the 
standards that pupils are expected to reach by the end of compulsory education. The 
National Curriculum provides a description of the types and range of performance 
that pupils should characteristically demonstrate for each level they are working at. In 
total, there are eight levels of increasing difficulty (plus a description for exceptional 
performance above level 8). In Table 2 only the first four National Curriculum level 
descriptors are presented as the majority of pupils between ages 5-7 are expected to 
work between levels 1 and 3. The teaching progression and assessment of 
measurement in England is based on the National Curriculum hierarchy. Therefore, 
we were interested to compare the two hierarchies in order to identify any 
discrepancies.
In general our empirical developmental sequence matched the one described in the 
National Curriculum (NC). MaLT items were written to assess the National 
Curriculum as it is taught and assessed in England and as expected our empirical 
hierarchy confirmed the Curriculum hierarchy. This finding is consistent with the 
criticism on curriculum and assessment circularity noted by Noss et al. (1989) who 
commented that “observed hierarchies reflect not the differences but an underlying 
homogeneity in the mathematics curricula-that is similarity in topic coverage between 
schools. In this scenario, the hierarchies would reflect what actually happens in 
schools, rather than any universal levels of understanding. They say nothing therefore 
as to what might be achieved given a different set of experiences” (p.112).
The progression in measures in both hierarchies starts with direct comparison and 
then moves to the use of a physical unit and then on to the use of standard units. 
However there is no direct correspondence between levels. Specifically our L0 and 
L1 correspond to NC L1; our L2 incorporates NC L2 and NC L3 while our L3 
corresponds to NC L4. One could argue that our tests were lacking of items at L2 and 
L3 of the National Curriculum as the majority of pupils in these early years are 
expected to work between these two levels. 
Interesting Items 
Although our empirical hierarchy confirmed the curriculum hierarchy for England 
there was a chain of three items (of increasing difficulty) that did not ‘fit’. These 
items contradicted the curriculum hierarchy in ways which we find interesting and 
therefore discuss further in this section.
These items are marked in bold in Table 2 while Figure 1 presents their content. 
These three items had a common objective i.e. measuring using uniform non standard 
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units. According to our hierarchy these items were expected to fall within L2. The 
empirical evidence though contradicted this expectation as only one of the three items 
fell within L2 i.e. item 6q10.   
Item 6q10 was the easiest and most straightforward of the three as the paperclips 
were aligned to the ends of the toothbrush being measured. Seventy-two percent of 
pupils in the sample correctly measured the toothbrush to be 7 paperclips long. In 
item 6q11 the paperclips were not exactly aligned with the beginning and end of the 
comb. This resulted to an increase in difficulty. Only 46% of the pupils in our sample 
were able to answer correctly this item. Thirty-seven percent of pupils in the sample 
counted all the displayed paperclips in order to measure the length of the comb. This 
significant error is noted on our hierarchy in Table 2 (i.e. 6q11.1). This error (or the 
fist step of this item) falls within L2 of our hierarchy which suggests that pupils at 
this level lack of the concept of ‘ends’ in measurement of length. 

Item 6q10 Item 6q11 Item 6q12 

Figure 1: Three interesting items 

Item 6q12 was even more difficult as only 20% of the pupils were able to provide a 
correct answer. Two significant errors-steps were identified in relation to this item 
(i.e. 6q12.1 and 6q12.2 in ‘common error’ column in Table 2). The first step (6q12.1) 
and less sophisticated error involved pupils counting only the length of the toothbrush 
i.e. the longer of the two items provided. Most of the pupils fell in this category. The 
second step (6q12.2) involved pupils attempting to count the difference in lengths, 
but they noticed only the difference in one of the ‘ends’ of the objects. This was a 
more sophisticated error and this is reflected in its position in the hierarchy. It is 
obvious that item 6q12 is cognitively more demanding as it involves a two-step 
process and as a result children in the early years of primary education found this 
two-step task overwhelming. 
These findings suggest that children at early primary school years have not mastered 
the concept of measurement. Measuring using non-standard and standard units is 
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considered among key objectives in Years 1 and 2 (see Table 1). Our findings 
contradict educational expectations. These findings are also in agreement with recent 
literature. Bladen et al. (2000), in particular, also found that there was a discrepancy 
between educational expectations in the early primary grades and the development of 
the concept of measurement.

CONCLUSIONS
In conclusion, our national large sample study has confirmed Bladen’s (2000) view 
that “organizations that develop content standards need to reconsider expectations of 
students in the lower grades as they relate to measurement”.  Children do not master 
the concept of measurement in the early years, despite showing they can perform 
reasonably successfully on many of the standard tasks that are set in tests and offered 
in the curriculum related to measurement curriculum objectives. This result reveals 
the limitations of the curriculum and assessment regime and indicates the importance 
of tasks like the anomalous one we described. 
Furthermore, we draw two further conclusions related to methodology. First, this 
analysis confirmed (cf Doig et al. (2006), and a few other studies) the utility of the 
method of awarding partial credit to certain errors such as those in question 6q12, 
which thereby obviates the need for asking questions such as question 6q10 (since the 
errors in question 6q12 are indicative of the same level of thinking as correct answers 
to question 6q10 and 6q11 afford). 
Finally the study again raises the alarm sounded by Noss et al. (1989) about the 
potential for self-perpetuating hierarchies in assessment, since most of the items in 
this scale simply confirmed the hierarchy in the curriculum, while just three items and 
their errors revealed the weakness in such an assessment. This therefore lends weight 
to the Noss et al. (1989) argument but also points to the way forward, which is the 
development of better diagnostic assessment tasks.  
Future work involves administering the same measurement items to children that are 
exposed to a different curriculum (i.e. in a different country) and then construct again 
a similar empirical hierarchy. In this way we will be able to compare the two 
hierarchies and study their similarities and differences in the development of 
measurement concepts. 

NOTES
1. Key objectives are considered more critical than others if children are to become numerate 
according to the English National Curriculum and teachers are instructed to give priority to these 
objectives when they plan and assess work. 
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HOW DO STUDENTS FROM PRIMARY SCHOOL DISCOVERY 
THE REGULARITY 

Marta Pytlak 
 University of Rzeszow, Poland, mpytlak@univ.rzeszow.pl 

INTRODUCTION
Regularity is one of basic idea of mathematics. Rhythms and regularities can be 
practically found in every domain of mathematics: analysis, arithmetic, algebra, 
geometry and statistics. 
Teaching how to discover and use regularity means developing in the students an active 
approach towards mathematics. The ability to discover regularity is a starting point for a 
child to understand mathematics. Regularities stimulate the way of thinking that goes 
beyond particular cases (thinking about general regularities). One of theories which says 
about development of mathematical knowledge based on discovering the regularity is 
TGM theory described by M. Hejný (Hejný, M., 2004; Hejný, M., Kratochvílová, J., 
2005). According to this theory cognitive process is decomposed into two levels: 
generalization and abstraction. Connecting point of both levels is generic model – the 
pivot term of TGM theory. For Generalization level the generic model is the final stage 
and for Abstraction level – it is a starting point. 
Generalization level – a student gets experience which is stored in memory as an 
isolated model of the future knowledge. When these models start to refer to each other 
then the set of models is arranged into a group and it is changed into a new mental 
object, which plays a role as a representative of the whole group – generic model. 
Abstraction level – the generic model covers a wide area of object experiences but still it 
is connected with specific actions. Therefore the next step of knowledge development is 
abstraction – disconnection from an characteristic object of generic model. This shift is 
accompanied by a change of language and the symbolic representation appeares in the 
place of the previous object representation. Transfer from generic model through 
abstraction to abstraction knowledge is difficult for student – it demends a lot of time 
and effort. Discovering, perceiving the regularity by students is a very important 
problem and it is present in the world trends of mathematics teaching. 
In many countries, teaching mathematics closely connected with to the rhythm and 
regularity. We can find references to the description of researche concerning discovering 
and generalization the noticing rules. (Littler, G. H., Benson, D.A. 2005; Zazkis, R., 
Liljedahl, P. 2002). The regularity problem was considerated in PISA (Bia�ecki I., 
Haman J., 2003). Mathematical contents appearing in tasks were divided into four areas, 
where the group named as “change and connection” was distinguished (this issue made 
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up about 26% of whole). Solving these tasks was based on i.e. perceiving and using 
certain recurention regularity. 
In Polish teaching mathematics practice children meet with regularities and rhythm in 
their early stages of  education that is pre-school and primary school. These are mainly 
geometrical regularities connected with drawing patterns. A child is supposed to finish a 
given pattern. It is not expected that s/he discovers any mathematical rule behind it, s/he 
just completes the task neatly. The primary school students sometimes encounter 
arithmetical regularities (e.g. magic squares, triangular numbers) or geometrical 
(mosaics). However, most teachers treat these tasks marginally and they underestimate 
their importance and usefulness. 
I became interested in regularity issue after looking at world’s trends of teaching 
mathematics and Polish practice of teaching mathematics. It inspired me to carried out 
my own research concerning discovering the regularity by students on different levels of 
education. I forlmutated my research problem as: will students from the fifth class of 
primary school be able to perceive mathematical regularity and if yes – what is their 
thinking process about solving the task in which they have to discover and use the 
mathematical regularity. 
 
METHODOLOGY 
The research I’m going to present was carried out in November 2005. 38 pupils (11-
years old) from two fifth classes took part in this research. There were 20 girls and 18 
boys. The research was carried out by me during the maths lesson (teacher who teaches 
mathematics in this classes was present and only helped with videotaping pupils’ work). 
This lesson took place directly before discussion about “algebraical expression”; it was a 
single subject from outside curriculum.  
Pupils worked in pairs. Each group received one sheet with the task and additional sheet 
of paper for solutions. Pupils worked for the whole lesson (45 minutes). Pupils’ work 
was being videotaped. Before pupils started work they were informed that: 

� they would work in pairs 
� their work wouldn’t be marked 
� they can solve this task in any way they would recognize as suitable 
� their work would last one lesson hour  
� teacher would be videotaping their work 
� teacher would talk with every pair of pupils about their work and this 

conversation would be recorded 
The work in pairs was intented as solving the task at the same time gave students the 
opportunity to share ideas between themselves. I also wanted to get students’ 
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conversations in order to follow their way of thinking. 
At least one conversation was made with every pair of pupils about their work. In the 
next analysis I used both pupils’ written work and film showing their work. 
The following task was the research tool. 
Bolek and Lolek thought up a new game: making figures from colour blocks. Bolek arranged 
yellow blocks and Lolek arranged blue ones. Their work looked like this: 

 

Figure 1 figure 2  figure 3  figure 4 

 

1. Complete the table: 

 

 
2. If boys wanted to arrange the seventh figure which blocks of both colors they would use? 
3.Is the figure with identical number of yellow and blue blocks possible? Why or why not? 
4.Bolek and Lolek decided to arrange very big figure. Which blocks would they need more: 
blue or yellow? 

Pictures of figures look as following: the yellow blocks are inside the figure and the blue 
once are around the yellows. This task is geometrical-arithmetical and it allows variety 
of interpretation. It wasn’t  mentioned that pictures illustrate a pattern which should be 
continued. The aim of such a designed task was to check: if pupils would be able to 
discover appearing regularity and if they would use it in the further work or if they rather 
would behave in a completely different way. 
Pupils willingly started to solve the exercises. Way of solving this exercises was in both 
classes similar: pupils began with calculation of elements  placed on the small pictures 
of figures and values which they got were put  into the table. Filling first four lines of 
the table took pupils relatively little time (about 5-10 minutes). 
On this stage of solving the task pupils did not show any attempt at discovering any 
dependence presented in this task. By filling the  fifth line of table (there was no right 
"illustration”) pupils started to think and look for the right solution. 

Number of 
figure 

Number of 
yellow blocks 

Number of blue 
blocks 

1 1 8 
2 4  
3   
4   
5   
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18 on to 19 pairs of pupils’ which took part in this research was successful in perceiving 
the relationship occuring in the task and they were able to use it in the futher work. Only 
one pair of pupils did not make an attempt to discover the regularity occuring in the task. 
Way of searching was different. The initial analysis of research material (relate mainly 
work above question 1) let me distinguish the following ways of pupils’ work: 

I. Analysis of numerical columns of the table filled to the fourth level; 

�� discovery of the rule for blue blocks and transfer of the rule concerning 
blue blocks  to the yellow ones, 

�� discovery of two different rules: one for yellow blocks and another for blue 
blocks, 

II. Analysis of picture of the figure and preparing the figure’s picture No. 5 and  
continuing the task with drawing next figures; 

III. Analysis of existing figure’s pictures and filling the table on this basis. 
I moved atomic analysis (Hejný, M., 2004) of work of chosen pairs of pupils (running 
across all stages) which I treated as representatives of earlier settled strategy (category). 
Detailed analysis showed, that preliminary classification does not give back in full 
processes of pupils’ thinking.  

