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WORKING ON ALGEBRAIC THINKING 
Luis Puiga, Janet Ainleyb, Abraham Arcavic, and Giorgio Bagnid

aUniversidad de Valencia, bUniversity of Leicester, cWeizmann Institute of Science, 
dUniversità di Udine 

A STARTING POINT 
At the first meeting of the CERME Algebra Group in Larnaca, Cyrpus all participants 
were asked to write down a sentence starting with “At the beginning of the work of 
the Algebra Group I think that algebraic thinking must include…”, and to keep it safe 
till the last session. Then we jumped to work in several problems proposed by John 
Mason and Janet Ainley, to begin our work by experiencing the kind of thinking we 
have to reflect on, and by interacting among ourselves. 
Before meeting in Larnaca we had gone through the process of peer reviewing the 
papers, ending with 14 papers accepted for presentation. 
These papers were presented in four themed groups, which organised the type of 
research or theoretical questions dealt with, under the labels: 

� expressing generality, 

� teachers,

� expressions and equations in the interface between arithmetic and algebra, and 

� mathematical objects and representations. 
After four sessions discussing the presented papers, we moved to discussion around 
two groups of issues that emerged: 

� Object and meaning / situated algebra 

� Emergent algebabble / Generality as central / generalisation, abstraction, 
formalisation 

OBJECT AND MEANING / SITUATED ALGEBRA 
The papers more relevant to this topic were those by Bagni; Barbosa, Palhares and 
Vale; Dörfler; Fischer; Lagrange and Chiappini; Mason; Wilson and Ainley; 
Rahman. They raised issues concerned in various ways with algebraic activities 
situated in the use of artefacts and representations used by teachers and learners. 
Our discussion went through a set of questions on the emergence and extension of 
meaning, and on the characteristics of the situations in which meaning emerge. 

� How can teachers extend situated meanings? 

� Can meaning emerge from the practice of manipulation (of symbols or objects) 
with rules? 

� Can meaning emerge without practice? 
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� What features of a situation do we anticipate can afford access beyond the 
situation?

The term ‘situation’ was used broadly to encompass task, medium, pedagogic 
approach by teacher, and classroom ethos, and we pointed out the central role of the 
teacher in going beyond it: 

� Teacher stressing purpose. 

� Teacher’s choice of emphasis in original situation. 

� Teacher referring back from new context to original situation. 
EMERGENT ALGEBABBLE / GENERALITY AS CENTRAL / 
GENERALISATION, ABSTRACTION, FORMALISATION 
The papers more relevant to this topic were those by Alexandrou-Leonidou and 
Philippou; Drury; Dörfler; Fisher; Gómez; Hadjidemetriou; Mason; Molina, Castro 
and Mason; Papaieronymou. They raised issues concerned in various ways with 
expressing generality or symbol manipulation or problem solving as the core 
principle of school algebra, and with pupils trying to make sense of the algebraic 
language they are learning. 
Curricular issues 
Discussion about the central role of generalisation in the teaching and learning of 
school algebra led to the question what is school algebra about?, and the discussion 
of curricular issues.
Generalisation was contrasted with symbol manipulation and with problem solving, 
as the core principle of the curriculum of school algebra.
One position was that algebraic expressions can be used as tools or as objects. The 
approach is then to use them as objects in their own right, and use manipulation of 
expressions to investigate expressions – what can I do with them? Algebraic 
expressions are diagrams in Peirce’s sense, and these diagrams are the very objects of 
mathematical activities. 
Another position stated that a curriculum organised around problem solving does not 
exclude, but includes expressing generality, at least in two ways. First of all 
expressing generality is a problem solving activity, hence if the core principle of the 
curriculum is problem solving, this does not have to mean that pupils are presented 
only with work on quantitative arithmetic-algebraic word problems, but it should also 
include working with problems in which the aim is to express generality.
Secondly, expressing generality is a way to endow algebraic expressions with 
meaning. In order to solve word problems by using the algebraic language, pupils 
need to learn the use of algebraic language in a meaningful way, its syntax and the 
special feature this language has of calculating with the expressions without resorting 
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to its content – a possibility due to the fact that algebraic expressions are icons (a 
kind of diagrams), in Peirce’s terms, as he explained in Peirce C.P. 2.279. 
 “Meaningless symbol manipulation”, or symbol manipulation following a set of 
conventional rules, can come later on, when one can set aside the meaning of 
expressions to carry on the calculations. Actually, rules of symbol manipulation are 
also meaningful. Ways of symbolising can be social conventions, but rules of 
manipulation of symbolic expressions are grounded in the observation of some 
structure.
What does ‘meaningless symbol manipulation’ mean? Setting aside meaning – but 
can also mean without a sense of overall purpose. 
Historically, the purpose of symbol manipulation, and of solving equations is the 
solutions of (classes) of problems. Through a process of progressive abstraction 
algebraic expressions are studied as objects, and so on. Mathematisation is a practice 
of progressive abstraction. To jump into one level, i.e. symbol manipulation, instead 
of climbing up levels, or to be thrown into one level instead of being given the 
opportunity of climbing up the staircase of levels is not a good way to organise the 
curriculum.
On abstraction 
Generalisation was contrasted with abstraction, by pointing out that abstraction could 
consist of 

