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The contributions collected in this section differently address the issue of proof and 
argumentation, offering a quite varied spectrum of perspectives, from both the point 
of view of theoretical frameworks assumed and that of issues in focus. 
The richness of contributions' diversity gave the participants the opportunity of a 
fruitful discussion far beyond the need of sharing a common terminology, while the 
reflection, carried out at the beginning of our working activity highlighted the 
problematic relationship between argumentation and mathematical proof from the 
diversity of our theoretical and cultural backgrounds. The papers presented and 
discussed during the working sessions at CERME5 are collected in this chapter, 
organized according two different main themes.  

1. Models and theoretical constructs to investigate argumentation and proof 

The first group of papers exemplifies how different theoretical constructs may 
contribute to shape investigations, directing the researcher both in selecting the 
questions to be addressed and the ways to look for possible answers.
The role of epistemological analysis emerges in the paper of Castagnola & Tortora, 
where the famous Euclid’s theorem on the infinity of prime numbers is presented as a 
paradigmatic example to discuss students' difficulties and to propose possible means 
for their overcome. The epistemological issue is also clearly addressed in the paper of 
Deloustal-Jorrand, where mathematical implication is analysed from three different 
points of view: formal logic point of view, deductive reasoning point of view, sets 
point of view. A didactical engineering, based on the assumption of the necessity of 
make these points of view interact is carefully described and its implementation 
discussed, showing how a suitable situation can raise the issue of implication. A 
complementary example is presented in Gibel's paper, where, in the frame of the 
Theory of Didactic Situations (TDS), the author discusses the inadequacy of the 
situation that fails to engage students in solving a problem and consequently does not 
make it possible for the teacher to bring the students to valid mathematical reasoning.
Besides approaches consistent with general theoretical models, such as that of the 
TDS, specific theoretical constructs were presented, elaborated for the particular aim 
of analysing issues related to argumentation and proof. This is the case of the papers 
presented by Pedemonte and by Antonini & Mariotti. The construct of Cognitive 
Unity combined with the Toulmin model provides Pedemonte a powerful tool to 
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analyse and discuss the complex relationship between argumentation and proof in the 
special case of producing a conjecture.  Antonini & Mariotti discuss the complexity 
of indirect proof using an interpretative model set up as refinement of the notion of 
Theorem introduced by Mariotti (200?). 
Styliadis & Styliadis bring to the attention of mathematics education researchers a 
rich body of psychological research on deductive reasoning, related to the well 
known paradigm of mental models (Johnson-Laird, P.N., 1983). Such a theoretical 
construct may offer new insight not only in identifying important issues that require 
research attention, but also suggesting an interdisciplinary and collaborative approach 
to the problem of promoting proof in students’ learning of mathematics. 
Still a different perspective and a new theoretical model is drawn from cognitive 
psychology (Kahnman, 2002) and chosen by Buchbinder & Zaslavsky. Their 
objective is that of describing the students' behaviour when they are asked to decide 
truth-value of a statement; the model of the dual process theory is applied in order to 
describe (and explain) the differences between modes of justifying the truth-value of 
a statement, according to the notion of  "confidence" (respectively "lack of 
confidence") that the subject has in its truth or its falsity.
A theoretical model is set up purposefully by Timmermann to describe the 
relationship that an individual (either the teacher or the student) can establish with a 
proof. Distinguishing between structure, components and details textbook proofs are 
analysed so as their presentation in class. A possible failure in communication 
between the teacher and the students may explain difficulties, and can be described in 
terms of discrepancies between what each interlocutor has in focus: a component or a 
detail.
As is the case for investigations based on the development of a teaching experiment, 
a twofold objective characterizes the study presented by Fiallo & Gutierrez: on the 
one hand to design a didactic intervention, on the other hand to study students' 
performances. An unusual mathematical domain is selected, trigonometry, and a 
teaching sequence is set up with the intention of introducing students to proof; in 
order to show its potentialities a specific model is elaborated for the analysis  
students' learning achievements.  
A more explorative approach is taken by Aylon & Even. Differently from the 
previous studies, characterized by being structured and directed by the theoretical 
frame selected, this study aims to examine and classify opinions about the role played 
by learning mathematics in the development of general deductive reasoning. The 
interviewees are persons involved in mathematics education and logic. In spite of an 
expected variability, the findings of this study show a certain convergence on 
considering the development of general deductive reasoning as a goal of mathematics 
instruction, and on the assumption that to some degree this goal is attainable. 

2. Teachers' beliefs and teacher practice

The realty of the classroom, as emerged from some of the previous contributions, 
brings to the forefront the centrality of the teacher's point of view, both in terms of 
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beliefs and in terms of the practices that in such beliefs find their origins. 
This  perspective is explicitly taken in the contribution presented by Sergis, 
illustrating how teacher's view of what constitutes a proof and its functions influences 
the choice of what is to be integrated into one's own teaching practices. He proposed 
an interesting issue concerning the relationship between teachers' beliefs and 
practices and  the presentation showed the high complexity of treating this issue and 
the need of elaborating specific methodologies.
Shifting the attention on teachers' practices and aiming to explain how successfully a 
teacher teaches proof, Ding and Jones propose to analyse teaching of geometrical 
proof, as it is developed in Shangai classrooms.  The analysis is carried out by using 
the van Hiele model and indicates that though the second and third van Hiele 
teaching phases could be identified in the Chinese lessons, the instructional 
complexity does not allow the full sequence of phases to be recognized.
If a global description of a successful practice seems far from being achieved, a more 
focused contribution comes from Gibel's paper. The author highlights the crucial role 
of the situation for a student to engage him/herself in an argumentative reasoning, 
nevertheless the episode discussed in the presentation raised the issue of the role of 
the teacher in supporting the student in overcoming the difficulty. 
Teachers' beliefs and teachers' practices become a particular issue when the 
mathematics class involves prospective teachers. A long term teaching experiment is 
presented in the paper of Camargo, Samper & Perry, aimed to introduce future math 
teachers to deductive geometry. Among a number of different aspects characterizing 
this teaching experiment, the authors discuss on the mediating role that a Dynamic 
Geometry Environment, Cabri, can play. 
The case of trainee teachers is still in focus in the paper presented by Cusi & Malara. 
Beyond the general difficulties related to proof, the analysis of proof production in 
elementary number theory show the specificity of this mathematical context. 
As far as the task is assumed to require the coordination of verbal and algebraic 
registers, the authors show how the  difficulties  encountered in the  solution 
processes can be explained by the lack of coordination.  

3. Final conclusions 
After the short presentations of the papers and the following debate, the working 
group participants broke into small groups. The discussion in the groups was guided 
by a set of issues related to the theoretical and methodological elements raised by the 
debate.

1. Using formal models for investigating proof and comparison between different 
models for investigating proof.   

2. Proof in the classroom: focus on the task, focus  on the mathematical domains 
focus on the teacher.  

3. Teaching experiments for investigating proof:  methodological issues related to 
investigating proof in the school context. 
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It is difficult to report conclusions for a group that spend considerable time facing the 
complexity of diversity. What emerged, rather than points of unanimous agreement, 
is the convergence on the centrality of  some issues.
In our discussions it became clear that there is a need to specify the meaning of the 
terminology we are using, in particular in relation to the aim of dealing with 
analogies and differences between argumentation and proof; but equally importantly 
there is a need to understand better their inter-relations and relevance in the context 
of mathematics and of mathematics education as well.  
The variety and the richness of the different theoretical frameworks utilized in the 
different contributions stimulated not only the need of comparison, but also the 
curiosity of undertaking a possible integration and this, in our view, constitutes the 
main result of our working sessions in the spirit of CERME. 
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Starting from a general discussion on mathematical proof, a structural analysis was 
carried out, leading to the construction of a model within which indirect proofs can be 
described. The model shows itself a good interpreting tool to identify and explain 
cognitive and didactic issues, as well to precisely formulate research hypotheses 
concerning students' difficulties with indirect proofs.

INTRODUCTION
Mathematics education literature offers a rich and varied panorama of theoretical 
frameworks within which different didactic issues related to proof were identified and 
studied  (see for instance Balacheff, 1987; Duval, 1992-93; Harel et al., 1998; Garuti et. 
al.,1998; Mariotti et. al., 1997; Pedemonte, 2002). However, the research studies carried 
out within these frameworks only rarely addressed issues that can be related to some 
specific logical structure of a proof. Some authors focused their attention on proof by 
mathematical induction (Harel, 2001; Pedemonte, 2002), not much attention was 
devoted to indirect proofs, with which, on the contrary, this paper intend to deal. 
Although not always easily comparable, research studies devoted to indirect proof report 
consistent results concerning students' difficulties with this type of proof, that, at any 
school level, seem to be greater than those related to direct proof. Different 
interpretations and different sources of these difficulties were proposed. Certainly, as 
some authors remarked, indirect proofs do not find an adequate attention in school 
practice, at any school level (Thompson, 1996; Bernardi, 2002). But, although correct, 
this remark cannot fully explain the difficulties that students seems to face. Taking a 
cognitive perspective, other studies contributed to identify specific aspects that, affecting 
students' cognitive processes, could be responsible of their difficulties. For instance, 
assuming and dealing with false hypotheses was recognized as one of the main sources 
of difficulties (Leron, 1985). As far as the production of a proof is concerned, Wu Yu et 
al. (2003) and Antonini (2001, 2003a) demonstrated how difficulties could be found at 
the very beginning, when there is the need of correctly formulating the negation of 
statement. The distinction between different functions of a proof led to interpret 
students’ difficulties (Barbin, 1988), to analyse conjecture generation processes that can 
lead students to produce a proof by contradiction (Antonini, 2003b), to propose 
                                          
  This research study was supported by the Italian Ministry of University and Research - Prin 2005 # 2005019721. 
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innovative didactic approaches to indirect proofs (Polya, 1967, pp. 163-171). Similarly 
differences were described in relation to how verbal and symbolic context affect 
students' performances when dealing with contraposition equivalence (Stylianides et al., 
2004). The aim of this paper is outlining a frame allowing a uniform and systematic 
approach overcoming the fragmentary of previous contributions. What we present is an 
interpreting model of indirect proof, as well some examples aimed to illustrate its 
effectiveness. 

METHODOLOGY 
Our project developed through two main research directions, empirical and theoretical; 
the dialectical relationship between them contributed to the construction of the 
interpreting model. Empirical data were both qualitative and quantitative and were 
collected according to different methodologies: individual interviews, written tests, 
observation and recording of classroom activities, mainly collective discussion. 
Empirical investigations concerned both high school and university students (in 
particular  students of scientific faculties: Mathematics, Physics, Biology, Pharmacy). 

THE MODEL 
The elaboration of the model started from the analysis of indirect proof that we framed 
within the model introduced in (Mariotti et al., 1997; Mariotti, 2000) through the 
‘didactic’ definition of ‘mathematical theorem’. According to such a definition, a 
mathematical theorem is characterized by the system of relations between a statement, 
its proof, and the theory within which the proof makes sense. In the following the tern 
constituted by Statement, Proof and Theory, will be referred as (S, P, T).
The refinement of this definition was elaborated with the objective of taking into 
account two basic aspects: the logical structure of an indirect proof and the distinction 
between Theory and Meta-Theory. 
Direct and indirect Proof 
First of all, let us try to clarify what we mean with the expression indirect proof. In fact, 
the use of the expressions "indirect proof", "proof by contradiction", "proof by 
contraposition", "proof ad absurdum" in the textbooks is far from being clear and 
uniform, while its use may be considered controversial even among the mathematicians 
(Bernardi, 2002; Antonini, 2003a). In general, these expressions denote one or both of 
the types of proof which, in this paper, we call proof by contradiction and proof by 
contraposition. From logical point of view, there are important differences but also 
several relationships between them that we do not treat here; in the teaching of 
mathematics, in Italy, both of them are generally named “dimostrazione per assurdo”
while sometimes this expression is used only for proof by contradiction (Antonini, 
2003a).
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In this paper, by indirect proof we refer to both proof by contradiction and proof by 
contraposition. In other words, consider a statement S and assume that it can be 
formulated as an implication, p�q; let us name direct the proof P if among the 
statements that constitute the deductive chain does not appear the negation of the thesis 
p. If this is not the case, we will speak of indirect proof. Elaborating on this basic 
definition we are going to describe the structure of indirect proofs. Consider the 
following examples. 
Example 1 
Statement: Let n be a natural number. If  n2 is even then n is even. 
Proof: Assume n a natural odd number, then there exists a natural number k such that n=2k+1. 
As a consequence n2 =(2k+1)2=4k2+4k+1=2•(2k2+2k)+1, that means that n2 is an odd number. 

This is an example of "proof  by contraposition". If the statement is expressed by the 
implication p�q, the given proof is a direct proof of the new statement "if n is odd then 
n2  is odd", that is the contraposition (!q�!p) of the original statement p�q.
Example 2 
Statement: Let a and b be two real numbers. If ab=0 then a=0 or b=0. 
Proof: Assume by contradiction that ab=0 and that a�0 and b�0. Since a�0 and b�0 one can 
divide both sides of the equality ab=0 by a and by b, obtaining 1=0. 

This is an example of a "proof by contradiction", where is given a direct proof of the 
statement "let a and b be two real numbers; if ab=0 and a�0 and b�0 then 1=0 ". The 
hypothesis of this new statement is the negation of the original statement and the thesis 
is a false proposition (“1=0”).
In both examples, in order to prove a statement S, that we will call the principal
statement, a direct proof is given of a new statement S*, that we will call the secondary
statement.

Principal statement S Secondary statement S* 
Let n be a natural number.  
If  n2 is even then n is even. 

Let n be a natural number.  
If n is odd then n2 is odd. 

Let a and b be two real numbers.  
If ab=0 then a=0 or b=0. 

Let a and b be two real numbers. 
If ab=0 and a�0 and b�0 then 1=0. 

Table 1 
Principal statement and secondary statement in two indirect proofs 

The two examples of proof share a common feature in the shift from one statement 
(principal statement) to another (secondary statement) and base the acceptability of this 
shift on particular logical relationships valid in the meta-theory.  
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In both cases, it is possible to prove that an indirect proof of the principal statement can 
be considered accomplished if the meta-statement S*�S is valid; in fact, in this case, 
from S* and S*�S it is possible to derive the validity of S by the well known “modus 
ponens” inference rule. But, the validity of the implication S*�S depends on the logic 
theory, i.e. the meta-theory, within which the assumed inference rules are stated. As it is 
commonly the case, i.e. in the classic logic theory, such a meta-theorem is valid, but it 
does not happen in other logic theories, such as the minimal or the intuitionistic logic1.
Of course, no trace of this meta-theoretical elaboration is made explicit in the proofs as 
they are usually presented both the textbooks and in the courses. 
A model of indirect proof  
According to the previous analysis three key statements and three key theorems are 
involved in an indirect proof. The statements are: the principal statement S, the 
secondary statement S* and the implication S*�S, that we can name meta-statement,
referring to its meta-theoretical status. The theorems are:  

1. the sub-theorem (S*,C,T) consisting of the statement S* and direct proof C based 
on a specific mathematical theory T (Algebra, Euclidean Geometry, and the like); 

2. a meta-theorem (MS, MP, MT), consisting of a meta-statement  MS=S*�S and a 
meta-proof MP based on a specific Meta-Theory, MT (that usually coincides with 
classic logic); 

3. the principal theorem, consisting of the statement S,  the indirect proof of S, based 
on a theoretical system consisting of both the theory T and the meta-theory MT.

Let name an indirect proof of S a pair consisting in the sub-theorem (S*,C,T) and the 
meta-theorem (MS,MP,MT); in symbols P=[(S*,C,T),(MS,MP,MT)]. In summary, an 
indirect proof consists of a couple of theorems belonging to two different logical levels, 
the level of the mathematical theory and the level of the logic theory.

Statements Proofs Theoretical levels
S* C

direct
Theory T 

S*�S MP Meta-Theory (MT)

S (S*,C,T)+(MS,MP,MT)
indirect

T+MT
Theory and Meta-Theory 

Table 2 
Analysis of an indirect proof. We highlighted the only elements usually made explicit in a 

mathematical proof as we read it in a textbook. 

                                          
1 For a definition in terms of rules of inference of the classic, minimal and intuitionistic logic, see Prawitz (1971). 
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HYPOTHESES EMERGING FROM THE INTERPRETING MODEL 
The model presented above emerged from an a priori structural analysis but can be 
reinvested to describe and analyse students' cognitive processes, involved both in 
producing and interpreting indirect proofs. In particular, this model allows to identify 
key elements to formulate research hypotheses concerning the potential source of 
students' difficulties. In the following we will discuss some of them. 
1) The shift from the proof of the principal statement to the proof of the secondary 

statement may present specific difficulties; in fact, the relationship between the two 
proofs may not be so intuitively acceptable (in the sense of Fischbein, 1987) as is 
commonly assumed.  

2) Cognitive conflict may be expected to emerge in either producing or interpreting the 
proof of the secondary statement, when inferences are made on the base of openly 
false hypotheses.

We are going to illustrate these hypotheses through the discussion of two examples; we 
hope also to illustrate the effectiveness of the model in framing the analysis. In the 
transcript of the interviews the letter "I" indicates the interviewer while the initial of the 
name indicates the student. Emphasis is expressed by bold characters.
Difficulties in the shift from the principal to the secondary statement
Fabio is a university student (last year of the degree in Physics), he was asked to express 
his opinion on the indirect proof 2.

PROTOCOL ANALYSIS

F: Proof by contradiction is artificial: how 
does one get out of it? Ok, you have arrived 
to the contradiction… and then? […] I don’t 
see that conclusion be linked to the other one, 
I miss the spark […] 

Fabio clearly express his difficulty to grasp the 
link between the two statements S and S*: 
according to our model the source of difficulty 
seems to be the meta-theorem.

I: Let’s make an example: we take a natural 
number n. Theorem: if n2 is even then n is 
even. Proof: if n is odd I write n=2k+1, then... 
[the interviewer writes down algebraic 
transformations] n2=2(2k2+2k)+1 is odd. 

The interviewer proposes an example. The 
principal statement is: 
S : if n2 is even then n is even.
The indirect proof consists of the direct proof
of the secondary statement, S*, that remains 

                                          
2 Fabio and the interviewer use the expression “proof by contradiction” to denote “proof by contraposition”. As previously 
reported, many students and teachers in Italy, name in this way both proof by contradiction and proof by contraposition, 
without distinguish between the two types. 
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unspoken: if n is odd then n2 is odd. 

F: Yes, I understand, it is better to prove that 
if n is odd then n2 is odd. 

I: And then, which is the problem? 

Fabio acknowledges the advantage of the shift
to the secondary statement S*, that he makes 
explicit.

F: The problem is that in this way we proved 
that n is odd implies n2 is odd, and I accept 
this; but I do not feel satisfied with the other 
one.

I: Do you agree that natural numbers are odd 
or even and there are not other possibilities? 

Fabio clearly express his feeling. He can 
identify the two statements, he is ready to
accept the given proof, C, as a proof of S* 
(“we proved that n is odd implies n2 is odd, 
and I accept this”) but not as a proof of S (“I
do not feel satisfied with the other one”).

F: Yes, of course... and now you will say: n2

is even, n is even or odd, but if it were odd, n2

would be odd, but it was even... yes, ok, I 
know, but…something escapes me. 

Fabio shows that is able to produce an 
argument to explain the method of the indirect
proof, nevertheless there is something that he 
is not able to grasp (“something escapes me”).

F: First of all, why do I have to begin from n 
not even? I don’t see immediate conclusion. 
And, at the end: “then it can not be other than 
n even”, it is a gap, the gap of the 
conclusion... it’s an act of faith... yes, at the 
end it’s an act of faith. 

The move from the proof of the secondary 
statement to the validation of principal 
statement is not immediate, on the contrary is 
not rationally acceptable.

As the analysis of the protocol shows, the acceptability of the proof of the statement S* 
does not immediately entail that the principal statement was proved. The feeling of 
distress (upset) openly expressed by Fabio was also observed in other studies. For 
instance  Stylianides et al. (2004) observed a similar resistence:  
“some students reject the contraposition equivalence rule because they believe that the 
correct equivalence relating the conditional statement p � q with the proposition ! p 
and ! q is p �  q " ! p � ! q” (p. 149). 
What makes this protocol so peculiar is the fact that the introspection ability of Fabio let 
us know where the conflict arises. According to our hypothesis and with the terminology 
of our model, the difficulty can be localized in the meta-theorem, that is in the cognitive 
difficulty of grasping as immediate the logical link expressed by the implication S*�S.
For Fabio, and probably for many other students, such a link is not an intuition (in the 
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sense of Fischbein, 1987; for other details on intuition and the shift between statements, 
see also Antonini, 2004) and accepting it is cause of distress (“I don’t see immediate 
conclusion”,  “I do not feel satisfied”, “something escapes me ”).
Difficulties in identifying the Theory of reference 
The following example concerns specific difficulties related to producing a proof of a 
secondary statement, when the inferences should be based on openly false assumptions. 
Maria is a university student of the last year of Pharmacy. (For other details on the proof 
of the secondary statement, see Antonini & Mariotti, 2006).

PROTOCOL ANALYSIS

I: I: Could you try to prove by contradiction 
the following: “if ab=0 then a=0 or b=0”? 
M: [...] well, assume that ab=0 with a 
different from 0 and b different from 0... I 
can divide by b... ab/b=0/b... that is a=0. I 
do not know whether this is a proof, because 
there might be many things that I haven’t 
seen.

The interviewer asks Maria a proof by
contradiction. 

Maria produces such a proof, but she is doubtful
about its validity. 

M: Moreover, so as ab=0 with a different 
from 0 and b different from 0, that is against 
my common beliefs [in Italian: “contro le 
mie normali vedute”] and I must pretend to 
be true, I do not know if I can consider 
that 0/b=0. I mean, I do not know what is 
true and what I pretend it is true.

Difficulties emerge about the validity of the 
sub-theorem: upsetting fundamental beliefs 
seems to be the cause. Maria declares that she
lost the control on what is true and what is false.

I: Let us say that one can use that 0/b=0. 
M: It comes that a=0 and consequently … 
we are back to reality. Then it is proved 
because … also in the absurd world it may 
come a true thing: thus I cannot stay in the 
absurd world. The absurd world has its 
own rules, which are absurd, and if one 
does not respect them, comes back. 

Maria considers “absurd” the “world” where 
the false hypothesis of the secondary statement
is assumed. The “rules” (Theory) in respect to 
which the proof of the sub-theorem makes 
sense, belong to an "absurd world"; these rules 
are absurd too, they may not coincide with the 
rules commonly applied.  

I: Who does come back?
M: It is as if a, b and ab move from the real 
world to the absurd world, but the rules do 
not function on them, consequently they 

Where we accept something false, Maria 
claims, whatever can happen, included 0/b�0.
The absurdity of the hypothesis of the
secondary statement conflicts with use of the 
'common' Theory; Maria thinks that T should be
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have to come back …  
M: But my problem is to understand which 
are the rules in the absurd world, are they 
the rules of the absurd world or those of the 
real world? This is the reason why I have 
problems to know if 0/b=0, I do not know 
whether it is true in the absurd world.
[…]

replaced by a new theory T*, different and more
adequate to the absurd world where the proof is 
deplaced. The real world has its own rules, 
different from those of the absurd world . 

I: [The interviewer shows the proof by 
contradiction of  “ 2  is irrational”, than 
asks] what do you think about it? 
M: in this case, I have no doubts, but why is 
it so? … perhaps, when I have accepted that 
the square root of 2 is a fraction I continued 
to stay in my world, I made the calculations 
as I usually do, I did not put myself 
problems like “in this world, a prime 
number is no more a prime number” or “a 
number is no more represented by the 
product of prime numbers”. The difference 
between this case and the case of the zero-
product is in the fact that this is obvious 
whilst I can believe that the square root of 2 
is a fraction, I can believe that it is true 
and I can go on as if it were true. In the 
case of the zero-product I cannot pretend 
that it is true, I cannot tell myself such a lie 
and believe it too!

Differently from the previous case, Maria
declares that she is comfortable with this proof;
in fact, assuming the 2  is rational does not
present any difficulty for her: the fact that 2
is rational is plausible. Consequently, in the 
absurd world, where 2  is rational, the basic 
truths are not questioned (“I can believe that it
is true and I can go on as if it were true”), the 
Theory of reference is not upset. 

The source of Maria's difficulties can be found in the difficulty of managing the upset of 
well settled rules caused by an assumption that is so evidently false for Maria that she 
cannot even pretend that it is true without upsetting the whole theoretical frame within 
which any proof can make sense. According to our model, Maria difficulties concern the 
sub-theorem (S*,C,T) and in particular the identification of theory to which the proof C 
refers. Maria hypothesises that a new theory T* should be used, different but more 
adequate to the absurd situation generated by the false assumption, in which she does 
not know whether 0/b is equal or not to 0.
This result agrees with what expressed by Durand-Guerrier (2003): implication with 
false antecedent are not accepted or however are considered as false by students. In 
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order to accept a proof it seems necessary to start from true, or at least potentially true, 
assumptions.

CONCLUSIONS 
Although the brevity of this text does not allow further discussion, we hope that the 
previous examples gave an idea of how the interpretative model may function in the 
analysis of students difficulties. In particular the model allows to clarify the articulation 
of the different theorems involved (principal theorem, sub-theorem and meta-theorem),
and the articulation of the different theoretical levels (theory and meta-theory). A 
generic difficulty related to indirect proof can be consequently analysed in a more 
refined way, focussing on different aspects, showing the appearance of quite different 
kind of 'difficulties'.  
An open research question is how to design teaching interventions aimed either to foster 
students' introduction to indirect proofs or to help students to overcome cognitive 
conflicts. We think that the model could show its effectiveness for planning didactic 
interventions, but in this regards, further investigation is necessary. 
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MATHEMATICS LEARNING AND THE DEVELOPMENT OF 
GENERAL DEDUCTIVE REASONING 

Michal Ayalon  Ruhama Even 

Weizmann Institute of Science  
This study aims to examine the approaches of people involved in mathematics 
education and logic to the role played by learning mathematics in the development of 
general deductive reasoning. The data source includes 21 individual semi-structured 
interviews. Analysis based on the Grounded Theory method identified three distinct 
groups of interviewees with relation to views of (a) the meaning of deductive 
reasoning, (b) the relationships between logical rules inside and outside 
mathematics, (c) the aspects of deductive reasoning that can be developed through 
learning mathematics, and (d) the likelihood of mathematics learning to develop 
deductive reasoning.

INTRODUCTION
The development of deductive reasoning, not only in mathematics, but in general, is 
stated as a goal of mathematics teaching in many curricula from all over the world 
(e.g., National Council of Teachers of Mathematics, 2000; Qualifications and 
Curriculum Authority, 2006). This study aims to examine the approaches of people 
who are involved in various aspects of mathematics education and logic to the role 
played by learning mathematics in the development of general¹ deductive reasoning. 
Following is a brief review of the literature concerning deductive reasoning – in 
general, in mathematics, and outside mathematics, and the role of learning 
mathematics in the development of deductive reasoning.  
Deductive reasoning 

There are various sorts of thinking and reasoning. Among them are association, 
creation, induction, plausible inference, and deduction (Johnson-Laird & Byrne, 
1991). Deductive reasoning is unique in that it is the process of inferring conclusions 
from known information (called premises) based on formal logic rules, where 
conclusions are necessarily derived from the given information and there is no need 
to validate them by experiments². Valid deductive arguments preserve truth in the 
sense that if the premises are true, then the conclusion must also be true. An example 
for a common form of deductive inference is the syllogism, which consists of two 
premises and an inferred conclusion. For instance, All A are B; Some C are A; 
Therefore, some C are B. No matter what terms we substitute for A, B, and C, the 
result is a valid deduction. Thus, the following argument is valid: All kinds of music 
are enjoyable; punk is a kind of music; therefore, punk is enjoyable. Obviously, not 
all will agree with this conclusion, but the form of the argument assures us that in the 
case that the premises are true, the conclusion is true as well.  
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Deductive reasoning and mathematics 

Deductive reasoning is most significant in mathematics. And indeed, deductive 
reasoning is often used as a synonym for mathematical thinking, especially by the 
formalist school. The formal mathematical-deductive method is defined as starting 
with undefined terms, and some unproven statements – axioms or postulates. Other 
mathematical statements (i.e., theorems) are deduced from them using the rules of 
formal logic, forming a chain of deductions. In the pure formalist approach 
statements are neither true nor false because they are about undefined terms. Being 
free from the need to attend to the truth of mathematical statements enables 
mathematical explorations not available otherwise. Still, mathematics does not remain 
in the pure formal level. The undefined terms and axioms are often interpreted in 
connection to the world in which we live, and truth is associated with these 
interpretations. In this regard, the axioms of a specific mathematical theory are often 
said to be true and the theorems deduced from them are then also said to be true 
(Davis & Hersh, 1981). Deductive reasoning is central to mathematics for proving the 
truth of mathematical ideas, and for recording these ideas. However, it is commonly 
accepted in recent years that conjecturing, exploration, and creation of new 
mathematical objects and ideas are seldom done by deductive reasoning. Rather they 
are based on inductive and intuitive methods (Eves, 1972; Lakatos, 1976; Polya, 
1954), similar to the way science is developed.  
Deductive reasoning outside mathematics 

Since the early days of Greek philosophical and scientific work, deductive reasoning 
has been considered as a high (and even the highest) form of human reasoning 
(Glantz, 1989; Luria, 1976). Still, deductive reasoning plays a different role in 
science than in mathematics. In contrast with modern mathematics, science strives to 
describe the real world. The scientific process is based to a large extent on inductive 
reasoning – developing hypotheses based on empirical observations to describe 
“truths” or “facts” about our world (Freudenthal, 1977; Popper, 1968). Whereas this 
process has similar characteristics to the way mathematical conjectures are often 
developed, the stage of providing evidence for the truth of the conjecture is different. 
Scientific hypotheses, unlike mathematical conjectures, can only be supported – not 
proven deductively. Nonetheless, deduction is an important tool in science for 
refuting hypotheses and also plays a major role in predicting and explaining scientific 
phenomena (Freudenthal, 1977). 

Thus, plausible reasoning, and not deductive reasoning, characterizes science as 
well as other domains, like law and economics (Polya, 1954). Many suggest that 
everyday activities are even more remote from deductive reasoning (Duval, 2002, 
Krummheuer, 1995; Toulmin, 1969). In daily life people do not support their claims 
by a deductive sequence of derivations. Convincing others in the truth of one's 
claims (or in the rational of one's choices) is the main concern, and not their 
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validity. Thus, substantial arguments (Toulmin, 1969), which do not have the 
logical rigidity of formal deductions, but are rather more of the plausible type, are 
often more used, gradually support a statement or a decision, motivated by the need 
or desire to convince (Perelman & Olbrechts-Tyteca, 1969).  
Developing deductive reasoning via learning mathematics

The essential role that deductive reasoning plays in mathematics, on one hand, and 
the questionable use of deductive reasoning in other fields, on the other hand, raises 
several issues related to mathematics education. One of them (to which this study 
relates) is the question of developing deductive reasoning via mathematics learning. 
Indeed, curriculum guidelines, textbooks and teacher guides in many countries state 
that mathematics teaching helps students develop their ability to reason logically, and 
that one of its goals is the development of deductive reasoning, not only in 
mathematics, but in general. For example, the Qualifications and Curriculum 
Authority (2006) states: "Mathematics equips pupils with a uniquely powerful set of 
tools to understand and change the world. These tools include logical reasoning, 
problem-solving skills, and the ability to think in abstract ways" (emphasis added). 
Similar claims are suggested by several  researchers (e.g., Clements & Battista, 1992; 
Morris & Sloutsky, 1998). For example, Polya (1954, p. v) wrote: "Everyone knows 
that mathematics offers an excellent opportunity to learn demonstrative reasoning". 
However, Polya himself challenges the role of demonstrative reasoning in real life 
situations: "Anything new that we learn about the world involves plausible reasoning, 
which is the only kind of reasoning for which we care in everyday affairs". Later he 
continues: "The general or amateur student [one who does not intend to make 
mathematics his life's work] should also get a taste of demonstrative reasoning: he 
may have little opportunity to use it directly, but he should acquire a standard with 
which he can compare alleged evidence of all sort aimed at him in modern life" (p. 
vi). A question is, then, raised – to what extent should the development of deductive 
reasoning be part of mathematics education? This study asked for the opinions of 
people who are involved in mathematics education and logic about the connections 
between mathematics learning and the development of general deductive reasoning.  

METHODOLOGY

The research population includes 21 participants. Most of them, 17, belong to at least 
one of the following groups: junior-high school mathematics teachers, mathematics 
teacher educators, mathematics curriculum developers, researchers in mathematics 
education, and research mathematicians. Two other participants are researchers in 
science education who study logical thinking, and the remaining two are logicians. 
Individual semi-structured interviews were conducted with each one. The interviews 
lasted one to two hours, and focused on different issues related to the role of learning 
mathematics in the development of deductive reasoning. The interviews were 
transcribed. Using the Grounded Theory method (Glaser & Strauss, 1967) we coded 
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the data from the interviews and generated initial categories, which were constantly 
compared with new data from the interviews. Based on refinement of the initial 
categories, we identified core categories, and used them as a source for theoretical 
constructs. Some of the main aspects that were developed through this process are 
discussed in this paper: The meaning of deductive reasoning, in general, in 
mathematics and outside it; the aspects of deductive reasoning which can be 
developed through learning mathematics; and the likelihood of mathematics learning 
to develop deductive reasoning.  

DEVELOPING GENERAL DEDUCTIVE REASONING VIA LEARNING 
MATHEMATICS

All 21 interviewees who participated in this study argued that learning mathematics 
could develop general deductive reasoning. They also pointed out that developing 
deductive reasoning should be one of the objectives of mathematics education. One 
interviewee, for instance, when asked whether he thinks that improving deductive 
reasoning is a goal of mathematics education, replied: 

Eventually the instruction of mathematics has two main objectives. One of them is to 
train those people who will use mathematics, and the other is intended for those who 
won't use mathematics afterward – to present an example of deductive reasoning… I 
think that developing deductive reasoning is a very important aim… It is the role of 
mathematics teaching (interviewee no. 5, a curriculum developer and a teacher educator). 

But what do the interviewees mean when saying that learning mathematics could 
improve deductive reasoning? How likely it is that learning mathematics will 
contribute to the development of such reasoning? What do they mean when claiming 
that improving students' deductive reasoning is one of the goals of mathematics 
instruction? And what is their approach to deductive reasoning, in mathematics and 
outside it? Analysis of the interviews reveals that the interviewees provide different 
answers to these questions and attribute different meanings to the following aspects: 
the meaning of deductive reasoning, its nature in mathematics and outside it, the 
aspects of it which can be developed through learning mathematics, and the 
likelihood of mathematics learning to develop deductive reasoning. Three distinct 
groups of interviewees were identified, with the members of each group consistent in 
their approaches to each aspect. Below is a short review of the groups' views, 
accompanied with a few (because of limits of space) illustrative excerpts from the 
interviewees.  
Group A 

Four interviewees belong to group A. They describe deductive reasoning as a process 
in which one develops a solution to a given problem in a systematic, step-by-step 
manner. Each step of this process is derived from the previous one, and leads to the 
next. However, no indication was given as to how a step is derived from its 
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predecessor. These interviewees consider the logical rules inside mathematics as 
identical to those of outside-mathematics thinking. They view logical rules, both 
inside and outside mathematics, as systematic principles of thinking, according to 
which thinking progresses step by step.  