OLA AND KAROLINA’S WORK AS AN EXAMPLE OF USING THE THIRD 
METHOD
The girls started their work from counting elements and putting down the results in the 
table. In order to complete the fifth line of the table they had to refer to the figures 
drawings. Analyzing them they tried to find out in what way each of them comes into 
being. They made a picture nr 5 on the additional sheet of paper.  
The girls started with drawing a frame consisting of circles. Next in the middle they 
drew 5 rows consisting of five elements each. Only after drawing illustration they 
counted the elements, firstly blue blocks -they put down natural numbers in the circles 
representing them. The results obtained in this way they put down into the table. 

 
 

When the girls started work in order to answer the second question, teacher came 
up to them and started a conversation. 

1. Ola: How many is together? Count. [ She turns to the friend to coun how many 
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elements she has already drawn] 
2 Karolina: [She is counting elements of figure no. 7] 
3 Teacher: What are you doing now? 
4 Ola: To this second question. 
5 Teacher: And how do you know how picture has to look like? 
6 Ola: Just because as here it was 11 in the fifth figure in one row [she showing at 

first on fifth line of table and then on column of blue blocks in figure No. 4 
and draws up 2 blocks], then for sixth one would be 12, and for seventh one 
will be 13. 

7 Teacher: How do you know it will look like this? 

8 Ola: Because we noticed that [points all the figures, thinks] here it changes, about 
2 blocks, so it will be 11,13,15 [turns to Karolina] so draw 15 blocks 

9 Karolina: [continues drawing the frame for the figure no 7 consisting of blue blocks] 
During the conversation the teacher returns to the first question and asks about the way 
of completing the table. There are no additional pictures made by the girls on the sheet 
of task paper. There is only an extra paper with the fragment of the figure no 7. 

10 Teacher:  How did you complete the table? 

11 Ola: Here? [points the last line in the table] we counted the squares [shows the 
fig. 1-4] 

12 Teacher:  You could count only these four figures, what about the fifth one? 

13 Karolina: The fifth one is ... 

14 Ola: We added 2, because we noticed that they increase by every 2. We added 
this to the blocks [points to the perimeter of the 4th figure], here 2 [adds 2 
squares to the left column of blue blocks] and here...[tries to draw squares 
on the left side of the top row, after a moment of hesitation] no, it can't be 
here 

15 Karolina: Ola, it was sufficient to add eights here [points to the third column of the 
table], then it would be together 40. 

16 Ola: [looking at the numbers from the columns 'the number of blue blocks'] oh, 
that's true. 

17 Teacher: So was it sufficient to add 8 in blue blocks? 

18 Girls: Yes,it was. 

Comments: Filling the fifth four line of table by the girls was a collecting experiences 
about consecutive figures and how the next one will be made. Collecting experiences 
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allowed girls to perceive occuring recurention in sequence of figures: all the next figure 
have about 2 blue blocks more on one side than the previous one. 
It did not make any difference how blue and yellow blocks are arranged one to another. 
Drawing the picture they did not keep any proportion between the elements. They drew 
circles instead of squares and they quickly realized that the shape of the figures was not 
important. Therefore they drew circles since it was quicker. They also diversified 
colours, but they did not copy the colours from the task. The picture is not an illustration 
of a given figure, but it only shows a quantity expressed in numbers, which corresponds 
to this figure. 
Here the girls made the first generalization, that discovered by them recurention works 
regardless of which kind of object they operationed (girls creating their first “generic 
model”). 
At firs Ola while responding to the teacher (6) made a mistake. Maybe she did it 
unconsciously, and she started exchanging natural numbers successively: 11,12,13.... 
However, she discovered the rule behind it and put it into practice. Discovering the rule 
thanks to which the following figures could be made, let the girls draw the figure 
without the need to refer back. Ola's last remark proves that she can notice some 
regularity: here two blocks more -this is a certainty, which they can make use of, there 
will be: 11,13,15 -these are the results of the next addition of 2. 
The picture of the figure no.7 is made in a characteristic way. Firstly, the column of blue 
blocks is drawn and next the girls count if the number of elements is right. Then they 
draw a horizontal row in which the 15th element from the column is treated as the first 
in a new row. What can be noticed  is that the strategy recognized is applied to one side. 
Therefore four elements are taken into account twice, which does not disturb the girls in 
their task. On the other hand the element that is a resultant of the "two more in one side" 
While explaining to the teacher how she completed the 5th line of the table, Ola presents 
the discovered rule and then demonstrates its application on the example of the figure 
no. 5. This rule is the enlargement of  each side of the square by 2 elements. In order to 
do that she refers to the figure no. 4 and by means of it she demonstrates what should be 
done to obtain figure no 5. The elements drawn by her stick out of the frame, so the 
enlarged figure does not keep the shape. It does not show the picture of the figure no 5 
drawn by Karolina. Therefore the picture itself is not as important as the way it was 
made. The girl rather wants to present the function of newly discovered rule for blue 
blocks. All the time she refers to the rule "2 more in each four sides".  
Analysing pictures 1-4 girls did not take it as a whole but they considered it side by side, 
taking into consideration extreme  rows and columns each of figures. The girls 
discovered local relationship applying to one side of the figure and they observed that 
this rule was suitable for another sides of figure. On the basis of the pictures 1-4 Ola can 
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imagine the further sequence of sides for the figures constructed hypothetically. In order 
to move on to the figure no 7 she starts with the figure no4, but she does not  express it 
as the whole, just looks at one side (which has 9 blocks). In this way she can generate 
(count) the number of elements in each side of the figure controlling the same the 
number of steps: from figure no4 to the figure no 7 we must add 2+2+2 (11=9+2, 
13=11+2, 15=13+2). Another research is made during the talk with the teacher. The girls 
realized that instead of drawing a figure and counting its blocks it is enough to add to the 
previous result 8. Karolina comes across these discoveries while looking at the data from 
the table. She presents her point of view to her friend, and Ola agrees with this totally. 
Here comes the replacement of functional geometrical rule concerning blue blocks with 
arithmetical one. At the same time both rules do not exclude one another, but act 
irrespectively. 

19 Teacher: And the yellow ones? How did you find out how many of them there are? 

20 Ola: Because we noticed, that if there is one in the first figure [points yellow 
blocks in the figure] here in the figure no 2 there are 2 [points to the first 
column of yellow blocks in the figure no 2], in the figure no 3 there are 
3,and here 4 [saying this points to the first columns in each of the figures] 

21 Karolina: [points to the second column] here increased by 3, and here by 5… 

22 Teacher: Did you draw the figure and then count the blocks? It is a very good idea. 

23 Teacher: [turns to Karolina] Did you have any idea? 

24 Karolina: That's right, here it increases by 8 [points to the third column], and here by 3 
as we counted[ points to the second column (1 and 3)], and here by 5...[stops 
for a while, a moment of hesitation]. Yes since there was 1 here [points 
yellow blocks in the figure no1], there were 4[points with circular 
movement to yellow blocks in the figure no2] and here 2 [points to the first 
column second line], here 9, and there 3 [points 9 and 3]. 

25 Ola: Or maybe not... 

26 Karolina: We counted in this way: here 1, here 2, here 3, here 4 [points to the 
following figures in one column ], in the next one should be 5 

27 Ola: And in the sixth one 6 and in the seventh one 7. 

28 Teacher: So there would be 5 yellow blocks in one row in the figure no. 5 . And how 
many altogether?  

29 Karolina: We can easily count this [points to the picture of the figure no 5 made by her 
on the separate sheet of paper] 

Comment: Initially the only rule girls discovered and applied was matching the number 
of yellow blocks in one row with the number of the figure, which proves Ola's words 
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(20). The girls made an illustration in this way: for the figure no.5 they drew 5 rows five 
elements each, for the figure no.7 seven rows 7 elements each, analogically. To support 
her point of view she presents to the teacher the picture of  figure no 5.  
Ola while talking with teacher seems to refer the actual work only, whereas Karolina 
represents more reflexive approach. The reason may be that she was supposed to draw 
the figures before but she did not have a chance to analyse the data from the table. While 
Ola is talking to the teacher, Karolina tries to analyse the columns from the table and 
find some relationship between following numbers. The discovery concerning blue 
blocks that was positively accepted by friend is an additional incentive for her to search 
for existing regularities. 
Karolina tries to find some relationship between the number of yellow blocks in the 
following figures. She starts analyzing all the data from the table in the column 'the 
number of yellow blocks'. She examines the differences between the following numbers. 
In this way she wants to find a similar rule to that in the case of blue blocks: we add 
something, too. She notices that numbers increase in 3, 5, 7, respectively. Karolina is not 
sure if it is the right reasoning. Therefore she tries to find some connection between the 
number of yellow blocks from one figure with its number. If it was not because of her 
friend's interruption she might have not failed to formulate an appropriate conclusion. 
Unfortunately, after Ola's interruption Karolina quits investigating and reports only the 
actual course of their work. She shows what they have noticed: The number of yellow 
blocks in one row equals the number of the figure. 
The further part of their conversation concerned task no.4. 

30 Ola: There always will be more blue blocks. 

31 Teacher: Why do you think so? 

32 Ola: Because yellow as if on this basis, in the fifth there would be 5 each, in the 
sixth one 6, so in the fifth figure they double. 

33 Karolina: It can't be more here, there can't be equal number of the figures [points to 
the blue and yellow row; points to the blue blocks in the corner] 

34 Ola: There can't be more yellow blocks than blue ones. 

35 Karolina: If we counted the figures, these small squares, would be the same here. 
[points to the row of blue blocks and adjacent to it the row of yellow blocks 
as well as the two blue blocks being in the same row as yellow ones.] 

36 Ola: Nothing can be done, nothing, then it would be... 

37 Girls: No. Nothing can be done. 

Comment: Both girls agree that blue blocks will always be in the majority. They take 
into consideration only the existing pictures of the figures, as well as those drawn and 
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made by themselves. Studying the figures they spot that blue blocks are arranged next to 
each other, contrary to yellow ones. Moreover, yellow blocks are surrounded by blue 
ones, for that reason there will never be more yellow ones than blue ones (because there 
are always 2 blue blocks in the yellows' row). 
The last talk as well as chosen strategy can testify that they did not analyze the figures as 
a whole, but only paid attention to extreme verses and columns. The strategy they 
applied is called "local visualization". 
Despite Ola and Karolina noticed some regularities, they could not specify and define 
them fully. They only worked within real objects (that is the pictures of figures). They 
failed to go beyond the data from their task. They are not prepared to work in the level 
of abstraction. It is likely that with some help from the teacher they would manage to 
succeed  and define some regularities. 
SUMMARY
The following conclusions can be drawn from the research. 
Using the third method could show about mathematical maturity of student. However,a 
pupil without suitable knowledge and ability could experience a failure during solving 
the task. It shows the example of Ola and Karolina’s work. 
At the beginning girls focused their attention on analysis of existing pictures of figures 
and discovering geometrical regularity. After discovering by Karolina arithmetical 
correlation they tried using it in the further work. Unfortunally they kept to the 
geometrical representation of particular figures too tightly. When they tried to answer 
next questions mainly basing on an analysis of neighbouring rows consisting of yellow 
and blue blocks. Certain duality appears between the girls: on the one hand  arithmetical 
correlations are discovered; on the other hand - geometrical correlations between 
neightbouring rows of blue and yellow blocks. 
Students' capabilities need to be assessed very carefully. Sometimes teacher can jump to 
wrong conclusion while observing students' work. For instance, on the basis of the talk 
concerning question number 2 the teacher could draw a conclusion that girls can apply 
geometrical and arithmetical representation and are able to notice and verbalize some 
relationships. However,their worked on the last question showed that their 
argumentation concerns only specific cases, i.e. these ones which were analised by them. 
They are not ready yet to make some generalizations and formulation of self-contained 
whole. 
The girls in my study are not able to make generalization on the abstraction level. They 
created their own generic model connected with picture of figures and they used it very 
well. But they were not able to break away from real representation and go to symbolic 
representation, to abstract level. 
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Finding the solution of the task does not lead to discovery of something new or to 
creating any new element of mathematical knowledge. Necessity of verbalization of 
executing activities and explanation of using procedures show that pupils are able to 
notice new things. The verbalization forces to look at the own work from a different 
perspective. 
In teaching mathematics,  interactions  between the teacher and the student and among 
students play a vital role. Through making students formulate and defend their points of 
view we develop in them their self-assement.Thanks to it during solving problem a child 
is more responsible and conscious of what s/he does. The verbalization and explanation 
of their own thoughts develop the ability of searching for regularity and discovering new 
mathematical knowledge. 
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REFLECTION ON ACTIVITY-EFFECT RELATIONSHIPS IN 
SOLVING WORD PROBLEMS 
Ana Isabel Roig & Salvador Llinares 

Department of Innovation and Teacher Training. University of Alicante, Spain 

Abstract. This study focus on how the mechanism “reflection on activity-effect 
relationships” (Simon et al., 2004) is involved in the students’ problem-solving 
processes. The participants were 71 secondary-school students who were in the final 
year of compulsory education (15-16 years old). Four levels of development of 
constructing and using mathematical concepts as tools for problem-solving were 
identified using a constant-comparative methodology to analyse the reflection on 
activity-effect relationships in problem-solving processes. Different components of 
the mechanism were identified revealing that “reflection on activity-effect 
relationships” is a key component when a mathematical concept (used as a tool) for 
solving the problem is not identified.