� taking a property – forgetting the object and asking ‘what else has this property?’; 

� forgetting some meanings; 

� transforming - a means of organisation of objects into a single object. 
On idiosyncratic signs 
Algebabble is an expression used to capture what pupils do when they are going 
through the process of giving meaning to algebraic activity. The idiosyncratic signs 
they produce are 

� windows to pupils cognitions, 

� endowed with meaning by them. 
A PRODUCT OF OUR DISCUSSION 
At the last meeting of the CERME Algebra Group in Larnaca, Cyrpus all participants 
were asked to produce the paper in which they have written their ideas on what 
algebraic thinking must include, and to reflect on what new things they could see in 
their papers after our discussions. One of them just said: “looking at my paper what I 
see is if students are able to see the structure of an equality they have begun algebraic 
thinking”.

Working Group 6

CERME 5 (2007) 814



REFERENCE
Peirce, C. S. (1931-58). Collected Papers of Charles Sanders Peirce. Edited by 

Charles Hartshorne and Paul Weiss (vols. 1-6) and by Arthur Burks (vols. 7-8).
Cambridge, MA: The Belknap Press of Harvard University Press 

Working Group 6

CERME 5 (2007) 815



RESEARCH IMPACTING ON STUDENT LEARNING:  
HOW CONSTRUCTION TASKS INFLUENCED  

LEARNERS’ THINKING1

Shafia Abdul Rahman 
The Open University 

Abstract
Research is commonly conceived as an exocentric process where one person probes 
the behaviour of another. While in many cases the intention of the researcher is to 
gather information about the learner, the study described in this paper illustrates 
how research can have an impact on student learning in terms of revealing to the 
learner aspects of the topic that were not previously focused upon. Twenty five 
students studying A-level and undergraduate engineering, pure mathematics and 
education were invited to construct relevant mathematical objects meeting specified 
constraints. Having constructed these examples, learners displayed a range of 
awareness of the effect of the construction tasks on their understanding of the 
concepts involved.  
INTRODUCTION

Understanding of mathematical ideas seems to be highly cognitively situated, in 
the sense that learners may be well-equipped to work on the standard textbook 
problems in a familiar context and yet become incapacitated when faced with novel 
situations. This may explain why learners do not seem to be able to cope with 
situations beyond what they are familiar with. Following Mason (2002), I see 
conceptual understanding as not only the ability to use situated knowledge to solve 
routine problems correctly but more importantly, as the ability to extend that 
situatedness appropriately and efficiently into unfamiliar situations. Dealing 
effectively with novel situations is likely to depend on which aspects of the 
concept/idea become the focus of learners’ attention namely, what they regard as 
important. In this paper, I report on a study which explores learners’ awareness of 
integration using the ‘structure of a topic’ framework (Mason, 2002; Mason & 
Johnston-Wilder, 2004). I discuss only two of the many tasks that were prepared for 
the study. 

The topic of integration is of particular interest to me because of its wide 
applicability in a number of areas. The topic has been considered by a number of 
researchers (see for example Orton (1983); Ferrini-Mundy & Graham (1994); 
Norman & Prichard (1994); Selden, Selden & Mason (1994)). What is reported on is 
learners’ lack of flexibility, their inability to make necessary links/connections 
between concepts/ideas and their lack of understanding of underlying principles 
without a clear identification of the object of the research or causes for such 

1 This paper draws data presented in an earlier paper (Abdul Rahman, 2006) and a book chapter (Abdul Rahman, in 
preparation). 
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problems. The concept of integration, particularly poses problems to learners. Unlike 
differentiation, which is a forward process, the difficulties faced by learners in the 
reverse or backward process of integration are more complicated because it is 
essentially creative rather than algorithmic. The dual nature of integration, which is 
both the inverse process of differentiation and a tool for calculation of area and 
volume and length, can be confusing to learners. 

Understanding in mathematics involves learners getting a sense of it in relation to 
their past experience. Tall & Vinner (1981) used the notion of concept image to 
capture what it means to have a sense of a concept. It describes “the total cognitive 
structure that is associated with the concept, which includes all the mental pictures 
and associated properties and processes”. Using awareness to explain the act of 
coming to know mathematical ideas, Gattegno (1987) asserts that ‘knowing’ means 
stressing awareness of something and that this awareness is what is educable, indeed 
that only awareness can be educated, whereas other things can be trained. Informed 
by this assertion and enriching the notion of concept image with the three interwoven 
dimensions of human psyche (cognition, affect, enaction), Mason (2002) developed a 
framework referred to as ‘structure of a topic’ to describe how a mathematical topic 
is conceived. 