These interviewees claim that learning mathematics contributes to the improvement 
of deductive reasoning in the development of systematic habits of mind. They ascribe 
this development to the systematic structure of mathematics and to the methodical, 
step-by-step way of solving mathematical problems. According to them, the 
development of deductive reasoning occurs spontaneously as a consequence of doing 
mathematics. Doing mathematics provides experiences in, and thus improves 
students' deductive reasoning. For example, an interviewee was asked whether 
learning mathematics could improve deductive reasoning. She replied:   

I think that mathematics improves deductive reasoning, and I think that it is one of 
mathematics' main goals… I know that generally, as I told you, it will teach him [the 
student] to think logically and will give him tools to think and a desire to think and to be 
organized and systematic… Just from learning mathematics, his logical thinking 
develops in other fields in life as well. But I don't want while teaching, in every new 
theorem or in every new formula I teach him, to ask myself what kind of systematic tool 
it provides him with… I don't take each thing and filter it through a 'thinking strainer'… 
It happens by itself (interviewee no. 11, a senior high school teacher). 

Group B 

Thirteen interviewees belong to group B. They relate deductive reasoning to an action 
of inference or validation using rules of formal logic. Whereas group A focuses on 
deductive reasoning as a systematic, step-by-step process, group B members center 
on characteristics of the transition from one step in the deductive process to the next: 
they focus on the logic essence of an inference, on its validness according to logical 
rules. In addition, while group A focuses on deductive reasoning as means of solving 
a given problem, group B members refer to it as means of building and validating 
arguments. They assert that logical rules used in mathematics (i.e. formal rules of 
inference) are also used outside mathematics, for example, when trying to understand 
the insurance rights one would have according to different levels of price. However, 
these interviewees claim that different factors affect deductive reasoning outside 
mathematics. Thus people apply other, usually 'softer' rules of inference, in addition 
to the rigorous ones. Two distinct opinions regarding the factors that affect reasoning 
outside mathematics are found among the interviewees: Six of them (group B1) talk 
about external conditions, such as uncertainty and complexity of phenomena in nature 
and society. The other seven (group B2) explain the distractive influence by internal 
conditions, such as emotions and beliefs.  

Group B members claim that learning mathematics could develop habits of 
argumentation (not necessarily deductive). Mathematics, they claim, because of its 
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particular nature of validation, enables the exposure to deductive justifications and 
validations. Moreover, its relatively abstract, detached from reality nature can provide 
students with opportunities to learn and to apply logical validation, without the 
distractive influence of prejudices and beliefs that exists in life. Thus, for example, 
emphasizing the meaning of proof or the different functions of statements (e.g., given 
information, claims to be supported), can contribute to the improvement of students' 
skills of argumentation, such that are also relevant to outside mathematical contexts. 
The examples given by those interviewees include providing grounded justifications 
(even if not deductive) for beliefs and knowledge in daily life, or critically examining 
of the rationality of claims.    

Unlike group A, group B members argue that there is a need for a deliberate 
intervention in the mathematics instruction in order that mathematics contributes to 
the development of argumentative skills. Some claim that in order to teach 
mathematics in a way that will improve these skills, logic should be introduced as a 
separate unit of study within mathematics. Others suggest various ways of 
emphasizing deduction constantly and continuously, claiming that in order to develop 
argumentative skills, there is a need to explicitly teach and practice principles of 
deduction as an integral part of mathematics lessons, in various situations and 
problems, 

I think that students who are involved with deductions in mathematics, and whose teacher 
points at deductive connections and at logical mistakes, can improve their deducing 
ability, and to like, for example, to look for deductive connections or to identify logical 
fallacies. I know I like doing it. Even if it is not a real deductive argument, but more of 
the plausible kind, whoever meets deductions in mathematics will be able to make much 
more rational inferences in his life, not only intuitive ones (interviewee no. 9, a 
curriculum developer and a teacher educator).    

Group C 

Four interviewees belong to group C. Like those of group B, they also see deductive 
reasoning as an action of inference or validation using logical rules. However, they 
argue that outside mathematical contexts, we do not or even cannot use the formal 
logic rules existing in mathematics. One reason for that claim was that the essence of 
thinking inside mathematics is entirely different from that outside it. Another 
explanation was that in daily life, as opposed to mathematics, one barely encounters 
suitable circumstances for using logical rules. Some also argued that even if one 
encounters such an opportunity, it is not likely that s/he applies them, because in 
everyday discourse specific argumentative norms exist. According to these norms, the 
logic of an argument that one builds is neither a necessary condition for 
understanding nor for accepting the argument.  

The interviewees of this group believe that learning mathematics may influence 
students' general deductive reasoning. However, they find it hard to point out in what 
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ways exactly. Moreover, according to them, even if the possibility of promoting 
students' deductive skills through learning mathematics does exist, it seems difficult 
to reach, because of the current demands of the educational system, especially the 
matriculation exams. For example, an interviewee was asked whether learning 
mathematics can improve deductive reasoning. He replied: 

It is not that I think it impossible to teach deductive reasoning through mathematics. I 
believe that mathematics has some influence on this thinking. I just don't know what kind 
of influence, and can't tell how it could be done. And even if we assume that it is possible 
to do so, I don't believe it is possible in the present system… How can one teach and 
learn logical thinking if one is facing the pressure of the matriculation exam? 
(interviewee no. 4, a researcher in mathematics education and a mathematician).  

As these interviewees do not offer an alternative system by which mathematics 
instruction can promote deductive reasoning, they actually leave the question of 
promoting it via learning mathematics open and with deep reservation. Table 1 
summarizes these findings. 

Table 1: Summary of findings 

 

Meaning of 

deductive 

reasoning 

Logical rules 

inside and 

outside

mathematics

What learning 

mathematics develops 

in deductive 

reasoning 

The likelihood 

that learning 

mathematics

improves

deductive 

reasoning 

# interviewees 

n=21

A Systematic 

process 
Unification 

Habits of mind of

systematicness 
Spontaneity 4 

B

Inclusion 

(external, 

internal) 

Habits of mind of 

argumentation 
Intervention 13 (6,7) 

C

 

Formal logic 

based inference 

Separation Cannot point out Reservation 4 

CONCLUSIONS

The findings of this study suggest that all its participants view the development of 
general deductive reasoning as a goal of mathematics instruction. They all assume 
that to some degree this goal is attainable. However, differences were found among 
the participants regarding the likelihood and degree of difficulty of achieving this 
goal. The differences seem to relate mainly to the participants’ approaches to 
deductive reasoning, in general, in mathematics, and outside it³: Some of them 
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describe deductive reasoning as a systematic step-by-step approach for solving 
problems. Being systematic in thinking is one feature of deductive reasoning, which 
characterizes other kinds of reasoning as well. It is also something that people come 
across in diverse non-mathematical situations. Likewise, these interviewees consider 
the logical rules inside mathematics to be identical to those in outside-mathematics 
thinking. Consequently, these interviewees may naturally point at the simplicity by 
which the development of systematic habits of mind occurs through learning 
mathematics. On the other hand, the interviewees who describe deductive reasoning 
as an action of inference based on rules of formal logic, attribute, as the literature 
does, complexity to the nature of deductive inference in different domains of life. 
Accordingly, they consider the development of deductive reasoning through 
mathematics learning as a complex process that requires deliberate intervention. 
Moreover, their referring to the aspects of deductive reasoning which can be 
developed does not relate exclusively to deduction (they refer to argumentation, but 
not necessarily to deductive argumentation). Some of these interviewees are even not 
sure whether the process of developing deductive reasoning through learning 
mathematics is at all possible.  

The fact that most interviewees claim that, to some extent, mathematics learning can, 
and even should, contribute to the development of deductive reasoning, suggests that 
this issue deserves further attention. In particular, it would be worthwhile to examine 
in what sense, and under what conditions, learning mathematics develops (as most 
interviewees claimed) skills of argumentation. Another issue raised by this study is 
whether specific sub-communities in the community of mathematics educators tend 
to approach deductive reasoning and its development through learning mathematics 
in particular ways. Group A includes two teachers and two curriculum developers, 
one of which is also a teacher educator. There are several other teachers, teacher 
educators and curriculum developers in the other groups as well. However, all the 
mathematicians, the researchers in mathematics education and in science education, 
and the logicians belong to the other groups (B&C)4. Indeed, the relative small size of 
the research population does not allow generalization. Still, it seems worthwhile to 
study more thoroughly whether there is a connection between the nature of people’s 
professional activities and their approaches towards deductive reasoning and its 
development through learning mathematics.  

NOTES
1. By 'general deductive reasoning' we mean deductive reasoning that is not restricted to mathematics, but can be 
implemented in other fields as well. 

2. This is the classic approach to deductive reasoning, which is also adopted in this paper. There are also other 
approaches; the main one is based not on formal rules of inference but on manipulations of mental models representing 
situations (Johnson-Laird, 1999). 

3. For an elaboration of these approaches see Ayalon & Even, 2006. 
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4. A more refined report on the characterization of the approaches of each type of population is in preparation.   

REFERENCES
Ayalon, M. & Even, R.: 2006, 'Deductive reasoning: Different conceptions and 

approaches', In J. Novotn�, H. Moraov�, M. Kr�tk�, and N. Stehilkov� (Eds.), 
Proceedings 30th Conference of the International Group for the Psychology of 
Mathematics Education, Vol. 2 (pp. 89-96). Prague:PME. 

Balacheff, N.: 1999, Is argumentation an obstacle? Invitation to a debate..., 
International newsletter on the teaching and learning of mathematical proof. 
(May/June 1999). Retrieved from: 
http://www.lettredelapreuve.it/Newsletter/990506Theme/990506ThemeUK.html 

Clements, D. H., and Battista, M. T.: 1992, 'Geometry and spatial reasoning', in D. 
A. Grouws (Ed.), Handbook of research on mathematics teaching and learning 
(pp. 420-464). New York: Macmillan.  

Davis, P. J. and Hersh, R.: 1981, The mathematical experience. Boston: Birkhäuser.  
Duval, R.: 2002, 'Proof understanding in mathematics', Proceedings of 2002

International Conference on Mathematics: Understanding proving and proving 
to understand (pp. 23-44). National Taiwan Normal University. Retrieved from: 

Eves, H.: 1972, A survey of geometry. Boston: Allyn and Bacon. 
Freudenthal, G.: 1977, Philosophy of science (Units 1-4). Tel-Aviv: Open 

University (in Hebrew). 
Glantz, I.: 1989, Thinking in three-directional functioning. Tel Aviv: Cherikover (in 

Hebrew). 
Glaser, B. G. and Strauss, A. L.: 1967, The discovery of grounded theory: Strategies 

for qualitative research. New York: Aldine.  
Johnson-Laird, P. N.: 1999, Deductive reasoning. Annual Review of Psychology, 50, 

109-135. Retrieved from: 
    http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.psych.50.1.109 
Johnson-Laird, P. N. and Byrne, R. M. J.: 1991, Deduction. Hillsdale, NJ: Erlbaum. 
Krummheuer, G.: 1995, 'The ethnography of argumentation', in P. Cobb, & H. 

Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in 
classroom cultures (pp. 229-269). Hillsdale, NJ: Erlbaum. 

Lakatos, I.: 1976, Proofs and refutations: The logic of mathematical discovery. 
Cambridge: Cambridge University Press. 

Luria, A. R.: 1976, Cognitive development: Its cultural and social foundations. 
Cambridge, MA: Harvard University Press. 

http://www.lettredelapreuve.it/Newsletter/990506Theme/990506ThemeUK.htmlMo
rris, A. K., and Sloutsky, V. M.: 1998. Understanding of logical necessity: 
Developmental antecedent and cognitive consequences. Child Development, 69, 
721-741. 

National Council of Teachers of Mathematics: 2000, Principles and standards for 
school mathematics. Reston, VA: Author. 

Working Group 4

CERME 5 (2007) 559



  
Perelman, C. and Olbrechts-Tyteca, L.: 1969, The new rhetoric: A treatise on 

argumentation. Notre Dame, IN: University of Notre Dame Press. 
Polya, G.: 1954, Induction and analogy in mathematics. Princeton, NJ: Princeton 

University Press.  
Popper, K. R.: 1968, The logic of scientific discovery. New York: Harper & Row.  
Qualifications and Curriculum Authority: 2006, National curriculum online. 

Retrieved from http://www.nc.uk.net/index.html 
Toulmin, S. E.: 1969, The uses of arguments. Cambridge, UK: Cambridge 

University Press.  
 

Working Group 4

CERME 5 (2007) 560



HOW TO DECIDE? STUDENTS' WAYS OF DETERMINING THE 
VALIDITY OF MATHEMATICAL STATEMENTS 

Orly Buchbinder & Orit Zaslavsky 
Dept. of Education in Technology & Science 

Technion – Israel Institute of Technology
This article presents an overview of an ongoing study on mathematical reasoning 
patterns of high school students. The initial findings came out of a study that 
examined learning processes and student understandings related to the concept of 
counterexample. More specifically, it examined the ways in which students 
understand and use counterexamples in mathematics, in the course of studying a 
special unit designed to foster opportunities for determining the validity of numerous 
mathematical statements. During the study a number of strategies, which students 
employed in the process of evaluating the validity of mathematical statements, were 
identified. These strategies involved a range of underlying cognitive processes that 
became the main focus of the current research.

BACKGROUND      
Student learning and understanding of mathematical proof has been one of the main 
issues of mathematics education research (e.g. Fischbein, 1982; Hoyles, 1997; Harel, 
2002; Mariotti, 2006). Fischbein (1982) addressed the tensions between students’ 
formal and empirical approaches to proof. Hoyles (1997) found that students have 
difficulties with proof, which derive from their reliance on empirical findings. There 
is also evidence that students often tend to employ example-based reasoning. By this 
we refer to justifications that use examples to convince one’s self or others regarding 
a certain assertion (Rissland, 1991; Zaslavsky & Shir, 2005). This is often similar to 
what Harel (2002) terms empirical proof scheme. In spite of the logical limitations of 
such reasoning in terms of generalization, it is a useful approach mathematicians 
often use to develop a 'guts feeling' regarding the validity of mathematical 
conjectures (Alcock, 2004).
From a logical perspective the use of counterexamples is very simple: one 
counterexample is sufficient to refute a false universal claim, i.e. claim of the form 

. As such, counterexamples are considered an important tool in the 
development of mathematics (Balacheff, 1991; Lakatos, 1976). Polya (1973) 
emphasises the role of counterexamples as an integral part of problem solving 
strategies, while Michener, (1978) regards counterexamples as one of the basic 
elements of expert knowledge of mathematics. 

� �,x P x#

Despite the seemingly simplicity of counterexamples, empirical studies indicate that 
students often posses wrong conceptions associated with counterexamples, their 
generation and use (Balacheff, 1989; Reid, 2002; Zaslavsky & Ron, 1998). Balacheff 
(1991) identified several different ways in which students treat counterexamples. For 
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example, many students are reluctant to accept a single counterexample as sufficient 
proof of a fallacy. Students tend to reject or treat counterexamples as exceptions. 
Kaur & Sharon (1994) found that many college students limit the domain of 
examples they check when evaluating an algebraic statement to integers, ignoring 
negative numbers, fractions and zero.  
Some logical aspects of the use of counterexamples appear to cause major difficulties 
to students (e.g., Helsabek, 1975; Dubinsky et al., 1988). Along this line, Zaslavsky 
& Ron (1997) observed several difficulties students encounter in generating and 
using counterexamples, e.g., the inability to distinguish for a given statement between 
an example that constitutes a counterexample and one that doesn’t; or the generation 
of 'non existing' counterexamples.  
THE STUDY
The purpose of the study was to examine and characterize underlying processes in 
which students engage when dealing with counterexamples, including difficulties 
they encounter. In particular, it aimed at identifying students’ ways of evaluating the 
validity of mathematical statements (both valid and faulty), with a focus on the role 
of counterexamples in these processes.  
For the purpose of the study, a teaching unit that addresses students’ difficulties with 
counterexamples was especially designed (in two parallel versions adjusted for two 
different grade levels) and implemented in two classes: top level 10th grade and low 
level 12th grade. The activities drew on students' prior mathematical knowledge of 
algebra, geometry and calculus tackling various aspects of counterexamples. The 
teaching experiment lasted about two months, during which 6 various activities were 
interwoven throughout the regular curriculum.  
The study was conducted in the form of action research (Ball, 2000), in which the 
researcher served both as developer of the learning environment and as the teacher 
implementing it. Most of the data was collected, during classroom activities, in the 
form of audio recordings of students’ interactions as they worked in small groups and 
of whole-group classroom discussions. In addition, written pre and post 
questionnaires were used, as well as the researcher's journal with field notes and 
reflections. The questionnaires were used for the purpose of triangulation as an 
additional source of information about students’ conceptions regarding 
counterexamples.  
FINDINGS
The findings suggest that engaging in different kinds of activities that emphasize 
various aspects of counterexamples, helped students improve their understanding of 
the notion of counterexample and its use. The same effect was observed in both 
research groups, regardless of the mathematical level or age of the students. The 
analysis of students’ responses revealed that students came to recognize 
counterexamples as legitimate tools for refuting false statements; they became more 
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aware of the domain of validity of mathematical universal statements and of the 
caution needed to avoid overgeneralization of conjectures. In addition, students in 
both classes improved their content knowledge, as well as their reasoning and 
communication skills. 
One of the most interesting finding was the range of strategies by which students 
approached the need to evaluate the validity of mathematical statements. These 
strategies can be described as various paths connecting sequences of points in which 
decisions need to be taken. Interestingly, similar strategies were observed in both 
high and low level students. Some recurring paths which we term patterns were 
identified.
As described above, the students' strategies consisted of sequences of decision 
making steps. Figure 1 (in the form of a flowchart) presents the various paths 
students took, including the most common type of reasoning employed at different 
stages.

Lack of confidence

Was the inference
logically valid?

Correct 
conclusion

end

Deduction . Search for
relevant theorem ,

performance of algebraic
manipulations

Confidence in an
answer

Incorrect 
conclusion

end

Reading a statement (problem data)

Did a feeling of
confidence occur?

Confidence in an answer

yesno

Confidence that a 
statement is false

Example based
reasoning .

Examination of
specific cases

Confidence that a 
statement is true

Was a 
counterexample 

found?

Correct
conclusion
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statement by excluding

counterexamples

end

yesno

yes no

Example based
reasoning .

Examination of
specific cases

Search for evidence
to support an opinion

Example based
reasoning .

Examination of
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1c1h

1c t1c f

2d
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5y
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Figure 1: Students’ strategies in determining the truth value of mathematical 
statements.

As shown in Figure 1, the first step students took for a given statement was based on 
their intuition and sense of confidence. If they felt confident of its truth value (see 1ct 
& 1cf in Figure 1), they stated their assertion and supported it by example-based 
reasoning, that is, by examination of specific examples (see 2e in Figure 1). The 
continuation of the path depended to a certain extent on the truth value of the given 
statement (True or False) and on the student's initial assertion (Correct or Incorrect). 
Thus, a student who was confident that a true statement was false, could not find any 
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counterexample to support his assertion; or a student who asserted that a false 
statement was true, could have found by chance a counterexample that contradicted 
his assertion. In both cases, the example-based evidence had an effect on the student's 
final decision (see 3c & 3i in Figure 1), occasionally resulting in students shift to a 
different decision, sometimes accompanied by a modification of the original 
statement, to exclude the examples that 'didn't fit' (see 4 in Figure 1).  
Students who had no 'guts feeling' in the initial stage (see 1h in Figure 1) expressed 
hesitation and a need to gather evidence in order to form an opinion. Some turned to 
example-based reasoning, while others took a deductive approach, by attempting to 
recall relevant theorems that can help them decide (see 2e & 2d in Figure 1). In either 
approach, after some time, the students reached a decision and expressed confidence 
about it (see 1.1c in Figure 1). Clearly, the correctness of their decision depended on 
the validity of their inferences (see 5y & 5n in Figure 1).
We turn to six examples that illustrate students' reasoning patterns underlying the 
processes of determining the truth value of a given mathematical statement, along the 
paths described above. We distinguish between 4 main situations: The Statement may 
be True or False (TS / FS), and the students' initial Determination could be Correct or 
Incorrect (CD / ID). Examples 1-4 illustrate 4 different cases (TS-CD, TS-ID, FS-
CD, FS-ID). Examples 5 & 6 illustrate cases in which students did not come up with 
an initial assertion about the validity of the statement. In each of the following 
examples we begin with the statement the truth value of which students were asked to 
determine. 
Example 1(TS-CD):
Statement 1: The sum of any three odd numbers is an odd number.
Approach: This is a valid (True) statement. Many students determined correctly from 
the start that it is true, without resorting explicitly to a detailed justification. In order 
to justify their judgment students turned to an investigation of specific examples, 
which we regard as example-based reasoning (Rissland, 1991; Zaslavsky & Shir, 
2005). A typical response was: "Since � �3 1 5 3	 � � �  and � � � �7 13 1 7� 	 � 	 �  the statement is 
always true".

This is a case where students generated a number of examples satisfying the 
conditions of the statement, and (not surprisingly) did not 'bump' into a 
counterexample. From a logical point of view, this does not constitute a proof, 
because theoretically there could be a counterexample that has not been found yet. 
However, since this statement is true, no counterexample exists.  
Example 2 (TS-ID):
Statement 2: The domains of function � �f x  and its derivative � �f x�  are not 
necessarily the same.
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Approach: This is a true statement, which some students determined first as false. 
Students’ initial intrinsic feeling was that the statement is false, i.e. they wrongly 
asserted that the domains of any function f(x) and its derivative f '(x) must always be 
the same. In order to support their answer, students checked several examples, and 
came up with an answer, such as: "This statement is false…we tried some examples... 
Like y � x …"

In terms of students' approach, this is similar to Example 1. This answer is 
particularly interesting, since in the case of � �f x � x , the domains of the function 
and its derivative are in fact different. This function could have served either as a 
counterexample to the student’s initial decision, or as a proof that the statement is 
true. It seems like an initial intuitive feeling influenced not only students’ choice of 
inference, but also their perception of the evidence they collected.
Example 3 (FS-CD): 
In this case, students’ task was to determine whether the given statement is always 
true, can be true in some cases or never true: 
Statement 3: In order to multiply a number by 10, you just need to write an additional 
"0" to its right. 
Approach: This is a false statement, which some students wrongly identified as 
'always true'. In order to justify their initial assertion, they conducted a short 
investigation with different numbers, and came up with a counterexample (e.g., 0.4). 
Students accepted it as a refutation of the statement and modified their assertion. 
They also made an attempt to adjust its domain of validity by excluding the 
contradicting examples and refining the statement. Their final answer was something 
like: "The statement is false, since 0.4 doesn’t satisfy it. But, it’s true for all numbers larger 
than 1". It’s easy to see that also the new statement proposed by the students is false.  
The process of modification of a statement by excluding counterexamples and 
refining its domain of validity is a rational way of treating a mathematical statement 
(Lakatosh, 1976). But in this case students missed a crucial step. The validity of the 
'new' modified statement needs to be examined. This step was ignored by students in 
both groups, even by students in high level class. 
Ending an evaluation process without checking the validity of a new statement is 
logically incorrect. On several occasions students arrived at erroneous statements 
because they failed to check their new conjectures.
Example 4 (FS-ID): 
Statement 4: If two triangles have 2 sides and 3 angles that are equal, then the 
triangles are congruent. 
Approach: This is a false statement. Students (in the high level class) noticed 
immediately that the word “respectively” is missing and suspected that the statement 
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is false. In order to refute this statement they initiated an explicit search for a 
counterexample. When they couldn’t find one, students came up with the following 
sketch claiming it constitutes a counterexample (Figure 2).  

Figure 2: A non-existing 'counterexample' suggested by students 

In this case, the students’ intuition about the statement was correct, but they were not 
able to systematically construct a valid counterexample. Instead, they supported their 
claim by creating what they thought were two triangles that have 5 equal elements (as 
required) but are not congruent (although in their drawing they look as if they are 
congruent). However, by imposing too many conditions the resulting 'triangles' in 
Figure 2 do not exist, thus, cannot serve as a counterexample. At some point, during 
their discussion, students realized this problem, but were not able to figure out where 
exactly they went wrong. 
Example 5:
Statement 5: The function   never gets negative values.4 12 12y x x� � �

Approach: Students had no initial feeling whether the statement is true or false. Thus, 
they expressed the need to investigate the matter further in order to gather evidence 
for determining the truth value of the given statement. Students first turned to 
consideration of special examples (e.g., negative numbers, fractions, 2, -2), that is a 
bottom-up approach:   

Student 1: Listen to me. For this to be negative x must be a fraction. 

Student 2: Why?  

Student 1: If it is not a fraction, then 4x  is…more. If it’s 2, then it’s much bigger 
because…

Student 3: No. Wait. The function never gets negative values. Why? [because] if we 
take 2, how much is ? [….] and if we take (-2)? 16. So…ok…also not 
good. What if we take a number smaller than 1?  

42

Another approach was a top-down one. Students tried to retrieve an appropriate rule 
or theorem that would help them determine whether the given statement is false or 
true. An example of such an approach can be found in the following reaction: 

Student 1:  Can’t we prove it using derivatives and all the stuff we usually do? It says 
here “function”, and we are trying numbers. It’s a function…y is above 
zero. So. It never gets negative values… 

Student 2: Never below zero for any x.
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Student 1: No. [only] if we prove that it’s always above zero, then it’s true… 

As a result of both approaches, students developed confidence about the statement, 
i.e., they became convinced that the statement is false. Both kinds of reasoning led 
students to the right conclusion through logically valid inferences.
Example 6:
In this case, students’ task was to determine whether the given statement is always 
true, can be true in some cases or never true: 
Statement 6: For any real values of  such that: , ,a b c 1 1a b c 1	 	 	� � , it follows that: 

.a b c� �

Approach: This statement is false. Moreover, for any values of a, b, c, the two 
conditions ( & ) cannot co-exist. Similar to the case described 
in Example 5, here too students had no initial feeling regarding the validity of the 
given statement. More precisely, students were uncertain whether or not there are any 
values at all for a, b, c for which the two conditions 

1 1a b c	 	� � 1	

1

a b c� �

1 1a b c	 	 	� �  and exist.
They expressed the need to investigate the matter in order to gather evidence to form 
an opinion. Students who chose an example-based inductive approach gave responses 
that were similar to: " … It’s never true, because no such numbers exist. No
numbers satisfy this equation."

a b c� �

1 11 1 1	 	� � 1	

1
Students who chose a deductive approach, began by performing some algebraic 
manipulations on the equation: 1 1a b c	 	 	� � , in order to find out whether it has any 

solutions. A typical response of this kind was: " 1 1 1 bca
a b c b c

�� � �
�

 … so the 

statement is never true."
None of the students completed the task, although the top level students had the 
algebraic skills needed to do it. It seems that both example-based and deductive 
approaches were used by students only to gather cues regarding the truth value of the 
given statement. They searched for evidence that would help them form an opinion 
and build confidence in it. Once they were confident in their assertion, they ended the 
work, without noticing that their way of justification and reasoning was incomplete.  
DISCUSSION
Our findings point to patterns of students' mathematical reasoning in the context of 
examining the truth values of mathematical statements that they have not studied 
beforehand. Some concur with the vast literature on proof (e.g. Harel, 2002; 
Balachef, 1991; Fischbein, 1987; Zaslavsky & Shir, 2005); particularly, students’ 
reliance on intuitive evaluation of mathematical statements and their rapid use of 
example-based reasoning. However, there are some unique contributions of this study 
to our understanding of students' ways of reasoning.  
Most studies, concerning students’ proof practices focus on the way students prove 
conjectures, not on the ways they disprove them. Knuth (2002) pointed out that most 
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classroom activities related to proof emphasise its role in validation. Students are 
often expected to prove results that seem obvious to them. Consequently, it is 
difficult for students to develop an appreciation of the need to prove. This concurs 
with Mariotti's view (2006) that if proof does not contribute to knowledge 
construction through activities that integrate a social dimension, it is likely to remain 
meaningless and purposeless in students’ eyes.  
The setting of our study relied to a large extent on the element of uncertainty as a 
trigger for examining the truth value of mathematical statement, in the spirit 
advocated by Mariotti. We provided a rich environment for fostering a genuine need 
for reasoning and revealing students' spontaneous approaches to justification and 
proof. Their search for convincing evidence was driven by their uncertainty regarding 
the validity of a statement, rather than by an external requirement to prove. Students 
had to determine the validity of mathematical statements, produce arguments to 
support their assertions and communicate their mathematical ideas to their peers. In 
addition, these arguments became a subject for whole class discussions, eliciting 
comparisons with arguments that are acceptable, i.e., that are already stated and 
shared in the mathematics community (Mariotti, 2006).    
This special learning environment provided us with opportunities to identify students' 
natural tendencies and preferences. Thus, we identified strengths and weaknesses of 
students' inferences. For example, there were little rejections of counterexamples by 
students, contrary to the findings of Balacheff (1991). On the other hand, students 
tended to accept statements that they had modified without testing their validity.
We would like to offer another lens through which to examine our findings. In recent 
years, a number of researches in the psychology of thinking and reasoning have 
advocated 'dual process' theories of cognition (Evans, 2003; Kahneman, 2002; 
Stanovich & West, 2000). However, current theories of reasoning propose that the 
term 'dual process' does not suggest the existence of two distinct systems, but rather 
two cognitive processes that might reflect different modes of one complex system 
(Osman, 2003). We would like to apply a dual framework to our findings since it 
provides useful characteristics of students’ cognitive processes, but without making 
strong assumptions about underlying mechanisms. The word “system” is used here as 
a broad term for mode or process.      
The dual framework contrasts implicit cognitive processes (fast, unconscious, 
automatic) with explicit processes (slow, conscious, and controlled). The labels 
"System 1" and "System 2" are associated with these two modes of cognitive 
functioning (Kahneman, 2002). The framework suggests four ways in which 
judgment may be made. (1) No intuitive response comes to mind, and the judgment is 
produced by System 2. (2) An intuitive judgment or intention is evoked and (2a) is 
endorsed by System 2; or (2b) serves as an anchor for adjustments that respond to 
other features of the situation; or (2c) is identified as incompatible with a subjectively 
valid rule, and blocked from overt expression (Kahneman, 2002). 
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The observed paths of students’ reasoning concur with these ways, described by 
Kahneman. Examples 5 & 6 refer to the option (1), when no initial intuitive feeling 
regarding the truth value of a statement occurred. Determination whether the given 
statement is true or false was made by System 2, in other words, through explicit 
analytical process.
Examples 1-4 refer to option (2), when System 1 was evoked and students got an 
immediate feeling of confidence regarding the truth value of the statement. This 
feeling became a subject of further explicit analytical investigation, as part of the 
function of System 2. In the case of Example 3, students discovered a 
counterexample that served a basis for correcting their initial response. The initial 
assertion was overridden by System 2 while a counterexample served as an anchor 
for modification of the intuitive answer. This is consistent with option (2b) in the 
described above ways of judgment.  
Examples 1, 2 & 4 refer to option (2a), meaning that System 1 came up with an initial 
response that was endorsed by System 2. In Example 1, this endorsement is justified 
and students arrived at a correct decision. In Examples 2 & 4 System 2 failed in its 
function of monitoring the output of System 1. Students’ intuitive impression was so 
powerful, that they did not recognise a counterexample when they saw it (Example 2) 
or created a non existent counterexample, when they had a strong conviction that a 
statement is false (Example 4).
In all patterns described above, we witnessed the strong affect of implicit intuitive 
reactions that guided students’ mathematical behaviour. This phenomenon has wide 
empirical and theoretical support (Fischbein, 1987).   
Explicit analytical thinking was also present in students' reasoning which we 
documented. This can be seen in their: attempted [direct] search for inductive 
evidence; discovery or construction of counterexamples and when seeming 
appropriate - modification of statements. These manifestations constitute strong 
evidence that an analytical cognitive process is present in students’ reasoning and is 
part of their thinking strategies.
Behaviour such as ad hoc modification of a statement and its acceptance without 
further testing, preliminary termination of investigation, and overgeneralization of 
inductive evidence, suggests that the strength of an intuitive impression can interfere 
with analytical cognitive processes. Intuitive cognitive processes may be directing the 
final judgment, sometimes ignoring the relevant cues or relevant content knowledge. 
More research is needed to fully characterise students’ strategies in determining a 
truth value of mathematical statements. Elaboration of those findings in extensive 
theoretical framework, like the dual process theory outlined here, can contribute to 
broader interpretation of research findings and better understanding of students’ 
mathematical reasoning. 
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We want to show how we use the software Cabri, in a Geometry class for preservice 
mathematics teachers, in the process of building part of an axiomatic system of 
Euclidean Geometry. We will illustrate the type of tasks that engage students to 
discover the relationship between the steps of a geometric construction and the steps 
of a formal justification of the related geometric fact to understand the logical 
development of a proof; understand dependency relationships between properties; 
generate ideas that can be useful for a proof; produce conjectures that correspond to 
theorems of the system; and participate in the deductive organization of a set of 
statements obtained as solution to open-ended problems.

INTRODUCTION

Our research group Æ • G, constituted in 2003, has centred its activity on issues 
related to the learning and teaching of proof and proving in Geometry. One of its 
goals is to identify conditions and actions that foster learning to prove in a university 
level Geometry course. Particularly, we are interested in using Cabri as a mediating 
tool in the learning to prove process. Our framework is based on ideas exposed in 
several research agendas (Radford, 1994; Jones, 2000; Laborde, 2000; Mariotti, 
2000; Marrades and Gutiérrez, 2000; Healy, 2000), which promote that when 
geometric construction tasks are linked with the practice of justifying and organising 
axiomatic systems, the possibility of learning to prove is increased. 
Most research on teaching mathematical proof with Cabri focuses on secondary or 
high school students in a Geometry course. The principal studies focus on the analysis 
of the roles of proof in the Mathematics curricula, students’ difficulties in proving, and 
teaching experiments to encourage learning to prove (Mariotti, 2006). Many studies 
investigate how to introduce the students to a theoretical perspective of Geometry, 
linking geometrical constructing tasks with production of statements to justify, for 
example, why certain geometric properties of a construction remain invariant when we 
drag their free objects (Jones, 2000). Other studies advance towards the teaching of 
proof, analyzing the role of the drag function in helping students look for properties, 
special cases, counterexamples, etc., that could be related to form a proof (Marrades 
and Gutierrez, 2000). But studies based on these same aspects with university 
students, corresponding to the rigorous treatment required at such a level, are 
insufficient (Marrades and Gutiérrez, 2000).  
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In this paper, we show how the software Cabri is used when the activity in the class, 
with preservice mathematics teachers, consists in building a part of an axiomatic 
system of Euclidean Geometry following, at least partially, the development of a 
specific system proposed by a mathematician. The examples hereby presented have 
been chosen because they help us to show how the students participate in the 
construction of the axiomatic system, transferring knowledge and information 
obtained using Cabri, for the justification of geometric facts, to the usual context of a 
written proof. We will illustrate the type of tasks that impel students to recognize the 
relationship between the steps of the construction and the steps of a formal argument 
and thus help them understand the logical development of a proof; understand 
dependency relationships between properties; generate ideas that can be useful for a 
proof; produce conjectures that correspond to theorems of the system; and participate 
in the deductive organization of a set of statements obtained as solution to open-
ended problems. With our proposal, we hope to contribute new elements about the 
use of Cabri in the learning to prove, when the task is building an axiomatic system.