RESEARCH PROBLEM 
The problem-solving process involves the use of mathematical concepts in order to 
think about the situation, explain it or formulate predictions based on its structural 
characteristics (elements, relationships, patterns or operations etc) (Lange, 1996). In 
this sense, problem-solving process is guided by a goal and the mathematical 
knowledge (concepts, structures…) that can be used to organise a situation can be 
considered as tools for thinking and acting. From this, mathematical knowledge can 
be seen as a set of tools for problem-solving. 
Research indicates that students use informal strategies for solving problems in their 
attempts to give meaning to stated situations. The strategies they use reveal their 
understanding of the relationships expressed in the situations and how they use this 
information to solve problems (Johanning, 2004; Nesher et al., 2003; Tzur, 2000). In 
this sense, the student identifies the quantities and variables in the situation as well as 
the relationships between them, in order to come to a decision regarding the situation 
and to communicate that decision.
This kind of problem-solving processes has as a result a structural organization of the 
different elements implied that can be of greater or lesser sophistication. The idea of a 
“degree of development” of the problem-solving process is therefore meaningful 
when the student is constructing and using mathematical tools in solving problem 
situations (Lesh & Harel, 2003).
The research reported here was carried out to contribute to two lines of research. 
First, it helps to explain the problem-solving process as evidence of the students’ 
mathematical competence. Second, it obtains information that helps us to understand 
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better the construction and use of conceptual entities. In this paper, the specific goal 
is to show how the mechanism “reflection on activity-effect relationships” (Simon et 
al., 2004) is involved in the problem-solving processes and how its different 
components can be identified in the secondary school students’ resolutions.  

THEORETICAL FRAMEWORK 
Simon et al. (2004) elaborate a mechanism for mathematics conceptual learning 
called “reflection on activity-effect relationships” that is characterized from Piaget’s 
(2001/1997) reflective abstraction. They argue that a learner’s goal-directed activity 
and its effects (as noticed by the learners) serve as the basis for the formation of a 
new conception. This new conception can be a tool constructed and used for solving a 
problem situation. They identify the following components of the mechanism:  

“the learners’ goal, the activity sequence they employ to try to attain their goal, the 
results of each attempt (positive or negative), and the effect of each attempt (a 
conception-based adjustment). Each attempt to reach their goal is preserved as a mental 
record of experience” (Simon et al., 2004, p. 319)  

This process is supported by the capacity of the learner to compare the effects of 
his/her activity sequence (identifying invariant relationships in the situation) with 
his/her goal. So, the identification of invariants in each comparison is the product of 
an abstraction of the relationship between the activity and the effect. In this sense, 
“an abstracted activity-effect relationship is the first stage in the development of a 
new conception”. In this process Simon et al. (2004) elaborate on the two phases of 
Piaget’s (2001/1977) reflective abstraction, the projection phase and the reflection 
phase. Students in the projection phase sort (not necessarily consciously) records of 
experience based on the results (positive or negative). In the reflection phase, the 
mental comparison of the records leads to the recognition of patterns and then, 
regularities are abstracted. These regularities are the activity-effect relationships. 
Simon et al. (2004) note that: 

“the regularities abstracted by the learners are not inherent in the situation but rather a 
result of the learners’ structuring of their anticipation-based observations in relation to 
their goals and related (existing) assimilatory structures” (Simon et al., 2004, p. 319). 

The students’ records of experience can be traced by their talk or their written answer 
on the paper. The mental comparison of these records is a mental activity whose 
results can also have a written record or a justification during an interview on the 
activity done.

METHODOLOGY
Participants and tasks 
71 students participated in the study. Their ages were ranged between 15 and 16 
years. A five-question test paper was prepared. Three of the questions were word 
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problems in which the students were asked to make a decision regarding the situation 
and to express the reasons why they thought their decision was the right one. The 
idea behind using this type of problem is to avoid encouraging students to simply 
look for an operation they think suitable for solving the problem.  
One of these problems is presented here: 

A floor-tile manufacturer has donated a quantity of floor tiles to the festival committee. 
Each tile is 33 centimetres long and 30 centimetres wide. The committee has decided to 
lay a square dance floor within the festival enclosure, but you have to tell them:

a. the length of each side of the smallest square that can be made with this size of tile 
without cutting any of them 

b. what other sizes of square dance-floors could be laid using only uncut tiles of this 
size, and why? 

In your reply to the committee, explain what you have done. 

All five problems could be interpreted and manipulated using the mathematical 
knowledge that final-year secondary-school students are assumed to possess. In this 
task of problem solving we assume that the students’ goal is to provide an answer and 
justify it. Given the task, the student tries to reach a solution, that is the learner’s 
goal. For achieving the goal the student performs an activity sequence that can be 
considered as a goal-directed activity. In this process, the students’ mathematical 
knowledge can be used as tools allowing solve the task in some performance level.  
One mathematical concept that the students can use to solve the problem in figure 1 is 
the idea of the lowest common multiple. The meaning of the common multiple comes 
into play due to the need to establish the relationship between the length of each side 
of the tiles and the length of each side of the finished dance-floor. In this situation, 
the student should realise that if rectangular tiles whose area is a×b are used, a square 
floor can be laid each side of which will be a common multiple of a and b. Another 
multiplicative relation that applies to this situation is that starting from a square of 
side c other larger squares can be formed whose sides will be multiples of c (2c, 3c, 
4c …) and, therefore, common multiples of “a” and “b”. Although the lowest 
common multiple can be considered a mathematical tool in this situation, students can 
use other tools. 
Finally, and in order to obtain further information on the ways in which students 
solved the problems, the students were interviewed. The aim was to get the students 
to verbalise the thought-processes they had used in solving the problems (Goldin, 
2000) in order to look for evidences of how the pairs activity-effect are mentally 
preserved and then compared looking for regularities.  
Data coding. Procedure and analysis. 
In a previous phase of that research (Roig, 2004) carried out with a bigger sample, the 
students’ answers were analysed from a descriptive point of view taking into account 
the way in which each student set up and used mathematics knowledge as tools in 
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order to interpret the situation and then made a decision. Using a constant-
comparative methodology (Strauss & Corbin, 1994), two researchers characterised 
from a small sample of the problems the way in which the students’ answers 
indicated the construction and use of mathematical knowledge as tools. We identified 
characteristics in the students’ approach to the solving of the problem and these 
characteristics led to definition of levels of development in the process of 
constructing and using mathematical tools in word problem solving. We continued to 
review answers, observing how each one aligned or did not align with the initial 
descriptions. Thus, when we noticed an anomaly in the description of a 
characterisation, we modified this description or developed a new characteristic and 
re-examined several earlier answers for similarities and discrepancies. Following this 
process we characterized four levels of development in the solving processes carried 
out by the students (e.g. in this problem the 71 students were categorized as follows: 
L0=71.8%, L1=0%, L2=15.5%, L3=12.7%) 

Level 0 Although the student sometimes appears to identify some of the 
variables which may be relevant in the situation, (s)he is unable to 
establish any meaningful relation between them.   

Level 1 The quantities and relationships involved in the situation are identified, 
but “global” comprehension of the situation is incomplete, which 
prevents the student from developing effective tools with which to 
interpret the situation and justify the decision taken. 

Level 2 Some relevant aspects of the situation are identified and the 
relationships between them are established, thus revealing a structural 
understanding of the problem. Effective tools are constructed in order to 
facilitate the search for an answer, but these tools are not used 
appropriately for decisions to be made. 

Level 3 Tools for solving the problem situation are constructed or identified and 
is used in an appropriate manner so that decisions can be made and 
justified.

Table 1: Levels of development in the process of constructing and using mathematical 
tools

Once we had characterized the levels of development from a descriptive point of 
view, we focus our interest in the mechanisms that can explain the pass from one 
level to another. For that purpose we analyse the student’s answers from the 
mechanism of “reflection on activity-effect relationships” (Simon et al., 2004). The 
student’s “reflection on activity-effect relationships” in solving the word problems 
was inferred from the written text supplied by the student, and by the way in which 
he or she justified his/her final decision, in an attempt to theoretically explain the 
different levels of performance. 
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SOME RESULTS RELATED TO “THE DANCE FLOOR” PROBLEM 
Using of mathematical knowledge as tools was revealed in the way in which students 
were able to think beyond the particular cases in order to incorporate the influence of 
the variability of the quantities (Llinares & Roig, in press). The way in which 
students used the information provided by the particular cases was different in each 
situation. In “the dance floor” problem students relied on the general structure of the 
situation to generate particular values when they could not remember a suitable 
algorithm, from the use of these particular cases a “reflection on activity-effect 
relationships” can be carried out which allows students to take a decision and justify 
it.
The idea of the common multiple is the key to the resolution of this task, linking it to 
the problem’s two conditions of “square floor” and “without cutting any of the tiles”. 
The use of the idea of a common multiple as a general tool in this situation made it 
possible to offer a correct answer, though the procedures followed by the students 
were different depending on whether they remembered an algorithm for the 
calculation of the lowest common multiple.  
MH/35 (see Annex, Figure 1), guided by his goal of  finding the dimensions of the 
smallest square that can be laid (the student’s goal), recognised the role played by the 
idea of the lowest common multiple, but could not remember the algorithm required 
to calculate it. The first step for solving the problem consists in finding any common 
multiple of 30 and 33. These students then resorted to trial-and-error procedures. 
MH/35 looked for multiples of 33 (33×2 = 66, 33×15 = 495 and 33×40 = 1320) in 
order to see if they were also multiples of 30 (66 is out of the question, it is obvious 
that 495 is not a multiple of 30 because the division does not give a whole number, 
while 1320 is a multiple).  

Researcher: What were you working out when you wrote 33 per 15?

Student: Well… the side of the tail is 33 per 15 tails, it’s 495 and I divided it by 30 
which is the other side of the tail and it was 16’5, and I said no, because this 
has to be cut. 

Researcher: Well. 

Student: Then I tried per 40 and it was 1320, I divided it again by 30 and it was 44. I 
said yes, it was it. 

The student searches among multiples of 33 one which is also a multiple of 30. This 
manner of proceeding seems to show that MH/35 was seeking by trial and error a 
common multiple of 30 and 33, as can be seen in the written answer “the number 40 
has come up purely by chance [by trial and error] and I have hit the nail on the head. 
It was a bit of a fluke [i.e. good luck]”. 
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Figure 1: MH/35’s answer for word problem 4 from a general model through 
particular cases to make sense of the situation 

Although the way in which the student writes the operations are not arithmetically 
correct, they do reveal the mental process that he appeared to follow. MH/35 then 
suggests as a possible solution laying 40 tiles along one edge (the 33 cm ones) and 44 
30 cm tiles along the other. From this starting-point MH/35 carried out the search  of 
the lowest common multiple through other particular cases. For doing so, the initial 
number of tiles was doubled (80 by 88) or halved (20 by 22).  

Student: Here, I multiplied per 2. 

Researcher: You multiplied the one of 40 per 44 per 2. 

Student: Yes.  

Researcher: Then, what did you do to get the 10 per 11 one?  

Student: From 44 and 40 I thought about a divisor and 20… 22 and 20. And from 22 
and 20 y thought about other divisor and it was 11 and 10 and after that 
trying, although it isn’t here, I tried from 11 and 10 and the result wasn’t 
less.