The framework comprises three strands: behaviour, emotion and awareness,
which are closely associated with the more familiar terms enaction, affect and 
cognition. Behaviour is trained through practice but training alone renders the 
individual inflexible. Flexibility arises from awareness which informs an directs 
behaviour. Learning then involves educating awareness which in turn directs 
appropriate behaviour. Energy and motivation to learn arise from the harnessing of 
individuals’ emotions. Placing emphasis slightly differently, Kilpatrick et. al. (2001) 
suggest five strands of mathematical proficiency: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning and productive 
disposition. These strands can be explained in terms of awareness, behaviour and 
emotion. Conceptual understanding can be related to awareness as relevant actions 
are brought to attention when engaging in activities. Procedural fluency is attained by 
training of behaviour, although the training of behaviour alone may result in 
inflexibility of thought and a lack of adaptive reasoning. More appropriately training 
of behaviour must be driven by educating awareness so that students not only practice 
recently met ideas but also gain experience with some new concept. Productive 
disposition and strategic competence relate to emotion, as they deal with developing 
experience of identifying problem solutions and justifying conjectures. Behaviour 
which is to be flexible and responsive to subtle changes must be guided by active 
awareness.

A particular form of active awareness is the discernment of variation, which is 
what Marton (Marton & Booth, 1997) regards as learning: making distinctions, both 
discerning something from, and relating it to, a context. According to Marton, aspects 
of a phenomenon, situation or problem are discerned because they are simultaneously 
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present in the individual's focal awareness and so define the individual's way of 
experiencing the object. This fits with a view of mathematics as being essentially 
about the study of invariance in the midst of change.  Awareness of things that can 
vary and those that remain invariant in mathematical objects is essential for 
understanding any concept. Learners can be assisted in becoming aware of both the 
invariance and the possible change when constructing new mathematical objects for 
themselves. In the context of learning, Watson & Mason (2005) argue that learning 
involves extending awareness of dimensions of possible variation associated with 
tasks, techniques, concepts and contexts, as well as the awareness of the range of 
permissible change within each of those dimensions. In this regard, what learners 
make of mathematical examples and their awareness of what can vary and what is 
kept constant to maintain the exemplary nature of the examples can reveal 
dimensions and depth of their awareness and promote and enrich their appreciation of 
the mathematical topics. 

Integral to effective mathematics instruction is the use of examples to illustrate 
and clarify mathematical concepts. While teachers may use examples to illustrate 
definitions and exemplify the use of a particular rule or theorem, learners may focus 
on the specific details of examples and may develop restricted thinking that only 
those kinds of examples are appropriate. So, they may overlook the generic sense of 
exemplification which the teacher intends for them. Constructing examples, however, 
involves different cognitive skills from working out given examples. Dahlberg & 
Housman (1997) showed how learners who generated examples and reflected on the 
process attained a more complete understanding of mathematical concepts by refining 
and expanding their evoked concept image. Hazzan & Zazkis (1997) showed how 
learners had difficulty managing degrees of freedom of generated examples. 
According to Watson & Mason (2005), encouraging learners to generate examples of 
mathematical objects can expand their example space and shift their attention away 
from the particularities of examples to generalizations. By prompting learners to 
construct examples, what they choose to change reveals dimensions, depth and scope 
of their awareness. Constructing examples forces them to attend to form in the 
example and disregard details that make up the example. Discerning generality with 
an awareness of particular details in mathematical examples requires learners to be 
sensitive to what can change and what must remain constant. Although learners do 
not normally encounter this type of question in their learning of concepts, it is my 
conjecture that example construction itself could develop their ability to discern 
dimensions-of-possible-variation and could reveal their awareness of the concept, 
which could give insight into the structure of their understanding. 
METHOD 

Semi-structured interviews were carried out with five pairs of students studying 
A-level mathematics and fifteen undergraduates around South East England in the 
United Kingdom. These students were in their first year, studying mathematics, 
engineering and education. The aim was to expose a range of responses in different 
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learners concerning understanding of the topic. The sessions were tape-recorded and 
time was allotted for each task so that interviewees had enough time to answer all the 
questions. The interview sought to reveal the nature of students’ understanding of 
integration. The questions in this task were intended to elicit learners’ understanding 
in terms of what they are aware of, how their behaviour develops and the 
corresponding emotion that provides motivation and energy to learn.  

Next, the students were invited to construct relevant mathematical objects meeting 

specified constraints with the aim of revealing their connections to the topic. Given 

the integral , the students were invited to construct another integral like 

it where the answer is 0. Next, they were invited to construct another example and a 

third one. The aim was to reveal their connections to the topic by changing 

dimensions that could vary. In the second task, the students were given the 

expressions
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d ln2� and asked to construct simpler and 

more complicated examples. What they chose to change in their examples could 

reveal the scope and nature of their awareness. 

THE OUTCOME 
Learners in this study displayed a range of awareness of the effect of the 

construction tasks on their understanding of the concept involved. To my surprise, the 
tasks that were intended to be research probes in fact influenced the learners’ thinking 
of the topic concerned and changed their perception. Those who were aware of the 
change in their perception were able to articulate the change and express their 
appreciation. 

Marlene, a mathematics student, constructed 4 ,  and . She 

later realized that they are not going to work and suggested that changing the gap 

might work and constructed . She constructed a general example of .

Her attention seemed to be focused on techniques of integration, particularly on the 

limits. She did not seem to reveal associations to area. Changing her perspectives 

slightly differently and probing her awareness, Marlene appeared to shift her 
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attention away from the particularities of the example and revealed richer 

connections.

Interviewer:  Why is it coming to zero? 