RESEARCH FRAMEWORK
We adopt the sociocultural perspective that views learning as “becoming a participant 
in certain distinct activities rather than as becoming a possessor of generalized, 
context – independent conceptual schemes” (Sfard, 2002, p. 23). What is learnt, in this 
case, is a distinctive task of the mathematics community, proving, which includes not 
only actions related to the act of justifying but also actions associated with formulating 
conjectures, all of which must be theoretically warranted by an axiomatic system.  
About the teaching of proof, unlike a direct axiomatic presentation of a system, we 
are proposing what de Villiers (2004) denominates “rebuilding approach”. The 
content isn’t displayed to the students as a finished structure; it is constructed by the 
apprentice, with teacher scaffolding, trying to create a typical organization. This 
approach is promoted by researchers like Polya and Freudenthal (cited in de Villiers, 
2004) when they declare that students must follow a similar way by which the 
mathematical content was discovered or invented. A “rebuilding approach” allows a 
meaningful approximation to the content and creates the conditions that enable 
students to actively participate in the construction and development of the axiomatic 
system.  
With the purpose of using the “rebuilding approach” of a part of an axiomatic 
Geometry system, Cabri assumes a central role, as environment that offers the 
mediation for the construction of meaning of statements that could be theorems of the 
theoretical system. Specifically, the main ideas that underlie the design of the 
empirical study and the analysis of data are: 

- The possibility of establishing a correspondence between the figure construction 
tools in Cabri and the properties and geometric relations of the figures constructed 
in a classic Euclidean Geometry. This allows the introduction of a method of 
validation, derived from the analysis of the construction process, and to link the 
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steps of a construction that illustrates a theorem with the steps of a deductive 
argumentation to prove it (Mariotti, 1997). 

- The formulation of open-ended problems that give rise to the production of 
conjectures of the form if... then... as a way to take advantage of the diverse 
exploration tools that the software has. Radford (1994) proposes modifying the 
theorems that are going to be incorporated in the axiomatic system into statements 
of the type: conditions that a certain figure must fulfil so that it has such property,
thus creating open-ended problems.

- The possibilities of exploring figures in Cabri with the intention of finding 
properties that help the students elaborate proofs. The use of Cabri helps students 
look for properties, create auxiliary lines, recognise parts of special triangles or 
quadrilaterals that could be linked to form a proof (Marrades and Gutierrez, 2000; 
Laborde, 2000). 

- The “soft” or “robust” constructions (Healy, 2000) that lead to the production of 
diverse conjectures associated to a family of figures which can be organised to 
form part of the axiomatic system constructed. 

THE TEACHING EXPERIMENT 
The sample 
The teaching experiment has been carried out, during successive semesters, with 
future secondary school Mathematics teachers in the course Plane Geometry, which 
corresponds to a second semester course of the curriculum. During 10 semesters, the 
curriculum blends the study of Mathematics with courses in Mathematics Pedagogy 
and Didactics.  The Mathematics courses cover topics of the principal branches of 
this discipline: Algebra, Geometry, Calculus and Statistics (more or less with the 
same requirements as expected when the degree is in Mathematics). The study of 
didactics and pedagogy is centred on the process of teaching and learning 
Mathematics and on analysing the Math studied in schools. Plane Geometry is the 
second Geometry course that the students take at the University. The first course, 
Elements of Geometry, has been designed to introduce students to the field of 
Geometry, using an intuitive and informal approach, where the main tools used are 
ruler and compass. The aim of this course is to help students gain a conceptual frame 
for future courses; students analyse several important, but isolated, geometrical 
properties and work on developing skills such as visualisation, conjecturing, 
communicating and arguing. It is in Plane Geometry where they first face the task of 
formal proving, within an axiomatic system. 
The experiment 
The teaching experiment has taken place during the 16 weeks of the Plane Geometry 
course, for several semesters. The topics officially included in the course are the 
usual ones: relations between points, straight lines, planes, angles, properties of 
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triangles, quadrilaterals, circles, and congruency and similarity relations. Some pre-
established conditions for the course are: the general task for both teacher and 
students is the construction of a portion of an axiomatic system of Plane Geometry, 
through their participation in problem solving tasks and their social interaction; 
opportunities for the students to engage in the activity of proving are given since the 
beginning of the course; the teacher’s role is to introduce the students into the activity 
of proving; Cabri is used as a mediation tool that contributes to form a suitable 
environment for proving. 
We have the conviction that when students explore problems with Cabri, they feel 
confident about the truth of their conjecture, and find important ideas to help them 
construct a proof.  Also, we are looking for a meaningful approach to the concepts 
and relations studied, in an environment in which students have the opportunity to 
work together: (i) exploring geometrical properties; (ii) finding regularities while 
they solve problems; (iii) making conjectures; (iv) formulating justifications about 
geometrical facts and, (v) organising those ideas and justifications in a particular 
axiomatic system. Instead of having the teacher expose the axiomatic system directly, 
we want the students to make connections between empirical and theoretical forms of 
working and, to participate as a community, whose task is learning to prove while 
building an axiomatic system for Plane Geometry, reason why not always the entire 
course topics are covered during the semester.  
 
The course has always been taught by one of the authors of this paper. One of the 
researchers was present in all the class sessions during the first semester of 2004, 
taking field notes and making an audio register of the general discussions and the 
group work, which were later transcribed. During the successive semesters, the events 
in the classroom continued being object of analysis and revaluation. The team kept on 
meeting periodically to decide what events of those classes should be registered and 
analysed, and to design the tasks to be used. Designing open-ended problems that are 
related to the axiomatic system so far constructed and are useful for the activities of 
conjecturing and proving, has been a complex task, in spite of the many beautiful 
problems that exist in dynamic geometry but whose proofs require geometric 
knowledge which is far beyond that which is included in our system. The study of all 
the fragments gave rise to the identification of the examples that are hereby reported 
to illustrate how we use the software to help build an axiomatic system. 
CABRI’S ROLE AND SOME STUDENT RESULTS
Using Cabri to understand the logical development of a proof
One of the main norms established in the class, with respect to the type of proof 
accepted, is the logically organized argument using definitions, axioms and theorems 
previously known and accepted by all. To help the students understand the logical 
development of a proof we use the idea, raised by Mariotti (1997), concerning the 
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relationship between the theoretical process of a proof and the organization required 
for the construction of a figure that illustrates the theorem. 
 

Statement Justification Construction in Cabri and 
related steps in the proof 

1. A, B, and C are non 
collinear points. 

Given 

2. AB exists. Line Postulate 

3. AB  exists. Definition of segment 

4. Let M be the midpoint 
of AB . 

Midpoint Theorem 

5. CM  exists. Line Postulate 

6. CM = r, r > 0. Distance Postulate 

7. Let 0 and r be 
coordinates of C and M, 
respectively. 

Ruler Placement Postulate

8. Let D be point on CM  
such that coordinate of D 
is 2r. 

Ruler Postulate 

9. 0 < r < 2r. Property of real numbers 

10. C-M-D. First Betweeness 
Theorem 

11. CM = $r – 0 $= r, DM 
= $2r – r $= r. 

Ruler Postulate 

12. CM = DM. Transitive Property 

13. M is midpoint of CD . Midpoint definition 

14. AB  and CD  bisect 
each other. 

Definition of bisector 

Draw three non-collinear points A, 
B, and C. (1) 

 
 Draw AB . (3) 

 
 Find midpoint M of AB . (4) 

 
DrawCM . (5) 

 
Using compass, circle or measure 
transfer (requires finding the length 
of CM  directly or indirectly (6) ), 
find D on CM .(8) 

 
Verify that M is midpoint of CD . 
(10, 12) 

 
 

Figure 1 

 
For example, after the first postulates, definitions and theorems of the axiomatic 
system are established, we proposed the following problem: Given three non collinear 
points A, B and C, show that there exists a point D such that AB  and CD  bisect each 
other.  All students did a similar construction in Cabri, as is described by a group of 
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students, which we have transcribed as the third column in the table (Figure 1). The 
teacher then asked them to compare the steps of the construction with the statements 
and justifications of a proof, which led them to include the proof step number (given 
in parenthesis) after each sentence and which helped them understand the connections 
between the proof and the construction.  
Using Cabri to help students develop ideas for a proof
The following example, which was designed following suggestions given by Radford, 
and Marrades and Gutierrez, illustrates how interaction with Cabri, in the process of 
studying an open-ended problem, provides information that is useful for a proof. This 
experience took place when the students had finished studying the topics related to 
triangles and quadrilaterals. The problem we asked them to solve was: “In isosceles 
triangle ABC, determine the position of the point P, on the base of the triangle, so that 
the sum of the distances from P to the congruent sides of the triangle is a minimum. 
Justify your answer.”  
The students started the exploration after constructing the isosceles triangle, locating a 
point P on the base, constructing the perpendicular segments from P to the congruent 
sides and calculating their lengths. They dragged point P and very soon realised that 
the sum is invariant. They wrote conjectures such as: “It doesn’t matter where the 
point is; the sum of the distances is constant” (Figure 2).

 

Figure 2                                         Figure 3 

Some students moved P until it coincided with point A and noticed that PE  became the 
altitude of the triangle relative to BC  (Figure 3). The exploration of a “limit case”, 
locating P on one of the endpoints of the segments, shows that they were looking for 
ideas, based on critical situations, to support their conjecture. The above discovery 
was very important because it gave them a geometric reference for the sum. It wasn’t 
only a constant value but a very special value: the height relative to the congruent 
sides. The students then began to draw auxiliary lines, searching for a way to obtain 
triangles or quadrilaterals, which could be used to prove why the sum is equal to the 
height, because the elements used in prior deductive proofs had been corresponding 
parts of congruent triangles or properties of special quadrilaterals.  
After some exploration, a group of students discovered how to make good use of the 
parallelism between the altitude to AC  and PD  (Figure 4a). They constructed PQ  
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perpendicular to BG  which led them to the congruency of DP  and GQ. This was 
definitely the key step to be able to prove that QB  was congruent to PF , which 
follows from the congruency of %PQB and %BFP (Figure 4b).  

                        

                                         Figure 4a                                      Figure 4b 

Another group of students used the symmetry tool of Cabri, which corresponds to a 
concept not included in the constructed axiomatic system, to reflect the triangle with 
respect to its base.  A careful exploration of the resulting figure, dragging points, 
taking measurements, helped them realize that the reflected image was congruent to 
the original triangle. Eventually, this led to the construction of a proof, which one of 
the students presented to the class, using the following sequence of figures which he 
drew on the blackboard. The idea underlying their proof is that quadrilateral ACBG is 
a parallelogram and therefore the distance between opposite sides is always the same, 
and that �DAP & �NAP, so DP + PE = NP + PE. 

 
(b) (a) (c) (d) 

 
Figure 5 

Using Cabri to create situations where students obtain enough results to 
collectively organize them as a part of an axiomatic system 
For this task, the teacher posed a problem, chosen because of the amount of 
conjectures students can produce which are related to the situation involved. Using 
geometric open-ended problems, whose solution permits diverse conjectures about a 
specific theme, with the support given by Cabri to explore, conjecture and verify 
results, has shown itself to be a way to involve students in the activity de Villiers 
(1986) has denominated as descriptive axiomatization.  
After formulating a set of geometric properties and relations, as conjectures students 
feel sure about, with the teacher’s guidance, the community organizes the results into a 
part of the axiomatic system. The teacher’s role is essential because she has to design 
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the best path to examine each conjecture, avoid circular reasoning, obtain economical 
definitions, and establish the correct connections between the results, looking for 
mathematical coherence. We will report two instances of such situations. 
With respect to triangle properties, sometimes students don’t understand the need to 
prove “evident” propositions as, for example, the Isosceles Triangle Theorem: The
base angles of an isosceles triangle are congruent. We use Cabri to explore interesting 
properties that require the “evident” theorems, as a means to incorporate them into our 
axiomatic system. For example, instead of asking the students to prove the above 
theorem, we ask them to solve the following problems:  

Draw %MOP. K is a point on MP . (a) When is m'OKP > m'OMK?  (b)  In %OKP, 
when is OK > OP? 
What is the relationship between the type of triangle and the property: two congruent 
altitudes? 

When students explore these problems with Cabri they find that: (i) the external angle 
of a triangle is larger than the internal nonadjacent angles; (ii) when two sides of a 
triangle aren’t congruent, then the longest side is opposite to the largest angle; (iii) 
when two sides of a triangle aren’t congruent, then the largest angle is opposite to the 
longest side; (iv) two of the altitudes of an isosceles triangle are congruent. 
Statements (i) and (iv) are properties that students feel they can prove, but when they 
try to prove the latter, they realise they need the Isosceles Triangle Theorem. Thus we 
create the necessity of formally including it in the axiomatic system. They also need 
two new triangle congruency criteria: SAA Congruency (side–angle–angle) and HL 
(hypotenuse– leg). These criteria can be proved using result (i). The path followed to 
construct this part of the theory is: Isosceles Triangle Theorem � (i) � SAA 
congruency criteria � HL congruency criteria � (iv). Another sequence followed is: 
Isosceles Triangle Theorem � (ii) � (iii). The students’ experimental results are 
organized in a deductive way. 
With respect to quadrilateral properties, the problem we use, is the following one: 

What is the relation between the type of quadrilateral and the property: a diagonal bisects 
the other one? 

This is an open-ended problem without a single answer. There are a lot of 
quadrilaterals which have that property, in a strict sense, and they aren’t special 
quadrilaterals. However, students, unconsciously or deliberately, add other properties 
to the given one, giving rise to a variety of answers. If students explore the situation 
using a soft construction (Healy, 2000) and centre their attention on having the 
diagonal satisfy the given condition and another one, they will formulate conjectures 
of the form: “if the diagonals of a quadrilateral are… then the quadrilateral is…”. 
They can, for example, imagine that both diagonals bisect each other, and therefore 
create a parallelogram. Conjectures, like the following ones, are established: “If a 
diagonal of a quadrilateral bisects the other diagonal, and both of them are 
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perpendicular, then the quadrilateral is a kite”; “If both diagonals bisect each other 
and they form right angles, the quadrilateral is a rhombus”. 
But this problem also gives rise to another set of different conjectures. If they begin 
their exploration, using a robust construction (Healy, 2000) and, following their 
intuition, construct a special type of quadrilateral to examine the relationship between 
the diagonals, they will state conjectures of the form: “If a quadrilateral is … then the 
diagonals…”. For example, “if a quadrilateral is a parallelogram, its diagonals bisect 
each other”, conjecture that becomes Theorem 1 of the chain that includes all the 
parallelogram properties which they have discovered or arise in their attempt to prove 
the conjecture. The axiomatic deductive approach usually employed to introduce the 
content of the class, changes. The teacher decides which conjecture should be 
examined first to begin the deductive chain, incorporating other conjectures.  

Using Cabri to help students understand dependency relationships between 
properties
In accordance with Laborde (2000) and Jones (2000), when students explore open-
ended problems and write conjectures, they can have difficulty in recognising the 
properties used in their constructions that conform the “real” hypothesis of their 
conjecture and therefore guarantee the property discovered. They then write 
conjectures that don’t correspond with the construction that they have made. When 
students are asked to review the construction process, explain their procedure, we help 
them grasp all the conditions exposed in the problem, realise whether they have 
imposed additional or restrictive properties, and understand the dependency 
relationships involved and, therefore, the logic behind a statement of the form if… 
then… 
For example, when James, a student, was solving the problem related to quadrilateral 
properties, mentioned above, he wrote the following conjecture: “In a quadrilateral, if 
a diagonal bisects the other diagonal, then the quadrilateral is a parallelogram”. 
Only when teacher asked him to review the construction did he understand that he was 
using a more restrictive property, because he included the condition that both 
diagonals bisect each other. 

FINAL REFLECTIONS 
Constructing an axiomatic system means not only studying the different elements that 
conform it: definitions, axioms and theorems, but also understanding how, legally, the 
latter elements are incorporated into the system, through valid proofs. Being able to 
construct a proof requires the comprehension of the dependency relations between 
geometric properties, the ability to visualise auxiliary constructions that permit 
connections with known facts, the conviction that proving is the only legitimate way 
to include geometric facts in the system, and the genuine desire to carry on the task. 
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Students’ participation in the proving process increases when they are encouraged to 
propose new ideas, make conjectures, and listen to and participate in the mathematical 
arguments of their partners as members of an inquiry community of practice. The 
teacher has the responsibility to design interesting tasks to promote the mathematical 
activity of his or her students, establish several opportunities for proving and stimulate 
a rich interaction so students can move from a peripheral place in the community to 
the core of it. The use of Cabri to explore open-ended problems allows students to take 
active part in discovering geometric facts by themselves, and incorporating them, and 
those discovered in the process of proving the conjectures, into an axiomatic system. 
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Abstract. The famous Euclid’s theorem on the infinity of prime numbers represents a typical case 
of difficulties for students. In this work we present some reflections and proposals to contrast such 
difficulties, focused on: a) the problem of proofs by contradiction – in this case viewed as 
inessential – also in relation with the dychotomy potential/actual infinite; b) a comparison between 
the current proof and the original Euclid’s one, especially for its potential influence on the building 
of algebraic language; c) the opportunity of privileging students’ exploratory activities as 
necessary steps toward the construction of the proof, and the chances that a wise use of 
technologies offer to this exploration. 

INTRODUCTION AND THEORETICAL FRAME 
It is widely recognized that students encounter several difficulties in 

understanding and producing mathematical proofs. The problem is somewhat specific 
in Geometry, where the role of pictures can be seen as a guide to reasoning. But a 
large part of theorems in Geometry appear as self-evident, so that a proof hardly 
seems necessary, while in a few cases proofs are difficult, with the result that students 
often resigns themselves to learn by hearth without any awareness of the arguments. 
On the contrary, in Arithmetics some meaningful properties can be selected, at the 
same time simple and non-trivial, therefore very suitable for introducing students to 
proofs. This is the case of Euclid’s famous theorem on the infinity of prime numbers. 

In this paper we want to stress some particular features of this theorem, from 
historical, epistemological and didactical points of view. In particular we want: a) to 
analyze the influence of a comparison between the original proof and two modern 
versions of it, on the development of students’ linguistic competences (the use of 
algebraic symbols); b) to show how the difficulties of students in understanding a 
proof by contradiction, can, in a sense, be neglected, since it is neither strictly 
necessary nor effective to proceed in this case in an indirect way; c) to stress the role 
of technologies in assisting the heuristic stage as a necessary step before the proof, 
both for motivation and for a (partially) autonomous construction of the proof itself. 

Many authors have variously emphasized the importance of using history (in 
particular, original sources) in Mathematics Education (Fauvel & Van Maanen, 
2000), (Katz, 2000), (Furinghetti & Radford, 2002), (Castagnola, 2002a). It is not a 
case that in the last years many texts and materials have been specifically devoted to 
teachers: for instance, (Berlinghoff & Gouvêa, 2004), with a lot of references, and 
(Katz & Michalowicz, 2005); or websites like (1), a real mine of historical 
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information; or Convergence, an online magazine, (website (4)), where mathematics, 
history and teaching interact. The introduction of a historical dimension reaches 
many goals: it humanizes the image of mathematics and helps in modifying the 
current view of mathematics as made of continuous progresses, showing a lot of 
sudden turning-points, wrong paths and blind alleys, which gives meaning to 
otherwise boring students’ efforts; and it offers materials to develop intuition, 
particularly when presented using modern symbols, verbal expressions and cultural 
tools, instead than, according to Recapitulation Principles, those employed by ancient 
authors.

A different problem concerns students’ difficulties in using algebraic language for 
abstracting and generalizing (Radford, 2000). Such difficulties are still more evident 
when a proof is involved (Mariotti, 1998), in particular a proof by contradiction. 

Calculators, in particular the graphic-symbolic ones, are widely recognized as 
precious tools in school practice (Castagnola, 2002b). First of all, they free both 
teachers and students from the risk of “getting lost” in cumbersome calculations, 
allowing to turn attention to problems, at the same time more meaningful from a 
mathematical point of view and closer to the complexity of real world (Kaput, 2002), 
(Paola, 2006). Moreover, technological tools, bearing an “embodied intelligence”, 
can be seen as powerful means to facilitate objectification and generalization of 
mathematical concepts (Radford, 2003), and to overcome some students’ rigidities 
(“the prime numbers are only 2, 3, 5” or “the really existing numbers are only small 
integers”). Finally, in Mathematics Education a combined use of history and 
technology has already taken into account (Castagnola, 2004). 

THE THEOREM ON THE INFINITY OF PRIME NUMBERS  
The theorem on the infinity of prime numbers is one of the most famous and of 

the most “beautiful” in the history of mathematics. Several proofs have been 
produced (see for instance the website (3)), but the best known, modelled on Euclid’s 
original proof, is surely the most easily understood, a striking example of simplicity 
and elegance. In spite of that, this proof appears much more obscure for students than 
we could think at first sight. A deep and careful analysis of the proof and of its 
didactical implications is presented in (Polya, 1973). After that, many authors have 
focused their attention on the difficulties involved in the contradiction argument 
employed in the proof, e.g. (Reid & Dobbin, 1998). Other authors have underlined 
the logical subtleties, all but easy to be understood, involved in such kind of 
reasoning (Antonini, 2003), (Antonini & Mariotti, 2006); or the necessity to enter an 
“imaginary” world, where the usual rules of logic can be put in doubt (Leron, 1985). 
(For more references, see the quoted papers). In particular, Leron notes how the 
“distance” between the assumption a contrario and the conclusion causes the total 
loss of all the constructions performed in the intermediate steps, erroneously 
perceived as meaningless.
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We believe that this kind of difficulties constitute a very serious problem. But 
since, in the specific case of our theorem, reasoning by contradiction does not seem 
to us anyhow necessary for the proof, we don’t enter here into this subject, which 
surely deserves further attention, as we intend to do elsewhere. Instead, we prefer to 
devote our attention to other aspects. In particular, we believe that a big difficulty is 
connected with the idea of infinity, another one with the use of algebraic notations. 
Moreover, we think that comparing the actual proof with the original Euclid’s version 
can help students to overcome such difficulties. Another decisive help comes from 
technological tools, today easily available in classwork.  

We want to begin comparing three versions of the proof: the original Euclid’s one 
(Proposition 20, book IX of Elements), as reported in (Heath, 1956); the “modern” 
(1925) version of the same author; and that used today in mathematics texts.

I. Euclid’s version.
“PROPOSITION 20. Prime numbers are more than any assigned multitude of prime 
numbers. 
Let A, B, C be the assigned prime numbers; I say that there are more prime numbers than 

A, B, C. For let the least number measured by A, B, C be taken, and let it be DE; let the unit 
DF be added to DE. Then EF is either prime or not. 

First, let it be prime; then the prime numbers A, B, C, EF have been found which are 
more than A, B, C.

Next, let EF not be prime; therefore it is measured by some prime number [VII. 31]. Let 
it be measured by the prime number G. I say that G is not the same with any of the numbers 
A, B, C. For, if possible, let it be so. Now A, B, C measure DE; therefore G also will 
measure DE. But it also measure EF. Therefore G, being a number, will measure the 
remainder, the unit DF: which is absurd. Therefore G is not the same with any one of the 
numbers A, B, C. And by hypothesis it is prime.

Therefore the prime numbers A, B, C, G have been found which are more than the 
assigned multitude of A, B, C.  Q.E.D.” (Heath, 1956, v. 2, p. 412) 

II. Heath’s version
“The number of prime numbers is infinite.

Let a, b, c, … k be any prime numbers. Take the product abc���k and add unity. Then 
(abc���k + 1) is either a prime number or not a prime number. 

(1) If it is, we have added another prime number to those given. 
(2) If it is not, it must be measured by some prime number [VII. 31], say p. Now p cannot 

be identical with any of the prime numbers a, b, c, … k. For, if it is, it will divide 
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abc���k. Therefore, since it divides (abc���k + 1) also, it will measure the difference, or 
unity: which is impossible. 

Therefore in any case we have obtained one fresh prime number. And the process can be 
carried on to any extent”. (Heath, 1956, v. 2, p. 413) 

III. A typical today version 
There exist infinitely many prime numbers.
Let us suppose that all the prime numbers are the following: p1, p2, …, pn. The purpose is 

to prove that there is a prime number not included in this list. For that, consider the natural 
number M = p1�p2���pn + 1 and examine the two alternatives: 

Case 1. If M is prime, then it is certainly a “new” prime not included in the previous list, 
because it is greater than each number p1, p2, …, pn.

Case 2. If M is composite, then it has a prime divisor q. We say that q does not belong to 
the initial list of prime numbers. In fact, if q = pk for some k, then q would divide both M
and p1�p2���pn and therefore also their difference M 	 p1�p2���pn = 1. But the prime number q
cannot be a divisor of 1. This contradiction implies that q is different from every pk and 
hence it is the new prime we were looking for. 

TWO EPISTEMOLOGICAL QUESTIONS
It is very interesting to compare the three proofs. The substance of reasoning is 

evidently the same, but many meaningful differences leap before our eyes, 
concerning the meaning of the concepts involved, the “sense” of infinity, the 
language employed, and so on. (Many interesting comments on Euclid’s “style” are 
reported in the historical website (2)). As an example, Euclid’s notion of prime 
number is different from the nowadays accepted one: “A prime number is that is 
measured by a unit alone.” (Definition 11, Book VII). Thus, Euclid, like the 
overwhelming majority of our students, does not consider among the possible 
divisors of a number the number itself (a divisor must be smaller than the number that 
it divides). This allows an interesting discussion on the evolution of mathematical 
definitions (see, for this, (Paola, 2000), (Zaslavsky & Shir, 2005)).  

Of course, a detailed analysis of all the differencies between the proofs would 
bring us very far. Here we want to focus our attention on two particular points: the 
roles of the reasoning by contradiction and of infinity in the proof of the theorem, and 
the evolution of algebraic linguistic tools used to denote numerical variables. 
The roles of the proof by contradiction and of infinity 

By comparing the different proofs, but also their statements, we can note that 
Euclid doesn’t mention directly the infinity of prime numbers. His conception of 
infinity is potential: whatever collection of prime numbers we start with, there is 
always another prime number not included in it (and the proof shows in what way “to 
build it”); i.e. prime numbers are always more than any established quantity of them. 
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It is clearly a way of perceiving the infinity more familiar to students; in fact, it 
corresponds to the very early way of understanding natural numbers as an infinite 
collection, in accordance with the fact that for every natural number n, big as it can 
be, there is a bigger one: the successor of n. In our opinion this is the only way of 
conceiving the infinity at the beginning of secondary school. Well, if we state the 
theorem as Euclid did, then we realize that the proof is direct and even 
“constructive”; and that nothing prevents us to conclude the proof saying: “Therefore 
the prime numbers are infinitely many”. 

The need for the proof by contradiction, whose length – the length of permanence 
in the “absurd” world – can however be reduced (Leron, 1985), rises on the contrary 
from the fact that the subtle, and very awkward for students, concept of actual infinity 
is employed, whose definition is, among other things, given by negation: a set is 
infinite if it is not equinumerous to any initial segment {1, 2, …., n} of the set N of 
natural numbers1. To deny such a property we need a double negation: we suppose, 
by contradiction, that the prime numbers are finitely many, therefore it is not true that 
doesn’t exist an n for which they can be put in a one-to-one correspondence with the 
set {1, 2, …., n}; therefore such an n exists and this allows to represent the prime 
numbers as p1, p2, …, pn. Then the proof goes on till the conclusion. It is quite evident 
that such a way to present the result makes it uselessly involved, by bringing logical 
and linguistic subtleties in the foreground, and hiding the substance and the 
constructiveness of the main argument. 
On the development of algebraic notations 

Let us compare the ways by which the first prime numbers are denoted in the three 
proofs. In Euclid’s proof 3 prime numbers are considered, denoted by the 3 first 
letters of the alphabet. The proof is than carried out in a way that suggests that if, 
instead of 3, we had used any number, the result should have been the same. A 
particular case is treated, but “we see” that it has a general value. The use of the 
number 3 in Euclid (by the way, it would be amusing to ask why the choice turns just 
to 3, but this is another talk) is similar to the use and the drawing of a “generic” 
triangle to argue about any triangle, a question on which many authors have 
discussed, from Kant onwards, see for instance (Lolli, 2005). This way of proceeding 
is surely a little “bug”, if we see it with the eyes of modern rigour (it is likely that 
Euclid were aware of this, but he had not at his disposal a more rigorous linguistic 
tool), but it is also the way we proceed very often also today in mathematical 
communication, evidently because the greater concreteness of the particular case 
yields greater effectiveness. Moreover, it stimulates the ability to integrate intuition 
and reasoning and to control and keep distinct what is specific from what is general.  

1 Not to speak of the deep theoretical problems underlying the definition of an infinite set: as it is well known, the 
definition is not unique, and the Dedekind’s one (a set is infinite if it is equipotent to a proper subset), is equivalent to 
the first one only if we accept the axiom of choice. The questions involved are by far too challenging for students. 
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In Heath’s version the first prime numbers are denoted by a, b, c, … k, the first 
letters of the alphabet. The “analogy” between the alphabetical ordering and the order 
of natural numbers is still kept, but the trick of the dots allows to directly treat the 
case of any number. Also this linguistic solution can be criticized: after all, k is the 
11th letter of the (English) alphabet, but it indicates, on the contrary, any position in 
the alphabet (evidently 11 seems a big enough number to assume this role). But such 
a criticism is expression of an excessive pedantry, since in this case (as, and perhaps 
better, than in Euclid’s version) no misunderstanding is possible: as a matter of fact, 
this type of notation is everyday systematically used without any trouble. 

The notation in the third version of the proof is completely different. The first 
prime numbers are represented by p1, p2, …, pn, where indexes and dots are used to 
give an account of the indefinite amount of involved elements. There is no doubt 
about the superiority of this notation, the result of a long evolution and of more and 
more urgent demands of rigour in the history of mathematics. But we do raise some 
doubts on the opportunity of using this notation at school, or at least we wonder if it 
is correct to propose this sophisticated form of language with too much confidence 
and without the necessary care and graduality. Probably it could help to introduce 
previously the list (an ordered set of elements), an important data structure of 
computer science, widely used in many scientifical contexts, for instance in statistics. 

Coming to students’ behaviour, we know that they tend to see in the use of letters 
only a shortened way to describe some property. For instance they interpret without 
any difficulty an expression like A = ½�b�h as the formula for the area of a triangle. It 
is more difficult for them to use an expression containing letters as a tool for 
abstraction and generalization (Radford, 2000).

In fact, students feel the modern notation in the proof of our theorem too involved, 
and in general prefer Euclid’s proof. This can be observed whenever the proof is 
proposed by the teacher, and, if they choose by themselves the symbols to represent 
the situation, almost no one uses a notation similar to the modern one, while Euclid’s 
or Heath’s notations appear often. Moreover, we have not to forget that doesn’t exist 
any formula with n as a variable to represent the nth prime number, contrarily to what 
happens for simpler sequences. For instance it is less difficult (but by no means 
trivial) to accept the symbol 2k	1 to represent the general odd number: the reason is 
that the sequence 1, 3, 5, …, of odd numbers is easily recognised to be generated by 
natural numbers, by subtracting a unit from the double of each of them, so the symbol 
2k	1 looks exactly as the expression of such a procedure. 

We can resume our discussion saying that the proof “with indexes” doesn’t 
convey anything more then the classic one. By this, we are not saying that indexes 
shouldn’t be used (they are useful and sometimes necessary, for example for lists), 
but only that we must carefully arrive to this point and do not overlap the effort of a 
proof to that of a too subtle and not strictly necessary use of linguistic tools. 
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THE ROLE OF TECHNOLOGY IN THE EXPLORATORY PROCESS 
According to a constructivistic point of view, we believe that a mathematical 

result can come in a class only after an exploratory process. In our case, as in other 
ones, this approach enhances motivation and understanding of the statement of the 
theorem and of its proof; and, as we will see, it offers also the possibility to touch 
other topics, to formulate conjectures, to discover properties.  But, in order to be able 
to carry the exploration far enough, technology turns out to be an essential 
instrument. In this section we illustrate the main lines of a widely experimented 
didactical path inspired to the above principles. In the classwork the exploratory 
activity is always intertwined with readings from original sources, and is performed 
by individual work and collective discussions.  

A first activity consists of trying to understand how prime numbers are arranged 
among natural numbers. For instance, we can build a table collecting the number of 
primes in each century from 1 to 1000, like the following one (Burton, 2005, p. 383): 

Interval 1 - 
100

101 - 
200

201 - 
300

301 - 
400

401 - 
500

501 - 
600

601 - 
700

701 - 
800

801 - 
900

901 - 
1000

Number of primes 25 21 16 16 17 14 16 14 15  14 

By inspection of this table (and, if necessary, of larger ones, to be found on 
catalogues or on websites like (3)), we note that prime numbers, though irregularly, 
tend to become rarer and rarer. It is known (and can be shown to students) that for 
any number n, it is possible to find a sequence of n consecutive natural numbers 
which are all composite: for instance, the n numbers (n+1)!	(n+1), (n+1)!	n, …, 
(n+1)!	3, (n+1)!	2. Moreover, since programs of symbolic calculation like DERIVE 
and MAPLE contain, in their library of functions, the function ((x) that tells how 
many primes are less than or equal to x, it is possible to graph ((x) using bigger and 
bigger values of x: the graph seems to become more and more “horizontal”.  

So, the observation of both tables and graphics highlights a phenomenon for 
which there are two possibilities: either prime numbers somewhere disappear from 
the sequence of natural numbers, and hence they are finitely many, or for every prime 
p it is possible to find a greater one, and hence they are infinitely many2. The theorem 
we are considering justify itself as the answer to this dilemma. 

Now the problem naturally arises: how a number like p1�p2���pn+1 came into 
Euclid’s mind? This gives the opportunity of opening a discussion on the question: 
“If a finite number of primes are given, how can I build another prime not already in 

2 Perhaps we can take here the opportunity of speaking about asymptotes in a non-conventional way. Or, if we are 
working with young students, it is possible (or even suitable) to riconsider the topic some years later, proposing to them 
to approximate the function ((x) with a function f(x) regular enough, namely with continuous first and second 
derivatives. Students should conclude that the first derivative has to be non-negative and the second one negative, 
without ruling out the possibility that f(x) becomes definitively constant. By the way, we know that the function ((x) is 
asymptotic to the function g(x) = x/ln(x), and that g’(x) > 0 for x > e and g”(x) < 0 for x > e2.
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the list?” So, the construction in Euclid’s proof can again be preceded by an 
exploration. There are many available procedures: for instance, we can carry on the 
following one. Let’s start from the prime number 2 and build the number a1 = 2+1 = 
3, which is prime. In the second step build a2 = 2�3+1 = 7, prime. From 2, 3 and 7, 
obtain a3 = 2�3�7+1 = 43, prime. At the next step we get: a4 = 2�3�7�43+1 = 1807 = 
13�139. Both 13 and 139 are “new” primes; we could use both, but taking only the 
smaller, we obtain: a5 = 2�3�7�43�13+1 = 23479 = 53�443. And so on…

Otherwise we can follow the more “known” path: b1 = 2+1 = 3, which is prime; b2

= 2�3+1 = 7, prime; b3 = 2�3�5+1 = 31; b4 = 2�3�5�7+1 = 211; b5 = 2�3�5�7�11+1 = 
2311, all prime numbers; b6 = 2�3�5�7�11�13+1 = 30031 = 59�509. And so on.3

This process actually gives more and more new prime numbers. We can use a 
symbolic calculator (here we are using TI-89 Titanium) to overcome the lenghtness 
and difficulties of calculations but also to distinguish between the two possible cases 
for bi, since the command factor allows to easily establish if a given number is 
prime or composite (see Figure 1). When the calculation is not assisted by a powerful 
tool, it is quite sure that only the first case is noticed, since the first composite value 
of p1�p2���pn+1 is too big. On the contrary, by the aid of a calculator, the exploration 
can go on without difficulties, to reach for instance the case shown in Figure 2. In our 
opinion, this is a simple and meaningful example, to see how a calculator can be a 
really useful tool in helping students to understand and build a meaning. 