The search of each of these particular cases can be seen as an activity which result 
was positive or negative depending on the dimensions of the resulting square. If the 
length of the side is bigger than the initial one the result is negative, in other case the 
result is positive because it’s closer to the solution. In this sense that process can be 
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considered as an activity sequence were the comparison of the pairs activity-result 
(records of experience) seems to make MH/35 aware that multiplying leads to 
negative results and dividing leads to positive results. This relation showed the 
student the path to follow in order to discover the dimensions of the smallest possible 
square floor. From here, he was able to anticipate the actions that could be done for 
achieving the goal. This number was obtained by dividing by two the number of tiles 
laid in the case of a rectangle measuring 20 tiles by 22. 
On the other hand, students who remembered a method for calculating a lowest 
common multiple came to a much more direct conclusion. What the answers seem to 
have in common is the fact that the students identified the idea of the lowest common 
multiple as a tool for solving the problem situation, the difference being that some 
knew, and others didn’t, a procedure for calculating it. Students who could not 
remember the procedure resorted to a trial-and-error method using particular cases 
and obtaining the answer by reflecting on effect-activity relationships. In this 
situation, students who were aware of the idea of the lowest common multiple as the 
general idea that could organise the situation, resorted to particular cases in order to 
organise their search when they could not remember an algorithm. From this point of 
view, we may conclude that in this situation it was the general structure which 
governed the use of particular cases, giving rise to a “reflection on activity-effect 
relationships”

DISCUSSION
The aim of this study was to find out how secondary school students constructed and 
used mathematical tools in order to make decisions in solving word problems. Firstly, 
we sort the students’ answers from a descriptive point of view and identified four 
performance levels; then we focus our attention on the role played by the mechanism 
“reflection on activity-effect relationships” (Simon et al., 2004) and how its different 
components can help to explain the different levels of performance in the secondary 
school students’ resolutions. Two ideas were shown to be important in this process: 
firstly, the relationship between the general and the particular revealed in the different 
ways in which students used particular cases; and secondly the difficulty students 
encountered in using mathematical knowledge as a tool to solve the problems 
(Llinares & Roig, in press). These two characteristics can be explained from the 
process of “reflection on activity-effect relationships” (Simon et al. 2004) 
particularly in the two phases of the reflective abstraction, the projection phase and 
the reflection phase (Piaget, 2001/1977; Simon et al., 2004)  
In the process of recognising the underlying structure of the problematic situations in 
order to achieve the student’s goal, the students used particular cases for different 
purposes. In some situations, when the student doesn’t recognise a mathematical tool 
that allows him(her) to handle the situation, the use of particular cases provided 
information which facilitated the construction of appropriate tools through a 
“reflection on activity effect relationships”. In “the dance-floor” problem students 
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made use of particular cases for a different purpose. In this situation, once the idea of 
the lowest common multiple had been identified as a useful general tool in order to 
interpret the situation, the use of particular cases helped in particularising that 
structure when no appropriate algorithm could be remembered.  

TASK: “THE DANCE FLOOR PROBLEM” 

LEARNER’S GOAL
Find out the length of each side of the 
smallest square that can be made with  

30cm ×33 cm tiles 

ACTIVITY SEQUENCE
- The idea of lowest common 

multiple is recognized as key in 
solving the task 

- A procedure for calculating de 
lcm is remembered 

USING THE ALGORITHM  

RESULTS OF ACTIVITIES
- The algorithm is used properly

- The algorithm is not used 
properly

ACTIVITY SEQUENCE 
- The idea of lowest common 

multiple is recognized as key in 
solving the task 

- A procedure for calculating de 
lcm is not remembered 

USING PARTICULAR CASES 

RESULTS OF ACTIVITIES 
- Positives: smallest multiples  
- Negatives: bigger multiples

RECORD OF EXPERIENCE
Activity i – Result i 

MENTAL COMPARISON OF 
RECORDS

REFLEXION 
Multiplying leads to bigger 

multiples 
Dividing leads to smaller 

multiples 

PROJECTION 
Activities – Positive results 

Activities – Negative 
results 

ANTICIPATION
Carry on dividing leads to multiples 
smaller and smaller and therefore to 

the lowest common multiple 

LEVEL 2:  
There is structural 
understanding of the 
situation, but the 
algorithm is not used 
properly  

LEVEL 3:  
There is structural 
understanding of the 
situation, and the 
algorithm is used 
properly  

LEVEL 1:  
A mechanism that 
leads to the lcm is 
not found and the 
decision relied on a 
few specific cases   

LEVEL 2:  
A mechanism that 
leads to the lcm is 
found but the 
searching process 
doesn’t finish 

LEVEL 3:  
A mechanism that 
leads to the lcm is 
found and the 
searching process 
finishes  

Activity 
Effect 

Figure 2. “Reflection on activity-effect relationships” in “the dance floor” problem 

This difference in students’ behaviour may be caused by differences in the levels of 
conceptual development of the mathematical concepts involved. From this 
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standpoint, the activity sequence (based on the use of particular cases) carried out by 
the students, led them to the comparison of records of experience. The information 
obtained from such comparison on particular cases seems to be a determining factor 
in the characteristics of the solving process. This information enabled the student to 
go beyond the particular when the abstraction of the relationship between activity and 
effect takes place. These students are at the reflection phase and, consequently, can 
anticipate the next stages in their solving process. 
If the comparison remains at the projection phase, the underlying structure of the 
situation is not (or is partially) recognized.  Students fail to perceive this influence 
and a particular-cases-based Level 1 solving process for the situation is developed, 
leading to decisions that relied exclusively on a few specific cases. We interpreted 
this fact as that student has not got an abstracted activity-effect relationship. In these 
sense, these students are at the participatory stage but not yet at the anticipatory stage. 
A solving process of this kind is devoid of a complete structural understanding of the 
situation.
Students who abstract the activity-effect relationship (Level 2), had achieved this 
complete structural understanding of the situation. In these cases, students anticipate 
what he/she needs to accomplish the goal making goal-directed adjustments. At the 
same time, appropriate search of the result was determined by the correct handling of 
their anticipation-based observations in relation to their goals and related (existing) 
structures (Level 3). 
In “the dance floor” problem students relied on a general realisation (they identified 
the idea of the lowest common multiple as an appropriate tool) and resorted to 
particular cases as a process by which to calculate the lowest common multiple when 
they could not remember an algorithm. The knowledge of the structure of the 
situation enabled the student to carry out a meaningful search among the particular 
cases. This search for the lowest common multiple was sometimes carried out by a 
process of trial and error and on other occasions by a more systematic method. 
Our results point out that it is possible to understand different performance levels in 
solving word problems from the “reflection on activity-effect relationships”
mechanism and provide us with information about as the students uses mathematical 
knowledge as tools in word problem solving process. However this approach might 
be limited if the research focus had been the heuristic strategies followed in problem 
solving.
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Abstract. The paper is focused on explaining what kinds of structures are activated 
when dealing with the intuition of infinity in school context. The research revealed 
that some children are able to develop a structured representation about the infinite 
sets even at the age of 10-11 years old, or earlier, based on their processional 
perception. Moreover, when students’ arguments are consistent, they seem to be 
based on connections between algebraic and geometrical thinking, facilitated by their 
topological perception.

INTRODUCTION
According to Fischbein (1987), intuitive knowledge is a self-explanatory cognition 
that we accept with certainty as being true; it is a type of immediate, coercive, self-
evident cognition, which leads to generalizations going beyond the known data. 
Fischbein differentiated between primary intuitions and secondary intuitions.  
Primary intuitions were defined as intuitions that “develop in individuals 
independently of any systematic instruction as an effect of their personal experience” 
(Fischbein, 1987).  Secondary intuitions were defined as “those that are acquired, not 
through natural experience, but through some educational intervention”, when formal 
knowledge becomes immediate, obvious, and accompanied by confidence (Fischbein, 
1987). The research findings in the literature indicate that the methods students apply 
for the comparison of infinite sets were largely influenced by methods they had used 
when comparing finite sets (e.g. a set has more elements than its proper subsets). 
Students usually did not use 1:1 correspondence, the criterion that should be used to 
determine the equivalence of two infinite sets within Cantorian set theory (Tall, 1990; 
Tsamir, 1999).   

METHODOLOGY
To identify children’s primary and secondary intuitions about infinity, we covered a 
broad range of ages. The participants in our study were students from grades 3 to 12 
(9-10 to 18-19 years old) and undergraduate students – prospective mathematics 
teachers; 262 students (143 girls and 119 boys) answered to questionnaires, and 31 
students from the sample were interviewed. The 31 interviewed students where 
selected based on the way they formulated, explained, or illustrated their answers in 
the questionnaires. During the discussions, the students looked at their solutions on 
the questionnaires, and explained what they have been thinking when they were 
designing their solutions. At the same time, interesting remarks have been generated 
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by a two hours interactive discussion with 30 students in 5th grade (11-12 year olds). 
This discussion took place in the classroom, in the absence of the current teacher; 
thus, the authors interviewed the children in their natural school environment. We 
consider this discussion as focus-group contribution to the data collection. We were 
interested to stimulate divergent opinions in students through open questions; 
consequently, the range of answers was very large in all the three categories used for 
collecting data. In the present paper, we comment on the reactions of 7 to 15 year 
olds. 
To get a better view of the students’ insights about infinity we used a variety of 
questions. Generally, we redo the same type of question in different contexts: 
algebraic versus geometric, discrete versus continuous, static versus dynamic, etc., in 
order to identify to what extent the students construe coherent arguments and 
continue to use them consistently. We adapted the questions as we progressed in 
exploring students’ ideas. Generally, the questions covered the following categories: 
Vocabulary, intuitive representations. Within these questions, we wanted to spot 
on students’ own ideas about the words ‘infinite’ and ‘infinity’. Sample question: 
“Use words, expressions, comparisons, metaphors to describe what you understand 
by the word infinity”.
How does intuition work? Within this category of questions, we have tried to grasp 
students’ primary algebraic and geometric intuitions, trying to avoid as much as 
possible a formal approach. Addressing these questions to various ages, we could 
compare to what extent the primary intuition is or is not affected by formal 
knowledge. Example: From a ray, someone cuts 1 km starting from the origin; will 
the new ray be longer (or shorter) compared to the initial one?  
How does one prove the infinity of a given set? This set of questions is meant to 
identify the way in which children of various ages build arguments to support their 
intuition. We were interested to see if the students understand the difference between 
finite and infinite sets, and if so, in what way they do understand this difference. 
Example: Which of the following sets are infinite: the set of divisors of 34456348287; 
the set of even numbers {0; 2; 4; 6;…}; the set of rational numbers between 1 and 2? 
How does one compare infinite sets? Through this set of questions, we have tried to 
see if there is a primary intuition for comparing the cardinals of infinite sets. In 
phrasing the questions, we have tried to use informal language, avoiding speaking 
explicitly about functions or cardinal equivalence.  Example: Which set of the 
following pairs of sets has more elements: {0; 2; 4; 6; 8;…} and {0; 1; 2; 3; 4;…}; 
the rational numbers between 1 and 2, and the rational numbers between 2 and 3?  

CHILDREN’S METAPHORS: HOW TO DESCRIBE INFINITY? 
Because children lack technical means to operate with the idea of infinity, they 
construe ad-hoc metaphors through which they describe infiniteness. The study of 
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these metaphors might be done from various perspectives. Thus, Boero et al. (2003) 
addressed fifth graders the question: How many numbers are there between 1 and 2? 
They classified students’ answers in three categories: metaphors where the source 
domain was mathematical, metaphors related to ordinary life experience, and 
metaphors related to religious ideas. From another perspective, Jirotková and Littler 
(2003) have classified the perceptions about infinity revealed by the definitions given 
by primary school student teachers on grammar criteria.  
For the first stage of our study, we wanted to keep a range as large as possible of 
children’s spontaneity and, therefore we avoided to narrow the gamut of perceptions 
through structured interviews. The open-ended question: Describe the idea of infinity 
in your own words, received various answers which we have later classified as 
follows (see also Singer & Voica (2003) for a more detailed discussion). 
a) Metaphors emphasizing a processional dimension (e.g. Xena (grade 8): Infinity is 
the term we use for something that does not stop; it continues to rise.). These 
processes: 
- are seen in terms of change (e.g. Bissan (grade 8): The number of desks in a 
classroom is considered finite because they have an amount that can’t change in the 
same sense as an infinite number.) 
- are seen in terms of counting (e.g. Xim (grade 8): Finite is like the number of 
pencils in a room, but infinite is like numbering all numbers in the world.) 
- are emphasizing a temporal dimension (e.g. Bissan (grade 8): Infinity is something 
that never stops. It will go on and on forever.)
- are emphasizing a spatial rhythmic dimension (e.g. Rebecca (grade 8): Infinity is 
when something doesn’t finish and it keeps on going and going and never ends.)
How do children represent continuous processes? Lakoff and Núñez argue that 
human beings conceptualize indefinitely continuous motion as repeated motion: 
“continuous walking requires repeatedly taking steps; continuous swimming requires 
repeatedly moving the arms and legs; continuous flying by a bird requires repeatedly 
flapping the wings. This conflation of continuous action and repeated actions gives 
rise to the metaphor by which continuous actions are conceptualized in terms of 
repeated actions.” (Lakoff and Núñez, 2000, p. 157). They concluded that infinite 
continuous processes are conceptualized via this metaphor as if they were infinite 
iterative processes. 
b) Metaphors emphasizing a topological dimension. We consider that the topological 
perception manifests when the child evokes, in his/her description, properties and 
transformations that are invariant to the change of shape. The topological perception is 
of a continuous nature; it supposes evoking density/ jam/ accumulation of the elements 
of a set to describe the perceived reality. Instead of recursive as a main attribute, the 
topological perception is characterized by diffused: the order relation is not evocated for 
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arguing the infinity of a given set; instead, it is distance that appears, as function with 
values in R. 
Students use spontaneously intuitive descriptions of open sets, bounded sets, or of the 
frontier of a set (e.g. Cristina Maria (grade 8): Infinity is something enormous… Big... 
large... err... very big; Loredana (grade 8): I mean something unfinished… without 
end…; Mihai (grade 9): Infinity is ineffable. Endlessly … Huge…)  
c) Metaphors emphasizing emotions and spirituality (e.g. Octavian (grade 4): 
Infinity is something the secret of which we cannot grasp. Our mind is bound and we 
can’t say many things.  It is not able to understand everything about infinity. This is a 
word that is endless in numbers, and love, etc. But not everything is endless. We can’t 
get this secret but with the help of God. He can help us find the key to understand 
infinity. With the help of people we can’t get this marvelous mystery of understanding 
with the help of people. Not even the greatest scientists can understand this mystery. 
It is only God Who can uncover this. It is only when we get in heavens that we can 
fully understand infinity.) 
The spiritual dimension is spontaneously expressed by children within discussions 
about infinity. This might be seen as being a prior component of a primary perception 
of infinity. As Lakoff and Núñez (2000) emphasized, the metaphorical concept of 
infinity as a unique entity – the highest entity that encompasses all other categories – 
was naturally extended to religion.  
The demarcation among these categories was developed and confirmed along the 
study: we realized that students’ metaphors bear significant information to a larger 
extent than we supposed at the beginning. Thus, the processional dimension appears 
frequently when students bring arguments for the infinity of sets, while the 
topological dimension is spontaneously activated when the students compare the 
cardinals of sets.  We found that these categories are not disjoint in child’s mind: on 
the one hand, the same child usually uses (simultaneously and/ or successively) more 
than one type of representations; on the other hand, a metaphor is independently 
interpreted from one or the other of the perspectives. 