Marlene:       Because there’s no area underneath it touching the graph, touching the x-
axis. [After sketching] Aaahh .… they’re cancelling each other out. Look 
at that! Nifty! Because part of the area is underneath and it’s negative and 
it cancels out. … So we can do [change] both limits, couldn’t we? … So 
we’ve simply got the situation here, we’ve got these little areas, when x is 
naught we got 1, naught and -1 and then naught to 2, if we sum both of 
them, we are going to get little areas that are going to cancel each other 
out.

She then constructed examples such as  and . Asked to express her 

awareness of dimensions that could vary explicitly, she noted: 

4
	

	
3

1

)1( dxx 4
	

	
4

2

)1( dxx

You can change the function; involve any straight line function that cuts through the 
origin …. It doesn’t necessarily have to go through the origin, does it? You have to set 
the limit from either side of the point where it did go through. Any straight graph would 
work.  

Although her sense of connections seemed enhanced, she did not display enough 

evidence to suggest rich connection as she did not change the function. In Task 2, she 

constructed
43

22
43

2 x
dx
dxdxx4 ��  as the simple example and suggested that having 

trigonometric and logarithmic functions would make the example more complicated.  

After constructing examples, Marlene was asked whether the act of constructing 
examples had made her aware of changes in her perception of the concept. She 
concluded:

I think it helps you discern what’s in front of you in the sense that you saying what is it 
that makes it what it is. Once you’ve isolated that, you can then identify other things 
which are similar, either more complex or less complicated, but still the same in 
similarities. I’ve never tried to make easier or more complicated ones virtually the same 
thing but it made me look at the object and consider the method you would need and the 
characteristics of the object itself to try and discern some parameters, put it in a box,
deprive it in some way to make it possible to make similar the deviant.

The construction tasks seemed to have afforded a shift in Marlene’s attention from 
focusing on rules of the method to use to discerning properties inherent in the 
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examples. By tinkering with the example to construct simpler and more complicated 
examples, Marlene appeared to be forced to attend to the form present in the 
example. In the above extract, Marlene expresses her sensitization to and appreciation 
of the structure in the example once she has identified the method to use.

In Task 1, Paul, an education student, constructed 4 	 43x and remarked: 
It is just symmetric so whatever you’ve got the same thing on both sides, actually 
opposite things on both sides, like where you stick the same value and plus and minus 
and that bit cancels that bit.

He then suggested one of the trigonometric function (sin or cos) as another example. 
Paul displayed rich connections to the topic, although he displayed emotional 
predisposition to the topic and hesitant in his speech. 

Tina, also a mathematics student, constructed dxx
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generalized to 2 ,0)1( 1
00

It has probably made me realize that when I was saying area, actually I don’t really think 
about it as area under the graph that much. It’s more about just kind of applying some 
sort of transformation on the object in a way; it’s sort of applying the set of rules to what 
you’ve got in different matters like that in order to come with the answer. 

11 
�	�5
6

7
$
8

9
	�	 			4 n

n
nn

n
xxdx

n
x

n

nn

n

nn

n

n

. In the end, Tina observed: 

Tina’s remarks suggest that she appears to be chorusing associations of the concept 
without necessarily having awareness of that association when she is working a 
problem. Realization of this contradiction between what she said and what she 
displayed acts to reveal her awareness of the concept involved.  

She struggled to understand the expression in Task 2 because it was not in the form 

she is familiar with. After extensive clarification, she exclaimed ‘That could be any 

function’ and constructed 
62

32 x
dx
dxxdx ��4  and xxxxx

dx
d 4223 sincossin3cossin 	�

 as the simpler and more complicated examples, 

respectively. At the end of the tasks, she noted: 

xdxxxx cossin10cossin6 33 	� 4

We don’t normally have situations where you are told to give examples; you are just 
given things to do. That’s normally the other way round rather than you actually thinking 
of the examples. I suppose as students in school, we haven’t really had a chance to create 
many ideas like this for ourselves. We have always been given ones to derive or to 
evaluate ourselves. 
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Other learners focused on the details of the tasks themselves and did not express 

any appreciation of the effect of the construction task on their understanding. Robert, 

an engineering student, constructed 4  as the simpler example. Being asked 

how he came up with the example, he remarked: 

	
0

2

)1( dxx

Basically I … like … worked it out and then work it backwards … thinking along that 
… I don’t know how to actually … [inaudible]. Basically I have some values … what 
I’m trying to do is like … find the expression and work it backwards. … I just basically 
have x2 over something … which comes into full … whole numbers wouldn’t work, so it 
has to be a fraction. 

It seemed that Robert’s attention was focused on technique and displayed limited 

connections to the topic. In Task 2, he displayed richer connections and constructed 

coshsinhcosh
dx
ddx ��4  as the simpler example. At the end of the tasks, he observed: 

Just many problems that are in fact the same in dimension although they look different. 

Dan, a mathematics student, displayed rich connections to the topic and demonstrated 
facility with technique. He observed:

These things were almost identical to the thought processes I go through to just solve the 
things. They weren’t very different for me. … What I tended to do was I tended to start 
with the rules and then work from the rules of the method to create something that is 
[required].