      Figure 1    Figure 2        Figure 3 

It is important to stress that the observation of a finite number of cases can never 
replace a proof, but it allows only to do some conjecture, to be confirmed or 
disproved. History tells us how that behaviour can be misleading: it is enough to 
recall the well known example of Fermat who in 1640 enunciated the conjecture “All 
the numbers Fn = 22

n

1�  are prime” (n any natural number). Let’s still use a symbolic 
calculator to examine the conjecture. We insert in Editor (where functions can be 
defined) the function y1(x) = 2^(2^x)+1. Using the command factor, we discover 

3 The numbers bi are interesting in themselves. As observed, the first five of them are all prime numbers, whereas b6, b7,
b8 are not. In (Burton, 2005) many interesting facts are reported: for instance till today (2005) only 19 primes have been 
identified in the sequence (the largest, discovered in 2000, that is  p1�p2�…�42209 + 1, has 18241 digits), while all the 
other bi’s for p � 120000 are composite. And nobody knows whether there are finitely or infinitely many primes of the 
form bi. Well, knowing about simple problems still unsolved is always a fascinating stimulation for students.
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that the conjecture is actually false, showing (see Figure 3) that F5 is not prime, but is 
the product of two primes: F5 = 232+1 = 641�67004174.

CONCLUSIVE REMARKS AND FURTHER DEVELOPMENTS  
In the previous section we have suggested a possible classroom path for the proof 

of the theorem. One of the two authors has experimented for years in his classes such 
a path, with different developments and deepenings, according to class contexts and 
circumstances. We think that the whole experience gives evidence to the goodness of 
the suggested approach, whereas no specific didactical situation or students’ work 
does it adequately. This is the reason why, – but also due to space limits of this work, 
– we don’t give detailed reports or comments on specific events.   

In our opinion two problems would deserve further deepening. The first one 
concerns proofs by contradiction. Following the opinions of some logicians (Lolli, 
2005), we guess that many theorems in school curricula, usually proven by this 
technique, can also be proven in a direct way, slightly modifying, if necessary, their 
statements. Then the problem would turn into a linguistic one, namely to show how 
any implication can be expressed in an equivalent way by its contrapositive. We 
intend to come back to this problem in a forthcoming work. 

The second problem concerns infinity, and its two facets as potential or actual 
infinity. Obviously, on this topic all has already been said from a conceptual point of 
view. But we think that the discussion is still open on how and when and why the 
notion of infinity occurs in school in its two forms. The theorem of prime numbers is 
an important moment, but it isn’t the only one and we think that any possible 
deepening of this problem would be interesting. We will take care also of this 
question in the next future. 
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PROOFS PROBLEMS IN ELEMENTARY NUMBER THEORY: 
ANALYSIS OF TRAINEE TEACHERS’ PRODUCTIONS 

Annalisa Cusi, Nicolina A. Malara 
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Abstract: Our study involves a group of pre-service middle-school [1] teachers 
attending educational and training courses at our university. The aim is to classify 
their behaviour in solving a problem that requires the proof of a statement in 
elementary number theory not easy to be formalized. This study highlights mental 
blocks in those who are not able to create an algebraic model for the problem and 
widespread difficulties related to the impact of abilities both in translating algebraic 
expressions into the algebraic code and in interpreting algebraic expressions built 
during the construction of the proof in order to get to the thesis. 
INTRODUCTION
The Italian mathematics curriculum’s strong influence on students’ failures in 
constructing proofs is unquestionable. Indeed, the Italian teaching tradition focuses 
on training students to reproduce proofs and does not devote time to students’ 
autonomous construction of proofs. We are convinced that students should be 
encouraged to construct important mathematical facts and investigate problems 
starting from compulsory school, especially in the 6th, 7th and 8th grades. In Italy, 
more than 80% of lower secondary school mathematics teachers are not mathematics 
graduates, and their cultural background makes it very difficult for them to carry out 
this kind of activity. 
Recent studies suggest that the teaching of the concept of proof should be promoted 
in pre-high school grades (Stylianides e Stylianides, 2006b). Nevertheless, in order to 
promote students’ proving abilities, it is necessary for teachers to be able to 
autonomously manage the solution of proving problems. We agree with Jones (1997) 
when he writes that “the most-qualified trainee teachers may not necessarily have the 
specific kind of subject matter knowledge needed for the most effective teaching”. 
Therefore, an investigation on the correlation between teachers’ educational 
background , their conceptions and the different approaches they adopt towards proof 
problems is necessary. Moreover, we need to highlight the main difficulties they 
meet, so that they can become aware of both potential and limitations of their own 
mathematical background. In this way, it will be possible for teachers to develop the 
content knowledge that can allow them to promote argumentation and proof in their 
classrooms (Stylianides and Stylianides, 2006a). 
Therefore, we decided to work with a group of trainee teachers [2] attending 
educational and training courses for the teaching of mathematics in middle-school: 
our aim was to study the impact of abilities in formal coding and in interpreting 
algebraic expressions on proofs’ production, with particular relation to the transition 
between argumentation and proof. Boero et alii (2002) compared argumentation and 
proof as linguistic products, stressing that the language adopted is one of the most 
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relevant points of discrimination between them. In particular, they observe that “the 
understanding and production of mathematical proofs belong to the literate side of 
linguistic performances and require prior deep linguistic competence”.
Our hypothesis is that the rupture between argumentation and proof gets deeper due 
to a lack of activities of both translation from verbal to algebraic language and 
interpretation.
The analysis we propose here has a double value:  
1) It highlights the influence of educational background on the choice of a proving 
strategy as well as on the problems related to the development of a proof;  
2) It represents a moment in a formative “route”, proposed to trainees in order to 
make them: a) understand the importance of coordinating verbal and algebraic 
language in the development of proofs; b) compare proof strategies developed 
through both the verbal and the algebraic register; c) reflect on potentialities and 
limitations of different strategies (Afterwards we will show what kind of theoretical 
tools we referred to in order to promote trainees reflections on these aspects). 
In this paper we focus on a problem posed to trainees. We chose it because of its 
particular textual characteristics and because of the kind of proof it implies. In fact, 
its solution could be “easy” to be found from an intuitive point of view, but its 
formalization is quite complex. Before presenting an analysis of this problem, we will 
sketch out a synthesis of some studies about the subject of  proof. 
THEORETICAL FRAMEWORK 
Issues related to the meaning of proof and to its functions have been deeply analysed 
both from the mathematicians’ community’s and from teachers and mathematics 
education researchers’ points of view (Hanna 2000; Hersh 1993; Thurston 1994).
Investigating students’ difficulties in producing proofs and searching for reasons 
underlying their failures or successful results are considered to be crucial issues 
(Hoyles 1997; Weber 2001). Some researchers have identified proof schemes through 
which the different attempts carried out by students in developing a proof can be 
classified (Alcock and Weber 2005; Harel and Sowder 1998). Harel and Sowder, in 
particular, subdivide proof schemes into three main classes, each of them further 
divided in subcategories: external conviction proof schemes (produced by students 
who think that “ritual and form constitute mathematical justification”), empirical 
proof schemes (produced by students who “validate, impugn or subvert conjectures 
by appeals to physical facts or to sensory experiences”), analytical proof schemes
(produced by those who are able to “validate conjectures by means of logical 
deductions”).
Other researchers outlined theoretical models for students’ difficulties in proving and 
suggested possible strategies to promote an appropriate attitude by students in dealing 
with proofs (Moore 1994; Weber 2003). 
In the last decade, studies about students’ production of algebraic proofs in the 
elementary number theory field intensified also due to the space given to proof in the 
curriculum of some countries (England is an example). From a didactical point of 
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view, the construction of algebraic proofs creates problems: in fact, as it is stressed 
by Barnard and Tall (1997), while algebraic manipulation requires to carry out 
“sequential procedures in which each mathematical action cues the next”, a proof also 
requires the ability of making choices. Furinghetti and Paola (1997) highlighted the 
presence of a double “shadow effect” when students face proofs of statements in 
elementary number theory: a “shadow effect” due to algebra, which prevents students 
from using their arithmetic knowledge in their attempts of proving, and a “shadow 
effect” due to arithmetic, which leads students to view only numerical checks as 
proofs and prevents them from making generalizations explicit. 
Analysis of students’ proofs of statements in elementary number theory highlighted 
students’ difficulties not only in translating familiar numerical concepts (such as “to 
be even” or “to be odd”) from verbal to algebraic language, but also in deducing all 
the possible information that an algebraic expression brings with it (Barnard and Tall, 
1997).
Some mathematics education scholars propose an approach to algebraic language 
also related to the development of reasoning in the proving process, referring to 
natural numbers as a suitable environment for those activities that favour a transition 
from argumentation to proof through the use of algebraic language (Boero & al. 
1995; Malara 2002; Friedlander, Hershowitz, Arcavi, 1989; Sadovsky, 1999). 
PRESENTING THE PROPOSED PROBLEM 
The problem at stake is the following: “Suppose that a is a non null natural number. 
If a is divisible neither by 2 nor by 3, then a2-1 is divisible by 24”. This problem is 
taken from the textbook, aimed at 15-16 years old students, “Matematica come 
scoperta” (“Mathematics as discovery”) by G. Prodi (1979). This textbook was 
thought and written in a research-based environment and it is still very innovative. 
We made hypotheses about possible difficulties related to the interpretation of the 
problem’s statement and to the choice of the proof strategy. 
As regards difficulties related to text interpretation, we point out that this problem is 
different from those typical tasks students are exposed to because of its linguistic 
formulation: the hypothesis is, in fact, expressed by a negation (non-divisibility by 2 
and 3). Another element of difficulty in the interpretation of the text is related to the 
fact that the thesis refers to an element (a2-1) different from those the hypothesis 
“talks about” (a). 
Other difficulties depend on the choice of the proof strategy. A verbal “approach” [3] 
to the proof of this statement is based on considerations that concern the concept of 
(non) divisibility by 2 and by 3 and on considering the relation that involves the 
dividend, the divisor, the quotient and the remainder of a division. It requires a good 
control of the implications of the hypothesis, in particular a clear view of the 
properties of both quotient and remainder of the division by 2 and by 3. The verbal 
proof develops from the identity a2-1=(a-1)(a+1): i. (a-1) and (a+1) are even 
because a is not-divisible by 2; ii. one among (a-1) and (a+1) is also divisible by 4 
because they are two consecutive even numbers; iii. one among (a-1) and (a+1) is 
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divisible by 3 because a is not-divisible by 3; therefore iv. (a-1)�(a+1) is altogether 
divisible by 24. 
Through an algebraic approach one can be led to consider also the formalization of 
the relation between the terms involved in the division of a by 6, besides the 
formalization of the similar relations that can be inferred from the division of a by 2 
and by 3. 
The possible algebraic proofs are more complicated than the verbal one because they 
require the formal translation of the hypothesis, a distinction between different cases, 
the use of suitable syntactic transformations and, above all, the interpretation of the 
new expressions produced with relation to the problem.  
Therefore we can imagine that an algebraic “approach” to this problem is likely to 
bring about obstacles for students, in particular related to the translation of divisibility 
properties in terms of the Euclidean algorithm. Control of the syntactic equivalence 
of expressions having different senses is fundamental, because it allows one to 
highlight properties that emerge more clearly in some expressions than in others 
(Arzarello, Bazzini, Chiappini, 1995).
The choice of this problem is related to the fact that an algebraic “approach” to its 
solution makes it possible to highlight trainees’ flexibility in both formalization and 
interpretation of formal expressions and also their possible mental blocks. 
METHODOLOGY 
The problem was given to 54 trainees with different university backgrounds (27 
mathematics graduates, 3 physics graduates and the remaining 24 biology, geology, 
chemistry and natural sciences graduates) in the initial phase of the Mathematics 
Education training courses. Trainees were supposed to solve, in 45 minutes, the 
assigned problem, describing the different proving strategies they tried to follow in 
the solution process and pointing out both obstacles and difficulties they met.
In analysing their protocols, we divided trainees into two groups according to their 
backgrounds: mathematics or physics graduates and trainees with a degree in other 
sciences. Our analysis is made through a double lens. In fact, we look at trainees’ 
protocols as products, classifying the proofs they gave making reference to Harel and 
Sowder (1998)’s classification of proof schemes. At the same time, we analyse their 
protocols from the point of view of the difficulties which come out in the proving 
processes. In this second analysis we look at difficulties caused by: problems related 
to the coordination between the verbal and algebraic registers in carrying out the 
proof; inability to formalize compound statements; inability to interpret formulas 
resulting from a syntactic transformation; presence of possible mental blocks. 
RESULTS
We divided trainees’ productions into six main groups according to the highlighted 
proving strategies and to Harel and Sowder’s proof schemes (we singled out those 
categories which adhere to the examined proofs). The following table summarizes the 
proof schemes’ frequencies in our trainees’ protocols.  
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Table 1: Frequencies of proof schemes with relation to educational backgrounds 

Harel and Sowder’s
Classification

Frequencies of proof 
schemes with relation 

to educational 
backgrounds 

Categories Subcategories

Typologies of protocols which 
adhere to categories 

Maths-
Physics

Other
sciences

Symbolic proof 
schemes

Algebraic proofs which 
highlight syntactical and/or 
interpretative problems in 
managing formal expressions 

9/30 8/24

External 
conviction 

proof 
schemes Ritual proof 

schemes

Proofs in which trainees attempt 
to apply well-known proving 
procedures (such as reasoning 
by induction and proof by 
contradiction) characterised by 
serious logical mistakes 

3/30 /

Perceptual 
proof schemes

Verbal proofs in which 
reference to erroneous 
perceptions about numerical 
properties is made explicit 

2/30 2/24Empirical 
proof 

schemes
Inductive proof 

schemes
Proofs based on numerical 
examples only 1/30 14/24 

Intuitive-
axiomatic proof 

scheme

Verbal proofs in which 
reference to correct numerical 
properties is made explicit 

2/30 /
Analytical 

proof 
schemes Symbolic 

transformational 
proof schemes 

Correct algebraic proofs 13/30 /

The table highlights that Trainees with “other scientific degrees” definitely prefer 
verification through numerical examples (14 out of 24). Those who try to use the 
algebraic code (only 8 out of 24) get stuck because of their difficulties in 
manipulating and understanding the algebraic expressions they formulate. The 
remaining trainees with “other scientific degrees” try, not successfully, to prove the 
statement using a verbal approach. Those who try to construct a not merely inductive 
proof also turn to numerical examples. In fact they use numerical examples in their 
proofs when they want to show the correctness of their assertions or when they are 
not able to manipulate some expressions. In this context, this attitude hides insecurity. 
With reference to trainees who verify the statement through numerical examples 
only, we think it is important to group their protocols according to whether they show 
consciousness about the limits of their productions or not. In this regard, we can say 
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that most trainees (10 out of 14) are aware that numerical examples are not enough to 
prove the statement, so they point out their inability in finding an algebraic 
representation of the regularities observed through examples. Four trainees, however, 
think that verifying a property for some numerical cases only is enough to prove it. 
As regards “aware” trainees, these are some significant claims made by some of the 
trainees after having shown that the property holds for some simple numerical 
examples: “I can guess that it’s true, but I’m not able to formalize it in mathematical 
terms, so I’m not able to prove it”; “I can’t express numbers through symbols”.
As regards “not-aware” trainees, there are some important claims made by trainees 
who believe they have correctly proved the statement: “the property is valid when 
a=5, 7, 11 so, if we substitute a for 13, we’ll find a multiple of 24”.
Almost all mathematics and physics graduates (25 out of 30) prefer an algebraic 
“approach”. Four of them try to give a verbal proof (2 unsuccessfully). Only one of 
them chooses the inductive scheme. We were negatively surprised by the high 
number of trainees with a degree in mathematics and physics who failed in the proof 
of the statement (15 out of 30; 12 of them chose the algebraic strategy) because of 
their inability to organize a proof strategy or to complete the proof. 
We observe the worrying fact that a high number of  trainees are not able to master 
algebraic expressions (41 out of 54, precisely all the trainees with “other scientific 
degrees” and 17 out of 30 trainees with a degree in mathematics or physics). Some of 
them openly declare their difficult relationship with algebraic language, others 
display a rejection of mathematics when they choose not to use any algebraic 
formalism, others display their difficulties through their unsuccessful attempts to 
master the algebraic expressions they formulate. 
A ZOOM ON PROVING PROCESSES 
In the following we will show the main difficulties highlighted by our analysis of 
trainees’ protocols, distinguishing between trainees with a degree in mathematics or 
physics and trainees with other scientific degrees. We will start from the latest 
because of their greater weakness in the development of formal reasoning. 
Trainees with “other scientific degrees” 
Among the main problems highlighted by our analysis of protocols, we would like to 
stress two kinds of difficulties in particular: 
1) Difficulties in correctly interpreting the text of the problem and in inferring 
properties related to hypothesis and thesis. These are some of the typical mistakes: 

1a) A lot of trainees draw wrong conclusions about the set of numbers which satisfy 
the properties required for a. For example, a widespread interpretation makes some 
trainees conclude that a must be a prime number; 
1b) Some trainees display that they do not know exactly what to prove. A trainee, 
for example, writes confidently that it is impossible to prove the statement because 
“Every number which is divisible by 24 is also divisible by 2 and by 3”, confusing 
the properties of a with the properties of a2-1.
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2) Difficulties in interpreting and managing algebraic expressions. Typical mistakes 
are related to the process of formal coding and to the interpretation of expressions 
after the syntactic treatment. These are some examples of the most representative 
mistakes, that we propose following the development of the proof:

2a) Those who try to factorize a2-1 stop after having observed that (a-1)(a+1) is 
divisible by 2 and by 3 and they are not able to infer other simple properties, such as 
the divisibility of (a-1)(a+1) by 4. 
2b) Almost no trainees are able to formulate the properties of a in algebraic 
language, and in particular the non-divisibility of a by 3. Some of them try to solve 
the problem interweaving algebraic and verbal language. One trainee, for example, 
expresses the non-divisibility of a by 2 and by 3 in this way: “a/2
integer and 
a/3
integer for every integer greater than or equal to zero”. Others translate the 
properties of a into expressions with a completely different meaning, as we will see 
afterwards in a reported example. 
2c) Those who try to prove the statement show that they do not know how to 
deduce the properties of a2-1. One trainee, for example, starts his proof with the 
formalization of the thesis and writes . He immediately stops here 
because he is not able to further interpret what he has written applying the 
hypothesis.

na 2412 �	

In support of the latter remarks related to difficulties in the interpretation of 
algebraic expressions, we propose an example of an unsuccessful attempt to give a 
formal proof, not supported by a real understanding of the algebraic expressions:
The trainee observes, without any motivation, that every number which is divisible 
neither by 2 nor by 3 can be written as � � n�� 23 , where n is an even number. 
Afterwards, he carries out some calculations, writes � � 22 1024123 nnn ���	��  and, 
in order to prove that this expression is divisible by 24, he sets up the equation 

. Then he manipulates the equation, obtaining the equality hnn 241024 2 ���

n
hn
�
	

�
10

124 . Finally, he uses this last equality to assert that “n is divisible by 24”.

Among the observations that we can make about this proof, we think it is important 
to stress the total lack of control in understanding and managing both the algebraic 
expressions that he constructs and the related properties. He is not able to translate 
the properties of a into formal language; he sets the condition that the expression 
obtained for a2-1 satisfies the required property, confusing hypothesis and thesis; he 
obtains an equality in which n is not even made explicit and draws from it 
erroneous conclusions about the properties of n; he draws conclusions about n
instead of drawing conclusions about a2-1.

Trainees with a degree in mathematics or physics 
Most of those trainees who fail in their proof display: 1) difficulties in the translation 
form verbal to algebraic language, closely connected with a clear lack of knowledge 
about elementary numerical properties; 2) difficulties in understanding and managing 
formal expressions. 
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With reference to point 1, the main mistakes in translation are related to trainees’ 
inability to formalize concepts such as multiple or divisor, and to use the Euclidean 
relation between dividend, divisor, quotient and remainder of a division: 

1a) Some trainees are not able to make the hypothesis explicit. The following claim 
clearly shows this problem: “It’s difficult to codify in symbols the concept of not 
being divisible by 2 and not being divisible by 3”;
1b) A lot of trainees try to use the Euclidean relation for representing the non-
divisibility of a by 3 or by 6, but they do not consider the variability of the 
remainder. For example, some of those who deduce from the hypothesis the non-
divisibility of a by 6 translate this property into the equality a=6n+1 only; 
1c) A small number of trainees, after factorizing a2-1=(a-1)(a+1), are not able to 
correctly deduce the properties of the factors a-1 and a+1 from the hypothesis. One 
trainee, for example, erroneously deduces that “a-1 and a+1 must be two odd 
numbers because a is non-divisible by 2” and erroneously claims that “a-1=2h+1 
and a+1=2h+3, with h
1 (mod3) e h
0 (mod3) because a is not divisible by 3”. He 
attaches characteristics of a to (a-1) and (a+1) and imposes not-justifiable 
conditions.

With reference to point 2, we observed that many trainees fail because: 
2a) Even if they correctly set up the proof, translating, without any difficulty, the 
properties of a, they get stuck during the manipulation of the algebraic expressions 
they formulated. For example, a trainee correctly expresses a as a=3h+1 (h even) or 
as a=3h+2 (h odd) and, performing syntactic elaborations (substitutions and 
transformations), he obtains, in the first case  and in the second 
case . However, he is not able to proceed in order to reach 
the thesis. 

)13(1212 ��	 nna
324361 22 ���	 nna

2b) Even when they are able to carry out syntactic elaborations, they do not always 
correctly interpret the new expressions they obtain. One trainee, for example, 
considers the case a=6k+1 and obtains, through syntactic transformations, the 
expression (6k+1)2-1=12k(3k+1), but he concludes that a2-1 “is divisible by 12 and 
not by 24”, without considering that k or 3k+1 could be even. In this case, we can 
hypothesize that the standard representation of an odd number influences his 
erroneous conclusion. 

The protocols of some trainees deserve a separate remark because they represent 
ruinous attempts to apply well-known proving procedures. These protocols highlight, 
in some cases, a total lack of understanding of the meaning of such procedures and, in 
other cases, serious mistakes in logic. A trainee, for example, attempting to prove the 
statement, proves the inverse proposition (“if a2-1 is divisible by 24, then a is 
divisible by 2 and by 3”), highlighting a serious gap in logic because he thinks that 
proving the truth of the inverse of a proposition ensures that the original proposition 
is true. 
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FINAL CONSIDERATIONS 
A high number of trainees with a degree in mathematics or physics had remarkable 
difficulties and gave only partial solutions, full of gaps; this fact, together with the 
general negative results of trainees with other scientific degrees leads us to state that: 
1) those who were not appropriately educated to translate verbal expressions into the 
algebraic code either avoid the use of algebraic language or, in the attempt to use it to 
develop a proof, are unable to interpret and manage the formal expressions they 
formulate; 2) those who are well-trained in the syntactic manipulation of algebraic 
expressions get stuck if they are not  appropriately educated to interpret them. 
Therefore, it is essential to educate both students and trainees not only to be able to 
translate, but especially to interpret. It is clear that, if pre-service teachers do not 
master the proving activity, they are probably not able to propose it to their students 
in a persuasive way. Hence, we think that it is important to put the stress on proof 
during educational and training courses for teachers, as regards both abilities to attain 
a proof and the awareness of the role it plays in the mathematical activity. This 
“investment” is more urgent for those who are going to teach mathematics without 
having a background in mathematics. 
In the future development of this study we want to work with teachers also on the 
comparison of their productions, in order to favour the construction of proofs as well 
as a continuous reflection about both the related difficulties and the feasibility of such 
activities in the classroom. In this sense, we think it is important to give them some 
theoretical instruments that could be a good reference in order not only to facilitate 
the communication between trainees and trainers, but also to make teachers aware of 
how to “move around in the proving universe”. 
NOTES 
1. In Italy middle-school corresponds to grades 6th, 7th, 8th.
2. Pre-service teachers attending SSIS (Specialisation School for secondary school teaching) at the University of 
Modena and Reggio Emilia. 
3. By “approach” we mean “way of putting oneself in front of a problem in relation to the choice of a particular 
linguistic code”.
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In this paper, we present a didactic analysis of the mathematical concept of 
implication under three points of view : sets, formal logic, deductive reasoning. For 
this study, our hypothesis is  that most of the difficulties and mistakes, as well in  the 
use of implication as in its understanding, are due to the lack of links in education 
between those three points of view. This article is in the continuation of those 
previously published in the acts of PME 26 and PME 28. We present here the 
analysis of our experimentation’s results, that we have not yet shown. 

INTRODUCTION
The implication is an usual object of our everyday life that we use to communicate. 
Its existence in natural logic leads to confuse it with the mathematical object, which 
then seems to be a clear object. Yet, even training teachers in mathematics have 
difficulties related to this concept of implication, especially with regard to necessary 
and sufficient conditions. 
The study we present here is a part of our thesis on the mathematical concept of 
implication [Deloustal-Jorrand, 2004 c]. Our theorical framework is placed in the 
theory of french didactics, in particular, we use the tools of Vergnaud's conceptuals 
fields theory and those of Brousseau's didactical situations theory. Our study is linked 
to the work of V. Durand-Guerrier [Durand-Guerrier, 2003] on the one hand and of J. 
and M. Rogalski [J. & M. Rogalski, 2001] on the other hand. V. Durand-Guerrier 
shows, in particular, the importance of the contingent statements for the 
comprehension of the implication. J. and M. Rogalski try to define types of 
structuring of the use of logic when evaluating the truth of an implication with a false 
premise. We do not forget that the implication is an essential tool for the proof. Yet, 
we choose here to focus our research on this concept rather than on a the proof in 
general.
This study follows and supplements those presented at PME 26, PME 28 and ICME 
10. We give now results that were lacking previously. We present, first, three points 
of view on the implication before a mathematical and didactical analysis of one of our 
problem tested with training teachers, after what we give some results and conclude. 
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THREE POINTS OF VIEW ON THE IMPLICATION 
This paragraph was detailed in our previous research report in PME 26. Yet, we think 
this part of our research is necessary for the reader to understand the following 
problem and the aim of our research hypothesis, hence we summarize it here. 
The mathematical implication seems to be a model of the natural logic implication we 
use in our everyday life. Like any model, this mathematical concept is faithful from 
certain angles to that of natural logic but not from others. This distance between the 
mathematical concept and the natural one leads to obstacles in the use of the 
mathematical concept. An epistemological analysis [Deloustal-Jorrand, 2000] enabled 
us to distinguish three points of view on the implication : formal logic point of view, 
deductive reasoning point of view, sets point of view. 

Of course, these three points of view are linked and their intersections are not empty. 
We develop here neither the formal logic point of view (for example truth tables or 
formal writing of the implication) nor the "deductive reasoning" for which one can 
refer to Duval [Duval, 1993, p 44]. In the “deductive reasoning”, the implication 
object is used only as a tool. However in French secondary education, where this 
point of view is the only one, it often acts as a definition for the implication. 
Generally speaking, having a sets point of view, means to consider that properties 
define sets of objects: to each property corresponds a set, the set of the objects which 
satisfy this property. The sets point of view on the implication can then be expressed 
as follows: in the set E, if A and B are respectively the set of objects satisfying the 
property A and the set of objects satisfying the property B. Then, the implication of B 
by A (i.e. A � B) is satisfied by all the objects of the set E excluded those which are 
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in A without being in B, i.e. by all the objects located in the area shaded here after. In 
the particular case with A)B, all the objects in E satisfy the implication. 

Figure 1 

RESEARCH HYPOTHESIS 
The experiments carried out for several years, within the framework of our research, 
showed that the implication was not a clear object even for beginner teachers. 
Moreover, they showed that, contrary to a widespread idea, a logic lecture is not 
enough to get rid of these mistakes and difficulties. 
Following these comments, we formulated the research hypothesis: it is necessary to 
establish links between these three points of view on the implication for a good 
apprehension and a correct use of it. In this paper, we make the assumption that a 
didactic engineering [Artigue M. 1990 & 2000] linking those three points of view 
can be built. In the following paragraphs, we present, therefore, some of our choices 
for this didactic engineering and some of our results. 

CONDITIONS OF THE DIDACTIC ENGINEERING
The problem we present results from an experimentation carried out in 2001 with 
training teachers in mathematics. We worked with two groups of approximately 25 
students at the IUFM [1] of Grenoble (France). This experimentation includes two 
three-hour-sessions on the proof and, in particular, on the implication. The first 
session contained two problems (one in geometry [Deloustal-Jorrand, 2002], one on 
pavings [Deloustal-Jorrand, 2004 a]), the second one proposed a work on written 
proofs [Deloustal-Jorrand, 2004 b]. We present, in this paper, the results of the 
analysis of the answers to the problem of geometry (first session). Before that, we 
display a mathematical and didactical analysis of the first question of this problem.  

MATHEMATICAL STUDY OF THE PROBLEM OF GEOMETRY 
In this paragraph we show that this problem of geometry, using only easy properties, 
may question the reasoning in a non obvious way. 
Here is the first question of our problem of geometry[2]: 

Let ABCD be a quadrilateral with two opposite sides with the same length. What 
conditions must diagonals satisfy to have : two other parallel sides ? 

Let us call H the property “to have two opposite sides with the same length” and B 
the property “to have two other parallel sides”. We call H and B the sets which 
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respectively represent them. The problem is now to find A with (H and A) � B. Let 
us present two approaches which may induce different solving strategies. 
The first approach raises the question of sufficient conditions. First example, one may 
list conditions on diagonals (same length, perpendicular…) and then check if these 
conditions, added with the hypothesis H, imply the conclusion B. This approach puts 
back the problem within the deductive point of view. Second example, one can also 
refer to known objects. Some quadrilaterals which satisfy both H and B are well 
known, for example squares, rectangles, parallelograms. Besides, the properties of 
their diagonals are also well known, and then one can work directly with 
equivalences. However, if some conditions may be cheaply found, these strategies do 
not give the exhaustiveness, all the conditions are not a priori reached. 
The second approach raises the question of necessary conditions. Which objects 
satisfy both H and B ? Then, what properties A have their diagonals ? This approach 
seems natural and is basically related to sets point of view. Indeed, one must consider 
the set H*B. There are two ways to study those objects which satisfy H and B, either 
to be in H and add the property B, or to be in B and add the property H. Let us 
describe, in details, this first strategy, using a sets point of view. 
Sets point of view strategy : H then B (H : two equal opposite sides) 
Once the points A and B placed in the plane, the hypothesis (H), AD=BC, means that 
the points C and D belong to two same-rayed circles respectively, one centred on B, 
the other centred on A. Once D placed, the property (B) "two other sides parallel", 
means that C is the intersection of the straight line parallel with (AB) containing D 
with the centred on B circle. There are two intersection points C1 and C2.

Two configurations are thus obtained : isosceles trapezium (ABC1D) and 
parallelogram (ABC2D) [fig.1]. But one must not forget that, once A fixed, one may 
still change the distance AB, the ray of the circles and the position of D (linked to that 
of C) on its circle. So, when the two circles intersect, there is a new configuration : a 
cross quadrilateral called CQ1 (ABC1D) [fig.2] 

Fig.1 Fig.2

So there is the implication : (H and B)  (parallelogram or isosceles trapezium or 
cross quadrilateral CQ1). We thus know the configurations which satisfy both H and 
B, it remains then to find the conditions on the diagonals. 
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However, for a quadrilateral, being a parallelogram is equivalent to having diagonals 
which cross in their middle. Isosceles trapeziums and cross quadrilaterals CQ1 have 
same-lengthed diagonals. Now remains to see whether "to have same-lengthed 
diagonals" (A1) is a sufficient condition, i.e. if the implication in the quadrilaterals: 
(H) and (A1)  (isosceles trapezium or cross quadrilateral CQ1) is true. 
For that, the sets point of view is necessary again, we have to study the quadrilaterals 
which satisfy (H) and (A1).We will not detail the rest of the solving, but let us say 
that these two conditions bring obviously the isosceles trapezium and the cross 
quadrilateral CQ1 but also a cross quadrilateral CQ2 (cf. here below) which does not 
satisfy the conclusion (B). The condition "to have same-lengthed diagonals" is thus 
not sufficient and will have to be restricted to exclude CQ2. The final solving of this 
exercise is not the subject of this article, but we wanted to show how this problem can 
question the implication. 

Cross parallelogramm CQ2
A C

D B

DIDACTICAL STUDY 
We present, first, some general choices for our didactic engineering, then the choices 
concerning, more precisely, this problem of geometry. Let us call again H the 
property “to have two opposite sides with the same length” and B the property “to 
have two other parallel sides”, respectively H and B the corresponding sets.
Mathematical framework for our didactic engineering
First of all, we choose, for our experimentations, very easily accessible mathematical 
concepts. Indeed, our hypothesis is that, to see a work on the reasoning and 
distinguish difficulties due to the concept of implication, there must not be difficulties 
linked to a mathematical concept. This problem contains only notions very well 
known by students such as quadrilaterals, parallelograms, diagonals... 
Real question 
Our hypothesis is that the question must be difficult enough to allow a work on the 
reasoning. Besides, the truth of the implication must be questioned. Thus, we ban 
questions like: “Prove that A � B is true”. 
Implication versus equivalence 
A problem whith equivalences (+) does not allow a work on the implication. We 
choose for our experimentation to distinguish a necessary and a sufficient condition. 
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Practical organization of the sessions 
Our hypothesis is that a research in groups is necessary for our didactic engineering.
That allows a confrontation between the various points of view. Nevertheless, the 
first individual work gives each one the time to make his own opinion about the 
problems. These various opinions will feed the discussions. 
Choices to put forward the three points of view in our didactic engineering
We made the assumption that the “deductive reasoning” is usually always present. 
Therefore, in our didactic engineering, we chose to emphasize the sets point of view 
and the logical one, depending on the problems. 
Choices to put forward the sets point of view in this geometry problem 
The objects questioned in this problem are not often considered in the french 
secondary school. 
First, H is the set of the quadrilaterals having two equal opposite sides. Their 
properties are not as well known as those of parallelogramms for example. Yet, in 
french secondary school, one usually considers, in fact, the implication "in H,
A  B". Here H is implicit because very well known and used. For example, most of 
the time in the parallelograms’ class, properties are implicitly used (for example, 
convexity). Here, the property H must be explicit during all the resolution. 
Besides, H, A and B contain crossed quadrilaterals which are not teached in french 
secondary school. The training teachers must distinguish the crossed quadrilaterals 
and define them. 
Therefore, the presence of these quadrilaterals should push the strategies linked to the 
sets point of view. Indeed, the training teachers’ usual knowledge on the 
quadrilaterals is not sufficient to give a correct answer. 
Choices for a work on the implication in this geometry problem 
The condition A is unknown. Hence, the deductive reasoning is “upended” here. 

It is hard to find A by using the reasoning: “in H, ¬B � ¬A”. Indeed, it is difficult to 
define the set corresponding to ¬B “Not to have two other parallel sides”. 
The condition A sought is, in fact, equivalent to (A1 or A2). Usually, the taught 
implications are like (H and A1 and A2) � B, whereas, here, it is (H and 
[A1 or A2]) � B. Consequently, we think A is more difficult to define and prove. 

At last, the problem itself forces to question the direction of the implication (�, ,).
Indeed, we did not specify if the requested conditions were necessary or sufficient. 
Paper Vs. interactive geometry software in this geometry problem 
A part of the task consists in varying the parameters of the figure (length of the ray, 
position of D on the circle…). An interactive geometry software (cabri for example) 
would make this part of the resolution easier. However, we assume that the use of this 
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software would prevent us to check whether the sets point of view is used or not. 
Indeed, we would not be able to see if the training teachers are working on the sketch 
itself (as seen on the screen) or on the figure (as a representation of the sets). In fact, 
with the software, the manipulation of the sketch is mainly due to the “didactical 
contract”. That is to say, the user has no choice but to manipulate the sketch. 
Consequently, this manipulation is not, most of the time, the result of a 
“mathematical choice” and is not a clue of the presence of the sets point of view. 
Hence, we chose to work on paper rather than with a software. 