CHILDREN’S ARGUMENTS: WHY SOME SETS ARE INFINITE?
Counting supposes to construe the order and the recurrence; this is why the 
processional perception of infinity appears to be natural. The primary intuition of 
infinity is strong enough at the age of 6 – 8 years old, so that students might be able 
to construct arguments for the infinity of the set of natural numbers based on this 
intuition. The students justify the infinity of N usually using recursion. The correct 
reasoning is made mostly by using sequences – this shows that the Peano’s axioms 
are fully internalized at this age and students are able to extend their knowledge to 
build arguments in situations that are not familiar to their knowledge level. A 
functional dynamic thinking (Schwank, 1999) in the early ages seems to be a pre-
condition for a later good understanding of the way infinity works. Going further, the 
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concept of sequence seems to precede the idea of set and the concept of recursion is a 
primordial one. In contrast with sequences, which have a rhythmic structure, sets 
have an amorphous structure (given essentially by the possibility of randomly listing 
the elements). The preference of students for a processional description of infinity 
could be interpreted as an evidence for the fact that the “sets as containers” metaphor 
is less embodied than the “sets as graphs” metaphor (e.g. Lakoff and Nunez, 2000). 
Children’s arguments to show that a set is infinite, confirm the categories of 
perceptions we identified in the previous section. As we have seen, primary graders 
show a processional perception. Children in higher classes construct arguments 
referring to the infinity of N, generally, based also on a processional perception. 
However, arguments that belong more to a topological perception are also present. 
Some answers to the question “How do you show that N is infinite?” are given below. 

 Alice (grade 6): N is infinite because we can count 1, 2, 3, and anywhere we arrive, we 
know that it goes on. (Obviously, this vision is of a processional type, 
as it frequently appears in children grades 1 and 2.) 

Andreea (grade 5): There are infinitely many natural numbers because if I pretend that I 
found the biggest, I can add 1 and I get a bigger one. (The reference to 
the fact that the set could be bounded is of a topological type, and the 
way to get the contradiction is of a processional nature.) 

Tiberiu (grade 9): The set of natural numbers is infinite because it is constructed 
following a rule: start from 0, add a number…add 1 each time. (The 
process is described through the mathematical induction procedure.) 

We found that, for many children in the lower secondary school, the concept of 
infinity of N is strong enough to allow reasoning. For example, some students found 
necessary to apply the negation to argue that a given set is finite. Some quotations: 

Rebecca (grade 8): The divisors of 24 are not an infinite set, nor the divisors of 
32561784937289463785, because the last divisor is the number itself and 
there are bigger numbers than them. 

Vrit (grade 8): The biggest fractional number in the interval (2; 5) is 4.9…., no, it doesn’t 
exists because it is an infinite set. 

Moreover, starting from N, students manage to make transfers of reasoning to justify 
that various sets of rational numbers are infinite. We found that at the age of 10-11, 
when students start to learn decimal numbers, some children are able to build 
analogies for Q with the way infinity works on N, without any formal training on 
related concepts. 

CHILDREN’S ARGUMENTS: HOW TO COMPARE INFINITE SETS? 
In our questionnaires and interviews, we asked students to compare the cardinals of 
some infinite sets. It was found that when undergraduate students used more than one 
method for comparing infinite sets, they reached contradictory conclusions, of which 
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they were usually unaware (e.g., Tirosh & Tsamir, 1996; Tsamir, 1999). However, 
some of the students we questioned were able to formulate pertinent arguments. 
Particularly, we have been surprised by the accuracy in reasoning of some students in 
grade 5. Without any formal training on infinity or functions, they effectively found 
rules to associate one-to-one the elements of the following pairs of sets: {1; 2; 3; … } 
and { – 1; – 2; – 3;…}; {0; 1; 2; 3; 4;…} and {0; 2; 4; 6; 8;…}; {0; 2; 4; 6;…} and 
{1; 3; 5; 7;…}. In order to prove that the given pairs of sets have the same cardinal, 
the fifth graders easily and readily identified the generating pattern of each numerical 
sequence. They had some difficulties in finding the connections between the elements 
in each pair, but finally they discovered by their own wits the correspondences. Next, 
we addressed the question: Which of the sets: {0; 3; 6; 9; 12; 15;...} or {1; 2; 4; 5; 7; 
8;..} has more elements? This has generated strong controversial discussions. The 
first reaction in the class was to reason on the finite case: “from 0 to 15, the first set 
has 6 elements and the second has 10 elements, because, successively distributing the 
elements from N, one element enters the first set and two elements enter the second”. 
Within this type of argument, the majority of children agreed that, taking away 0, the 
second set has two times more elements than the first. This confirms the results of 
other studies that recorded the finite reasoning on the infinite sets (e.g. Tsamir, 1999). 
Yet, some students disagreed with this conclusion and started to ask themselves how 
to proof/ demonstrate one or the other of the assumptions. In what was followed, 
three of the students’ interventions were fundamental.  
First, Roxana concluded: 

Roxana:  There are no rules, so these sets cannot be compared. 

Then, Anca remarked: 
Anca:  At the beginning, the numbers in the initial sets looked to be at random, 

then we found a rule, so, if we do not have the rule yet, this does not mean it 
doesn’t exist.  

Their reactions have been completely spontaneous and unexpected within the 
discussion. The rules at which Roxana refers to are the ones by which they described 
the sets in the previous examples as ordered sequences (for instance, the elements of 
the set {0; 2; 4; 6; 8; …} „go by twos”). By this comment, Anca has actually 
expressed the conviction that the sets of numbers are structured (in Roxana and 
Anca’s terms that mean that the elements of the sets can be built sequentially, that 
they “have rules”). The reactions of the two girls led us to the following hypothesis: 
in arguing about the infinity of a set and in comparing cardinals of infinite sets, 
students try to identify structure(s) of that/ those sets. 
The third spontaneous reaction was the one of a girl who discovered an associating 
rule one-to-one between the elements of the given sets: 

 M�d�lina:  I noticed that   2 x 2 – 1 = 3;  2 x 4 – 2 =  6;  2 x 5 – 1 =  9;  2 x 7 – 2 = 12. 
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It is to observe that in the previous three examples of the pairs of sets to be compared, 
the associative rules started from the first set, but here the starting point is the second 
set. M�d�lina made an implicit transfer; the one-to-one correspondence between the 
two sets in each pair seems to be obvious to her. The discussion in the class 
continued, without intervention from the interviewers. Doubting about the rule, one 
boy argued that it is not good for 0.  Another boy remarked the formula: 2 x 1 – 2 = 0.  
In this way, the fifth graders actually constructed, between the two sets:  
A ={0; 3; 6; 9; 12; 15;…} and  B = {1; 2; 4; 5; 7; 8;…}, a bijection from B to A of 
the type:  x�  ( 2 x x – 2) � (2 x x – 1).  

ARGUMENTS FOR INFINITY: IDENTIFYING STRUCTURES 
The fact that students try to determine the structure of certain sets in order to compare 
their cardinals, led us to resume their arguments from another perspective. We 
noticed that, when young students can use geometrical arguments, they become very 
confident in their statements and they seem to have no doubts about the equivalence 
of the cardinals of some sets. An example of this type follows below. 

 Interviewer:  Which set do you think has more elements: the set of even numbers or the 
set of odd numbers?  

Simona (Grade 6): I think they are equal… 

Interviewer:  Why? 

Simona:  Because they are by twos… 

Interviewer:  Well, the evens… but the odds? 

Simona:  By twos, too… 

Interviewer:  So, the sets whose elements increase by twos… 

Simona:  Not necessarily by twos! They are congruent … so they have the same 
number of elements, they are equal… 

How did Simona move from algebra to geometry? In the same interview, she 
characterized infinity in a topological way (Infinity that is… it does not have limits… 
something without end…) and referred to density as a way to compare the cardinals of 
the two sets. We assume that the topological perception is the one that facilitated this 
passage. We also noticed that Simona based her argument on finding a common 
structure for the two sets.  
Mathematical concepts are included in hierarchically organized systems, with 
multiple relations of subordination, coordination and super-ordination. Internal 
structures seem to be natural ways to connect concepts (Singer, 2001). Students refer 
to various structures to argue the infinity or the cardinal equivalence of some sets: it 
also seems that, by identifying a structure, children are able to cross in – between 
processional and topological perception of infinity. We therefore advanced in 
describing some structures emphasized by students. 
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An interesting way of arguing the infinity of a given set was to highlight a tree 
structure. We identified algebraic tree structures and geometrical tree structures.  
An algebraic three structure is emphasized in the following excerpt: 

Interviewer:  Is the set of rational numbers between 2 and 5 infinite? 

Alice (grade 6): Yes!

Interviewer:  Why? Look, I have the smallest number and the biggest… why should be 
this an infinite set? 

Alice:  Well, yes, could be 2.1; 2.11 … I mean 2 point … 111 and so on, I mean … 

Interviewer:  And you say they are infinitely many… 

Alice:  Perhaps they are not quite infinitely many, because finally we still get to 
number 3, but they can be said as a sequence … it might be … number 2.1., 
it might be 2.11 to 2.19, and so on … number 2.11 might be 2.111 and 
2.119 … and so on… 

The next excerpt reveals a geometrical tree structure: 
Interviewer: What about if I consider the set of points from a segment of 2 cm … and I 

consider the set of points of this segment … what do you think, is a finite or 
infinite? 

Simona (Grade 6): It is in… infinite, because there could be many points and … one point 
could contain many smaller points…so, in a way it is finite, but it contains 
very many … 

Interviewer:  What does that mean, a point contains very many smaller points?  