He suggested that:
The actual complexity has no bearing in … or the method you use to solve a certain 
problem is independent of how complex the thing actually is.  

Dan did not display any awareness of change of perception and hence, appreciation 
of the effect of the construction task on his understanding. He commented on the 
tasks themselves and displayed little or no awareness of their effect on his 
understanding.
Charlotte, a mathematics student, suggested working backwards to get the answer.

I don’t know. Can we work backwards and say, “I know 25 – 25 is zero, how can I get 
the 25 like 5x and I can have . I must have integrated that and that should be x – 5 and 
do that between 5 and , . 

2x
52 �x )55(52 �	

It appeared that she was caught up in the act of algebraically manipulating the 
integral and displayed no evidence of geometric thinking. Charlotte’s attention to 
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technique appears to overshadow her awareness of form and other associations linked 
to the concept. She did not construct any example in Task 2 and in the end, pointed 
out:

It’s really hard when you say, “Can you think of a simpler one” because you just think of 
the concept as the concept, don’t you? You don’t think of it as having that many forms. 

After constructing examples that revealed restricted connections to the topic, Chris 
remarked: 

Chris: I’m starting to understand what classes of different problems are.  

It seemed that these students’ remarks suggest that they are sensitized to notice the 
difference in types of examples rather than what is the same.
DISCUSSION AND CONCLUSION 

The different ways in which learners experience and understand mathematical 
concepts can reveal the nature and structure of differences in how learners experience 
and understand what they are supposed to learn. Particularly, the nature of learners’ 
awareness is revealed through aspects in a mathematical example that they focus their 
attention to and thus, regard as important.  

Becoming aware of change in one’s perception and developing the ability to 
express appreciation such a change requires learners to become sensitized to that 
change. A change in perception afforded by the example construction tasks is 
particularly important since learners become sensitized to notice structure in 
mathematical example. Awareness of what can change and what must remain 
constant helps learners discern form from details in examples. By becoming aware of 
features not previously at the focus of their attention, learners who were expecting to 
be ‘tested’ about their knowledge in fact revealed to themselves aspects of the 
concept that were not previously salient to them. While some learners expressed 
appreciation of the revealed awareness, others focused on details of the tasks 
themselves and did not articulate any awareness of this change. 

Research activities that traditionally focus on learning about probes from 
learners’ responses only stress the strengths or weaknesses of probes. On the 
contrary, this study demonstrates the use of probes in learning about learners.
Sensitivity of probes is important in revealing more or different things learners could 
be aware of because different probes elicit different responses from learners. Not only 
do the probes reveal to the researcher something about learners’ awareness, they were 
also very revealing to learners themselves, about their awareness of aspects of the 
topic as revealed through their construction of mathematical examples. Learners who 
were sensitized to their own change in their perception articulated the change and 
expressed their appreciation while others focused on the details of the tasks 
themselves. Surprisingly, the tasks that were intended to be research probes had an 
impact on some learners’ thinking of the concept and of themselves. 
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ELEMENTARY SCHOOL STUDENTS’ UNDERSTANDING AND 
USE OF THE EQUAL SIGN 

Vassiliki Alexandrou-Leonidou and George Philippou 
University of Cyprus 

Understanding the notion of equivalence and the sign that represents it are important 
prerequisites to the development of important algebraic concepts and procedures. 
Understanding the structure of an equation is critical for the development of early 
algebraic thinking. The present study focuses on the types of understanding that 
students have on the equal sign, the ways they interpret it when they fill in and 
construct equations and their ability to solve equations, presented in several formats. 
Analysing questionnaire data from 296 3rd to 6th grade Cypriot students, we found 
that they have serious misconceptions on the equal sign (=). This is possibly due to 
the long and one-dimensional use of this sign in arithmetic. Given that these 
misconceptions adversely affect students’ efforts to proceed to more advanced 
algebraic concepts, such as solving equations, implications are drawn as to how far 
relational understanding of the equal sign could be developed in the primary school. 

THEORETICAL FRAMEWORK AND RESEARCH GOALS 
Developing algebraic thinking to young students is one of the main goals of modern 
mathematics curricula. This idea is based upon previous research findings concerning 
the learning difficulties that secondary school students face when studying algebra. In 
the same direction, mathematics education specialists as well as institutions (Kaput, 
1995; NCTM, 1997; RAND, 2001; ICMI, 2004) have suggested that a greater 
proportion of students study algebra and that the development of algebraic concepts 
need to begin early as soon as the students begin the study of numbers. Consequently, 
the teaching of algebra needs to be according to the intellectual maturity of students, 
especially the younger ones. Additionally, there is a necessity for algebraic ideas to 
have meaning for the students’ everyday life (Stacey and Chick, 2004). 
The notion of equivalence and the equal sign may be of those mathematical concepts 
and symbols which present the mathematical thinker with the duality between process 
and concept. Gray and Tall (1994) introduced the idea of an amalgam of process and 
concept by calling this mental structure as a “procept”. Consequently, the notion of 
equivalence and the sign that represents it may be a procept with dual  meaning both 
in arithmetic and algebra. 
Nevertheless, equivalence is one of the most important notions for the development 
of algebraic thinking; It is critical for equation solving, since it is the major 
underlying concept of the structure of any algebraic equation. Kieran (1989) refers to 
two types of structure for equations: (a) surface structure which comprises the given 
terms and operations of the left- and right-hand expressions and the equal sign 
denoting the equality of the two expressions, (b) systemic structure which includes 
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the equivalent forms of the two given expressions. Much of elementary school 
arithmetic is oriented towards “finding the answer” (Kieran, 1989, p. 33). In order to 

introduce elementary school students to early algebraic thinking, it is necessary 
for teaching to shift emphasis to the structure of equations. 