RESULTS
Working on the implication 
First of all, we can say there was a real mathematical question in this problem. 
Although students first thought this exercise very easy, its solution required a very 
long research in groups. The answers are incomplete and, in the end, the students 
declared this exercise very difficult.

Robert: It is an exercise which as a teacher, I would not give before university 

On one hand, no group found the problem obvious but, on the other hand, no group 
was stopped by mathematical difficulties. They had strategies to begin their research. 
That is why we can assert that a work on reasoning and implication was done. 
The exercise fulfilled its role, as for the work on the implication. Indeed discussions 
about necessary and sufficient conditions took place in the groups during all the 
research. The teachers looked, first, for sufficient conditions but, because of the 
problem, they had to look for necessary conditions too. 

Anne: We looked for sufficient but…if we consider it, maybe…it is necessary too. 

Thus, there were a lot of questions in all the groups. For example, they all wondered 
if the property “to have same-lengthed diagonals” was a sufficient condition. We saw 
then teachers confusing sufficient condition and necessary condition. 

Antoine: No, « same-lengthed diagonals » is not sufficient. A parallelogramm is OK, 
yet its diagonals don’t have the same length. 

This counter-example is not valid, it shows that the condition is not necessary but it 
does not show anything on the sufficient quality. 
Besides, all the groups were looking for a “complete” condition merging all the 
possible conditions. They all found the sufficient condition “to have diagonals which 
cross in the middle” but they all thought it was not enough to answer the problem. 

Armelle: I was looking for a condition that would meet…all possibilities. 
Moreover, most of the groups tried to define a “minimal” condition, which requires 
the fewest hypotheses. Then, they had to take the property H into account. 

Working Group 4

CERME 5 (2007) 607



Anne: Until now, we didn’t use AB=CD ! Thus if we take into account this new 
condition, maybe we can formulate more easily our condition on the 
diagonals.

Furthermore, as we had planned, they were not able to use the reasoning 
“in H, ¬B � ¬A” in order to find A. But one group tried and had to argue about it. 

Davy: But in fact…no, the problem is, what are you going to look for on your 
diagonals ? What are you going to deny on your diagonals ? 

Working on the sets point of view 
Most of the groups did not know how to solve this problem. This confirms our 
presumption that the ensemblist point of view is necessary in this situation. The 
analyse of the answers shows that the sets point of view is not an available tool for 
the training teachers. But on the other hand, we can see a lot of implicit clues of its 
presence. We now want to describe these clues. 
First of all, all the groups used sketches in their strategies. Some of them are similar 
to those of the strategy based on sets point of view in the mathematical analysis. 

Nevertheless, they did not check the variation of their sketches (length of AB, BC…). 
As a result, they did not check that their sketches represented all the possible 
quadrilaterals. Thus, they can not be sure that they found all the possibilities for 
ABCD. Yet, these sketches show that the quadrilaterals were built as sets of points. 
Besides, the conjectures, examples, counter-examples are very present. These are 
marks of the sets point of view since teachers have to speak about sets. 
Furthermore, the teachers often forgot the property H “two same-lengthed sides”, 
especially when they seeked counter-examples. 

Laura : But, your opposite sides with the same length, where are they here ? 

Antoine : Oh yes, I made a mistake. 

Yet, before long, the situation itself and the work in groups allowed them to see that 
the property H was not taken into account. No group kept a false counter-example. 
This property fulfilled its role since the teachers had to remind it during the resolution 
and had to consider the set of quadrilaterals which satisfy H.
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Despite it, the sets point of view is not a tool for the teachers as we show now. 
All the groups left apart the crossed quadrilaterals, explicitly or implicitly when they 
began their resolution. Some groups took them into account afterwards, but they 
separated this new research. They gave some reasons: crossed quadrilaterals are not 
interesting, they are particular objects, they do not have diagonals… 

Robert: But why do you draw a crossed one, it is not an interesting case! 

Carine: You can’t talk about diagonals if you link this with this. Thus necessarily it 
is not crossed. 

Besides, the sketches are not seen as a tool of the set point of view. Then they can not 
be considered as a proof. Yet, all the teachers did use sketches. That is why, one of 
the main questions during the resolution, in all the groups, was to find what could be 
the role of these sketches. Do they give all the possible quadrilaterals ? If there are 
enough sketches can one be sure to have all the quadrilaterals ? Can they be 
considered as a proof ? 

Laura: To prove is not to draw ! 

For the training teachers, a sketch can not be a proof whereas this can be true in the 
sets point of view as we showed in the mathematical analysis. 
Working on the logical point of view 
Most of the groups gave different sufficient conditions. Only one group gave a single 
condition written with the logical word “or”. Generally, the equivalence [A1 � P and 
A2 � P] + [(A1 or A2) � P] is not admitted, even when proposed by a teacher. This 
situation allows a discussion on this equivalence. 

CONCLUSION
We have shown that this problem allows to question the implication and the proof. 
Indeed, the training teachers have difficulties which are not related to mathematical 
objects. They had to examine the conditions to know wether they were sufficient or 
necessary. They discussed about what a mathematical proof is. 
Moreover this problem requires a work under the sets point of view. Although it is 
not used as a tool, it appears many times, concerning counter-examples or the role of 
sketches. Besides, the logical point of view appears too, especially to express the final 
condition with the “or”, but also to find a minimal condition or sometimes to decide if 
a condition is sufficient or necessary. 
Lastly, these results are to be placed among others. Indeed, this problem of geometry 
forms part of a six hour experimentation including other stages of work, in particular, 
studies, in groups, of written proofs [Deloustal-Jorrand, 2004 b] and of a problem of 
discrete mathematics [Deloustal-Jorrand, 2004 a]. Moreover, this experimentation 
takes sense when one knows that it was preceded by two others, carried out in 1999 
and 2000.This problem of geometry is, thus, to consider as part of a broader context. 
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NOTES
1. University Institute for Teacher Training

2. There were two other questions: two 90 degrees angle ? ; two other same-lengthed sides ?.
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USING THE VAN HIELE THEORY TO ANALYSE THE TEACHING 
OF GEOMETRICAL PROOF AT GRADE 8 IN SHANGHAI 

Liping Ding and Keith Jones 
University of Southampton, U.K. 

The data reported in this paper come from a study aimed at explaining how successful 
teachers teach proof in geometry. Through a careful analysis of a series of lessons 
taught in Grade 8 in Shanghai, China, the paper reports on the appropriateness of the 
van Hiele model of ‘teaching phases’ within the Chinese context. The analysis 
indicates that though the second and third van Hiele teaching phases could be 
identified in the Chinese lessons, the instructional complexity of, for example, the 
guided orientation phase means that more research is needed into the validity of the 
van Hiele model of teaching.
INTRODUCTION

The teaching of geometry, and, in particular, the teaching of geometrical proof, 
has received changing amounts of emphasis in recent curriculum reforms across many 
countries (compare, for example, the US NCTM Standards, 1989, 2000). For many, 
such as Wu (1996), plane geometry, taught well, is essential as it can give students at 
secondary school a first experience of the power and the economy of the basic 
axiom-theorem-deductive feature of mathematics. In China, the process and method of 
proof continues to be considered as an essential part of the school mathematics 
curriculum. For example, the Shanghai Primary and Secondary School Curriculum 
Standard (Shanghai Education Committee, 2004) specifies, for the lower secondary 
school level (Grade 6 to Grade 9; students’ age 11-15 years), that the process of 
proving should be emphasized for the following reasons: 

...to help students experience the developmental process from intuitive geometry to 
experimental geometry and then to deductive geometry; to establish the relationship and 
recognize the distinction between intuition and logical thinking; to perceive the meaning and 
the use of inductive reasoning, analogical reasoning, and deductive reasoning…; to 
experience the process of ‘experiment-induction-conjecture-proof’ (p35, translated by Ding). 

Given the continuing debate across the world about the learning and teaching 
proof in geometry and the difficulties that many students encounter with this topic (see, 
for example, Jones 2000; Mammana and Villani, 1998), the research from which this 
paper is taken aims to contribute to understanding and interpreting, in depth, the 
teaching of geometrical proof by analysing classroom instruction at Grade 8 in 
Shanghai, China. The aim of this paper, following Whitman et al (1997), is to analyse 
the appropriateness of the van Hiele model of ‘teaching phases’ (see below) within the 
Chinese context, and, in particular, to see how well the model characterises the 
observed teaching in order to try to explain how a successful teacher teaches what is, by 
all accounts, an aspect of mathematics that is very difficult for many students at school. 
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RESEARCH VIEWS ON THE VAN HIELE THEORY 
Based on their pedagogical experience and their teaching experiments, the van 

Hieles (husband and wife) proposed a psychological/pedagogical theory of thought 
levels in geometry (English version in Geddes et al., 1984). For many researchers, such 
as Schoenfeld (1986), this model of thought levels provides a useful empirically-based 
description of what are likely to be relatively stable, qualitatively different, states or 
levels of understanding in learners. Accompanying this model of thought levels, the 
van Hieles proposed a model of teaching that specifies five sequential phases of 
instruction (see, for example, Clements & Battista, 1992, pp430-1) that, the van Hieles 
suggest, are a means of enhancing students’ thinking from one thought level to the 
next. This model of teaching phases, as discussed below, is used as the main theoretical 
framework for this paper.   

Originally, and in an attempt to understand the structure of geometry learning, 
Dina van Hiele-Geldof (see Geddes et al, 1984, pp217-223) focused on analyzing the 
relationship between student and subject matter in elementary geometry. As a result of 
her research, she suggested five teaching phases which, for the purposes of this paper, 
are termed as follows: 1) Information; 2) Guided Orientation; 3) Explicitation; 4) Free
Orientation; 5) Integration (adapted from Clements & Battista, 1992, pp430-1; Geddes 
et al, 1984, p223; Hoffer, 1983).

 At this point it is worth noting Hoffer’s (1983) view that the third phase 
(Explicitation) was incorrectly given by Wirszup (1976, p83) as ‘explanation’, with 
Hoffer taking the view that, in this third phase, it is essential that “students make the 
observations explicitly rather than receive lectures (explanations) from the teacher” (op
cit, p208). Furthermore, Clements and Battista (1992, pp430-1) call the second phase 
Guided Orientation, rather than use the Geddes et al term Direct Orientation.

Whatever the terms used, and the above illustrated some of the unresolved issues 
about the choice of terminology, the model is quite loose in that, as Schoenfeld (1986, 
p252) explains, and as Whitman et al (1997) found, the nature of the pedagogical 
sequence is far from clear. Not only that, but as the model is more a suggested process 
than a fixed formula, it is not at all obvious whether it is necessary for the teacher to go 
through each and every phase. Indeed, Hershkowitz (1998) is of the view that the van 
Hiele theory does not account well for the relationship between the context of the 
learning environment and the mathematical reasoning being developed. She suggests 
more context-specific research and this matches the call by Whitman et al (ibid p217) 
for more research to evaluate the use of the van Hiele theory with students of different 
cultural backgrounds. In general, the existing van Hiele-based research has yet to 
address systematically any of these issues concerning the nature and specification of 
the teaching phases. 

In the little research that has directly examined the van Hiele teaching phases, 
Hoffer (1994) developed a way of codifying teacher behaviour in terms of the phases 
of instruction (which he characterised as “Familiarization”, “Guided Orientation”, 
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“Free Orientation”, “Verbalization”, “Integration”). He then tested the coding 
procedure on a number of mathematics classes. Amongst his findings were that US 
mathematics teachers (not familiar with the van Hiele teaching phases) demonstrated a 
preponderance of phase 2 instruction (that is, “Guided Orientation”) and, Hoffer claims, 
often interrupted student progress toward higher levels in order to return to phase 2 
instruction. Taking up the Hoffer approach, Whitman et al (1997) applied Hoffer’s 
instrument to the comparative study of geometry instruction in Japan and the US. What 
they found was that the US teacher, in general, taught using phase 2 instruction (that is, 
“Guided Orientation”) but that “the class showed multiple phases ….within one 
module” (ibid p228) whereas in the case of the Japanese teacher “there was ambiguity 
in trying to identify the phase at which the teacher was teaching because it appeared 
that more than one interpretation was available [to the research team]” (ibid p229). In 
both these cases, while Hoffer studied a number of teachers, and while Whitman et al 
selected lessons on congruence of triangles from one Japanese and one US teacher, the 
actual subject matter being taught received little attention in their published papers. 

To contribute to the research base for this aspect of the van Hiele theory, and 
following Whitman et al (1997), the data reported in this paper come from a study 
aimed at seeing how well the van Hiele model of the five teaching phases accounts for 
the pedagogical methods used in teaching deductive geometry in classrooms in China. 
The key research question being addressed is to what extent the van Hiele model of five 
teaching phases accounts for the teaching of geometric proof by successful teachers in 
Chinese classrooms.

METHODOLOGICAL CONSIDERATIONS 
The data reported in the paper come from a study of geometry teaching at Grade 

8 in Shanghai (for other details, see Ding & Jones, 2006). In the city there are four 
grades at the lower secondary school level, from Grade 6 (students’ age, 11-12 years 
old) to Grade 9 (students’ age, 14-15 years old). As the school geometry curriculum is 
divided into three stages, namely intuitive, experimental and deductive geometry, 
students at Grade 8 (13-14 years old) start to learn more formal deductive geometry and 
practice proof writing. Consequently, studying this Grade offers the opportunity to 
analyse how Chinese teachers lead students at this Grade level to learn proof in 
deductive geometry. 

For the purposes of this paper, data, collected in 2006, is selected from the 
teaching of one teacher, referred to as Lily (pseudonym), in an ordinary public school 
in a typical suburb of the city. The teacher, selected because of very good reputation for 
student success, had over 20 years teaching experience of secondary school 
mathematics. At the time of the data collection, there were 39 students in the class and 
mathematics lessons, each 40 minutes long, took place six times each week. Every 
lesson with this teacher was observed over a three week period. During this time, 12 
geometry lessons were observed with topics concerning parallelograms, rectangles, 
rhombi and squares. In total, four definitions and fifteen theorems were taught during 
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the three-week observation period.  Given the known expertise of the teacher, 
supporting evidence showed that the students were ready for this level of mathematics. 

The data collected included classroom observations notes, audio-recordings of 
lessons (transcribed), and other field notes. During each lesson, photographs were 
taken to provide information which could not be recorded by audio-recorder or field 
notes (for example, recording work presented on the blackboard).  
USING THE MODEL OF TEACHING PHASES TO ANALYSE LESSONS

 In analysing the data, it was vital to understand, in depth, the nature of each 
phase in the van Hiele model. Pierre van Hiele (1986, p177) suggested that the teacher 
conducts the teaching process as follows: in the first phase, “by placing at the 
children’s disposal (putting into discussion) material clarifying the context”; in the 
second phase, “by supplying the material by which the pupils learn the principal 
connections in the field of thinking”; in the third phase, “by leading class discussions 
that will end in a correct use of language”; in the fourth phase, “by supplying materials 
with various possibilities of use and giving instructions to permit various 
performances”; in the fifth phase, “by inviting the pupils to reflect on their actions, by 
having rules composed and memorized, and so on”. This illustrates that, as a teacher 
moves through the teaching phases, there is a transition from forms of direct instruction 
towards the students’ independence from the teacher.

After a very careful study of the van Hieles’ original work, together with van 
Hiele-based research on the teaching phases, we seek to formulate an operational 
characterisation of the teaching phases in geometrical proof teaching and use this to 
analyse data collected in the Chinese classroom. The characteristics and terms of each 
phase described by the van Hieles (see Geddes et al., 1984), Hoffer (1983, 1994) and 
Clements and Battista (1992) were utilised. In what follows, an analysis of the teaching 
of proof in two geometry lessons (lesson Z2 and lesson Z3 - designations for 
identification purposes only) given by the case-study teacher, Lily (pseudonym), is 
presented in which each of the van Hiele phases is practically characterised. In these 
two lessons, there were two types of proof teaching: 1) teaching new geometrical 
theorems (Proof 1 and 2, involving theorems verifying a parallelogram by its opposite 
sides); 2) teaching proof of problem solving, namely, exercises consisting of two 
relatively simple problems (Exercises 4-5) and three complex problems (Exercises 
6-8).
Characterizing the Information phase of teaching 

The Information phase can be characterised when the teacher provides 
inquiry-based learning activities in which students carry out ‘experiments’ and make 
inductive reasoning and conjectures relating to a geometrical proof. In the analysis of 
the observed lessons, this phase was not found in either lesson, perhaps because the 
observed lessons were not at the start of the teaching of geometrical proof to these 
particular students.
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Characterizing the Guided Orientation phase of teaching 
In the analysed lessons, the phase of Guided Orientation was characterised by 

the teacher guiding students to uncover the links that form relationships of a proof 
problem, as exemplified by the following extract related to Proof 3 of lesson Z2 (see 
Figure 2)

Figure 1: Proof 3, lesson Z2 

The teacher briefly presented the ‘given’ for the problem (AD//=BC) and the statement to 
be proved (ABCD is a parallelogram), putting marks for the ‘given’ on the figure on the 
blackboard (see figure 1-1).

91 Lily: So far, how many methods did we learn to verify a parallelogram? (Some 
students answered the definition (AB//CD, AD//BC), and some answered Proof2 
(from the previous proof, students know that AB=CD, AD=BC); detailed student 
dialogue omitted) 

101 Lily: OK. Now, if I need to prove that this is a parallelogram, what is given? (Some 
students suggested AD//BC, some talked about AD=BC; detailed student 
dialogue omitted) 

107 Lily: How do you make a decision? (Some students suggested the definition (AB//CD, 
AD//BC), while others suggested AB=CD, AD=BC; the teacher highlighted the 
given AD//BC, students discussed the use of the definition; detailed student 
dialogue omitted) 

115 Lily: If I use the definition to prove, what should I prove first? 

116 Linlin (Boy): Parallel sides. 

120 Lily: How to prove the parallel lines? (AB//CD). (Students suggested linking AC; the 
teacher used a board ruler to link AC - see figure 1-2; student dialogue omitted) 

126 Lily: To prove AB//CD, what should I turn to prove first? (Some students discussed 
equal angles, some answered alternate interior angles; student dialogue omitted) 

129 Lily: Which pair of angles? (Using the students’ answers, the teacher highlight angles 
BAC and ACD; see figure 1-2; detailed student dialogue omitted.) 

132 Lily: To prove 1= 2, what should we turn to prove first…? (The class then 
discussed the idea of proving congruent triangles; dialogue omitted) 

1) 
A

B C 

D
2) 

A

B C

D

1

2

3)                     ABCD 

                 AD//BC 

          AD=BC 

AB=CD

AB//CD

1= 2
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(While the teacher asked students these questions, she gradually wrote down an analytic 
structure of the proof on the blackboard - see figure 1-3 . She then used a similar sequence of 
questions to organize the analytic structure of another proof; see figure 1-3�)

Characterizing the Explicitation phase of teaching 
The Explicitation phase of teaching was determined when students had 

knowledge, and were able to use mathematical language, to present the general 
structure of a proof. For instance, the extract from Exercise 4 of lesson Z2 (see figure 2) 
is characteristic of the explicitation phase. The extract follows the teacher explaining 
that ABCD (figure 2-1) is a parallelogram and that points E and F are ‘dynamic’ points 
that can move such that BE is always equal to DF (figure 2-2). The problem to prove 
what shape is quadrilateral BEDF (figure 2-3). 

Figure 2: Exercise 4, lesson Z2 

210 Lily: What does quadrilateral BEDF look like? (Students answer a parallelogram, 
dialogue omitted; the teacher asks the student to discuss why this might be the 
case)

206.1 Beibei: If a pair of opposite sides is equal and parallel, then…. 

209 Liuliu: (responded to Beibei) Yes, parallel and equal…???

215 Liuliu: Opposite sides are equal; I could use this to prove this problem. (this statement 
is taken to mean FD=BE, BF=DE). 

221.1 Beibei: (Responding on Liuliu) Why? 

221.2 Liuliu: You could see here. First, to calculate that ABF and ECD are congruent. 
Next, BF and DE are congruent. Oh, equal. BE and FD are already known.

221.3 Liuliu: This is to prove quadrilateral BEDF is a parallelogram. 

221.4 Beibei: It is already given that a pair of opposite sides is equal. 

221.5 Liuliu: You need to calculate that its opposite sides are equal. One pair of sides is 
given, yet you need to know another pair of sides. 

221.6 Beibei: It is already given that BE=FD. 

221.7 Liuliu: BE=DF. But you need to prove that BF=DE. 

221.8 Beibei: If a pair of opposite sides of a quadrilateral is not only equal, but also 
parallel, then it is a parallelogram. (Liuliu does not reply to Beibei at this 
point; both listen to another student’s presentation of the proof invited by the 
teacher.)

(1) 
A

B C 

D A

B C

D

E

F

(3) (2) 
A

B C

D
F

E
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Characterizing the Free orientation phase of teaching 
The Free Orientation phase of teaching, according to the van Hiele model and in 

the context of teaching geometrical proof, is when students learn their own ways to 
prove multi-step proof problems. This phase was not found in Lily’s lesson 2 and 3, 
perhaps because the sampled lessons were in the Guided Orientation phase of teaching. 
Characterizing the Integration phase of teaching 

The Integration phase of teaching, according to the van Hiele model and in the 
context of teaching geometrical proof, is when students review and reflect the methods 
used in a set of proofs. This phase was not found in Lily’s lesson 2 and 3, perhaps 
because the sampled lessons were in the Guided Orientation phase of teaching. 

DEVELOPING AN OPERATIONAL MODEL OF THE VAN HIELE PHASES 
An operational model of the van Hiele phases for the process of teaching proof 

in geometry is proposed as one outcome of this analysis. Descriptors of the Guided
Orientation phase of this framework were drawn from a detailed analysis, exemplified 
above, of the case study lessons. The operational model is arranged in terms of the van 
Hiele phases of teaching: 
1. Information: The teacher provides students inquiry-based learning activities in 

which students do experiments and make inductive reasoning and conjecture for a 
proof.

2. Guided Orientation: The teacher guides students to uncover the links that form a 
proof.

--a) The teacher demonstrates the ‘Given’ and the ‘To Prove’ statement or a problem; 
draws a figure and put marks on the figure on the blackboard; asks a set of 
questions and corrects students’ answers to help them understand the requirement 
of a problem; provides students time to read the problem and to draw the figure on 
their own.

--b) The teacher encourages students to outline the different known theorems of a 
figure; helps students review the nature of the known definition/theorem and 
uncover their relationship; guides students to use deductive method to obtain new 
theorem from other known definition/theorems; shows how to write a formal 
proof; helps students evaluate the nature of the new theorem; guides students to 
use words and mathematical language to precisely present the new theorem. 

--c) The teacher encourages students to outline the different ways to prove a problem; 
guides students to present the general structure of a proof and correct errors and 
emphasizes the rigor in proving; demonstrates the use of a new theorem in solving 
a set of problems.

--d) The teacher provides multi-step problems that help students understand the 
network of definition/theorems; encourages students discover the hidden property 
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by a set of questions and by uncovering a basic figure from the complicated 
figure; guides student to evaluate an appreciate method of a proof; helps students 
recognize the nature of different theorems of a figure;  

3. Explicitation: The teacher ensures that students have the knowledge to present ideas 
and the general structure of a proof before the teacher’s guidance. S/he begins to 
accurately use mathematical language in presenting a proof. In this phase, the 
teacher gets to understand what students have learned of the proof topic. 

4. Free Orientation: The teacher ensures that students learn their own way to prove 
multi-step problems, often in a variety of ways. 

5. Integration: The teacher ensures that students review, and reflect on, the methods 
used in a set of proofs.

Using this operational model, the teaching of proof in Lily’s lesson 2 and 3 is shown in 
Figure 3. 

Figure 3: Proof teaching phases in Lily’s lesson Z2 and Z3 

DISCUSSION
The analysis presented in this paper indicates that the van Hiele theory can be a 

way of characterising the teaching phases in geometrical proof. In studying the relevant 
research, and in carrying out the analysis presented in this paper, it is clear that many 
questions about the teaching phases remain unanswered. As Clements and Battista 
(1992, p434) note, overall, and primarily because of a lack of research, many issues 
remains unclear, including how the phases of teaching relate to the subject matter and 
the students’ prior attainment, whether the phases are followed in a linear fashion or 
iteratively within topic or even within individual lessons, whether one or more 
mathematical concepts can be included within one sequence of teaching phases, 
whether a different emphasis on particular phases depends on what is being taught 
(such as concepts, or skills, or problem-solving), and so on.  

In terms of how long a teaching phase may last, Hoffer (1994), in his study, 
broken down lessons into discernible activities lasting 3-20 minutes and codified these 
in terms of the van Hiele teaching phases. In analysing the geometry lessons observed 
in Shanghai, the second and third of the van Hiele teaching phases were found across 
the range of lessons observed for this project (beyond the two lessons reported in this 
paper). Even so, the study indicates that the instructional complexity of the ‘guided 

a- Information; b- Guided Orientation; c- Explicitation; d- Free Orientation; e- Integration. EX-exercises 
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orientation’ phase means that far more research is needed in the van Hiele teaching 
phases. For example, in lesson Z2 and Z3 (as analysed in this paper), the teacher’s 
intention was carefully to lead students to experience the systematic network of 
theorems in constructing a proof through a sequence of well-designed, though 
demanding, multi-steps exercises. Moreover, the analysis of the instructional structure 
of the individual problem in the lesson suggests that the teacher was likely to develop 
students’ abstract thinking and extend the structure of thinking through the model ‘new 
theorem - simple problems - complicated problems’. According to interviews 
conducted with the teacher, she considered mathematical problems as a means of 
helping students practice the use of new theorems in further proofs. In terms of her 
instructional view, there were two types of problems in proof teaching: 1) simple 
problem, by which she meant one-step problems which directly use the new theorem; 2) 
complicated problem, which, for her, consist of both ‘latitudinal’ and ‘longitudinal’ 
problems – with a latitudinal problem containing a system of knowledge, (for instance, 
theorems of a parallelogram may link to those of a triangle or a circle, a parallelogram 
may link to function or equation) and a longitudinal problem entailing using a theorem 
in depth in a proof (for instance, using a theorem twice in a proof, with the second use 
probably requiring the use of an auxiliary line).

All these considerations means that further study is essential if explanations of 
how teachers, in China or elsewhere, effectively support students to extend their 
geometric thinking and proving. Given the aim of this study is interpreting, in depth, 
the teaching of geometrical proof in classroom, the intention is that the operational 
model of the van Hiele phases proposed in this paper (based primarily on two case 
study lessons) is to be further refined through additional analysis of all observed data. 
ACKNOWLEDGEMENTS: the authors would like to record their appreciation to 
ERME members and colleagues in China for helpful comments on earlier drafts of this 
paper.
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ANALYSIS OF CONJECTURES AND PROOFS PRODUCED 
WHEN LEARNING TRIGONOMETRY 

 Jorge Fiallo Angel Gutiérrez
 Dpto. de Matemáticas Dpto. de Didáctica de la Matemática 
 Univ. Industrial de Santander Univ. de Valencia 
 Santander (Colombia) Valencia (Spain) 

Abstract. Students usually learn mathematical proof based on contents of Euclidean 
geometry, calculus or numbers. Trigonometry is usually taught in a routine 
algorithmic way, but we show that also this topic can be used to teach students to 
prove conjectures. In this paper we describe a teaching experiment aimed to promote 
10th grade students’ ability to prove while meaningfully studying trigonometry with 
the help of a DGS. We present examples of the different types of proofs produced by 
the students, and show their progression during the teaching experiment. 

INTRODUCTION
The learning of proof is one of the most active research agendas in Mathematics 
Education. Mariotti (2006) suggests the existence of three research directions into 
this agenda: Analysis of the roles of proof in mathematics curricula, approaches to 
students’ conceptions of proof, and teaching experiments to teach students to prove. 
Another very active research agenda is related to the use of new technologies, mainly 
computers, in teaching and learning mathematics. In particular, dynamic geometry 
software (DGS) has proved to be an excellent environment to learn geometry. 
The integration of both research directions, teaching students to prove with the help 
of software, shows that computers are a powerful tool that can be successfully used to 
help students understand the need of mathematical proofs, and to explore, analyze 
and get data in order to state conjectures and to devise ways to prove them. Computer 
microworlds provide students with environments where the mathematical concepts 
are seen as objects that can be handled, transformed and observed. 
Most research on teaching mathematical proof are based on Euclidean geometry, and 
some others on calculus or numbers, but very seldom students are asked to prove 
trigonometric properties. When studying trigonometry, quite often students just have 
to memorize a set of identities and to apply them to solve routine exercises. When 
students are asked to do proofs in trigonometry, proofs usually consist of algebraic 
transformations linking a side of an identity to the other side. On the contrary, to 
promote students’ understanding of trigonometric concepts, they should be provided 
with tools and procedures that help them to analyze and relate concepts, to produce 
and prove conjectures, to meaningfully learn the relationships, concepts or properties. 
In this paper we present results from a research aimed to get a better understanding of 
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students’ learning of proof processes by observing the ways students prove 
conjectures in trigonometry. The research was based on the design, experimentation 
and analysis of a teaching unit aimed to teach trigonometry to 10th grade students in a 
DGS environment and, at the same time, to induce students to prove the conjectures 
they get from their explorations. 

RESEARCH FRAMEWORK 
The analysis of students’ answers focused on their abilities to prove the conjectures 
raised as answer to the activities. We understand mathematical proof in a wide sense, 
including formal proofs but also any attempt made by students to convince 
themselves, the teacher or other students of the truth of a mathematical statement or 
conjecture by means of explanations, verifications or justifications. 
The analysis was based on the categories of proofs described in Marrades, Gutiérrez 
(2000) who, elaborating on the types of proofs identified by Bell (1976), Balacheff 
(1988), and Harel, Sowder (1998), defined an analytic frame-work to characterize 
students’ answers to proof problems. Due to space limitation, we only include here 
short descriptions of the types of proofs integrating this framework: 
A) Empirical proofs. The types of empirical proofs are: 

* Naive empirical proofs, when a conjecture is proved by showing that it is true in 
examples selected without a specific criterion. Depending on how the examples 
are used, a naive empirical proof may be: 

- Perceptual proof, when it involves only visual or tactile perception of examples. 
- Inductive proof, when it also involves the use of mathematical elements or 

relationships found in the examples. 
* Crucial experiment proofs, when a conjecture is proved by showing that it is true 

in a specific, carefully selected, example. A crucial experiment proof may be: 
- Example-based proof, when it only shows the existence of an example or the lack 

of counter-examples. 
- Constructive proof, when it focuses on the way of getting the example. 
- Analytical proof, when it is based on properties empirically observed in the 

example or in auxiliary elements. 
- Intellectual proof, when it is based on empirical observation of the example, but 

the justification mainly uses accepted abstract properties or relationships among 
elements of the example. 

* Generic example proofs, when the proofs are based on a specific example, seen as 
a characteristic representative of its class. 

- The four above defined types of crucial experiment proofs are used to 
discriminate generic example proofs too. 
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B) Deductive proofs. The types of deductive proofs are: 
* Thought experiment proofs, when a specific example is used to help organize the 

proof. Depending on how the example is used, a crucial experiment proof may be: 
- Transformative proof, when it is based on mental operations producing a 

transformation of the initial problem into another equivalent one. 
- Structural proof, when it consists of a sequence of logical deductions derived 

from the data of the problem and axioms, definitions or accepted theorems. 
* Formal deduction proofs, when they do not have the help of specific examples. 

- The two above defined types of thought experiment proofs are used to 
discriminate formal deduction proofs too. 

METHODOLOGY
During the two weeks previous to the beginning of the classes, the first author met 
each teacher to make them aware of the research aims, teaching objectives and 
methodology, their expected role as teachers, etc. Our conception of proof in 
mathematics was specially emphasized to the teachers. 
The teachers were the responsible for the teaching, and the researcher acted as a 
participant observer, taking field notes, observing students’ behaviour and 
collaborating with the teachers by answering some students’ questions and queries.  
Data gathered during the teaching experiment to analyze students’ activity were 
students’ answers to a written diagnostic test to show their previous knowledge and 
proof abilities, groups’ answers written in the activity sheets, concept maps filled in 
by the groups at the end of several sets of activities, three written exams posed by the 
teachers during and at the end of the teaching experiment, and videotapes recording 
daily actions and dialogs of two groups from each school. 

THE TEACHING EXPERIMENT 
The sample. 
The teaching experiment was carried out with 100 grade-10 students (aged 15-16) in 
three whole classroom mixed ability groups from three secondary schools at 
Santander (Colombia). The sample was selected on the base of availability of schools 
and teachers, who showed their interest to collaborate in this experiment. In 
Colombia, 10th grade is the first year of non-compulsory secondary school, and 
trigonometry is taught for the first time in this grade. The students from two schools 
were average students, and those from the third school were above average students. 
They had never been asked before to prove mathematical statements or conjectures. 
The experiment. 
The teaching experiment took place as part of the ordinary classes of mathematics, 
for a period of about 12 week. Each group had two 90 minute classes per week in a 
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computer room using Cabri II+. In two schools the students worked in small groups 
(2 or 3 students per group) with a computer, and in the other school each student 
worked with a computer. Students could use Cabri freely to solve all the proof 
problems posed. They didn’t have previous experience in using a DGS. The teaching 
unit included five activities: 
 1) Introduction of trigonometric ratios of right triangles. 
 2) Introduction of trigonometric ratios of angles in standard position. 
 3) Visualization and vector representations of trigonometric ratios. 
 4) The Pythagoras Theorem and related trigonometric identities. 
 5) The sine of the addition of two angles. 
Each activity was integrated by a set of related sub-activities. Some examples of sub-
activities are shown in next section; space limitation impedes us to include more 
details about their content. 
The experimental teaching unit was designed in a guided discovery teaching style, 
with the first parts of activities 1 to 3 setting the ground knowledge on trigonometric 
ratios (both graphical, algebraic, and analytical) to be used in the second parts of 
those activities and in activities 4 and 5. 
As a main objective of the teaching unit was the development of students’ proving 
abilities, they were asked from the very beginning to analyze and prove any 
conjecture they made. A frequent way for the groups of students to solve an activity 
was to make a figure in Cabri, or open a file with a figure, to explore the figure 
looking for a conjecture, to debate this conjecture, to write the group’s conclusions 
and arguments in the activity sheets, and finally to participate in a class discussion 
with the other groups and the teacher. As the students hadn’t used Cabri before these 
classes, and there was a limited time to teach them to use Cabri, students were only 
asked to make easy figures, and they were provided with files containing already 
made figures in the other activities; then Cabri was mainly a tool to visualize and 
dynamically explore and analyze trigonometric definitions, properties and 
relationships.

EXAMPLES OF PROOFS OF TRIGONOMETRIC PROPERTIES 
In this section we present examples of different types of proofs produced by the 
students. It is interesting to note that, even with a rather small sample of students, 
who had never been asked before to prove conjectures, we obtained a quite large 
variety of types of proofs, showing that trigonometry may be a rich context to make 
students engage in learning to prove. 
Examples of empirical proofs. 
Naive empiricism. In activity 1.3.1 students were asked to create in Cabri a right 
triangle ABC (Figure 1a), based on two rays m and n and a straight line perpendicular 
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to m, and to get and prove a relationship between the acute angles A and B. 
Students in group G1G filled in a table (Figure 1b) with measures for angles A and B 
taken from the screen and they raise a conjecture: The measures of angle A and angle 
B add the same as angle C. Then this dialog took place: 

1 Researcher: Angle C, how much does it measure? 
2 Students: 90º. 
3 Researcher: Is it the same for any triangle? Is it always true? 