Simona:  I mean… 

Interviewer:  … I did not understand you… 

Simona:  …a smaller piece [of a segment] contains more points… 

Interviewer:  Well, then I take a piece as small as a point … 

Simona:  Yes… that one, too, contains many smaller points … 

These two examples show that the two girls have a definite structural representation 
for the entities under discussion. The structures they highlighted are of a fractal type. 
(A definition of fractals can be found in Mandelbrot, 1975.) Thus, children suggest 
sequential steps where each step is seen through a lens that repeats the model of the 
previous step at a different scale. We notice that in Alice’s case, the primary 
perception “margins equal finite” („perhaps they are not quite infinitely many, 
because finally we do get to the number 3…”), interfere with another primary 
perception, the spatial-rhythmic one (“and so on …  and so on…”). Alice’s argument 
is not contradictory because the fractal structures are of spatial-rhythmic type.  
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SOME CONCLUDING REMARKS: STRUCTURES RESPONSIBLE FOR 
PROCESSING INFINITY? 
Two findings could be synthesized as results of this study. The first is telling us that 
some young children have a structured representation about the infinite sets. This is 
happening as soon as they learn about the set of natural numbers, in primary grades. 
At the age of 10-11, when students learn about the decimal numbers, they are able to 
identify structures that are helpful in arguing about the infinity of some sets or in 
suggesting hints for the cardinal equivalency. The second finding refers to the fact 
that, when the students’ arguments are consistent, they seem to be based on 
connections between algebraic and geometrical thinking. It is necessary to make a 
distinction. In early grades, the interference between algebra and geometry is based 
on measuring, while in later grades the correct reasoning is based on geometrical 
transformations. As the traditional teaching separately deals with algebra and 
geometry, this natural tendency of the students could be interpreted as an argument 
for the presence of a mental structure able to process the concept of infinity.  
A conclusion that could be drawn from these findings is that, infinity being an 
important intrinsic concept connected with the number formation and with the sets of 
numbers structure, the aspects connected with the idea of infinity should be part of 
the training very early in concepts’ learning. We did not say as explicit part of the 
curriculum because here any attempt to formalize is dangerous; on the contrary, the 
approach has to be made using various examples from different contexts and 
emphasizing various points of view, outside mathematics (Singer, 2003). Here, lots of 
precautions are necessary, because, on the one hand, only through numbers infinity 
could be defined and explained, and, on the other hand, the trap of paradoxes is 
always near by, when we are dealing with infinite sets. If we take into consideration 
recent research in mind and brain, there is a close interrelationship between some 
natural predispositions-intuitions and the learning process, which rebuild connections 
and structures. This is why, bringing intuition into the math class and starting 
building new knowledge from here might be the way to diminish misunderstandings 
and misconceptions in fundamental areas of mathematics learning. 
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THE ROLE OF SPATIAL CONFIGURATIONS  
IN EARLY NUMERACY PROBLEMS1

Fenna van Nes, Prof. Jan de Lange 
Freudenthal Institute for Science and Mathematics Education, the Netherlands 

Little is known about how early spatial thinking and emerging number sense may be 
related in the development of mathematical thinking. In this explorative study we 
examine how a child perceives a structure in a spatial configuration and applies it to 
determine an amount, and how this ability may be related to a child’s number sense 
and mathematical performance. Fifteen 4-year olds, fifteen 5-year olds and fifteen 6-
year olds were interviewed as they performed a series of number sense and spatial 
tasks. An association was found between a child’s ability to apply spatial structures, 
and their level of mathematical performance. This triggers questions for further 
research about how spatial thinking may influence the development of number sense.

INTRODUCTION
Many studies have focused on how remarkably young children augment their 
knowledge as they explore and discover the world around them. Gopnik related 
children’s behaviour to that of scientists in her Theory Theory (e.g. 2004). She 
suggests that children are born with certain theories about the world, which are 
continuously tested and amended as children gain new insights from daily 
experiences. It is these apparently natural abilities that allow for children to learn and 
develop so easily. 
One of the areas in which young children develop faster than is generally assumed, is 
in mathematical ability. Recent research on children’s numerical abilities has 
provided evidence that infants as young as six months can differentiate between 
amounts of objects that differ by a 2.0 ratio (i.e. 8 versus 16 objects, Lipton and 
Spelke, 2003). This ability improves within months as 9-month old infants can 
differentiate sets that differ in number at a 1.5 ratio (i.e. 9 vs 6 objects). In another 
study, Berger, Tzur and Posner (2006) found that 6-month old infants can recognize 
simple addition errors and that the corresponding brain activity can be compared to 
that of adults detecting an arithmetic error. 
As for children’s spatial abilities, studies have shown that 16-24 month old infants 
can use the concept of distance to localize objects in a sandbox (Huttenlocher et al., 
1994). This indicates an early ability to judge distances that is manifested regardless 
of the presence of any references in the direct surroundings of the child. Other studies 
involving four- and five-year olds provided evidence that at this age children can 

                                          
1 This research was made possible by a grant of NWO (Netherlands Organization of Scientific Research), project 
number 051.04.050. 
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compare proportions and figures (Sophian, 2000). The children in this study were 
able to match the correctly shrunken picture to the original picture without being 
distracted by pictures that not only were smaller, but also disproportional to the 
original picture.
These studies are representative for the research on the development of numerical and 
spatial abilities in young children. What lacks in much of this type of research, 
however, is any speculation about an association between the development of 
numerical and spatial abilities as children gain mathematical understanding. We 
propose that these two domains are related and that this may greatly influence the 
development of young children’s mathematical thinking. This paper discusses an 
explorative study in which we aimed to better understand the nature and 
characteristics of such a relationship.
Number sense and spatial thinking 
Before describing association between number sense and spatial thinking, we first 
define the two concepts. Number sense implies the ease and flexibility with which 
children operate with numbers (e.g. Gersten and Chard, 1999). It involves an 
awareness of amounts, giving meaning to numbers and being able to relate the 
different meanings of numbers to each other (Van den Heuvel-Panhuizen, 2001). As 
children progress in their ability to count, they discover easier ways of handling 
numbers, and they come to understand that numbers can have different 
representations and can act as different points of reference (Van den Heuvel-
Panhuizen, 2001).
Two key concepts in number sense are ordinality and cardinality. Ordinality concerns 
the order of numbers, and cardinality has to do with understanding the meaning of a 
number which is usually developed as children reach the age of five. This is when 
children learn to count resultatively; they count a set of objects and understand that 
the last named number stands for the total amount of objects in the set (Gelman and 
Gallistel, 1978).
Most early mathematics curricula are mainly concerned with teaching young children 
how to count, but children tend to acquire many spatial skills both inside and outside 
the classroom. Spatial thinking involves grasping the external world (Freudenthal, in 
National Council of Teachers of Mathematics [NCTM], 1989). The children’s 
experiences in discovering their environments help them to gain insight into relative 
positioning and sizes of shapes and figures. Children learn to orientate themselves, to 
describe routes, and to understand shapes, figures, proportions and relationships 
between objects, as well as to order, describe and compare physical sizes of objects 
(e.g. Van den Heuvel-Panhuizen and Buys, 2005). These abilities are typically 
manifested even before these children begin formal schooling.  
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The origins of human mathematical thinking 
Much neuropsychological research has delved into a debate about the origins of 
human mathematical thinking. Dehaene and colleagues (1999), for example, describe 
two systems in the brain that represent amounts. One system is based on a circuit in 
the brain that is associated with language and in this sense helps store exact numerical 
information. The other system is based on a circuit that is activated by general visual-
spatial functions and helps store and manipulate approximate calculations. The 
neurological foundations of this theory are described in the Triple Code Model 
(Dehaene et al., 2003) which unites various areas of the brain that are typically 
associated with spatial functions.
As such, Dehaene and colleagues suggest that the human brain can specifically 
represent and process numbers. Simon (1999), however, proposes that the origins of 
human mathematical thinking lie more in the general nature of the human perception 
and attention systems; numerical processes are not specifically represented in the 
brain but, instead, depend on areas that are specialised in visual-spatial processing. 
He bases his conclusions on research about how when children count using their 
fingers (an important step in the construction of a mental number line), the same 
areas in the brain are activated as associated with hand figures and finger movements. 
Likewise, Freudenthal expressed no doubt that the ability to judge similarity between 
objects precedes number in cognitive development (Freudenthal, 1991). 
These and many other researchers propagate the discussion about whether the brain is 
specialized in working with numbers, or whether the brain is ‘non-numerical (Simon, 
1999) in that the processing of numbers depends on spatial brain functions.   
The present study: using spatial configurations to help count 
Compared to neuropsychological research, only a number of early studies in 
mathematics education have focused on a possible relationship between spatial skills 
and mathematics. These studies mainly found supporting evidence for a positive 
relationship between spatial ability and mathematics achievement (e.g. Clements and 
Battista, 1992; Guay and McDaniel, 1976; Tartre, 1990), but they do not consider 
how the relationship may be characterized in the earliest mathematical development. 
As such, the present study is an explorative and descriptive investigation into the 
relationship between spatial and numerical thinking in the development of 
mathematical abilities. In particular, we seek to better understand how early spatial 
thinking may influence the attainment of number sense, by examining how the ability 
to recognize and apply spatial configurations to numerical problems can help children 
simplify and shorten the counting procedure. Ultimately, we hope to collaborate with 
neuroscientific research for a more vivid and in-depth understanding of how 
mathematical thinking develops. 
The focus of the study complements research such as that on visualisation in 
mathematics. As Bishop (1988) notes, ‘mathematics is a subject which is concerned 
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with objectivising and representing abstractions from reality, and many of those 
representations appear to be visual’ (p. 170). Arcavi (2003) goes on to state that such 
visual imagery can be ‘at the service of problem solving’ since visualisation ‘may 
play a central role to inspire a whole solution’ (p. 244). A problem where students 
had to determine how many matches are needed to build a particular n x n square, for 
example, lead to various kinds of decomposition that simplified the counting process 
(Arcavi, 2003). Indeed, the change of gestalt sometimes took the form of imposing an 
‘auxiliary construction’, providing visual ‘crutches’ which supported and facilitated 
the visualization of a pattern that suggested a counting strategy (Arcavi, 2003, p. 
229). This clearly illustrates the heuristic potential of distilling a structure out of a 
spatial configuration in order to determine an amount. 
In the present study, we focus on 4- to 6-year old children in the first two grades of a 
Dutch elementary school. These children are of particular interest because this is the 
age at which children are first confronted with formal mathematics education as 
opposed to their informal and more intuitive ways of learning. Hence, the question is 
how and to what extent their developing number sense is influenced and supported by 
early spatial thinking skills. We investigate their ability to recognize and apply 
typical spatial structures (dot structures on dice, and finger images for counting 
fingers) to solve number sense problems in order to examine the effect on 
mathematical performance. This exploration should shed more light on the role that 
spatial thinking may play in the development of number sense and mathematical 
performance in school. 
A second point of interest in this study is whether and how children may be 
differentiated in terms of the extent to which they recognize and apply structures to 
mathematical problems. We speculate that children who do not adequately apply a 
structure from a spatial configuration to determine an amount, may come to lag 
behind and increasingly experience difficulty in attaining number skills. In this study, 
we explore whether and how an association between recognizing and applying spatial 
structures in spatial configurations exists. We hope to gain a better understanding 
about what potential spatial skills may have to stimulate the mathematical 
performance of children with relatively weak mathematics skills. 
In summary, this study addressed two main research questions: 
1. How do children aged 4 to 6 years develop insight into spatial structures and use 
structures to solve (numerical) mathematical problems? 
2. How is the extent to which a 4- to 6-year old child recognizes and applies 
structures related to the child’s level of mathematical ability? 
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METHODS
Participants
Fifteen four-year olds, fifteen five-year olds and fifteen six-year olds with middle 
class social backgrounds from the first two grades of a local elementary school 
participated in this study. These children were identified by the head-teacher of the 
school’s elementary department with the aim of forming an as representative a group 
as possible with respect to mathematical performance in school, age and gender. They 
participated with the consent of their parents and at the end of the study the whole 
class was rewarded for their participation. 
Materials and procedure 
As the aim of the study was to explore how children may make use of spatial 
structures in mathematical problem solving, the first part of the study involved the 
development of a set of tasks that would make the strategies that the children used 
evident to the researchers. The tasks were to cover general spatial abilities and 
numerical understanding, but they had to be complex enough to challenge the 6-year 
olds and still be accessible to the 4-year olds. Furthermore, the tasks had to be 
intriguing enough to capture the attention of the children and to trigger their problem 
solving interests. As such, paper-and-pencil tasks were avoided and, instead, context-
rich, interactive activities were developed that would appeal to the child. 
The tasks were originally inspired by literature (e.g. Van den Heuvel-Panhuizen, 
2001; Van Eerde, 1996) and meetings with experts, after which they were frequently 
pilot tested and improved. The final list of tasks included five number sense activities 
covering counting of structured and unstructured small amounts, applying own 
structures, comparing two groups, equalizing two groups, dividing a set into two 
groups, manipulating amounts and determining positions in a row. Figure 1 is an 
example of a task about counting a structured amount.  

Figure 1: ‘How many ducks are swimming in the pond?’ 

The five spatial thinking activities cover patterns, constructing, counting parts of a 
construction, taking on perspectives, and recognizing shapes and figures. Figure 2 
shows a task about constructing a house of blocks by following an example.  
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Figure 2: ‘Can you build a house just like the example with these blocks?’ 

Parallel to developing a list of appropriate tasks, based on literature and expert 
meetings, we created a list of strategies that children may use for each task. The 
strategies that were observed during the pilot tests contributed to making the list as 
elaborate as possible and to organizing the strategies from relatively basic (e.g. 
pointing to each object and counting out loud) to more complex (e.g. perceptive 
counting). The more complex strategies are usually the strategies that require 
recognizing and applying structure to complete a task. This list of strategies was a 
key instrument in the study for exploring whether and how children make use of 
spatial abilities to solve the different types of tasks. As such, the approaches that 
children used were evaluated both according to their relative complexity (i.e. use of 
structure) and how they coincided with accuracy in solving the tasks.
Next to the tasks, a set of sixteen flashcards was created in order to determine the 
degree to which children recognize structure. There were four dice cards, each with 
three to six structured dot configurations, four dot cards, each with three to six 
unstructured (defined to be taken out of context and unrelated to learned 
configurations) dot configurations, and eight cards with three to ten raised fingers 
each (see Figure 3). The cards were presented one-by-one for no longer than three 
seconds. This was enough time to determine whether the child recalled the structure 
or had to count each of the dots or fingers to determine the presented amount. 