Research has shown that many students have limited understanding of equivalence 
and of the sign that represents it (=). The insufficient understanding of the equal sign 
is not limited to elementary school students; it extends to secondary and higher 
education (Behr, Erlwanger & Nichols, 1980) and it influences the learning of 
mathematics at these levels. As Cooper and Baturo (1992) have suggested, limited 
understanding of the equal sign may be due to the superficial and insufficient 
understanding of the dual meaning of the sign: (a) statically-relationally as a “scale” 
sign, i.e. 2 + 3 weighs 5 and (b) dynamically-operationally as a change sign, i.e. 2 
changes by adding 3 and becomes 5. Previous work by Knuth, Stephens, McNeil and 
Alibali (2006) with students in grades 6-8 has shown that more than half of the grade 
6 and grade 7 students provide an operational definition of the equal sign (gr6-53%, 
gr7-36% and gr8-52%). It was also found that only a small proportion of middle 
school students provided a relational definition (gr6-32%, gr7-43%, gr8-31%). This 
dual meaning may be the source of difficulties and misconceptions about the equal 
sign and other connected algebraic symbols, even for students at secondary and 
higher education. 
Moreover, research has shown that many students understand the sign of equivalence 
as simply an “execution sign” ordering to perform the operations preceding it 
(McNeil & Alibali, 2000). This may be due to the frequent one-dimensional use of 
the equal sign in arithmetic in elementary school. Knuth et al., (2006) have found a 
strong positive relationship between middle school students’ understanding of the 
equal sign and their performance in equation-solving. They claim that relation holds 
irrespective of mathematical ability making the point that “… even students having 
no experience with formal algebra (sixth, and seventh-grade students in particular) 
have a better understanding of how to solve equations when they have a relational 
understanding of the equal sign” (p. 309). 
Even though the idea of developing algebraic thinking in the elementary school has 
been around for some years now, the relevant research focusing on the abilities of 
these students for algebraic thinking leaves much to be required (Falkner, Levi & 
Carpenter, 1999; Saenz-Ludlow & Walgamuth, 1998; Witherspoon, 1999; Carpenter 
& Levi, 2000; Carraher & Earnest, 2003; Kieran & Chalouh, 1993). Research has 
nowadays focused on areas where arithmetic and algebra have common ground. The 
objective is to take advantage of procepts that occupy the intersection area in the 
material to be taught, in order to facilitate students’ make the transition from 
arithmetic to algebra, developing basic algebraic thinking from the elementary 
school. 
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One of the issues that need additional study is the teaching of equation solving 
(arithmetic and algebraic) in order to develop the dual meaning for the equal sign. 

Although a number of studies have been reported on this issue, most of them 
concerned middle and secondary school students (Knuth et al., 2006). 
Additionally, equation-solving abilities have been measured with tasks 

represented in symbolic formats, while we are not aware of studies that have 
measured elementary school students’ abilities to solve equations represented in other 
formats (i.e. pictures, words, diagrams). 
The present study focuses on the abilities that elementary school students have for 
algebraic thinking. The main goal of this research was to study the types of 
understanding that primary school students (age 8-12) have for the equal sign. 
Another objective was to explore the ways in which these students use the equal sign 
when they construct and complete equalities and how the type of understanding they 
have about it influences their ability to solve arithmetical and algebraic equations that 
are represented in different formats. The present study is part of an extended work on 
these issues and it includes a teaching experiment which aims to develop elementary 
school students’ algebraic thinking. 

METHODOLOGY
Participants in the study were 296 students (161 male and 135 female) from an urban 
and a rural primary school, 74 were 3rd graders, 68 4th graders, 81 5th graders, and 73 
6th graders. 
Data were collected through two tests. Test 1 (T1) comprised of three parts and aimed 
to grasp the type of the students’ understanding of the equal sign. The first part of T1 
required students to write an informal definition of the equal sign in three contexts 
(the sign on its own, the sign at the end in a mathematical sentence and the sign 
between two equivalent mathematical sentences). These tasks were used in Knuth et 
al. (2006) study in a similar way. The second part of T1 required students to complete 
equalities of different structure, that is, different number of operations, with different 
position of the equal sign and different position of the unknown quantity, i.e. a + b = 
__ + d, a + b + c = a +__. We used only single digit numbers in the first and the 
second part of T1, to avoid students’ difficulties with the operations’ algorithms. The 
first task of the third part required that students construct an equality with 4 numbers, 
i.e. __ + __ = __ + __ (This task was originally used by Witherspoon (1999). The 
other four tasks in this part asked students to use the four operations and their own 
numbers to create a given result (These tasks were originally used by Saenz-Ludlow 
& Walgamuth (1998).
Test 2 was designed to measure students’ ability to solve equations of similar 
structure, which were represented in different formats, as shown in Appendix. The 
two types of structure that were used (the unknown quantity before the equal sign – 
called “start unknown” - and the unknown quantity after the equal sign – called 
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“result unknown”) were each represented in seven formats of representation (word 
equation, word problem, picture, diagram, equation with an unknown quantity shown 

in empty line, geometrical sign and algebraic symbol). 
The definitions, provided by the students in the first part of T1, were coded as 