1 61.933
0

28.067
0

2 59.220
9

30.779
1

3 31.405
7

58.594
3

4 30.401
9

59.598
1

5 22.234
1

67.765
9

6 11.408
7

78.591
3

7 12.336
9

77.663
1

- a -                                               - b - 

Figure 1: a) Right triangle for activity 1.3.1. b) Table filled in by students. 
4 Students: I think so. 
7 Researcher: Then, how would you justify that the addition is really 90º? 
8 Students: Because we have several measures here in the table, and if we add 

them it is ever 90º, any two we take. 
9 Researcher: Is this enough to justify it [the conjecture]? 
10 Students: Yes. 

In this dialog the students showed an inductive naive empirical proof, since the proof 
is based on the data in the table, collected without any specific criterion. 
Crucial experiment. In activity 2.3.1 students were asked to find and prove a 
relationship between sin(A) and sin(-A). 
During the whole class discussion, student C10 explained to the class her answer. 
After having drawn on the board an acute angle A and angle -A (Figure 2), the 
student explained: 
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Figure 2: Students C10 drew angles A and -A on the board. 
3 C10: Then the values of this [pointing to ' A] are the same as the absolute 

values of this [pointing to ' -A]. 
4 C10: Then here, let’s say this point [marking a point on the terminal side of        

' -A] and this point [marking a point on the terminal side of ' A] ... 
5 C10: Let’s say this [point] is 3 and ... 2 [writing (3,2) next to the terminal 

side of ' A]. 
6 C10: Then this [point] would be 3 and -2 [writing (3,-2) next to the terminal 

side of ' -A]. Three, minus two [whispering]. 
7 C10: Then ... we can say that the values, as x is the same because x, as x is 

... [pointing to the positive end of axis X] it is shared [by the points on 
terminal sides of ' A and ' -A], and y [pointing to values 2 and -2] is 
... the absolute values are equal, so sine is supposed to be y over r

[writing
r
y ].

16 C10: Then we have that the radius is the same for both [angles, pointing to 
the terminal sides of ' A and ' -A]. 

18 C10: And y is the absolute value is ... the absolute value is equal [pointing 
to values 2 and -2], but here ... [pointing to the sign of -2]. 

20 C10: In A it would be 
r
2 , and this would be 

r
2	  [writing them on the 

board]. 
21 C10: Then, as r is equal, it would be ... I mean the divisions would be equal, 

only would be different the signs, so the results would be opposite 
additive or inverse additive. 

22 Teacher: Then, what is the relationship between sin(A) and sin(-A)? 
23 C10: We have that sin(A) = -sin(-A) [writing the identity on the board]. 

Student C10’s proof was a combination of statements based on particular values of 
angle A (it was in the 1st quadrant) and coordinates, (2,3) and (-2,3), and attempts to 
generalize, by using symbols like 

r
y . The arguments she used were correct, but they 

were based on a specific example. Most likely, when the student was solving the 
activity with the computer, she dragged the terminal side of angle A and noted that, 
for any angle A in the circle, angles A and -A had the same abscise and inverse 
ordinates. Anyway, when explaining her conjecture to the class, she didn’t feel the 
need to mention the angles A in other quadrants. Therefore, this is a case of 
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intellectual crucial experiment proof. 
Generic example. In activity 2.3.2 students were asked to find relationships between 
the trigonometric ratios for angles A, A-90º and 90º-A, and to probe their conjectures 
“by using accepted mathematical properties”. 
Student F02 was working on a drawing (Figure 3; letters V and W added to make 
easier the references). Then the following dialog took place (during the dialog the 
student was pointing to the objects on the screen he was mentioning): 

1 Researcher: What did you find? 
2 F02: I changed a little the figure and added another ... another 

perpendicular line going through point S, which is ... which is the 
intersection of the circle and the side of [angle] 90º-A. 

3 Researcher: Ok. 
4 F02: When I did it, ... this ... this triangle, which is A, S, and axis X, 

appeared [triangle ASW]. I noted that it is equal to triangle A, P and 
axis X [triangle PAV]. It [line AP] was the first line a drew. 

V                    W 

Figure 3: Drawing for activity 2.3.2. 
5 Researcher: Ok. 
8 F02: Then, the angle between S and C [' CAS] is equal to the angle 

between Y and P [' YAP], there isn’t much to say about this [i.e., the 
equality is evident], but I can say that P and C [' PAC] is equal to S 
and Y [' SAY]. 

9 F02: Why? Because with angle Y the angle between Y and C is 90º. 
10 Researcher: Ok. 
11 F02: Then, when I subtract this angle, angle A, this angle appears [' 90º-

A]. 
12 F02: As the triangles are equal, I can say that the sine of this one [' SAW], 

which is the opposite [side] over the hypotenuse, shall be equal to 
cosine ... to cosine of A, which is this distance here [AV] over the 
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hypotenuse. As the hypotenuse is the radius, it will ever be the same 
and, from the figure I have made, I get that ... these two distances [SC 
and AV] are equal, so the ... the ... the values of these two ... these two 
[trigonometric] ratios are equal, equal to sine of A and ... [stopped by 
the researcher] 

13 Researcher: Equal in the signs too? 
14 F02: Equal in the sign too [while moving the head up and down]. 
17 Researcher: Then, we can say that sine of A is equal to ...? 
18 F02: To cosine of ... of ... 90-A. 
19 F02: And also that cosine of A is equal to sine of 90-A. 

Student F02 stated a conjecture starting with an example intended to represent all the 
angles in the circle; the student didn’t check nor mention angles in other quadrants. 
The proof included several references to the way the example had been made. The 
student tried to produce abstract arguments, although they really referred to 
properties or elements of the drawing. The drawing in the screen showed the 
measures of angles and coordinates of points, but the student didn’t use them 
explicitly. Then F02’s proof is a case of constructive generic example proof. 
Examples of deductive proofs. 
Mental experiment. In a problem included in an exam, the students were asked to 
find a relationship between cot(360º-�) and cot(�), and to prove it. 
Student C16 drew the diagram and then she wrote this proof: 

cot(360º-�), cot �

360º - �  acute  =  in the 4th quadrant  (�)

cot �  = x
	y                            cot �  = x

y
cot �  <  0                               cot �  >  0 
                   | cot � |  =  | cot � | 
                   - cot �  =  cot ��
              - cot (360º-�)  =  cot ����

The student first drew an acute angle � and the angle 360º-� in the Cartesian plane. 
Then she assigned coordinates (x,y) and (x,-y) to two points in the terminal sides of 
these angles. She knew that the triangles drawn in the diagram are congruent because 
this property had been studied in a previous activity. The student also used the label �
to name the angle 360º-�, and then she wrote algebraic transformations to deduce the 
correct relationship. The diagram drawn only played the role of an auxiliary abstract 
example, but the student organized the proof of the conjecture based o it. Therefore 
this is a case of a structural mental experiment proof. 
Formal deductive. In activity 3.4.8 students were asked to find a relationship 
between sin(360º-�) and sin(�), and to prove it. Student C16 wrote this proof: 
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IV QUADRANT                       sin(360º-�)  =  sin �

                                                         sin �  and  sin �
                                                          -A    and    A 

                                                        - sin �  =  sin ����

                                             sin �  = y
r

             sin �  = y
r

                                                       y < 0                 y > 0 

                                                sin � < 0                 sin � > 0 

                                                        - sin �  =  sin ����

First student C16 wrote the conjecture sin(360º-�) = sin � and, like in the previous 
example, she changed 360-� to �. She noted that the terminal side of ' 360-� is the 
same of ' -� and reminded the identity, proved in activity 2, sin(A) = -sin(-A). Then 
she wrote the conjecture -sin � = sin � and afterwards she proved it by using coordinates 
of points in the sides of the angles and algebraic expressions. The student assumed that 
� is an angle of reference in the 1st quadrant, so 360º-� (-A) is in the 4th quadrant, and 
the ordinates associated to these angles have the same absolute value but opposite 
signs. This is a decontextualized proof based on transforming the initial problem (find 
a relationship between angles 360º-� and �) into another one (find a relationship 
between angles A and -A), so it is a case of a transformative formal deductive proof. 

SUMMARY OF RESULTS AND CONCLUSIONS 
Table 1 synthesizes the types of proofs produced by the students in each activity. The 
cells with thick border represent the most frequent type of proof for each activity. 
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C
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E

A
C
E

I
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E

E
G
E

C
G
E

A
G
E

I
G
E

F
D

T
T
E

S
T
E

T
F
D

S
F
D

1
2
3
4 
5 

Codes: F = Failed. FE = Failed empirical. PNE = Perceptive naive empirical. INE = 
Inductive naive empirical. ECE = Example-based crucial experiment. CCE = Constructive 
crucial experiment. ACE = Analytical crucial experiment. ICE = Intellectual crucial 
experiment. EGE = Example-based generic example. CGE = Constructive generic 
example. AGE = Analytical generic example. IGE = Intellectual generic example. FD = 
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Failed deductive. TTE = Transformative thought experiment. STE = Structural thought 
experiment. TFD = Transformative formal deduction. SFD = Structural formal deduction. 

Table 1: Types of proofs produced by the students. 

We can note, along the teaching experiment, a change in the types of proofs produced 
by students, from empirical proofs (in activities 1 and 2) to deductive proofs (in 
activities 4 and 5). Failed proofs (when students didn’t succeed in writing any proof, 
even a wrong one) were limited to activities 1 and 2. The students making more 
deductive proofs were those who showed, from the beginning of the experiment, a 
tendency to present their arguments deductively and also showed a better knowledge 
of the necessary previous mathematics contents. 
The types of proofs produced by the students were also related to the content of the 
activities. We can observe that most proofs written to answer activity 1 were 
empirical, partly because students were asked to drag the figures on the screen and to 
draw conclusions out. The least frequent type of proofs was the generic example, 
mainly because the kind of activities and questions posed to students didn’t promote 
this type of proofs. Activity 2 was the one with most variety of types of proofs; this 
may be a consequence of having included in this activity an assessment questionnaire 
with five proof problems. Activity 3 is the first one having many more deductive 
proofs than empirical ones; more specifically, the type of proof most frequently 
produced by the students was the transformative formal deduction; we believe that 
the help provided to students by the visualization of properties in the Cabri figures 
was a main reason for this result. In activities 4 and 5, only deductive proofs were 
produced to solve them, the most frequent types of proofs being the most abstract and 
formal ones; Anyway, the help of the Cabri figures to visualize conjectures and to 
suggest the students ways to prove them was decisive in their success. The answers to 
these activities showed also a clear progress of the students in one of the school 
towards deductive proofs based on general geometric and algebraic properties 
induced by the visual proofs suggested by the figures in Cabri. 
Finally, without purpose of generalization, we can conclude from this research that 
trigonometry is a rich field whose teaching can be organized around discovering 
activities as a way to promote learning with understanding and the development of 
abilities of proving. 
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ANALYSIS OF THE TEACHER’S ARGUMENTS
USED IN THE DIDACTICAL MANAGEMENT 

OF A PROBLEM SOLVING SITUATION 
PATRICK GIBEL1

ABSTRACT: In this paper, we analyze an investigative situation proposed to a class 
of 5th graders in a primary school. The situation is based on the following task: In a 
sale with group rates on a sliding scale, the students must find the lowest possible 
purchase price for a given number of tickets. The aim of this paper is to show that 
one of the intrinsic features of the situation restricted the teacher's possibilities of 
making didactical use of the students' forms of reasoning processes during whole 
class presentation and discussion of the reports. 

1. INTRODUCTION 
The study presented in this paper is a part2 of an article on the role of the different 
forms of reasoning in the didactical relation, in mathematics, at the primary school 
level.

We start by explaining what we mean by "reasoning" (section 2). The term is 
widely used by teachers of all subjects and by researchers, with a variety of 
meanings.. Therefore, we had to directly define the object and the methodology of 
our study before classifying the different forms of reasoning we were concerned with.  

In section 3, we will present the problem situation observed and in section 4, 
we will identify several forms of reasoning which appeared in class during students' 
investigation [in small groups] and subsequent whole class presentations and 
discussions.

In section 5, we will address the following questions: 
Did the proposed problem situation favor students' production of forms of reasoning? 
Which didactical decisions of the teacher strongly determine the presence, the 
meaning and the actual possibilities of processing and using students' forms of 
reasoning?
2. REASONING IN THE CLASSROOM  

2.1.  Actual forms of reasoning 
 We define a reasoning as a relation R between two elements A and B such that, 
- A denotes a condition or an observed fact, which could be contingent upon 
particular circumstances; 

                                                     
1 Laboratoire DAESL,  Didactique et Anthropologie des Enseignements Scientifiques et 
Langagiers, Université Victor Ségalen-Bordeaux 2 et  IUFM  d’Aquitaine, France. 
2  It is based on a set of conceptions and results which have been presented in more detail in Guy 
Brousseau and Patrick Gibel:“Didactical handling of students’ reasoning processes in problem 
solving situations”, Educationnal Studies in Mathematics (2005) 59; 13-58.  
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- B is a consequence, a decision or a predicted fact; 
- R is a relation, a rule, or, generally, something considered as known and accepted. 
The relation R leads the acting subject (the reasoning "agent"), in the case of 
condition A being satisfied or fact A taking place, to make the decision B, to predict 
B or to state that B is true.  
 An actual reasoning contains, moreover, 
- an agent E (student or teacher) who uses the relation R;
- a project, determined by a situation S, which requires the use of this relation.
 We can say that to carry out a project determined by a situation S the subject 
uses the relation R which allows him to infer B from A. This project can be 
acknowledged and made explicit by the agent, or it can be attributed to him by the 
observer on the basis of some evidence.
2.2 First classification of forms of reasoning according to their function and type 
of situation 
As implied in the previous section, reasoning is characterized by the role it plays in a 
situation, i.e. by its function in this situation. This function may be to decide about 
something, to inform, to convince, or to explain. The function of reasoning varies 
according to the type of situation in which it takes place; on whether it is a situation 
of action, formulation, validation or other (Brousseau, 1997: 8-18).  
3. THE OBSERVED LESSON 

3.1 The components of the situation
The lesson took place in a 5th grade mathematics class.   
3.1.1 The problem and the objective situation 
The teacher starts by handing out the following problem: 

A one-day ski trip to the resort of Gourette is being organized next Saturday 
for students from the Oloron area. For this exceptional event, the local city 
council has decided to pay for the ski passes for the day. The resort of 
Gourette offers the following group rates: 
216 passes: 1275F 
36 passes: 325F 
6 passes: 85F 
979 children have signed up for the trip but when the morning of departure 
arrives 12 children do not turn up because they are sick, of course. The council 
accountant says to himself "Too bad for these kids, but never mind, it’ll work 
out less expensive for us this way". 
What do you think? 

The "objective situation" is the situation presented in the problem; the student is 
expected to deal with it without questioning the status of reality or not of what is thus 
presented to him as "objective".  
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3.1.2 The planned phases of the lesson 
The development of the lesson, chosen by the teacher, follows a plan that has become 
quite common in France:  
- the research activity is presented by the teacher (phase 1);
- students read the problem (phase 2);
- the teacher provides additional information, if necessary; for example - explains the 
terms used in the formulation of the problem (phase 3), 
- students work on the problem individually for about 10 minutes (phase 4),  
- students are divided into small groups (phase 5),  
- students work in small groups, and prepare a written report; this phase (phase 6), 
lasts about 25 minutes;  
- whole class presentation and discussion of the reports, with each group going to the 
board in turn to present their results (phase 7).
3.2 How the lesson developed  

3.2.1 The research activity and the written traces of it In the observed lesson, the 
research activity was based on the research and formulation of the question, which 
completely determines the problem (in the classical sense of the term). But the 
students were not able to perceive what is at stake (mathematically) in the problem 
situation and it is the teacher himself who formulated the question: "When, do you 
think, is the ski trip more expensive: when there are 979 students or when there are 
967 students?"
3.2.2 The phase of whole class presentation and comparison of students' solutions 
Our theoretical, a priori, analysis of the problem situation led us to expect a failure of 
the teacher's plan: The management of the didactical phase of the lesson (phase 7) 
appeared all the more delicate that the reduction of the complexity was essentially in 
the hands of the teacher; it depended on his choices, his decisions and his 
"opportune" interventions.
 But upon viewing the video recording of the lesson (which we haven't seen 
before the theoretical analysis), we had to admit that the teacher managed to conduct 
his class without being challenged with any major difficulties.  
4. THE OBSERVED FORMS OF REASONING, THEIR FUNCTION AND 
USE

4.1 Forms of reasoning in students' written productions 
 The analysis of the different forms of reasoning which appear in the students' 
solutions shows that what is really at stake in the problem situation, namely the 
problem of minimizing the expense, has not been grasped by the majority of students.  
 In this lesson, it is clear that the devolution of the situation did not work; the 
students were not able to take charge of the proposed situation. Indeed, in the phase 
of whole class discussion and comparison of solutions, it appears that: 
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- The students do not possess the necessary knowledge to conceive of the basic 
strategies.
- The students cannot obtain, as feedback to their actions, the information necessary 
for the solution of the problem. 
- There is not enough time for the students to produce a solution, because of the 
complexity of the problem. 
- The students have no means to judge, by themselves, the validity of their solutions. 
4.2 Analysis of an episode of interactions during the whole class discussion phase 
For this paper, we have chosen to present an analysis, in terms of the theory of 
didactical situations in mathematics, of an excerpt from the transcript of phase 7, i.e. 
the whole class discussion and comparison of students' solutions phase.  
 The episode focuses on interactions related to one student's work. This student, 
Julien has chosen to work alone. His written work is presented in Figure 1.
 Our analysis of this episode is presented in Table 1. The first column of the table contains the code 
of the intervention, where the first number (4) indicates that Julien's "small group" (composed of him alone) 
was the fourth to present its results. For some interventions, the timing is shown (since the beginning of 
phase 7). The second column contains the transcript, and the third some comments on the intervention. In the 
fourth column we analyze the nature and the function of the intervention with regard to the locutor's intended 
project. The fifth column aims at articulating the function of the intervention. 

Figure 1 

TABLE 1.  Transcript and analysis of some interactions 

N°
Min.

Transcript Comments Analysis Nature and function of the 
intervention

4.1
12’35 

Julien: Okay, I 
started by doing… 
(1) I divided 6 into 
85
(2) and I got 14,166; 

Julien comes to 
present his work. 
He describes his 
calculation,
without defining 
or naming the 

(1)Direct description of an action 
(calculation)
(2)Formulation of a result  
(3) Indirect reference to an action: by 
analogy  
(4) Organization of the calculation 
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I took the 14 and 
then I saw… 
(3) I did the same 
with 325, in short, I 
did the same, 
(4) I did the same 
with all three 
operations

variable that he 
calculates.  

Strategic or organizational reasoning, 
local and expressed orally. 

4.2 Teacher:  
(1) the three 
proposals,
(2) the group passes 

The teacher 
reformulates  a 
part of the 
student's 
statement to 
introduce a 
vocabulary.

The teacher wants to 
establish a link between 
the performed 
calculations and the 
objective situation.

(1) Correction of the terminology  
(2) Suggestion of a terminology and 
giving a name to a result.  

4.3 Julien:
(1) 325 divided by 
36 and 1275 divided 
by 216  
(2) and then I did… 

Julien continues 
to describe his 
calculations

(1) Direct description of an action 
(2) Organization of calculation. 
Strategic or organizational reasoning, 
local and expressed orally.

4.4 Teacher:  
(1) [Your] first 
conclusion after 
these calculations?  
[to the whole class] 
Have you heard the 
operations he had 
done?
(2) What is the price 
of a pass, relative to 
each of the three 
proposed conditions, 
right?

The teacher asks 
Julien what he 
got from the 
calculations he 
performed.  He 
intervenes to 
provide an 
interpretation of 
the calculations. 
He points to the 
nature of the 
results as the 
"price of a pass 
relative  to each 
of the three 
conditions".  

The teacher gives an 
interpretation of each of 
the calculations 
performed by Julien. 
His didactical intention 
is to construct Julien's 
calculations as a 
support for introducing 
the stages of reasoning .

(1) Giving a statement the status of a 
"conclusion" in the development of a 
reasoning. Invitation to comment on 
Julien's results and to position them 
relative to an action.
(2) Use of rhetorical didactical means:  

4.5 Julien: Yeah! Agreement, approval. 
4.6 Teacher:

(1) Okay, first 
conclusion after 
that?

The teacher 
questions Julien 
on what he gets 
from his 
calculations.

. (1) Request to make an inference. The 
teacher waits for the student to 
continue his reasoning and articulate a 
conclusion.

4.7 Julien: And then I 
did…

No answer; 
Julien seems to 
want to continue 
to describe his 
calculations.

4.8 Teacher: No, your 
first conclusion after 
that?  When you 
were done with 
these calculation, 
what did you think 
to yourself? 

The teacher 
reiterates his 
question.

The teacher makes a 
second attempt, with 
the same aim as in 4.4. 
But the formulation is 
more precise.  

Recall of what is a conclusion; 
invitation to comment on a result.  
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4.9 Another student: 
Which one was less 
expensive.

A student puts 
into words the 
question that the 
teacher has 
previously asked 
in an implicit 
manner.

A student points to 
Julien what he could 
get from his 
calculations, namely a 
comparison of prices.  

Question on an order relation. 
Project formulation.  

4.10 Julien: Yeah! Which 
one was less 
expensive…  But, 
no, I couldn't see…

But "which one" does not denote a 
well-determined object. 
A passive explanation. 
Impossibility to realize a project.  

4.11 A student: But yes, 
you can see! 

A student points 
out to Julien that 
he has all the 
necessary 
information.  

The student pushes 
Julien to produce a 
reasoning, by pointing 
out to him that he has 
all the necessary 
elements to conclude 
(i.e. to compare the 
prices).

Possibility of realizing a project.   

4.12 Julien:  
(1) Yes, it was 1275 
(2) because a pass 
cost 5F
(3) more or less and 
then
(4) so then I tried, in 
short, I did 979 less 
12, I got 967 and 
then I multiplied 
967 by all the results 
of the divisions.  

Julien gives the 
expected answer 
and continues to 
describe his 
calculations.

Julien articulates the 
conclusion, expected in 
the module 2. 
He goes back 
immediately to his 
initial reasoning, in 
describing his 
calculations.

(1) Implicit conclusion 
(2) Explanation  
(3) Estimation
(4) Direct description of a sequence of 
actions and organization. 
Strategic or organizational reasoning, 
lexpressed orally.  

4.13 Teacher: To find 
what? 

The teacher 
questions Julien 
on the aim of his 
calculations.

Project; request to name a result. 
Request for an explanation.

4.14 Julien:  To find the 
price of how much it 
was going to cost.  

Julien points to 
the aim of his 
calculation: to 
calculate the total 
expense (for the 
students who 
were present at 
the trip).

Julien indicates the 
purpose or project he 
has in mind: for each 
group rate, to calculate 
the total expense. 

Naming the result. Articulation of the 
purpose of his procedure.  

4.15 Teacher: Yes, the 
price… to find 
which one was the 
least expensive.  

The teacher starts from 
the formulation of the 
student and transforms 
it. Julien stated that his 
aim is to calculate the 
total expense for each 
of the three cases. But 
the teacher focuses on 
the comparison of the 
group rates.
. The teacher  will 
establish that Julien's 

Rhetorical didactical means: Element 
of a local explicit reasoning of the 
teacher, which aimes at re-positioning 
the calculations in the perspective of 
the comparison of the three rates. 
Recall of the necessity to subordinate 
a result to the main task.
Didactical intention: reject the 
calculations by making them appear 
as useless, redundant, with respect to 
the previously established conclusion. 
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calculations  are useless 
for the comparison of 
the rates.

4.16 Julien: Yes. Accord
4.17 Teacher:  And you 

did the three 
calculations?  

The teacher 
wishes to make 
Julien aware of 
the fact that the 
calculations were 
not necessary, 
that reasoning 
could help to 
avoid doing 
calculations.

Effectiveness of an action.  

4.18 Julien: Yes. 
4.19 Teacher: It was 

necessary?  
Call for a judgement of the relevance 
or adequacy of a calculation.  

4.20 Julien: Well... 
yeah... 

Agreement 

4.21 Another student: To 
see which one was 
the least expensive.  

Subordination recall, as in 4.15.  

4.22 Teacher: You didn't 
know it before?  

The teacher 
wants to incite 
Julien to reflect 
on his reasons for 
doing the 
calculations.

The intention would be: 
"could you know it 
beforehand, without 
doing the calculations?"
It is, therefore, a call 
for a direct reasoning.

Call for the anticipation of the role of 
a result in the resolution of a problem. 
Call for a formulation of a direct local 
reasoning.

4.23 Julien: Yes, I knew 
it… but…

The student 
cannot
distinguish
between his 
opinion and the 
justification
required by the 
teacher.

4.24 Teacher: Okay then, 
so what is the 
result? 

The teacher re-
asks Julien to 
formulate his 
conclusion.

4.25 Julien: So I saw 
which one was the 
least expensive, and 
then…

Validity status: subjective certitude  

4.3 Discussion 
The analysis of the implicit model of action allows us to identify the implicit 
mathematical model and Julien's representation of the objective situation. His model 
is that of the classical commercial situation, based on selling the passes per unit, 
corresponding to the mathematical model of proportionality. 
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 The transcript (Table 1) shows that, in phase 7, Julien describes his 
calculations without providing the class with more explanations on why he did them. 
This is why his project is not accessible to the class, which makes it necessary for the 
teacher to intervene. By proceeding this way, he presents the teacher with the 
opportunity to interpret his calculations in a way which does not necessarily 
correspond to his (Julien's) initial project. The teacher grasps at this opportunity; 
using rhetorical didactical means,  he manages to divert Julien's initial project to the 
benefit of his own, which is to develop the reasoning underlying Module 2 
(comparison of the three rates) of the standard solution.  
 Moreover, our analysis shows that the teacher tries, several times, to engage a 
discussion on the validity of the presented procedures, or, more precisely, on the 
validity of the decisions underlying students' reasoning. However, his attempts all 
fail, one after another. 
5.  CONCLUSIONS AND CONJECTURES 

5.1 Students' reasoning  
The object of our analysis was the influence of certain features of the situation 
proposed to the students on the elaboration of the different forms of reasoning, their 
use and the possibilities of their processing available to the teacher during the whole 
class presentation and discussion of the solutions phase.  
 This analysis (see Table 1) shows that the forms of reasoning elaborated by the 
students were few, that they were not very complex in terms of the number of 
calculations and the number of stages involved.  

This analysis implies that the teacher has no means for an effective processing 
of the produced reasoning, i.e. he cannot use logical reasoning directly related to the 
objective situation in arguing with the students' solutions.  

This brings us to the first conjecture: the factor which constraints the teacher's 
possibilities of taking into account, articulating and processing students' reasoning is 
not so much the complexity of this reasoning but another feature which is related to 
the very nature of the situation proposed to the students.
5.2 The effect of the lesson on students' behavior and learning 

5.2.1 The effect of the lesson on the validity of the reasoning and students' conviction 
In the complete analysis of the transcript there is a lot of evidence that the students, 
having produced a reasoning based on a representation conforming to the teacher's 
expectations, have not become aware of the conditions which define the objective 
milieu. Indeed, in phase 7, they are unable to formulate the reasons that led them to 
elaborate these forms of reasoning, or even to react to the reasoning of their 
classmates when these are based on erroneous representations of the objective 
situation.
 This can be partly explained by the fact that the situation does not provide the 
students with the possibility of testing their decisions: the objective milieu does not 
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respond with any feedback to the students' actions. Therefore the students have no 
means to validate or reject their reasoning and therefore to reflect on the decisions 
underlying their implicit models of action or their representations of the objective 
milieu.  
5.2.2 The effect on the actions, language and opinions of the students 
The students, unable to judge the validity of their work, cannot use the reasoning they 
have produced as arguments in a debate. The debate amongst peers wished for by the 
teacher is out of the students' reach.  
5.3 The effect on the didactical process 

5.3.1 The devolution 
Decisions underlying the elaboration of each of the models are closely linked with the 
students' representations of the objective milieu. But this situation is not happening in 
real time and the students have to imagine the rules governing its functioning. Since 
the objective milieu is not clearly defined, this leads the students to construct 
different representations of the situation and therefore also different implicit models 
of action. Thus, the objective situation cannot be devolved to the students, i.e. the 
students cannot challenge the retail sales model adopted by the majority, or even 
calculate the results of the different possible choices.  
5.3.2 Didactical corrections 
The complete analysis of the transcript shows that the teacher cannot bring the 
students to articulate the reasons underlying their implicit models of action. To avoid 
a block, related to the fact that the students do not understand the decisions made by 
their peers, the teacher is forced to use rhetorical didactical means (Table 1).  These 
means make it possible for the teacher to divert the initial project of a student to the 
benefit of his own, i.e. the establishment of certain modules of the standard solution. 
However, the real reasons that justify the elaboration of the module are not there for 
the students to see; the reasons which underlie and justify the connections between 
the data given in formulation of the problem situation are hidden.  
6. FINAL CONCLUSIONS 
The study shows that although the students, faced with a problem situation elaborated 
and conducted by the teacher, have certainly produced forms of reasoning, they have 
not made much progress in their practice of reasoning. Indeed, they have not reflected 
back on their reasoning, on its validity, relevance or adequacy because the teacher 
was not able to process it. He could not respond to this reasoning by logical 
arguments based on the objective situation; he was forced to use rhetorical means.
 Now, it is not the complexity of the students' reasoning that forced the teacher 
to use this type of means but the fact that the problem situation could not be devolved 
to the students. This implies that it is not the teacher's management of the whole class 
presentation and discussion of the students' work that is challenged here, but rather 
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the nature itself of the situation set up by the teacher, which strongly constrains the 
possibilities of really taking into account the students' reasoning.   
 The objective situation does not make it possible for the teacher to bring the 
students to: 
- share with their peers the real reasons that have led each of them to construct 
implicit models of action and take some decisions in the framework of the 
corresponding models; 
- grasp the reasons why the steps of the expected, standard solution are necessary; 
- share the reasoning underlying each module of the standard solution.  
 If a situation provides the teacher with the possibility of devolving to the 
students an "autonomous" (or "self-contained") situation of action, then, according to 
the theory of didactical situations in mathematics, during the phase of analysis of 
students' solutions the teacher can refer to the objective situation. This is because the 
students can develop their personal strategies and forms of reasoning related to the 
situations with which they are confronted. The teacher does not have to have recourse 
to rhetorical didactical means to process students' forms of reasoning.  
 If, on the other hand, the teacher has no such possibility, the teacher cannot 
refer in his arguments just to the objective situation and must bring in information 
and provide feedback on the basis of a project that is not visible for the students; and 
this is why he is forced to use rhetorical didactical means.
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STRUCTURAL RELATIONSHIPS BETWEEN ARGUMENTATION 
AND PROOF IN SOLVING OPEN PROBLEMS IN ALGEBRA 

Bettina Pedemonte 
Istituto per le Tecnologie Didattiche – CNR Genova 

This paper concerns a work-in-progress study analysing cognitive continuities and/or 
distances between argumentation supporting a conjecture and its proof in solving 
open problems in algebra. There is usually a cognitive distance between these 
argumentations and algebraic proofs, not only in the structure (algebraic proofs are 
often characterised by a strong deductive structure) but also in the “content”. The 
aim of this paper is to show this cognitive distance and the role of abductive 
argumentation to decrease this distance. Toulmin’s model is used as a tool to analyse 
and compare the structures of argumentation and proof. 

INTRODUCTION
This paper analyses cognitive continuities and/or distances between argumentation 
supporting a conjecture and its proof in solving open problems in algebra. This study, 
developed as part of the ReMath project (IST - 4 - 26751), can be considered as an 
extension of a previous research work, studying the relationships between 
argumentation supporting a conjecture and its proof in solving open problems in 
geometry (Pedemonte, 2002). 
Argumentation supporting a conjecture, developed during the resolution process of an 
open geometrical problem is often characterized by abductive structure which 
sometimes remains present in the subsequent proof (Pedemonte 2002). Some 
experiments highlighted that this structural continuity between abductive 
argumentation and “abductive proof” does not help students to construct a deductive 
proof. On the contrary, this “natural" continuity can be considered one of the possible 
troubles met by students in the construction of a proof. 
My research interest is in studying the possibility to extend these research results to 
other mathematical domains. In particular, in this paper, I consider the resolution 
processes of an open problem in algebra asking for producing a conjecture and 
constructing of a proof. The aim of this analysis is to see if there is a “natural” 
structural continuity between argumentation and proof, which can be considered as 
one of the possible difficulties met by students in the construction of an algebraic 
proof.
To perform this analysis I put forward a case study. The experiment has been carried 
out with students of Formation Science University in Genoa. In this paper, two 
students resolution processes are presented; their argumentations and proofs are 
analysed by means of Toulmin’s model. 
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COGNITIVE CONTINUITY AND/OR DISTANCE BETWEEN 
ARGUMENTATION SUPPORTING A CONJECTURE AND PROOF 
Some research studies about argumentation and proof highlight the continuity that 
exists between argumentation as a process of statement production and the 
construction of its proof; what is in play is the relationship between conjecturing and 
looking for a proof (Boero, Garuti, Mariotti, 1996). This continuity is called cognitive
unity. During a problem solving process, an argumentation activity is usually 
developed in order to produce a conjecture. The hypothesis of cognitive unity is that 
in some cases this argumentation can be used by the student in the construction of 
proof by organising in a logical chain some of the previously produced arguments. 
Experimental research about cognitive unity (Boero & al., 1996; Garuti & al. 1996; 
Garuti & al. 1998; Mariotti, 2001) shows that proof is more “accessible” to students 
if an argumentation activity is developed for the construction of a conjecture. The 
teaching of proof, which is mainly based on “reproductive” learning (proofs are 
merely presented to students, they do not have to construct them) appears to be 
unsuccessful. A didactical consequence of this study is that suitable open problems 
(Arsac, Germain & Mante, 1991) which call for a conjecture could be used to 
introduce the learning of proof. 
Contributing to this research, a theoretical framework has been developed 
(Pedemonte, 2002) to analyse and to compare argumentation supporting a conjecture 
and its proof in solving open problems in geometry. This comparison may be carried 
out by analysing the continuity or the distance between this argumentation and its 
proof under two points of view: the referential system (Pedemonte, 2005) and the 
structure (Pedemonte, 2007). By referential system I mean both the representations 
system (the language, the heuristic, the drawing) and the knowledge system 
(conceptions, theorems) of argumentation and proof. By structure I mean the logical 
cognitive connection between statements (abduction, induction, or deduction). For 
example, there is continuity between argumentation and proof in the referential 
system if some words, drawings, theorems used in the proof have been used in the 
argumentation supporting the conjecture. There is a structural continuity between 
argumentation and proof if some abductive steps used in the argumentation are 
present also in the proof. Otherwise, if argumentation structure is abduction and proof 
is deduction there is a structural distance between the two. 
Research results carried out by this study (Pedemonte, 2007) highlight the importance 
of structural analysis between argumentation and proof. This analysis shows that 
although there are cases of continuity in the referential systems between 
argumentation supporting a conjecture and its proof, it is often necessary to cover a 
structural distance between the two (from an abductive argumentation to a deductive 
proof). This structural distance is not always covered by students, who sometime 
produce incorrect proofs because they are not able to transform the structure of 
argumentation in deductive structure for proof (Pedemonte 2007). 
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These research results are limited to the geometrical domain, which is the 
mathematical domain where usually learning of proof is introduced. Nevertheless, it 
could be interesting to analyse if it is possible to extend such results to other 
mathematical domains. In this paper, algebra is considered. 