Figure 3: Examples of a die flashcard, a dot flashcard and a finger counting card 

The last element of the study was the Utrecht Numeracy Test (UNT, van Luit et al., 
1994). This test was included so that the results of the tasks and the flashcards could 
be interpreted against the backdrop of a normative numeracy test. The UNT covers 
comparing, classifying, correspondence, seriation, using counting words, 
synchronized and shortened counting, resultative counting, and applying number 
knowledge. The test is normed for children aged 4.5 to 7 years, and scores range from 
a maximum of ‘A’ to a minimum of ‘E’.   
The study was performed in three sessions per child. Each session took half an hour 
and occurred on three subsequent days. The first session covered the UNT followed 
by the flashcards, the second session covered the spatial tasks and the last session 
covered the number sense tasks. Importantly, the researcher prioritized the approach 
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that children took to solve a problem in contrast to merely noting whether or not the 
given answer was correct. Therefore, the style of the study was interview-like, theory 
driven and interactive; the children were continuously stimulated to think aloud and 
to elaborate on the strategy that they used. In the meantime, the researcher noted as 
much of the child’s verbal and nonverbal behaviour as possible and recorded the 
session with a voice-recorder for later reference.
The transcripts were analysed both qualitatively and quantitatively. As this study was 
designed to be descriptive and explorative, we prioritized the qualitative analyses in 
order to gain a vivid picture of the group tendencies without eliminating children 
whose results were outliers with respect to the general group. These analyses 
involved cycles of examining the interviews, categorizing the children’s responses 
according to the list of strategies, discussing possible trends with experts, and 
comparing the strategies and accuracy results of children for each type of task with 
other tasks and other children. The quantitative analyses were performed to allow for 
large group comparisons with non-parametric correlations and tests for significance.

RESULTS AND ANALYSIS 
From the initial analyses of the interviews, it became clear that the 5- and 6-year olds 
who recognized the structures also tended to apply them. Relatively few 4-year olds, 
however, either recognized or used the structures to solve the tasks. Those 4-year olds 
who did recognize structures were not always consistent in applying their knowledge 
to the tasks. Sometimes they counted the objects, other times they instantly 
recognized the amount. This coincides with Gopnik’s Theory Theory (2004, as 
described above), as well as with what de Lange described as Conceptual 
Mathematization (1987).  
Conceptual Mathematization is the process of developing mathematical concepts and 
ideas, which involves exploring situations, schematizing, visualizing, and developing 
a model that leads to a mathematical concept. By reflecting and generalizing, a child 
can spiral in to a more developed concept. Hence, the 4-year olds in this study may 
have recognized the structures and used them sporadically, but they are still to 
increase their experience and affiliation with the benefits of applying such structures. 
This first insight into how the use of spatial structures emerges with a child’s 
development should be a topic for elaboration in further research. 
What is especially intriguing, is that there were three 5-year olds and one 6-year old 
who, like many 4-year olds, recognized the structures (i.e. instantly read out the 
presented amount without having to count) but did not proceed to apply the structures 
to the tasks. In contrast to the four-year olds, however, these older children performed 
below average on the tasks. This is curious, since age was significantly related to 
performance on each of the types of tasks and older children tended to recognize and 
apply more of the recognized structures to the tasks than younger children did. 
Furthermore, performance on the tasks improved when the recognized structures 

Working Group 3

CERME 5 (2007) 522



were used. These four children, then, seemed to be delayed in learning to apply 
recognized structures, performing well under the average of their age group. 
Importantly, the results of this study do not imply a causal relationship, but they do 
accentuate the question about how the development of the ability to recognize and 
apply structures to mathematical problems may relate to the progression of 
mathematical performance. 
The interviews and analyses indicated a positive relationship between the type of 
strategy usage of the 4- and 5-year olds and their level of performance. As a more 
complex level of strategy usage generally coincided with more use of structures, 
these results support our expectation that children with relatively strong spatial 
thinking skills would recognize more spatial configurations and would use them more 
regularly for facilitating the counting process. This allows for the differentiation 
between the mathematical performance of a child who recognizes and applies 
structures to mathematical problems and the mathematical performance of a child 
who has yet to develop such an insight. Hence, the ability to use recognized structures 
and the mathematical performance of young children seem to be related.  
Compared to these results for the 4- and 5-year olds, the results for the 6-year olds 
seem less evident. The 6-year olds tended to apply more complex strategies to the 
tasks despite their below average general mathematical performance. It seems as 
though they experimented with various (perhaps newly learned) strategies, without 
yet having the expertise to always be able to apply the strategies correctly. This 
situation resembles the inconsistent behaviour of the 4-year olds mentioned earlier, 
once again illustrating the process of learning, experiencing and adjusting behaviour 
as described in research of, for example, Gopnik (2004) and de Lange (1987). Taken 
together, these results are highly notable as they, firstly, provide a more specific 
account of how spatial skills and mathematics performance may be related than 
earlier studies have, and, secondly, focus on development and the youngest 
elementary school children.  

CONCLUSION
As an aside, we note that only careful conclusions can be drawn from this study. 
Many children responded differently to the various tasks and the number and 
representativeness of the subjects may have been limited. This can be traced back to 
the individual differences of children as well as to the difficulty of performing such 
research and generalizing the results. Yet, the design of the study was for it to be 
descriptive, and the methods of inferring the intentions and approaches of the 
children to the various tasks are still exploratory. Subject to these limitations, then, 
the results provide some insight into how the development of spatial thinking and 
number sense may be related in the emergence of mathematical thinking.  
As this is a first explorative study into how early spatial thinking and emerging 
number sense may be related in the development of mathematical abilities of 4- to 6-
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year old children, it has set the stage for future research to further examine the 
possible influential effects of the level of spatial thinking on mathematical 
performance. The result that not all 5- and 6-year olds in the study recognized and 
subsequently applied the structures is especially interesting in this context because it 
triggers the speculation about causality between the application of spatial skills and 
children’s lagging mathematical performance. 
For more practical purposes, this study has suggested that it could be useful for 
children to at least be familiar with basic spatial configurations so as to learn to 
perceive them in sets of objects that are to be counted. Our next intention is to design 
an intervention in which children learn to recognize and apply spatial structures to 
tasks that involve numerosity. This may help children with relatively poor 
mathematical skills to improve their counting skills and gain more insight into 
numerical relationships. The list of strategies from this study will help categorize, 
evaluate and monitor the approaches that children take to solving the tasks. 
This study has taken an important initiative for mathematics education to contribute 
to the ongoing debate about the characteristics of mathematical thinking. The long-
term plan for this research is to cooperate with neuropsychological research for a 
more all-round and in-depth perspective on possible influential effects of spatial 
thinking on mathematical abilities. This should contribute to a better understanding of 
the development of children’s mathematical thinking. 
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STUDENTS’ ABILITY IN SOLVING LINE SYMMETRY TASKS 
Xenia Xistouri

University Of Cyprus 
The aim of this study is to propose and evaluate a model of 4th, 5th and 6th grade
students’ structure of knowledge in line symmetry. The model used is the Taxonomy 
of Structure of the Observed Learning Outcome (SOLO). The model describes the 
structure of students’ aptitude to respond correctly to tasks of line symmetry, and 
thus it can be used by teachers to enhance students’ learning. 
INTRODUCTION 
Symmetry is a fundamental part of geometry, nature, and shapes. It creates patterns 
that help us organize our world conceptually (Knuchel, 2004). It is important for 
students to grasp the concepts of symmetry while at the elementary level, by exposing 
them to things they see everyday that are not obviously related to mathematics but 
have a strong foundation in it (Knuchel, 2004). According to the NCTM (1991), 
grades 3-5 should be able to use symmetry to analyze mathematical situations. This 
includes predicting and describing the results of sliding, flipping, and turning two-
dimensional shapes. They should also be able to identify and describe line and 
rotational symmetry in two- and three-dimensional shapes and designs.  
Many researchers (Knuchel, 2004; Mackrell, 2002; Hoyles & Healy, 1997) support 
that symmetry is all around us and even though it does not seem to be mathematical, 
its very roots are buried there. However, it appears that there is little research 
concerning the development of symmetry in the field of mathematics education, 
especially at the elementary level. Thus, the purpose of this study is to construct an 
understanding of the structure of students’ knowledge regarding line symmetry, by 
developing an assessment model for which the students’ knowledge and abilities for 
solving line symmetry tasks are taken into consideration. To this end, the Taxonomy 
of Structure of the Observed Learning Outcome (SOLO) was used as a means for 
exploiting students’ development of knowledge in symmetry (Biggs & Collis, 1991). 
THEORETICAL BACKGROUND 
Developing the Concept of Symmetry 
According to Leikin, Berman and Zaslavsky (2000), symmetry has a special role in 
problem solving. In their studies with secondary mathematics teachers, they underline 
that symmetry connects various branches of mathematics such as algebra, geometry, 
probability, and calculus, and present it as a useful problem-solving tool.  
At the elementary level, research mainly focuses on teaching experiments, often 
involving technology (Edwards, 1992; Mackrell, 2002; Seidel, 1998; Hoyles & 
Healy, 1997). For example in Mackrell’s (2002) class, while students were exploring 
the creation of polygons using geometry software, they created a lot of abstract 
patterns that were symmetrical and they were concerned with filling in the gaps of 
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their patterns. She concluded that while she was not attempting to teach or emphasize 
any particular area of mathematics, “ideas regarding size, symmetry, tessellation and 
representation of 3D objects were arising spontaneously and, given more time, could 
have been further developed” (Mackrell, 2002). Another example is the one of 
Seidel’s (1998) experiment, where he applied geometry and symmetry to everyday 
life for 2nd and 5th graders by means of technology. In this experiment, the 2nd graders 
were using a program to create symmetrical flowers to make a garden. This lesson 
gave students a chance to solve their own problems. The 5th graders were introduced 
to Geometer’s Sketchpad and used it to create symmetrical snowflakes. It let them 
use the concepts of rotation and reflection, allowing them to tie in the idea of 
translations and how all three are related. Edwards (2003) also described a series of 
studies using a computer environment designed for exploring transformational 
geometry, which included some tasks of symmetry. In this series of studies, she 
studied misconceptions concerning transformation geometry at various ages and 
conducted teaching experiments with the help of microworlds. Her results suggest 
that misconceptions are not different among age groups. 
Another experiment was conducted by Hoyles and Healy (1997), using a micro world 
tool called “Turtle Mirrors” to provide tools to help students focus simultaneously on 
actions, visual relationships and symbolic representations concerning line symmetry. 
According to these researchers, the rich set of meanings around symmetry which is 
developed outside school, shapes student responses in the mathematics classroom. In 
their study, they described some students’ primitive and intuitional strategies for 
solving paper and pencil symmetry tasks, with special focus on 12-year old Emily. 
They described how Emily solved the tasks, by using a variety of strategies, which 
varied according to task features. They also described how Emily successfully 
reflected objects in horizontal or vertical mirror lines but when the mirror was 
slanted, she had difficulty completing the task and she used an approximation 
strategy which derived from paper folding (Hoyles & Healy, 1997). 
The above information suggests that symmetry is given minor attention by teachers as 
well as by researchers. It is often de-mathematized and its teaching mainly focuses on 
what children already know intuitively and by experience, while in research it 
appears to be mostly a means for implementing technology. However, apart from 
Hoyles’s and Healy’s study, no other study seems to highlight the structure of 
students’ knowledge of symmetry and its properties. Therefore, in order to support 
the mathematical development of symmetry rather than the intuitional, it might be 
useful to develop a structural model which will guide and support mathematics 
educators’ instruction and assessment. For this purpose, this study will use the SOLO 
Taxonomy hierarchical model to describe the development of the concept of 
symmetry and to provide a structure for measuring students’ learning outcomes in 
symmetry, with focus on line symmetry.  
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Solo Taxonomy 
From the literature on SOLO taxonomy, it was suggested that SOLO is a hierarchical 
model that is suitable for measuring learning outcomes of different subjects, levels 
and for all lengths of assignments (Biggs & Collis, 1991). The SOLO taxonomy, 
initially proposed by Biggs and Collis (1991), evaluates and categorizes cognitive 
performance by considering the structure of students’ answers. A response is 
prompted by a question, and is indicative of the difficulty of the question and the 
cognitive ability of the individual. A response varies between 5 levels of complexity, 
ranging from prestructural to extended abstract. 

� Prestructural: The task itself is not attacked in an appropriate way. The student 
misses the point. 

� Unistructural: One aspect of the task is picked up or understood serially, and 
there is no relationship of facts or ideas. 