“relational”, if the students indicated that the equal sign represents a relationship of 
equivalence, and as “operational”, if they indicated that it announces the result or it 
gives the direction to do the operations. In order to classify the type of understanding 
students had for the equal sign, we use the term “inclusive understanding”, if the 
students gave both operational and relational definitions and the term “restricted 
understanding”, if they gave only operational definitions. No response or unclear 
responses were coded as “other”.  
The responses to the equalities in the second part of T1, were categorized according 
to how the students used the equal sign. Correct responses were coded as “Right”, 
responses giving the sum of all the digits presented in each the equality, were coded 
as “Sum”. Answers, which were the sum of all the operations before the equal sign, 
were coded as “Left Side Sum-LSS” and those, which were the sum of the operations 
after the equal sign, were coded as “Right Side Sum-RSS”. Students also gave 
answers which could complete a mathematical sentence of the structure a + b = c with 
the first three digits of the equality, regardless where the addition or the equal sign 
was, i.e. for an equality such as __+ 6 = 7 + 4, they answered 1. These responses were 
coded as “Three First Numbers – TFN”. 
Students’ responses to the tasks of the third part of T1 were coded as “Right”, if they 
inserted numbers that verify the equalities. For task 1, in the case that students put the 
sum of the two numbers that preceded the equal sign right after it, their answers were 
coded as “Answer After Equal Sign–AAES”, i.e. 8 + 4 = 12 + 5. When students put 
the numbers in the wrong direction, in tasks involving non-commutative operations 
(i.e. subtraction), their answers were coded as “Wrong Direction-WD”, i.e. 15 = 3 - 
18. No response or other responses in tasks of this part of the test were coded as 
“Other”. 
Correct responses to the equations of T2 were coded as 1 and wrong responses were 
coded as 0. Each student’s score for every format of representation used to present 
the equations was calculated by adding the number of correct responses to the four 
equations of each format. 

RESULTS
Table 1 presents the students’ type of understanding for the equal sign. None of 
grade-3 students had shown inclusive understanding of the equal sign when it was 
presented on its own or in a mathematical sentence. Only 10% of these students had 
given inclusive understanding of the equal sign when it was presented in an 
equivalency.  
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Very few grade-4 students had shown that they understand that this sign represents an 
equivalency in any context. The data shows that about half grade-5 (46,9%) and 

grade-6 (54,8%) students could recognize that the equal sign represents a 
relationship when presented in an equivalency. In the other two contexts, most 
grade-5 and grade-6 students showed an inclusive understanding. 

Task: How do you understand 
the following sign? 

Type of 
understanding Grade 3 Grade 4 Grade 5 Grade 6 

= Restricted 
Inclusive 
Other 

77 
  0 
23 

82,4 
  7,4 
10,3 

72,5 
   15 

12,5 

47,9 
   37 

15,1 
3 + 5 + 2 + 4 = 

 
Restricted 
Inclusive 
Other 

73 
  0 
27 

91,2 
  1,5 
  7,3 

87,7 
  3,7 
  8,6 

65,8 
17,8 
16,4 

5 + 6 + 4 = 5 + 10 Restricted 
Inclusive 
Other 

 43,2 
   9,5 
 47,3 

   50 
   15 

27,9 

34,6 
46,9 
18,5 

16,4 
54,8 
28,8 

Table 1: Percent of students’ type of understanding of the equal sign in three contexts 

Table 2 summarizes the students’ responses to the equalities in the second part of T1; 
findings exemplify the misconceptions that they have about the equal sign. About 
half grade 3 and grade 4 students responded correctly to an equality, which had a 
missing number right after the equal sign. Most students in each grade (3rd – 37,7% 
and 4th grade – 32,8%) responded with the sum of the numbers on the left side of the 
equal sign, ignoring the addition of number 3 after it.  

Task Response Grade 3 Grade 4 Grade 5 Grade 6 
9 + 6 + 3 = __ + 3 Right 

Sum 
LSS 

56,5 
0,0 

37,7 

54,7 
4,7 
32,8 

72,2 
2,5 
13,9 

84,7 
1,4 
11,1 

6 + 8 + 3 = 14 + __ Right 
Sum 
LSS 

66,2 
9,2 

12,3 

76,8 
5,4 
3,6 

86,8 
0,0 
5,3 

94,2 
1,4 
2,9 

16 + __ = 9 + 7 + 5 Right 
Sum 
RSS 

70,5 
0,0 

19,7 

71,4 
0,0 
3,6 

92,5 
1,3 
3,8 

88,1 
1,5 
4,5 

__ + 8 = 9 + 5 + 3 Right 
Sum 
RSS 
TFN 

60,7 
6,6 

13,1 
8,2 

67,3 
3,6 
0,0 
14,5 

85,9 
0,0 
2,6 
0,0 

84,1 
1,6 
4,8 
1,6 

Table 2: Percent of students’ responses to the completion of equalities 

More students from higher grades responded correctly to the equality, although a 
considerable percentage of students answered with the left side sum (grade 5 - 13,9%, 
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and grade 6 - 11.1%). Almost one out of 10 3rd graders (9,2%) responded with the 
sum of all numbers to the equality that had the missing number at the end of it. When 