THE ROLE OF ALGEBRA IN PROVING PROCESS 
The solution of open problems in algebra asking for a conjecture seems to be usually 
characterized by two particular phases: the constructive argumentation (Pedemonte, 
2002) phase that corresponds to the construction of a conjecture (sometime only 
characterized by numerical examples); the proof phase that concerns the systemic 
application of algebraic rules, in which each step of the proof is the transformation of 
the previous step according to a given rule. During the resolution process it is 
possible to produce another type of argumentation, the structurant argumentation
(Pedemonte, 2002), which is constructed to justify a conjecture, in particular when 
the conjecture is constructed as a “fact”. I think that this argumentation can play an 
important role in the resolution process of open problems in algebra. 
As a matter of fact, some cognitive research about the resolution of algebraic 
problems (Duval, 2002) highlights the cognitive gap between the conversion phase
(or the constructive argumentation phase), i.e. the translation of the problem in 
algebraic characters, and the treatment phase (or the proof phase), i.e. the deduction 
of the unknown value of the algebraic expression. According to Duval, this gap has to 
be coped with by students in solving problems in algebra. 
Moreover, if we consider that sometime argumentation in open problems in algebra is 
characterized by explorations based on arithmetic numerical examples, the gap 
between constructive argumentation and proof is also present as methodological 
aspect (Chevallard, 1989). Arithmetic moves from known to unknown while algebra 
often moves from unknown to known in way that at the end of the process it is 
always possible to know the unknown quantity. Arithmetic and algebra have two 
separate languages: the first one is based on the ordinary language enriched by a 
numerical language while the second one is essentially oriented to computation where 
there is a mechanic control. Other research studies highlight difficulties in catching 
the invariance of algebraic denotation respect to the sense (Arzarello & al., 1994, 
Drohuard, 1992); in arithmetic this invariance is automatic because denotation is a 
specific number while in algebra it is connected to the syntactic aspects. 
Following this research results, I make the hypothesis that structurant argumentation
could be useful to decrease the cognitive gap between the constructive argumentation
and the proof. In particular, a successful structurant argumentation should favour the 
continuity in the referential system between constructive argumentation and proof. 
From a structural point of view my hypothesis is that in solving open problem in 
algebra, the “natural” structural continuity between argumentation and proof is 
usually not present. The connection between two steps in algebra is characterized by 
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a “strong” deductive structure: algebraic expression as equations are modified 
according to computation rules often implicit for student. This is not always the case 
for argumentation supporting a conjecture. Argumentation structure can be abductive, 
or inductive if conjecture is constructed as generalisation on numerical examples.  
The problem is that the structural distance between argumentation and proof 
contributes to increase the gap between the two and sometime student is not able to 
reconstruct reasoning used to construct the conjecture. 
This hypothesis will be illustrated in the next section, where I present the analysis of 
two student protocols. To complete this discussion, I am going to introduce 
Toulmin’s model as a tool to analyse proving process performed by students. 
Toulmin’s model: a methodological tool to analyse argumentation and proof 
As methodological tool to analyse and to compare argumentation and proof I use 
Toulmin’s model (Toulmin, 1958). In this model argumentation, as proof, has a 
ternary structure. This fact allows us to compare the structure of argumentation with 
the structure of the proof. 
In Toulmin’s model an argument comprises three elements (Toulmin, 1958/993): 
C (claim): the statement of the speaker, 
D (data): data justifying the claim C, 
W (warrant): the inference rule, which allows data to be connected to the claim. 
In any argument the first step is expressed by a standpoint (an assertion, an opinion). 
In Toulmin's terminology the standpoint is called the claim. The second step consists 
of the production of data supporting the claim. The warrant provides the justification 
for using the data conceived as a support for the data-claim relationships. The 
warrant, which can be expressed by a principle, or a rule, acts as a bridge between the 
data and the claim.
The basic structure of an argument is presented in Figure 1. 

D : Data 

W : Warrant

C : Claim 

Figure 1: Toulmin’s basic model 

Three auxiliary elements may be necessary to describe an argument: a qualifier, a 
rebuttal, a backing (Toulmin, 1958/993). These elements are not significant for the 
analysis treated in this paper and for this reason will not be presented. 
In Toulmin's model a step appears as a deductive step: data and warrants lead to the 
claim. Nevertheless, it could be useful to represent other argumentative structures 
using this model. In this paper we consider abductive structure.
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Abduction has been introduced by Peirce (Peirce, 1960) as a model of inference used 
in the discovery process. According to Peirce, starting from an observed fact, a rule 
can be supposed, through which the hypothesis becomes more credible. The 
hypothesis is the conclusion of a reasoning giving it a plausibility value (Peirce 1960, 
2.511n). So abduction is a plausible reasoning (Polya, 1962) which can be modelled 
as follows (Polya 1962, p. 107): 
If A then B 
B true 
A more credible  

By this scheme we can represent an abductive step in Toulmin’s model as follows: 
D : ? C : B

W : A � B

Figure 2: Abductive argumentation in Toulmin’s model 

The question mark means that data are to be sought in order to apply the inference 
rule justifying the claim. 
Drawing on Toulmin’s model (Toulmin, 1958), I analyse structural continuities and 
structural distances between argumentation and proof. 

CASE STUDY 
In this section two resolution processes of an open problem in algebra are presented. 
They are taken from a set of data collected with prospective primary school teachers 
attending a math course at the University. Students were asked to solve the problem 
aloud, they worked alone under the supervision of a researcher who do not intervene 
in helping them. The observation was conducted out of the usual schedule. Students’ 
mathematical background was not homogeneous because students came from 
different schools. Nevertheless, all of them could solve the problem with their 
theoretical algebraic background, even if they were not familiar with problems of this 
kind.
The problem presented to students is the following: 
“What can you say about (p-1)(q2 -1)/8 if p and q are odd numbers?” 
This is a classical problem, analysed by different research studies (Arzarello & al. 
1994, Garuti & al. 1998). 
I transcribe the main part of two resolution processes which are based on the 
transcriptions of the audio recordings and the written productions of the students. 
Two examples are presented: 

� Example 1: Example of structurant argumentation which decreases the gap 
between constructive argumentation and proof 
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� Example 2: Example of structurant argumentation which does not decrease the 
gap between constructive argumentation and proof 

In order to analyse the argumentation, I have selected the assertions produced by 
students and reconstructed the structure of the argumentative step: claim C, data D 
and warrant W. The indices identify each argumentative step. The student’s text is in 
the left column, and my comments and analyses are reported in the right column. The 
texts have been translated from Italian into English. 
Example 1 
Manuela constructs the conjecture as generalization of numerical examples. The 
structure of this argumentation is inductive and the referential system is based on 
arithmetic. 

If p=11 and q=13 then …(She 
calculates) the result is 210 

If p=7 and q=9 then the result is … 60

They are even numbers 

Then probably (p-1)(q2-1)/8 is an even 
number Conjecture is a fact constructed as 

generalization on numerical examples; now 
student has to justify it. 

probably

Manuela produces a structurant argumentation to justify her conjecture. She analyses 
expression (p-1)(q2-1)/8 considering even and odd numbers properties. She is not 
able to conclude.

if p is an odd number, p-1 is even; 

if q is an odd number, q2-1 is an even 
number too, 

Then an even number times an even 
number is an even number, then the 
expression is an even number… 

Manuela understands that the claim C4 is not sufficient to justify the conjecture. She 
looks for another element allowing her to state the conjecture.  

D1: Previous 
arguments

C1 : The expression 
(p-1)(q2-1)/8 is an 
even number

W :generalisation

D2: p is an odd 
number

C2 : p-1 is an 
even number

W : even and odd number property

D3: q is an odd 
number

C3 : q2 -1 is an 
even number

W : calculus rule  and even and odd 
number property

D4: C2, C3 C4 :(p-1)(q2-1) is 
an even number

W : the product of two even numbers
is an even number
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… but there is the division by 8.

I have to find something else to say 
that the expression is even. 

This is an abductive structure.

D5: C4 and ? C5 = C1: (p-1)(q2-1)/8 
is an even number

W : calculus rule and even and odd 
number property

The last argument is very important in the structurant argumentation because it leads 
Manuela to look for something else (the question mark in D5) to justify the 
conjecture. She analyses q2-1. By some numerical examples Manuela understands 
that q2-1 cannot be less than 8. She does not say explicitly that q2-1 is divisible by 8 
but we can suppose she makes this consideration because she considers different 
values for q (1, 3, 5, 7, 9) 

But q2-1 cannot be equal to 2 neither 4 
because with 1 q2-1 is 0 and with 3 
q2-1 is 8. Then the minimal number is 
8; 8 over 8 is 1 then the expression is 
an even number. 

Manuela can complete data 5 by the claim C7.

D6: Substitution in 
q2 -1 of some 
numerical examples 
(q=1, q=3)

C6: q2-1 cannot 
be equal to 2 or 
to 4

W : calculus

D7: C6 C7 : q2-1 cannot 
be less then 8

W : comparison among numerical
substitution in the formula

We observe that the structurant argumentation is characterised by both arithmetic and 
algebraic reasoning. Manuela looks for elements useful to construct the proof.

q = 2n+1 then q2-1 = 4n2+4n+1-1 = 
4n(n+1). This is at least divisible by 4, 
and so what remains is n(n+1), which 
is surely divisible by two, because if n 
is even everything is fine, if n is odd 
(n+1) is even and then 4n(n+1) is at 
least divisible by 8. We may conclude 
that q2-1 is a multiple of 8. 

Then (p-1)(q2-1)/8 is even if p and q 
are odd. 

Manuela analyses the formula 4n(n+1) to prove 
that q2-1 is at least 8.

D8: q = 2n+1 C8: q2-1 = 
4n(n+1)

W : substitution

Arguments 9 and 10 allow concluding that 4n(n+1) is always at least divisible by 8. 
Then the argument 5 is transformed into a deduction step and the conclusion is 

D10: n is an odd 
number

C10: 4n(n+1) is at 
least divisible by 
8

W : n+1 is an even number and calculus rule

D9: n is an even 
number

C9: 4n(n+1) is at 
least divisible by 
8

W : calculus rule (4*2t=8t with 2t=n)
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carried out rapidly. We can observe that referential system is based on arithmetic for 
the constructive argumentation and on algebra for proof. The structurant 
argumentation contains arithmetic and algebraic elements allowing the continuity in 
the referential system between the two. It is the abductive step in structurant 
argumentation which allows the connection between the constructive argumentation 
and the deductive proof: Manuela analyses the expression 4n(n+1) to prove that this 
expression is divisible by 8. 
Example 2 
Let’s consider the answer produced by another student, Elio. He tries different 
strategies: at the beginning he produces a reasoning similar to the previous one (the 
arguments 2, 3 and 4 of the previous example) concluding that the expression (p-
1)(q2-1) is an even number. Nevertheless, he says that this fact it is not useful 
“because in general it is not true that an even number divided by another even 
number makes an even number”. Then he assigns some numbers to the letter p and q 
and by means of a generalisation he constructs conjecture. 

If p=1 and q=3 then 0*8/8=0
p=5 and q=7 then 4*48/8=24
p=11 and q=13 then 10*168/8=210 

It seems that the expression 
(p-1)(q2-1)/8 is even. 

D1: Previous 
arguments

C1 : The expression 
(p-1)(q2-1)/8 is an 
even number

W :generalisation

probably

Conjecture is constructed as 
generalization based on numerical 
examples.

As in the previous example conjecture is based on arithmetic examples. These 
examples allow concluding that q2-1 seems to be divisible by 8. 

And…. Wait… It seems that by 
substituting q with an odd number, 
q2-1 is divisible by 8. 

Then (p-1)(q2-1)/8 is even because 
p-1 is even and q2-1 is divisible by 8 

Elio concludes that q2-1 is divisible by 8. 
Then he justifies the conjecture: 

D2: Claims based 
on numerical 
examples

C2: q2-1 is always 
divisible by 8

W : generalisation

D3: p-1 is an even 
number and C2

C3: C1

W : calculus rules and even and odd 
number properties

Elio has constructed a structurant argumentation which allows him to justify 
conjecture. Nevertheless this justification is still based on arithmetical examples. 
Moreover, there is no abductive step to connect constructive argumentation with 
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proof. As a matter of fact, Elio tries to construct a proof but without any result. He 
looses the connection with the argumentation phase; he is driven by deductive 
structure of algebraic proof.

I try to prove the statement p and q are 
odd, then p =2k+1 and q=2h+1 then I 
can find 

(2k+1-1) [(2h+1) 2 -1]/8 

2k[(4h2+1+4h)-1]/8 

2k(4h2+4h)/8 which is not equal to 2 
times something… I cannot conclude 

I can simplify 

k(4h2+4h)/4

If I factor 2...2k(2h2+2h) /4 no... 

If I factor h: 2kh(4h+4) /8 no… 

If I factor 4h: 2k*4h(h+1)/8 no 

I cannot prove with algebra, but I’m 
sure that the expression is an even 
number 

In proof Elio performs other 
transformations of the formula but 
without any result. The other 
arguments are similar to the previous 
and they carry out the same result: 
Elio is not able to construct the proof. 

D4: (p-1)(q2-1)/8 C4:(p-1)(q2-1)/8 =
(2k+1-1) [(2h+1) 2-1]/8

W : Conversion phase by substitution with 
p=2k+1 and q=2h+1

D5: C4
C5:(p-1)(q2-1)/8 =
2k*(4h2+4h)/8

W : calculus rules

D6: C5 is not 
equal to 2 times 
something

C6: I cannot conclude 
that (p-1)(q2-1)/8 is an 
even number

W : even number property

Elio has solved the problem but he is not able to construct the proof. The strength of 
the deductive chain seems to be so strong that Elio is not able to construct continuity
in the referential system with the argumentation; he manipulates the formula to find  
an expression of the form “2 times something”. He looses the connection with the 
referential system. We can observe that in this case, structurant argumentation does 
not produce the connection between arithmetic and algebra; this structurant 
argumentation is still based on numerical examples. Moreover, there is not an explicit 
abductive step in structurant argumentation which could help Elio to focus which 
elements lack to justify conjecture and construct the proof. 

CONCLUSION
By means of Toulmin’s model, we have analysed two resolution processes of an open 
problem in algebra. In both cases a structurant argumentation was present. In the first 
case this argumentation allows the construction of the proof while in the second one 
this argumentation has not been successfully for the construction of the proof. 
At this stage of the research we can conclude that, in solving an open problem in 
algebra, a structurant argumentation can be useful for the construction of the proof if 
it favours the continuity between constructive argumentation and proof in the 
referential system. Moreover, in opposition to the geometrical case, abductive 
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structure in structurant argumentation does not represent one of the possible trouble 
met by student in the construction of the proof because the strength of deductive 
structure in algebraic proof prevents at least partially the occurrence of structural 
continuity between argumentation and proof. 
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MATHEMATICAL PROOF: 
TEACHERS’ BELIEFS AND PRACTICES 

Antonis Sergis
University of Bristol, Graduate School of Education, UK 

The gap between the mathematical curriculum and what is actually taught in 
classrooms is an educational worry that requires closer investigation. Teachers’ 
beliefs can possibly throw some light on the reasons explaining this gap. This paper 
discusses results of my masters’ research, illustrating how teachers’ beliefs play out 
in their practices and focuses on the ways these conceptions influence, particularly, 
the teaching of mathematical proof. The paper aims to point out two teachers’ 
different views of what constitutes proof and the functions of proof they chose to 
integrate into their teaching practices. Finally, this research sketches some 
educational implications to improve teachers’ - and consequently students’ – 
performances in relation to proof in mathematics. 

INTRODUCTION
Teachers’ beliefs play a fundamental role in effective mathematics teaching. Most 
researchers in the area have examined primary school or pre-service teachers’ beliefs 
and practices (Foss & Kleinsasser, 1996; Thompson, 1992; Ernest, 1988; Hanna, 
1989). Yet, few examples can be found in the literature about specific subject matter 
knowledge and beliefs (Ball, 1990; Even, 1993; Tirosh & Graeber, 1990) and fewer 
about beliefs and proof (Jones, 1997; Hoyles, & Küchemann, 2002). This study 
explores the relationship between beliefs and proof in the context of secondary school 
mathematics.  
The general motivation for this study derives from my need to call into question the 
idea that “teachers teach the way they have been taught” (Frank, 1990, p. 12). 
Mathematical research (Pepin, 1999; Knowles, 1992, Borko, Flory & Cumbo, 1993) 
has shown that teachers’ beliefs are formed during their schooling years, are shaped 
by their experiences as pupils and hardly change. Furthermore, teachers’ conceptions 
and feelings are revealed during their lessons and affect their decision-making 
(Woods, 1996), goals (Nespor, 1987), task-defining (Pajares, 1992), priorities 
(Aguirre & Speer, 2000) and their overall pedagogical approach. As a result, it is 
questionable whether all students are taught the same mathematics. The students’ 
knowledge and skills are dependent on teachers’ beliefs of the mathematical content 
to be taught. The challenge for the educational community is to provide appropriate 
training to teachers in order to help them reflect and control the influence of their 
personal conceptions of mathematics on their practices.  
The paper is divided into three sections: in Section 1 the theoretical framework is 
discussed; in Section 2 research tools and methodology are explained; in Section 3 an 
analysis of results is presented and, finally, some conclusions are sketched at the end. 
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1. THEORETICAL BACKGROUND 
Teachers’ beliefs 
Beliefs are defined as conceptions, personal ideologies, world views and values that 
shape practice and orient knowledge (Ernest, 1989; Thompson, 1992). Teachers often 
resist adopting educational changes because “changing beliefs causes feelings of 
discomfort, disbelief, distrust and frustration” (Anderson & Piazza, 1996, p. 53). 
Nevertheless, recent researchers (Kagan, 1992; Franke et al., 1998) argue that lasting 
changes may occur if teachers try new strategies in their classrooms and reflect on 
their own belief systems. However, according to Richardson (1996, p. 114) “it cannot 
be assumed that all changes in beliefs translate into changes in practices”.
The relationship between teachers’ beliefs and practices is complex. Pepin (1999) 
found that teachers’ conceptions of mathematics and its teaching and learning are not 
related in a simple cause-and-effect way to their instructional practices. Foss & 
Kleinsasser (1996) described this relationship as symbiotic; Cohen (1990) identified 
inconsistencies between teachers’ professed beliefs and teaching. The key issue is to 
find ways to increase teachers’ awareness of their beliefs, conceptions and ideas 
about mathematics. This paper focuses on a specific mathematical aspect, the proving 
process.
Mathematical proof 
Proof can be defined as “ways of convincing someone else of the truth of a 
statement” (Gutierrez & Jaime, 1994, p. 3). Students often have poor performance 
and understanding in mathematical proof. According to Schoenfeld (1994, p. 75), “in 
most instructional contexts proof has no personal meaning or explanatory power for 
students”. Also “students judge that after giving some examples which verify a 
conjecture they have proved it” (Hoyles, 1997, p. 7). Many of the students’ 
difficulties are due to confusions resulting from their teacher’s approaches to proof. 
Ernest (1988), among others (Thompson, 1984; Calderhead, 1996; Cohen, 1990), 
claims that teachers’ performance is highly depended on their system of beliefs. 
Therefore, it is vital to examine what kind of conceptions of mathematical proof and 
knowledge teachers hold because, as Jones (1997, p. 16) states, “the successful 
teaching of mathematical proof depends crucially on the subject knowledge of 
mathematics teachers”.

2. RESEARCH TOOLS AND METHODOLOGY 
This study was carried out in Bristol, UK. Two secondary teachers – George and 
Nicky – selected purposely, were observed carrying out two lessons each and were 
interviewed based on pre-observational tasks (concept map and proving task1). The 
                                          
1 Retrieved from the “Longitudinal Study of Mathematical Reasoning” (1999-2003) project (Year 8 activities) and 

modified. 
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tasks encouraged them to talk about their ideas, understanding and conceptions about 
the nature and the function of proof in the school context. Lesson observations 
showed the ways in which those beliefs were carried out, in respect to the tasks set 
and the questions asked by the teachers. 
More specifically, the teachers firstly drew a concept map each to show their 
understanding of the nature of proof. Also, they completed a proving test, solving 
problems and providing marks for different sets of responses. This activity provided 
information about their teaching approach. Afterwards, I interviewed them based on 
those tasks to reveal their personal constructs of proof. The second phase included 
two observations of lessons about probabilities with Year 8 students for each teacher. 
The four lessons included activities with coins and dice and the possible outcomes, 
for example the number of heads and tails with 2 or 3 coins; the number of 5’s and 
6’s with 2 or 3 dice etc. The observations gave a sample of teachers’ instructional 
approach and behaviour in the classroom. Finally, the teachers reflected, commenting 
on those lessons. This process provided deeper insight into their beliefs’ systems.      
The research questions of the study were: (1) What are teachers’ conceptions about 
the nature and role of proof in the context of secondary school mathematics? (2) 
What is the relationship between teachers’ conceptions of proof and their practices? 
In this paper I will try to explore only some aspects of these questions and show their 
relevance for the teaching of mathematical proof. 

3. FINDINGS AND ANALYSIS 
To answer the research questions I designed a theoretical framework which identified 
teachers’ beliefs according to their responses. Particularly, the analysis is based on 
the different functions of proof: verification (Bell, 1976), explanation (Hersh, 1993), 
communication (Raman, 2003), discovery (Schoenfeld, 1986) and systematization 
(Knuth, 2002). Furthermore, the data analysis provided five clusters which allowed 
comparisons between the two case studies: a) beliefs about the nature of proof; b) 
beliefs about the functions of proof; c) discussions and group work; d) formal and 
semi-formal teaching approach to proof and e) classroom culture. 
3.1. Case study #1: George 
George is the Head of Mathematics. He has ten years of experience and he has got a 
Master’s Degree in Mathematics Education. George is currently working on a PhD 
proposal. I observed him teaching two lessons with Year 8 students about 
probabilities. These lessons provided a snapshot of his practices in respect to proof. 
In this section I summarize his approach and beliefs about proof derived from the 
concept map, the proving task and the lessons.  
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Concept map 
George used 14 key words in total to 
draw his concept map (see diagram 1 
below). He started from the word 
“awareness” which he considers to be 
essential for proof. He links this key 
word with 9 other words related to 
proof – this is more than any other 
word used in the map. He continued 
with “open-ness” and then “beauty” 
and linked those two to “awareness”. 
At that point, he added insight which 
also linked to “beauty” and 
“awareness”. Then the other words 
followed. The word “proof” is in the 
center and there are not any links to it 

at all. Four out of thirteen key words are in –ing format (convincing, testing, 
experimenting and “trying to prove it wrong”) and which he relates to classroom 
activities and context. George’s vocabulary during the discussion about his concept 
map included other phrases or terms such as : incredible pleasure, I always encourage 
people, motivation to try to prove all cases, community of mathematicians, less 
rigorous, convince the community. 

Diagram 1: George’s concept map

Proving task 
George finds Ben’s answer the best one because it is the only one which provides 
awareness and explains “why”: 

“I suppose it seems to capture the essence of “why”, it seems that he got the key 
awareness of why he got 27 and he seem to describe that awareness very clearly. I didn’t 
have an awareness why it was 27 when I was reading it and when I came to that I said: 
Oh yes!OK. So it promotes awareness in me about this problem which I suppose to me is 
what the best groups do.” 

He gave Ben the mark 10 out of 10 because “he had justified in terms of 
mathematical structure” and that is what the National Curriculum sets in the marking 
criteria. George admits that Ben’s statement is not an axiomatic proof or absolutely 
rigorous but it is still a convincing proof in terms of communication. Amina got 4/10 
because “she does not seem to have awareness of the problem and probably she has 
only convinced herself but not the others”. Carol (1/10) and Davor (2/10) “are in a 
lower level of understanding the problem”.    
Lessons
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Commenting on the lessons he had, George feels that he had useful conversations and 
that probability games helped students to change and learn.  

“Proof for me is not a separate mathematical activity, so I don’t think I ever set out to 
teach proof as such […] if there is something interesting going on in my lesson then 
proof will be around I’m sure. so even for example doing probability it felt as so what we 
were discussing with the two coins was an aspect of proof: How can we be sure that the 
analysis into 1/4 , ¼ and ½ is the correct one? so to me proof is about convincing myself 
convincing others and as a class coming to some agreement about what we think is the 
case…and that really for me is what proof is […]” 

He believes algebra is essential and important to proof because it answers many 
“whys” and this is the kind of classroom environment he tries to create. His 
instruction promotes understanding and the answering of students’ questions, 
“why?”s. This was clear when I observed the language and the approach he uses in 
his lessons (italics added):

“What do you mean by..? We need to assign in theory-theoretical probability-how these 
are likely to happen? Can you say why? Can anybody help us sort out the 26/52?” 

“Can anybody apply Jamie’s idea in two dice? Is the Tail-Head same with Head-Tail? 
What actually happened when you played the game?[…] There is a need now (at he end 
of the discussion) to hear what people think..whether we need to have H-T or T-H 
probabilities”

“Write a prediction about which column will win […]”  

“Your challenge is what is the probability for the other games…I suggest to start with 3 
coins…What do you expect to see in these 4 columns …could you make some 
predictions with 4 dice and 5 dice?..Tom noticed that as we go from 2 dice to 3 dice we 
double the possibilities. Maybe we could find some patterns […]” 

George explains that alongside proving, making conjectures and theorems, algebraic 
process is integrated in his lessons. This is consistent with the example he 
remembered during the interview after the second lesson: 

 “[…] and we worked with that (activity) for 6 lessons and I showed them how to prove 
in algebra, about why this must work and I think this was a powerful lesson for them. It 
was their first instruction in secondary school to algebra and it was very complex but it 
was answering the questions they had […]”.  

“[…] when you try to make algebraic statements the question is always around about 
how can we be sure this is always the case?”. 

George also speaks about mathematical community. He obviously prefers the proof
that explains to the proof that proves (Hanna, 2000). He talks about proof as 
explanation and communication:  

 “[…] I believe that the test of proof is ‘Does it convince the community?’” 
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“ […] the mathematical world has set a very high standard of what form this might need 
to take. In the classroom context it might be less rigorous but is still the issue ‘Does this 
proof convince the classroom?’”. 

3.2. Case study #2: Nicky 
Nicky is a less experienced teacher having taught mathematics for two and a half 
years. She is currently studying for her Masters in Mathematics Education. I observed 
her doing two lessons with Year 8 students (a different group from George’s Year 8 
class) about probabilities. These lessons were the same as George’s. 
Concept map

Nicky produced a list of 23 key 
words and she used 21 words to 
draw her concept map (diagram 2) 
although not all were the same 
with those in the list. Actually, 
while she described how she drew 
the concept map she asked herself 
questions at the same time like: 
“What ways are there to justify 
things? How do I convince myself? 
etc.”. Her central words are clearly 
“believe” and “need”. She argues 

that the core function of proof is always to convince yourself and others, even though 
you can use different methods to explain why a statement is true or not.  

Diagram 2: Nicky’s concept map 

She uses the word “algebraic” in relation to her personal experiences: 
“[…] often I use algebra to convince myself of something if I am working on maths on my 

level”.

However, algebraic proof is not necessarily the only way to convince yourself or the 
others about the truth of a statement. She believes that there are more ways to be 
convinced such as visual images and diagrams.  
Proving task 
Nicky thinks Ben’s statement is a good proof because it is general:  

“He talked about all cases, so he has talked about everything, so this is general, he is 
giving a general argument about why this got to be 27, so he is convincing.” 

She marked this answer with 10/10 because Ben “shows he understands what it 
means to prove” and because “his method would work for any numbers whereas the 
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other methods would not”. Consequently, Nicky gave 8/10 to Amina because “she 
only tried some examples and not all the different ways” and convinced herself but 
not everybody else. Amina could not find a counter example and her method was 
exhaustive but she got the second highest mark because she has done considerably 
more work on the problem than Carol (1/10) and Davor (4/10) who did not 
understand the problem.  
Lessons
Nicky feels that the probability game easily convinced her students and she was 
happy that she did not have to spend much time on that. The whole classroom 
discussions were fruitful and everyone was involved, asking intelligent questions. 
She liked that some clear explanations came from her students and she usually wrote 
on the board any conjecture: 

“Look at the graph. Do you think this is a good picture of the probabilities? Why this bar 
is bigger than the others?” 

“This is Carly’s conjecture: If you had two 8-sided dice would there be 64 possible 
outcomes from adding the totals together? Would a 9-sided dice have the same pattern/
graph?”

“There are 6 ways to get 7’s so I expect the bar to be bigger. The more times you play the 
more times you expect to get a triangle. This is your theoretical probability and you 
expect this pattern […]” 

“There are 15 ways to get 2 6’s. Is anyone not convinced of what she said? She proved
her answer.” 

She is trying to create a culture where all of the students want to prove their 
conjectures and convince themselves and everyone else in the class: 

“[…] what usually happens is somebody disprove it by giving a counter example or 
prove it by giving a very clear explanation and convincing everybody else in the class 
[…] I tend to talk about proof in the context of their own conjectures they come up with 
[…] I hope that there is always a space in the class to prove whatever problem is.” 

Informal methods “may help students develop an inner compulsion to understand 
why a conjecture is true” (Hoyles, 1997, p. 8). Therefore, compared to George’s 
conceptions, she seems more detached from the formal idea of proof in the school 
context. Like many teachers (see Martin & Harel, 1989) her description of formal 
proofs is very ritualistic in nature, tied to prescribed formats and the use of particular 
language. Nicky also uses the word “need” which shows that justification in terms of 
personal convincing is the primary function of proof for her. 
3.3. Comparison between George and Nicky 
Vollrath (1994) claims that judgments by teachers influence students’ appreciation of 
a theorem. George’s response to proof is affective (beautiful, surprising, interesting) 
and Nicky’s is cognitive (special case, inference) and obviously their explicitly and 
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implicitly expressed views affect students’ reasoning skills. Teachers should be aware 
of their mathematical language and “try to balance the different aspects of 
knowledge, usage, beauty, culture” (Vollrath, 1994, p. 360).
Both teachers set, as major priorities, classroom discussions and questioning. 
Furinghetti & Olivero (2001) underline the value of collaborative work and indicate 
the need for children to share, compare and exchange ideas through discussions. 
Also, Balacheff (1999) argues that the classroom as a scientific community can be an 
effective way of making room for proof in school mathematics. Such a classroom 
environment encourages deductive reasoning. On one hand, Nicky provides her 
students with experiences of more informal methods of proof and opportunities to 
formulate and investigate conjectures. On the other hand, George wants his students 
to be “always wanting to know why something works and have an interest in trying to 
prove it”. He asks interesting questions that lead students to make and prove 
conjectures so he claims that his students produce the proofs. However, according to 
Herbst (2002, p. 198), if students fail to come up with the statement of a conjecture 
the teacher would have doubts whether this is due to their lack of reasoning skills or 
the teachers’ failure to provide a fair task. Nicky and George work with 
experimenting, conjecturing and testing in their lessons – elements necessary to 
create a classroom culture where proof is always involved.   
Results showed that teachers’ existing conceptions of proof have some consistencies 
and some inconsistencies with their practices. Both teachers hold similar beliefs about 
the core function of proof – “convince myself and others” – although they are 
different in the ways each of them reach conviction. George seems more dedicated to 
the formal and public aspect of proof in his class, whereas Nicky accepts several 
forms of justification which can satisfy pupils; personal doubts about the truth of a 
statement (see diagram 3 below).

                                                Nicky            George 

           Personal aspect                                                               Public aspect 

             Verification                                                                 Communication 

              Justification                                                                   Explanation 

        Informal approaches                                                        Formal approaches 

               Empirical                                                                        Abstract 

Diagram 3: Comparison between teachers’ beliefs of proof 

In other words, George can be characterized as serving proof in the function of 
communication and explanation and Nicky as serving proof in the function of 
justification and verification. Chen & Lin (2002) would characterize Nicky’s 
pedagogical views about teaching proof as a mixture of convincing-formal view and 

Working Group 4

CERME 5 (2007) 660



instructional explanatory view. This means that a teacher convinces students of the 
truth by manipulation, special cases and demonstrates some kind of explanation. 
George has a discursive explanatory view where the explanation results from 
students’ discourse. 