� Multistructural: Two or more aspects of a task are picked up or understood 
serially, but not interrelated.

� Relational: Several aspects are integrated so that the whole has a coherent 
structure and meaning. 

� Extended abstract: That coherent whole is generalised to a higher level of 
abstraction.

In this study, the extended abstract level is not examined, assuming that fourth, fifth 
and sixth grade students cannot reach this level of performance. 
METHODOLOGY 
The purpose of this study is to develop a cognitive model for the assessment of 4th, 5th

and 6th grade students’ structure of knowledge concerning symmetry. The subjects 
were 474 elementary students (150 fourth graders, 202 fifth graders and 122 sixth 
graders).
The students were given seven tasks to solve (see Appendix), in order to measure 
their ability in solving mathematical tasks of line symmetry. The tasks were presented 
in increasing order of difficulty, with task 1 corresponding to the described 
characteristics of the unistructural level and task 7 to the characteristics of the 
relational level. The first task was to identify shapes with lines of symmetry. It 
included 8 items, 5 of which had lines of symmetry. The second task was to draw all 
lines of symmetry for given shapes. Six items were given, of which: 1) one had a 
horizontal line of symmetry, 2) one had a slanted line of symmetry, 3) one had two 
slanted lines of symmetry, 4) one had five lines of symmetry (one vertical and four 
slanted), 5) one was consisted by two reflected congruent triangles attached by a 
point and 6) two reflected congruent shapes with a horizontal line inside the shapes 
and a vertical line of symmetry between the shapes. The third task was to identify 
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which of the first eight letters of the Greek alphabet have exactly two lines of 
symmetry. The fourth task was to identify the symmetrical of a given shape, among 
three different alternatives with differences in shape, colour and size. This task 
included three items. The fifth task was to shade boxes to draw the symmetrical of a 
given shape, given the line of symmetry. The task included two items. The first had a 
vertical line of symmetry and the second had a horizontal line of symmetry. The sixth 
task was to draw the symmetrical of a given shape. This task included two items. The 
first had a horizontal line of symmetry, one centimetre away from the shape and the 
second had a slanted line of symmetry, attached to the shape by a point. The seventh 
task was the problem:  

John discovered the rule: “I can say whether a quadrilateral has lines of 
symmetry. If the triangles formed by the folding line are exactly the same, then 
the shape has a line of symmetry”. Explain whether you agree or not.  

The students were given 40 minutes to complete all seven tasks, during normal lesson 
time. Each correct response to an item in each of the seven tasks was assigned a 
positive point. The points were summed up for each task. The percentages of success 
in each task were calculated for each task. Success in a task was considered the 
achievement of all points. The percentages were used for structuring the model of 
students’ knowledge in symmetry. The tasks were grouped according to the 
percentages of success and task characteristics. Percentages were divided into three 
equal ranges of about 15 percentiles each. The tasks with percentage of success in 
each range were considered to form a group, and then each group was matched to a 
level of the SOLO Taxonomy, according to the level of success. A deeper 
examination of the characteristics of the tasks followed to describe and determine 
which aspects of symmetry appear to be applied in each group of tasks and further on 
to confirm the matching between each group and the corresponding SOLO level. 
RESULTS 
The validation of the model is based on students’ success in solving the symmetry 
tasks. Table 1 presents the percentages of success for each task and matches them to 
the SOLO Taxonomy levels, according to the levels of success. The analysis 
indicated that the items of task 6 were actually quite different; therefore they were 
considered as different tasks during the classification. Following are the descriptions 
of the aspects of symmetry appearing to be understood by the students in each level, 
to confirm the matching between each group and level. 
A percentage of 16,3% of the students were matched to the prestructural level, since 
they did not manage to succeed in any of the tasks. This percentage is not included in 
the table, since it does not measure success in a task. Tasks 5 and 4, with percentage 
of success between 31% and 45% were grouped and matched to the unistructural 
level. Tasks 3, 1 and 6a, with percentage of success between 15% and 30% were 
grouped and matched to the multustructural level. Tasks 7, 6b and 2, with percentage 
of success between 1% and 14% were grouped and matched to the relational level. 
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Task % of 
Success 

Matching 
SOLO Level 

5. Shade boxes to draw the symmetrical of a given 
shape 40,9

4. Identify the symmetrical of a given shape 36,1
Unistructural

3. Identify which of the eight first letters of the 
Greek alphabet have exactly two lines of symmetry 30,4

1. Identify shapes with lines of symmetry 14,8
6a. Draw the symmetrical of given shape (vertical 
line of symmetry) 14,8

Multistructural

7. John says: “I can say whether a quadrilateral has 
lines of symmetry. If the triangles formed by the 
folding line are exactly the same, then the shape has 
a line of symmetry”. Explain whether you agree or 
not

11,2

6b. Draw the symmetrical of given shape (slanted 
line of symmetry) 6,5

2. Draw all lines of symmetry for the given shapes 1,5

Relational

Table 1: Percentages of success for each task and matching to SOLO levels 

 Unistructural Level 
The tasks grouped and matched to the unistructural level are 5) Shading boxes to 
draw the symmetrical of a given shape, and 4) Identifying the symmetrical of a given 
shape, among three choices. 
Task 5 was included in this level of understanding, since it can easily be solved in an 
analytical way, by counting boxes from one direction to another. Apparently, it does 
not require the application of special mathematical abilities in symmetry. The main 
aspect taken into consideration for this task and consequently for students at this 
level, is the “same distance from the line”. 
Another main aspect of symmetry is the conservation of shape, size and colour of the 
reflected image (Hoyles & Healy, 1997). However, it should be noted that in task 4, 
each of these qualities was isolated among three separate items. It is assumed that 
combinations of the three properties could increase the level of difficulty and such 
task would probably be classified at a higher level of understanding.
Multistructural Level 
Three tasks were grouped to match this level. These are 3) Identifying which of the 
eight first letters of the Greek alphabet have exactly two lines of symmetry, 1) 
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Identifying the symmetrical shapes, and 6a) Drawing the symmetrical of a given 
shape with vertical line of symmetry given. 
It seems that identifying a shape with symmetry requires a combination of more skills 
and better understanding of symmetry. In task 3, students had some additional aspects 
to consider. They had to test and identify both a vertical line of symmetry and a 
horizontal line of symmetry, since the first eight letters of the Greek alphabet only 
have vertical and horizontal lines of symmetry. These had to be done while taking 
into consideration that the parts of the shape had the same shape and size, as well as 
the same distance from each line of symmetry. The same applies for the case of task 
1, where children had to determine whether the given shapes were symmetrical. The 
additional aspect which made the percentage of success drop to 14,8% was the fact 
that some of the shapes had slanted lines of symmetry. These were also shapes that 
children are not as familiar with as the letters of the alphabet, which are often used by 
teachers in Cyprus as common examples for teaching symmetry.
The aforementioned properties of conservation of shape, size, and colour of the shape 
have to be also considered while drawing the symmetrical of a shape, such as in task 
6a. Additionally, the ability to “flip” the image in order to obtain the reflection of the 
shape, while keeping track of the distance from the line of symmetry are also 
necessary.
Relational Level 
For this level, three tasks were also grouped. These are 7) the problem [John says: “I 
can say whether a quadrilateral has lines of symmetry. If the triangles formed by the 
folding line are exactly the same, then the shape has a line of symmetry”. Explain 
whether you agree or not], 6b) Draw the symmetrical of given shape with slanted line 
of symmetry, and 2) Draw all lines of symmetry in the given shapes. 
In the case of task 7, all of the properties involved – conservation of shape and size, 
distance from slanted line – have to be considered and combined in order to 
determine whether the congruency of the triangles obtained by folding a quadrilateral 
is a valid indication of symmetry. Therefore it requires the integration of several 
aspects in order to extract meaning and apply it in a problem-solving situation. The 
integration of a number of aspects is a characteristic of the relational level of the 
SOLO Taxonomy. 
Drawing the symmetrical of a shape with a slanted line of symmetry given is, as 
expected, more difficult than drawing with a vertical line given. Although it seems 
that the aspects of symmetry applied are the same as for the vertical line (as in task 
6a), reflecting a shape on a slanted line of symmetry was more difficult to students. 
However, this might be due to lack of experience in such type of tasks, since common 
tasks of line symmetry often involve shapes with vertical or horizontal lines of 
symmetry, and much rarely with slanted lines of symmetry. 
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Finally, the smallest percentage of success was on drawing the lines of symmetry for 
given shapes. In this case, all properties must be taken into consideration and 
students’ abilities and knowledge are required to be applied not only simultaneously, 
but also repeatedly for several times, in order to manage to find and draw correctly all 
the lines of symmetry – vertical, horizontal and slanted.  
DISCUSSION 
The aim of this study is to construct an understanding of the structure of students’ 
knowledge regarding line symmetry, using the SOLO Taxonomy. As it appears from 
the percentages of success for the grouped tasks as well as the tasks’ characteristics, 
the structure of students’ knowledge regarding line symmetry can be described using 
the levels of the SOLO Taxonomy. The results suggest that more aspects of line 
symmetry are considered and applied for completing the tasks for each successive 
level, which is what makes the SOLO Taxonomy levels distinct.  
Particularly, it seems that for the tasks of the first group, which was matched to the 
unistructural level of the SOLO Taxonomy, students apply only one property of 
symmetry; they only see one aspect at a time. However at the second group, students 
see more properties simultaneously to solve the tasks. This is in agreement with 
Biggs and Collis (1991) descriptions of the multistructural level; therefore the second 
group was matched to that level of the SOLO Taxonomy. As for the third group, all 
the properties had to be integrated in order to reach to a conclusion which was more 
complicated than in the other tasks. Thus, this group of tasks was matched to the 
relational level of the SOLO Taxonomy.  
While examining the characteristics of each task and the aspects viewed at each level, 
it appears that while identifying a shape with symmetry was considered an easy task, 
the data suggest that it is grouped at the multistructural level, since it requires a 
combination of more skills and better understanding of symmetry than finding its 
symmetrical among others. In fact, it requires the ability to test and recognise all 
types of lines – vertical, horizontal and slanted – to determine whether a shape is 
symmetrical. Additionally, one has to keep in mind the conservation of the properties 
of shape, size and colour, all at the same time. Similarly, these properties also have to 
be taken into account in the case of drawing the symmetrical of a shape, such as in 
task 6a, while at the same time the ability to “flip” the image in order to obtain the 
reflection of the shape is also necessary. In addition, one has also to keep track of the 
distance from the line of symmetry, in order to get the correct solution.
As for the relational level, and particularly in task 7, one needs not only a 
combination of skills to determine whether the congruency of the triangles obtained 
by folding a quadrilateral is proof for symmetry. The strong characteristic of this task, 
which is crucial for the relational level, is that it requires for all the skills involved to 
be combined in order to reach to a meaningful decision, a general rule. However, the 
verbal form of the task as well as the requirement of types of quadrilaterals may have 
increased the level of difficulty for this task. One could also assume that finding the 

Working Group 3

CERME 5 (2007) 532



symmetrical of a shape for slanted line of symmetry, such as in task 6b, belongs to a 
higher level of understanding symmetry, one that cannot easily be completed with an 
analytic way. Similar results were found by Hoyles and Healy (1997), which 
strengthens the fact that it was grouped at the relational level. Finally, finding all 
lines of symmetry seems to be the most difficult task of the relational level. This is 
probably due to the fact that it requires viewing all aspects simultaneously and 
repeatedly, in order to decide the occurrence of symmetry and find the place of the 
line.
The structural model developed in this study may be useful for assessing students’ 
development of knowledge in line symmetry. It can be used to develop an effective 
instructional program in understanding line symmetry and solving line symmetry 
tasks. Further research could evaluate the viability of using the model for teaching 
symmetry in regular classroom situations or with computer environments, to assess 
the ease with which classroom teachers are able to use the model to enhance students’ 
learning. Such research would provide opportunities for improving the model and 
making it more efficient for generating instructional programs that build on students’ 
prior knowledge, monitor and assess their understanding.
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APPENDIX 
The tasks 

                                                             2. Draw all the lines of symmetry 
1. Circle the shapes that have line symmetry.               for the given shapes.

A � C D 

� F G H 

3. Identify which of the first eight letters of the Greek alphabet have exactly two lines 
of symmetry. 
4. Which one of A, B, C is symmetrical to the first shape, on a vertical line? 

A B C 

A B C 

A B C 
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5. Fill in the boxes to draw the symmetrical of each  
shape for the given line of symmetry. 

6. Draw the symmetrical of the shapes. The discontinuous
line is the line of symmetry. 

7. John discovered the rule: “I can say whether a quadrilateral has lines of symmetry. 
IF the triangles formed by the folding line are exactly the same, then the shape has a 
line of symmetry”. Explain whether you agree or not.  

Working Group 3

CERME 5 (2007) 535