4. EDUCATIONAL IMPLICATIONS AND CONCLUSIONS 
Knuth (2002) suggests that implementing “proof for all” might be difficult for 
teachers. Teacher training programmes and curriculum planners should prepare 
teachers to teach mathematical proof in the school context, bearing in mind three 
important elements: a) the levels of proving; b) the functions of proof and c) the 
approaches to proof. 
The comparison between the two teachers reveals the issue of the taught curriculum. 
Obviously the national guidelines about proof are the same for all teachers; however 
students do not receive the same instruction. For example, George and Nicky have 
different teaching approaches based on their beliefs about what proof is. There are 
also some other factors which influence their performance such as their content 
knowledge, students’ attainment levels, the school and classroom environment and 
the social context. Consequently, the same material is taught differently and students 
do not gain the same understanding of the concept of proof.  
In conclusion, I highlight the fact that the stronger influence on the relationship 
between teachers’ beliefs and practices does not derive from their past lives and the 
ways they have been taught; it is teachers’ engagement in practical inquiry and their 
experiences in the classroom (Franke et al., 1998) which forms their teaching. 
Therefore, teachers need to select the most successful methods and prepare effective 
tasks that respond to the demands of the students and promote mathematical
enculturation (Bishop, 1988). 
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THE MENTAL MODELS THEORY OF DEDUCTIVE 
REASONING: IMPLICATIONS FOR PROOF INSTRUCTION1

Andreas J. Stylianides     Gabriel J. Stylianides 
     University of Oxford, U.K.                   University of Pittsburgh, U.S.A. 
There are currently increased efforts to make proof central to school mathematics 
throughout the grades. Yet, realizing this goal is not easy, as it requires that students 
master several abilities. In this article, we focus on one such ability, namely, the 
ability for deductive reasoning. We first offer a conceptualization of proof, which we 
use to delineate our focus on deductive reasoning. We then review Johnson-Laird’s 
mental models theory – a well-respected psychological theory of deductive reasoning 
– in order to enhance what is currently known in mathematics education research 
about deductive reasoning in the context of proof.
INTRODUCTION
There are currently increased efforts to make proof central to school mathematics 
throughout the grades (e.g., Ball & Bass, 2003; NCTM, 2000). Yet, realizing this 
goal is not easy, as successful engagement with proof requires that students master 
several abilities, such as the ability to recognize the need for a proof (e.g., Boero et 
al., 1996; Mason et al., 1982), the ability to understand the role of definitions in the 
development of a proof (e.g., Mariotti & Fischbein, 1997; Zaslavsky & Shir, 2005), 
and the ability to use deductive reasoning (e.g., Foltz et al., 1995; Polya, 1954). In 
this article, we focus on the ability for deductive reasoning.
Available mathematics education research on proof offers: (1) existing evidence that, 
and insights into how, supportive classroom environments can enable even 
elementary school students to use deductive reasoning to construct arguments and 
proofs (e.g., Ball & Bass, 2003; Maher & Martino, 1996); (2) understanding of 
common difficulties that students face in using deductive reasoning in the context of 
proof (e.g., Coe & Ruthven, 1994; Hoyles & Küchemann, 2002); and (3) 
understanding of social and cognitive factors that play a role in students’ ability to 
use deductive reasoning in the context of proof (e.g., Balacheff, 1991; Boero et al., 
1996). The findings of this research can be complemented by the findings of 
psychological research on cognitively guided ways to enhance acquisition of this 
ability, such as the research associated with Johnson-Laird’s (1983; Johnson-Laird & 
Byrne, 1991) mental models theory. Although this psychological research makes only 
few connections to the notion of proof, it can offer useful insights into proof 
instruction in school mathematics. Of course, incorporating findings of psychological 
studies on deductive reasoning into useful practices for promoting students’ ability 
for proof requires first a considerable amount of interdisciplinary research to build 
necessary bridges between psychology and mathematics education. 
Our objective is to review Johnson-Laird’s mental models theory – a well-respected 
psychological theory of deductive reasoning – in order to enhance what is currently 
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known in mathematics education research about this ability in the context of proof. 
The article is structured into two sections. In the first section, we offer a 
conceptualization of the meaning of proof in school mathematics and we use this 
conceptualization to delineate our focus on deductive reasoning. In the second 
section, we review the mental models theory of deductive reasoning and we discuss 
implications of this theory for proof instruction. 
PROOF AND DEDUCTIVE REASONING 
Our conceptualization of the notion of proof in this article is summarized as follows: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: 
1. It uses statements accepted by the classroom community (set of accepted statements)

that are true and available without further justification; 
2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and 
3. It is communicated with forms of expression (modes of argument representation)

that are appropriate and known to, or within the conceptual reach of, the classroom 
community. (Stylianides, 2007, p. 291) 

The conceptualization of proof breaks down each mathematical argument into three 
major components: the set of accepted statements (e.g., definitions, axioms, 
theorems), the modes of argumentation (e.g., application of logical rules of inference 
like modus ponens), and the modes of argument representation (e.g., verbal, pictorial, 
algebraic). The use of the terms “true,” “valid,” and “appropriate” in the 
conceptualization should be understood in the context of what is typically agreed 
upon in the field of mathematics nowadays. Of course, this is not to say that these 
terms have universal meaning in the field of mathematics nowadays, but it is beyond 
the scope of this article to elaborate on this issue.  
The notion of deductive reasoning corresponds to the component modes of 
argumentation. The conceptualization denotes that such modes used in an argument 
that qualifies as a proof need to be valid and, therefore, they need to support logically 
necessary inferences from a given set of premises. According to commonly accepted 
notions of deductive reasoning, logically necessary inferences directly implicate the 
use of deductive reasoning. For example, Klaczynski and Narasimham (1998) note 
that deductive reasoning refers to logically necessary inferences drawn “from a 
general set of givens or premises” (p. 865). Important to note is that we do not 
associate the notion of deductive reasoning with particular modes of representation, 
such as modes that may be characterized as formal versus informal.  
MENTAL MODELS THEORY AND INSTRUCTIONAL IMPLICATIONS 
Before we describe the mental models theory, three caveats are in order. First, 
although the mental models theory is well respected in cognitive psychology, by 
choosing it for presentation in this article we do not suggest that it is the best theory 
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currently available in the domain of deductive reasoning. For example, there is Rips’s 
(1994) theory of deductive reasoning, which is based on natural-deduction systems 
for predicate logic and has levels of empirical support similar to the mental models 
theory. Second, the mental models theory provides an explanation of reasoners’ 
thinking processes on a small range of deductive reasoning tasks, namely, syllogistic 
inference tasks. Other theories address different kinds of deductive reasoning tasks. 
For example, the pragmatic reasoning schema theory (Cheng & Holyoak, 1985) 
addresses selection tasks. Third, there is still much to be learned about the mental 
models theory and how it relates to other theories of deductive reasoning. For 
example, although we have comparisons of the mental models theory and the 
pragmatic reasoning schema theory (e.g., Moshman, 1998), psychologists have not 
yet analyzed fully the relationship between these two theories.  
To conclude, our discussion of the mental models theory is intended to initiate 
discussions and interdisciplinary efforts on how proof instruction can benefit from, 
and use the findings of, psychological theories of deductive reasoning. We see our 
discussion as the very first step in a long process that will consider other theories 
besides the one considered in this article. 
Presentation of the theory 
The mental models theory assumes that deductive reasoning, as it applies to 
syllogisms (i.e., arguments from premises to an inference or a conclusion), depends 
on three main stages (Johnson-Laird & Bara, 1984). First, the reasoner constructs a 
mental model of the information presented in the premises of a syllogism, where by 
“mental model” is meant a representation in the mind that has a structure analogous 
to the structure of the situation it represents. Second, the reasoner scans this model 
for an informative conclusion that is true. Third, the reasoner searches for alternative 
mental models that may lead to refutation of the conclusion (counterexamples). In 
this approach, developmental changes in the ability for deductive reasoning reflect: 
(1) improvement of the linguistic competence to comprehend logical terms (e.g., and, 
or, not, if, none, some, all) in the premises and, thus, of the ability to construct 
appropriate models of those premises; and (2) advancement in the management of 
these models due to increase in processing capacity (Johnson-Laird, 1990).  
Johnson-Laird and Byrne (1991) argue that “people make deductions by building 
models and searching for counterexamples” (p. 203). They consider that the ability 
for deductive reasoning is equivalent to the “capacity to build models of the world, 
either directly by perception or indirectly by understanding language, and [the] 
capacity to search for alternative models” (p. 204). According to the mental models 
theory, the unfolding of these capabilities occurs under the control of innate 
constraints:

What develops in childhood is the ability to understand language, the processing capacity 
of working memory (Hitch and Halliday, 1983; Case, 1985), and the meta-ability to 
reflect on one’s own performance. Seven year-olds cannot cope with syllogisms because 
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they do not understand quantifiers correctly (see Inhelder and Piaget, 1964). Nine year-
olds can cope with one-model syllogisms, but not with more than one model (Johnson-
Laird, Oakhill, and Bull, 1986; Acredolo and Horobin, 1987). Their working memory
appears to lack sufficient capacity to retain alternative models of the premises. (Johnson-
Laird & Byrne, 1991, p. 204; emphasis added)

As the excerpt above suggests, the degree of success with which mental model 
construction and examination can be achieved depends on a person’s working 
memory capacity. In other words, the number of models that are constructed and the 
figural arrangement of terms that can be made within the premises2, which constitute 
the two major factors that determine the difficulty of making inferences, seem to be 
intimately related to working memory:  

The effects of both number of models and figure arise from an inevitable bottleneck in 
the inferential machinery: the processing capacity of working memory, which must hold 
one representation in a store, while at the same time the relevant information from the 
current premise is substituted in it. (Johnson-Laird, 1983, p. 115) 

In general, working memory capacity plays a central role in the theory’s successful 
accounting for patterns of performance in deductive reasoning (Johnson-Laird, 1983). 
More specifically, errors occur because limitations in working memory capacity 
make people fail to consider all possible models of the premises that would provide 
them with counterexamples to the conclusions they derive from their initial models 
(Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991). In turn, this limits individuals’ 
ability for validation, for it constrains their ability to consider more than one model at 
a time (Johnson-Laird & Bara, 1984).
Johnson-Laird and colleagues’ (1986) experiments with two groups of children (9- to 
10-year-olds and 11- to 12-year-olds) provide support to the claim that the ability to 
solve syllogistic problems is associated with the number of mental models that have 
to be constructed for the solution of a given problem. In one experiment – where the 
two groups of children drew conclusions from 20 pairs of syllogistic premises – no 
child in either group made a correct response to the three-model problems, whereas 
all subjects (the only exception being one 9-year-old) made at least one correct 
response to a one-model problem. In another experiment – where 16 11-year-olds 
were tested on all 64 possible forms of syllogistic premises3 – the children made only 
2% correct responses to the three-model problems, as compared to 26% and 63% 
correct responses to the two- and one-model problems, respectively. Overall, in both 
experiments, “performance was best with one-model problems and better than chance 
with two-model problems” (Johnson-Laird et al., 1986, p. 52); correct responses with 
three-model problems were virtually non-existent. 
Investigations with adults revealed a similar pattern of performance, that is, best 
performance on one-model problems and worst on three-model problems, with the 
main difference being that the number of problems of each type that the adults solved 
correctly was typically larger than the corresponding number for children. 
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Interestingly, when adults had only 10 seconds to respond to syllogistic premises, 
their performance dropped to a level almost identical to that of the 11-year-olds 
(Johnson-Laird & Bara, 1984). Anderson et al. (1996) make an attempt to explain 
these results by using Case’s (1984) ideas about short-term operating and storage
spaces: “while the overall capacity of short-term memory does not increase as a 
function of development, the effect of practice at tasks results in more efficient use of 
short-term operating space, leaving greater capacity in short-term storage space” 
(Anderson et al., 1996; p. 270). Therefore, “[a]s learners get older, they become more 
adept at building, maintaining in memory, and testing a transitory mental model” 
(Anderson et al., 1996; p. 270). Increases in the information storage capacity would 
clearly be beneficial for learners’ capacity to achieve these processes. 
Discussion of the theory 
The mental models theory has not been applied in the teaching and learning of proof, 
so the examples one can find in the literature illustrating the theory are not focusing 
on the notion of proof (rather, they are mostly syllogistic tasks placed in non-
mathematical contexts). We begin our discussion of the theory with an example of a 
proving task that we constructed in order to illustrate possible applications of the 
theory in the particular domain of proof.  

Consider the following two premises, which are basically definitions for multiples of 3 
and 6: 

An integer is a multiple of 3 if and only if it is three times an integer. 
An integer is a multiple of 6 if and only if it is six times an integer. 

What can be said (if anything) about any multiple of 6 in relation to a multiple of 3? 
Prove your answer. 

Using the first premise, the following algebraic expression is constructed for any 
multiple of 3: 3l, where l is an integer. Likewise, using the second premise, the 
following expression is constructed for any multiple of 6: 6k, where k is an integer. 
Using the information in the two premises, the following model is constructed: 

Any multiple of 6 is of the form 6k = 3• (2k) = 3l, a multiple of 3. 

As this model cannot be falsified with an alternative model, the conclusion is 
considered valid. That is, we have proved that any multiple of 6 is also a multiple of 
3. Successful completion of this proving task depends, given the tenets of the mental 
models theory, on the linguistic competence of the reasoner to comprehend the 
logical term “if and only if” in the premises and on the reasoner’s processing ability 
to combine the information from the two premises and search for alternative models. 
The structure of the proving task we just analyzed was purposefully organized so that 
there is a clear set of premises from which the reasoner can draw information to 
construct a mental model. Yet, most of the proving tasks encountered by students and 
professional mathematicians do not have this clear structure. Typical proving tasks 
consist only of the question/prompt (in the particular case: “What can be said [if 
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anything] about any multiple of 6 in relation to a multiple of 3? Prove your 
answer.”), leaving it up to the reasoner to select a collection of relevant premises 
from his or her community’s set of accepted statements (cf. our conceptualization of 
proof) to construct a proof. Accordingly, the mental models theory seems to be useful 
in accounting for the solution of a proving task once a set of premises has been 
specified (either by the task itself or by the reasoner). Of course, the reasoner can 
revise the set of premises by adding or deleting premises in order to end up with a 
sufficient set of premises for the solution of the proving task. Each time a new set of 
premises is established, the mental models theory can be reapplied. 
The mental models theory denotes that limited working memory capacity constrains 
students’ performance in deductive reasoning tasks of which proving tasks are a 
proper subset. This implies that mathematics educators can potentially foster the 
improvement of students’ performance in proving tasks in two interrelated ways: (1) 
by preventing unnecessary usage of students’ working memory when they engage 
with proving tasks, and (2) by helping students develop strategies for effective 
managing of their working memory.  
An example of (1) is for mathematics educators to engage students in “scaffolded” 
proving tasks (like the one presented earlier) that specify for the students a small set 
of relevant premises for the solution of the task. By excluding irrelevant premises 
from students’ consideration when engaging with a proving task, students are freed 
from the memory-consuming effort to combine information from more premises and 
construct more complicated mental models than they actually need to. In this way, 
students are facilitated to focus on the logical structure of the proof and the ideas 
involved in it. Of course, at some point, educators would like students to become able 
to identify by themselves the relevant premises for the solution of a proving task. 
Yet, the kinds of scaffolded proving tasks described earlier can be very useful in the 
early stages of students’ engagement with proof, for they can help students develop 
necessary skills that will support their independent engagement with proof in the 
future.
An example of (2) is for mathematics educators to help students develop the strategy 
of representing the information in the premises in equivalent and easier to manage 
forms (from a working memory standpoint). Looking back to our analysis of the 
proving task at the beginning of our discussion of the theory, we see that the two 
premises were reformulated to algebraic expressions, which, due to their conciseness, 
reduce the processing load thereby facilitating the solution of the task. A related 
strategy that mathematics educators can assist students to develop is making efficient 
use of visual records such as diagrams (see, e.g., Bauer & Johnson-Laird, 1993; 
English, 1998; Sweller et al., 1998). This strategy can involve not only the use of a 
visual record when one is not already offered in a proving task but also the use of an 
existing diagram to practically integrate disparate sources of information and 
facilitate solution. It is often the case in proving tasks, especially in geometry, that 
students are offered a diagram (e.g., a geometric figure) and then a set of givens 
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(premises) which, although refer to the diagram, are separated from the diagram. To 
make sense of the two sources of information, the diagram and the givens, students 
must mentally integrate them. For example, to derive any meaning from a given, 
students must read the given, hold it in their working memory, and then search the 
diagram for the appropriate referents. This mental integration process is clearly 
cognitively demanding and occupies a large part of their working memory capacity.  
The works of Case (1984) and Anderson et al. (1996) we reviewed earlier suggest 
that practice can help students become more skillful in overcoming the limitations of 
their working memory capacity, thereby pointing to an educational implication for 
improving students’ ability for deductive reasoning. This implication has first been 
proposed by Johnson-Laird (1983) based on his observations of “spontaneous 
improvement in [deductive] reasoning ability simply as a consequence of practice 
(with no feedback)” (p. 124). Adults in Johnson-Laird’s experiments who have been 
tested twice within a week showed a 10% improvement in their performance, without 
even forewarning that they would be retested (Johnson-Laird & Steedman, 1978).
The idea that practice can play an important role in the development of students’ 
ability for deductive reasoning, and thus in their ability for proof, is not emphasized 
in mathematics education research on proof. Research studies on teaching practices 
that have successfully promoted students’ ability for proof do not explicitly identify 
practice as one of the factors that might have contributed to this success. Part of the 
reason for which there has been little attention to the potential role of practice in 
proof learning might be that practice has often been associated with secondary 
aspects of students’ engagement with proof, such as the writing of a proof in the two-
column form. According to the two-column form, which prevailed in high school 
geometry courses in the Unites States for almost a century, “the statements of the 
proof [are placed] in steps in a column occupying the left half of the page, and … the 
reasons of the statements [are placed] in steps at the right side of the page, with each 
reason directly opposite its statement” (Shibli, 1932, p. 145). The emphasis on the 
form made the writing of a proof a ritual procedure that had to be practiced and 
memorized; as a result, “the substance of proof as a logical and coherent chain of 
reasoning that guarantees that something must be true became obscured” 
(Schoenfeld, 1991, p. 325).
Yet, associating practice only with secondary aspects of students’ engagement with 
proof does not do justice to the potential role that practice can play in proof learning 
as suggested by the psychological research reviewed in this article. An obvious 
possible use of practice is to help students develop the kinds of strategies for 
effective managing of their working memory that we described earlier. In addition, 
we hypothesize that practice can be used to help students internalize the general 
logical structure of different proof methods, such as proof by contradiction, thus 
releasing working memory capacity to be spent in the application of these proof 
methods. For example, consider the proposition: “There is no smallest positive 
rational number.” In a proof of this proposition by contradiction, one would start by 
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assuming the opposite of the proposition and would show that it leads to a logical 
contradiction:

We assume the opposite of the statement we wish to prove: “There is a smallest positive 
rational number, say y.” Now let x=y/2. Then x is a positive rational number that is 
smaller than y. But this contradicts our initial assumption that y is the smallest positive
rational number. So we can conclude that the original proposition must be true – “There 
is no smallest positive rational number.” 

If a student who has not internalized the logical structure of the proof method by 
contradiction attempts to apply the method to prove the proposition, this student will 
experience increased processing load of working memory and will likely face 
increased difficulties with the proof. 
CONCLUSION
In this article, we reviewed an influential and well-respected psychological theory of 
deductive reasoning, namely, Johnson-Laird’s theory of mental models, in order to 
enhance what is currently known in mathematics education research about this ability 
in the context of proof. Our review offered useful insights into potentially effective 
instructional practices for fostering students’ ability for deductive reasoning in the 
context of proof. Nevertheless, it is a long way before these insights can find their 
way to the practices of ordinary teachers.  
A major challenge, but also a primary urgency, for researchers concerned with issues 
of proof instruction is to identify effective ways to synthesize relevant research 
programs in mathematics education and psychology. This article has made a first step 
towards this direction by bringing to the attention of mathematics education 
researchers a rich body of psychological research on deductive reasoning and by 
identifying important issues that require research attention. An interdisciplinary and 
collaborative approach to the problem of promoting proof in students’ learning of 
mathematics promises major advancements. 
NOTES 
1. The two authors had an equal contribution in writing this article. 

2. For example, syllogisms that involve two premises with three terms (X, Y, and Z) can occur in 
one of four figures as shown below: 
  X – Y  Y – X  X – Y   Y – X 
  Y – Z   Z – Y   Z – Y   Y – Z  

3. The 64 possible forms of syllogistic premises are derived as follows: four quantifier 
combinations for each of two premises that can occur in one of four figures as explained in endnote 
2 (i.e., 64=43).
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REVIEWING TEXTBOOK PROOFS IN CLASS:                               
A STRUGGLE BETWEEN PROOF STRUCTURE, COMPONENTS 

AND DETAILS 
Stine Timmermann

IMFUFA, Department of Sciences, Roskilde University, Denmark 

Abstract. During the first year of a university study in mathematics, “dissection” of 
mathematical proofs occupy a growing part of the course time. In this paper I 
investigate how we can describe, characterise, analyse and thus understand what is 
going on during a presentation of a textbook proof in class. The conclusion is that 
students’ misunderstandings and miscommunications between teacher and students 
may be explained if the analysis separates between the proof structure, the 
components in the structure and the details of the proof. Excerpts from a presentation 
of a proof in an analysis course at a Danish university are used to illustrate this 
point.     

INTRODUCTION
A traditionally taught university course is often divided between lectures where the 
content of the textbook is explained by the lecturer and exercise/problem solving 
sessions where the lecturer or a teaching assistant works through assigned tasks.  
Gradually during a university study in mathematics, “dissection” of proofs 
(investigating and analysing how different parts of the proof function and how they 
relate) becomes a more and more important activity in the teaching practice1 and it is 
for that reason interesting to investigate this activity in detail. In this paper I want to 
focus on the following question: 

� How can we describe and characterise a teacher’s presentation of a proof in the 
classroom and a dialogue with the students?    

The work presented in this paper is part of a larger exploratory project concerning 
mathematics teaching and problem solving at the tertiary level baring the research 
question: In what ways does the teaching practice influence the way students 
approach and solve mathematical tasks?
The mathematical subject is moderately advanced mathematical analysis (beyond 
calculus) where the mathematical tasks demand justification and/or a proof of a claim 
about properties of or relationships between mathematical objects and concepts. At 
this mathematical level proof dissection is a very important part of the teaching 
practice and I want to use this paper to illustrate how a proposed theoretical tool can 
be used to describe, analyse and characterise textbook proofs and the part of the 
teaching practice that involves proof reviews.
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Although it is common knowledge in the mathematical community that 
understanding a mathematical proof takes more than just verifying each step in the 
proof (Bourbaki, 1950), classroom practice is more concerned with analysing the 
details than with synthesizing, “combining parts to a whole” (Dreyfus, 1991). The 
discussion of how to present mathematical proofs to students is (naturally) still an 
ongoing topic in educational research concerning proofs, both with respect to 
analysing and categorizing “normal” teaching styles (Weber, 2004; Hemmi, 2006) 
and to suggesting alternative ways to teach proofs (Leron, 1983; Balacheff, 1991; 
Alibert and Thomas, 1991; Legrand, 2001) often emphasising the “conviction part” 
of the purpose of proving (Harel and Sowder, 1998).  The reason for such research is 
that “… the key role of proof is the promotion of mathematical understanding, and 
thus our most important challenge is to find more effective ways of using proof for 
this purpose.” (Hanna, 2000, p. 5-6). 
Beside research concerning the teaching of proofs, many research studies concern 
documentation and analysis of students’ difficulties with constructing mathematical 
proofs (Moore, 1994; Dreyfus, 1999; Weber, 2001; Selden and Selden, 2003) or their 
perceptions of what constitutes a valid proof (Martin and Harel, 1989; Dreyfus, 1999; 
Healy and Hoyles, 2000; Raman, 2003).  
The literature does not however offer a comprehensive framework for analysing and 
comparing teaching practices (social perspective2) in relation to students’ proof 
production processes (individual perspective2). I found it necessary and useful to 
develop a framework that could be used to analyse my data material. The 
construction I propose is based on data (a “bottom-up” approach) and mathematically 
grounded, and can, beside being used in the analysis of classroom proof 
presentations, also provide a tool for analysing students’ proof production processes, 
thus allowing for a way to relate the teaching of proofs to students’ proof 
construction difficulties (the latter feature, though, is not demonstrated in this paper). 

THEORETICAL CONSTRUCTION 
The important notions in the proposed theoretical construction are the notions of 
structure, components and details. A structure is composed of interrelated 
components. The specific details of each component can vary in number and 
complexity. When talking about a textbook proof the following definition of the 
structure, components and details is suggested: 
The structure of a proof is a hierarchical network consisting of the main steps or 
components in the chosen proof strategy. The elements of the realisation of the 
components are called the details of the proof.  
In a situation where a student has to construct a proof by herself, she has to decide on 
a proof strategy, construct the proof in a number of sub-steps and finally provide the 
details of those steps. When the proof is already made as the case is in a textbook the 
student has to identify the proof strategy used, the components the proof are made up 
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of and the details of these components. In the proposed definition, the structure of a 
proof equals the hierarchy composed of the strategy choice, the components and the 
details. The main steps in a proof are often related in some way, but the details of one 
component may, besides having a relation to other details in the same component, 
also relate to details of other components in the structure. Relations between 
components and relations between details of different components give rise to a 
network within the hierarchy.
There is a dialectical relationship between structure, components and details. It is not 
possible to comprehend the proof structure if the components are not known and to 
identify something as a component implies that it is a component of a larger system. 
Similar considerations apply to the details of the structure.  
Although this construction bears some resemblance with “the structural method” 
proposed by Leron (1983), where a proof is regarded as composed of levels which 
again consist of modules containing “one major idea of the proof”, it is however 
different. In the structural method the first level contains the big lines in the proof 
without any technical details, whereas the last level contains all the specifics in the 
proof. The components in a proof, as defined in the proposed theoretical construction, 
can therefore not be equated with the levels in the structural method. And more 
importantly, the structural method is not a tool for analysing a proof presentation that 
is based on the “linear method”, as defined in (Leron, 1983).   
With the suggested tool it is possible to analyse if the teacher and the students talk 
about the structure, the components or the details during the presentation and 
discussion of a proof in the classroom. Within this theoretical framework it is 
possible to pose a hypothesis for the larger project: Confusion about what is 
structure, components and details in the teacher’s dissection of a proof can account 
for students’ difficulties solving tasks. In this paper I first consider a concrete 
textbook proof with the intention to identify structure, components and details and 
then I present the analysis of the presentation of the proof in class.  

ANALYSIS AND CHARACTERISATION OF A TEXTBOOK PROOF 
The analysis course I observed used the textbook “An Introduction to Analysis” 
(Wade, 2004), so I stick to the formulation of the proof from this book. The exact 
wording of the theorem is:  

Theorem 3.6 [Sequential Characterisation of Limits]  

Let a R, let I be an open interval that contains a, and let f be a real function defined 
everywhere on I except possibly at a. Then

�

)(lim xfL
ax�

�

-�nexists if and only if  as  for every sequence Ixn �Lxf n �)( \{a} that converges to 
a as .  (Wade, 2004, p. 60) -�n
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The proof of theorem 3.6 is given below. The proof refers twice to an implication (1) 
from the definition of limits of functions, definition 3.1: 

Definition 3.1 

Let R, let I be an open interval that contains a, and let f be a real function defined 
everywhere on I except possibly at a. Then f(x) is said to converge to L, as x approaches a,
if and only if for every � > 0 there is a � > 0 (which in general depends on �, f, I and a) such 
that

�a

(1) 0 < | x – a | < � implies | f(x) - L | < �.

(Wade, 2004, p. 58) 

I have included numbers in the proof as a help for the analysis, but besides those 
numbers the proof is a verbatim reproduction of the textbook proof: 

Proof

1) Suppose that f converges to L as x approaches a. Then given � > 0 there is a � > 0 such 
that (1) holds. 2) If \{a} converges to a as Ixn �

Theorem 3.6 includes a bi-implication (“if and only if”) and the majority of proofs of 
such theorems are structured in two parts where one implication is showed at a time. 
The chosen strategy is to prove the first implication “ ” with a direct proof whereas 
the second implication “ ” is proved indirectly by contradiction. To make a strategy 
choice or to understand why a given strategy choice has been made is an important 
part of a strategy discussion. In the textbook this strategy choice is not emphasised or 
discussed.

�
,

The theorem has a twist because there is a double hypothesis part. There are thus two
premises in the first part; P: “  as Lxf �)( ax� ” and P`: “  as ” and a 
conclusion Q: “  for 

axn � -�n
Lxf n �)( -�n ”. The proof strategy of the first implication is 

thus: “if P and P`, then Q”, i.e. (P.P`)  Q. In the first step the premise P is directly 
formulated, while premise P` is reformulated in the second step. One might at first 
glance think that the two steps are similar, but the second step deviates from a mere 
formulation of the premise. It draws the consequences of premise P` and is in that 

�

-�n , then choose an N such that 
n > N implies | xn –a | < �. 3) Since 

�N
axn � , 4) it follows from (1) that |f(xn) - L| < � for all 

n > N. Therefore,  as Lxf n �)( -�n .

5) Conversely, suppose that  as Lxf n �)( -�n  for every sequence \{a} that 
converges to a. 6) If f does not converge to L as x approaches a, then there is an � > 0 (call it 
�0) such that the implication “0 < |x-a| < � implies | f(x) – L | < �0 ” does not hold for any � 
> 0. 7) Thus, for each �=1/n, N there is a point

Ixn �

�nx�n I that satisfies two conditions: 0 < | 
xn -a| < 1/n and | f(xn) - L |  �0. 8) Now the first condition and the Squeeze Theorem 
(Theorem 2.9) imply that and , so by hypothesis, , as . In 
particular, | f(xn) – L | < �0 for n large, which contradicts the second condition. (Wade, 2004, 
p. 60) 



axn � axn � Lxf n �)( -�n
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sense a reformulation of P`. The third step provides the missing link before the results 
so far can be combined; namely securing that axn � . In the fourth step, the 
combination of the formulation of premise P, the reformulation of premise P` and the 
securing leads to the conclusion that  converges to L. The structure of the proof 
with the described components is shown in figure 1.   

)( nxf

”�” direct

Figur 1. The structure of the proof is composed of the main steps or components that 
the chosen proof strategy leads to. The realisations of the components are the details of 
the proof. The details are shown for one of the components as an illustration. The 
notation used is: P:  as Lxf �)( ax � ; P`:  as axn � -�n  and Q:  as 

.
Lxf n �)(

-�n

In the second part of the proof an indirect proof strategy, proof by contradiction, is 
chosen for non-explicit reasons. P` is still a premise, but now Q is a premise and P is 
the conclusion. The logical structure of this part is based on the logical tautology 
[(Q.P` P)� Q] �  (Q P). Since the data excerpts only concern the first part of 
the proof I will not go further into the analysis of the second part.

!. ! �

What does it take to realise the different components? What are the details? I will 
give some examples. In the first component the formulation of premise P demands a 
reproduction of the definition of the limit of a function, which includes a repetition of 
the definition and a switch between the different formulations, phrases and notations 
used to describe limits of converging functions. The details of the component where 
we make sure that  (the third component) is just a contemplation that this 
condition is fulfilled.

axn �

It is not uniquely determined what should be the content of the structure, components 
and details in a proof. We shall see, however, that the proposed characterisation can 
help characterise what is going on in the classroom.

Direct formulation 
of premise P 

Reformulation of 
premise P’ 

Securing axn �

Conclusion Q 

”,”
indirect

Repetition of premise 
Q and P` 

Details Articulation of the 
negated conclusion,!P

Check
that the 
condition
is fulfilled

Acquisition of {xn}

Contradiction Q!

Components 
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ANALYSIS AND CHARACTERISATION OF THE CLASSROOM PRE-
SENTATION
Data for the project was constructed through non-participant observations (Bryman, 
2001) of a four month long traditionally taught real analysis course at a Danish 
university. I have selected two sequences from the 25 minutes long presentation of 
the above proof. Between the excerpts I give a summary of what takes place in the 
classroom in the non-documented periods so the reader will get a sense of the whole 
proof presentation. The students were expected to have read or browsed through the 
proof before the lecture and they were not going to have a test in the proof. 
The teacher begins the proof with a claim that proving the first implication is almost 
trivial (30-33). He says that since they have to talk about all sequences they need to 
pick an arbitrary converging sequence and see what they can say about that one (34-
38). Then he proceeds to make a graphical illustration of the situation (39-40). We 
enter the scene where he comments on his illustration (the teacher uses a different 
notation than the textbook, a instead of L and x0 instead of a). In the excerpt the 
teacher hastily goes through the first two components (41-42). Then he jumps to the 
component of the conclusion Q (43) and finally back to the details of the second 
component (44-46):   

 41 Teacher: We have a graph f. We have an � window. We have a � which 
matches. … and we have a sequence, eh, xn converging down to x0 and 
we want to show that the function values of the sequence converge to 
a, right? And what does it mean that the sequence converges to x0? … 
well, then it has to stick to this interval, minus � to �, as long as n is 
big enough. Mary, isn’t it?

 47 Mary: I was just gone there for a moment .. 
 48 Teacher: You were just, yes, okay. We want to show that the sequence of 

function values f of xn converges to a and what we know is that if x is 
in the � interval around x0, then all the function values are in the �
interval around a. And then I say, if we are to make sure that f(xn) is at 
most � away from a then it is basically enough to capture xn in this 
interval from minus � to � because then we know that the function 
values are in the right interval … and there .. Can we make sure that xn
is in the interval from x0-� to x0+�?

 56 Susan Has it something to do with choosing an n that is big enough? 
 57 Teacher That sounds like a really good idea. Can we do that? 
 58 Susan We can do that. 
 59 Teacher We can do that. What, eh, how big does it have to be? 
 60 Tom Bigger than capital N.
 61 Susan Yes, it has to be bigger than capital N.
 62 Teacher No, it’s capital N that we are about to choose, right? How big are we 

going to choose capital N?
 64 Paul So big, that the difference between the sequence and the limit is less 

than, numerical, less than �.
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 66 Teacher Than � …
After Mary’s sign of lack of attention (47) what is the teacher then doing? He begins 
“backwards”, starting with conclusion Q (48-49) which is followed by the first 
component, “formulation of premise P” (49-51). Then he tacitly reformulates the 
logical structure of the proof (51-53): “if Q needs to be true, then it is enough if P` is 
true”. Instead of talking about the necessary condition for Q to be true (“if P and P`, 
then Q”), he now focuses on a sufficient condition and that draws attention to premise 
P` instead of conclusion Q. It is (presumably) very difficult for a student to follow 
this equivalent reformulation when the teacher does not explicate what he is doing. 
The teacher involves the students on five occasions (in 45-46, 54-55, 57, 59 and 62-
63). On two of those occasions (54-55 and 57) he poses a question where a proper 
answer would refer to the second component, “reformulation of premise P`”: “yes, 
because {xn} is chosen to be a converging sequence”. The first reply from Susan 
refers in stead to the details of this component and in her second reply she does not 
justify her answer. On the three other occasions the teacher asks with reference to the 
details of the second component and this is also the response he gets from the 
students.
This way of analysing the excerpt shows that the teacher aside from tacitly 
reformulating the logical structure of the proof also shifts between a component 
perspective and a detail perspective. The students maintain a focus on the details.  
The teacher writes down the details of the first two steps (66-72). The following 
excerpt concerns the securing component. The details of this step only include an 
inspection which explains why the teacher characterises this step as “free” (75):

 73 Teacher … And then I quickly just want to add, that zero is less than the 
distance from xn to x0 and that is because my sequence will never 
reach the value x0, right? That is just for free. 

 76 Susan That is just for free? 
 77 Teacher Yes, that is, it’s just there, my sequence was contained in I without x0,

so none of the xn’s can be x0.
 79 Susan Why is that free? 
 80 Teacher Well, I mean, that assures me that the distance is bigger than zero. 

That’s what’s free. When I have paid the other price first, right? 
Supposedly, Susan does not realise the details of this component because the 
structure of the proof is not clear to her and she does not recognise what role the 
component plays in the structure. Her uncertainty about the structure and to which 
part of the structure the discussion is located makes it impossible for her to 
comprehend the details of this component. 
The teacher finishes the first part of the proof (82-86) and they have a discussion 
about the notation (87-114). The teacher moves on to the second part of the proof 
where he proclaims that he wants to make it as a proof by contradiction if none of the 
students have any other suggestions (126-128). So in his presentation of the proof no 
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emphasis is put on the justification of the strategy choice in neither the first nor the 
second part of the proof. After repeating premise Q and conclusion P (129-132) the 
teacher guides the students through the details of the component “articulation of the 
negated conclusion” (133-165). Here both the teacher and the participating students 
are talking about and referring to the details and it is clear from the transcripts (not 
shown) that the students are able to follow his guiding. A reason for this accordance 
may be that the students recognise the link between the strategy choice and the 
negation component and thus are able to understand the explanation of the details.  
After guiding the students through the details of the negation component the teacher 
continues to the seventh step, the “acquisition component”, which leads to difficulties 
for the students. He begins with a repetition of premise P` and Q (166-167). A student 
expresses difficulties with the choice of the sequence 1/n and the teacher tries to 
explain it while maintaining a focus on the details (184-209). After trying to explain 
the acquisition component the teacher interprets a question from a student as a 
formulation of the contradiction component (210-215) and the teacher quickly 
summarises the components of the second part of the proof (215-220) and writes 
down a formal version of his summary focusing on the details (216-237). Then Susan 
expresses some confusion about the structure of the proof; didn’t they assume what 
they were trying to prove? This leads to a clarification of the logical structure of the 
second part of the proof (238-247) and of the logical structure of a proof of an 
arbitrary “if-then” theorem (248-254).  

SUMMARY
The two chosen excerpts show episodes where the teacher and the students in some 
way miscommunicate, but I briefly mentioned one example where the students and 
the teacher had a united approach, namely in the formulation of the negated 
conclusion. In the first excerpt the teacher jumps around between the components and 
he reformulates the logical structure of the first part of the proof. To a student who 
does neither comprehend the structure of the proof nor is able to separate the 
components from each other it must be nearly impossible to follow the presentation 
and to comprehend the details. In the second excerpt the teacher explained the details 
with reference to the (underlying) structure. In order to understand why the fulfilment 
of the relation is “free” it is necessary for the student to see what role this component 
plays in the proof. In the last part of the presentation two students expressed 
difficulties understanding the details of the seventh component even though the 
teacher tried to explain the details. Utterances in the excerpt and later in the 
presentation indicated that the proof structure was not clear to at least one of the 
students, so again it is possible to conclude that a lack of understanding of the proof 
structure and the components prevents a comprehension of the details. 
As mentioned, the notions in the framework are dialectical related. As the analysis of 
the transcripts shows, this dialectical relationship is in fact visible in the students’ 
struggles to comprehend the proof.  
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Research studies show that university students typically exhibit difficulties handling 
quantification (Dubinsky, 2000). These difficulties are not directly addressed in this 
framework. The framework has been constructed through a “bottom-up” process 
founded on data and it is thus context dependent. Difficulties with quantification did 
not appear to be as essential in explaining the students’ difficulties as their struggle to 
separate between structure and details in the dissection of a proof in class.

NOTES
1. By teaching practice I am referring to activities taking place in the course session time, to the organisation of the 
course, to the choice of textbook, to the way the subject matter is presented and to communication in class.  

2. The framework developed by Cobb and co-workers takes both the social and the individual perspective into account 
(Cobb et. al, 1997). I did not find this framework completely useful for my data analysis because of a lack of focus on 
solving processes. I however found use of this framework for parts of the data analysis (not reported here).  
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