the missing number was before the equal sign, almost one out of five 3rd graders 
(19,7%) completed the equality with the right side sum. This is an indication that 
they used the equal sign as an order to “find the sum”, but in the opposite 

direction, ignoring the addition of number sixteen that preceded the gap. 
Students’ responses to the last equality were similar to those given to the previous 
one, although the missing number was at a different position. It is very interesting 
though to notice the responses given by grade 3 and grade 4 students for this equality; 
they answered 1, which completed the equality when considering only the first three 
numbers, that is, 1 + 8 = 9 and dismissed the following two addends. This is an 
indication that younger students could work out only the first three numbers of the 
equalities, ignoring the rest of the terms and operations. 

Task Response Grade 3 Grade 4 Grade 5 Grade 6 
___ + ___ = ___ + ___ Right 

AAES 
Other 

62,1 
28,8 
   9,1 

74,1 
14,8 
11,1 

89,9 
  7,6 
  2,5 

92,2 
0 

  7,8 
15 = ___ + ___ Right 

Other 
97 
  3 

94,5 
  5,5 

98,8 
   1,2 

100 
     0 

15 = ___ - ___ Right 
Wrong direction 
Other 

56,1 
33,3 
10,6 

71,9 
15,8 
12,3 

87,5 
  3,8 
  8,8 

90,6 
  1,6 
  7,8 

15 = ___ 	 ___ Right 
Other 

98,5 
  1,5 

96,4 
  3,6 

100 
    0 

100 
    0 

15 = ___ ÷ ___ Right 
Wrong direction 
Other 

41,5 
26,2 
32,3 

61,2 
18,4 
20,4 

83,8 
  2,5 
13,8 

92,2 
  3,1 
  4,7 

Table 3: Percent of students’ responses to the construction of equalities 

Table 3 shows that the proportion of students answering correctly the first task of Part 
3 in T1 was increasing by grade level. Similarly, the proportion of students who put 
the sum of the numbers before the equal sign right after it has a constant decrease 
grade by grade. The students who gave the latter response completed the fourth 
missing number with one that was irrelevant to the previous three. It is important to 
note that the number of students of all grades who correctly completed the second and 
fourth task of this part of T1 was quite large. On the contrary, for tasks 3 and 5 the 
number of correct responses decreased significantly. The percentage of correct 
responses to the third and fifth task increased constantly grade by grade. A significant 
number of students completed the equalities by putting the missing numbers in the 
opposite direction, i.e. 15 = 3 – 18 or 15 = 3 ÷ 45. The proportion of students who 
used the equal sign in this way decreased grade by grade. 
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We applied analysis of variance to check for differences among students in different 
grades with respect to their ability to complete and construct equalities; it was found 

that students in elementary school have significant grade difference (F3-292 = 
12,02, p<0,01). Besides, their overall ability to solve equations was also found to 
vary significantly across grades (F3-292 = 9,24, p<0,01). More specifically, it was 

found that student’s ability to solve equations represented in different formats 
increases significantly with grade in each of the formats of T2, except those involving 
a geometrical sign. This may be due to the use of geometrical symbols to represent 
the missing numbers in equations as early as first grade. Table 4 shows the size of F 
ratio, the degrees of freedom and the significant level for each test. 
The students’ ability to complete and construct equalities was found to have a 
significant correlation with their ability to solve equations represented in all different 
formats in T2. The Pearson correlation indices for each format of representation were 
between 0,323 and 0,456 (p<0,01). According to the size of these correlation indices, 
the representation formats can be arranged as follows: Geometrical symbol (0,323), 
Numbers (0,345), Diagram (0,373), Picture (0,379), Word equation (0,429), 
Algebraic symbol (0,441) and Word problem (0,456). It was found that solving 
equations represented numerically, pictorially and with geometrical symbols affect 
students’ ability to complete and construct equations less than solving equations 
represented verbally and algebraically. 

Results of tests 
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Analysis of variance 
F-ratio 
Df (Between-Within) 
Significance. 

 
4,54 
3-292 
0,00 

 
7,43 
3-292 
0,00 

 
5,98 
3-292 
0,00 

 
6,59 
3-292 
0,00 

 
3,90 
3-292 
0,00 

 
1,18 
3-292 
0,31 

 
6,07 
3-292 
0,00 

Table 4: Results of analysis of variance by representation format of the equations

Another important finding is that students’ type of understanding of the equal sign 
has an effect on their ability to solve equations and to complete and construct 
equalities. Analysis of variance for the total score for solving equations has given an 
F 3-292 = 17,55, p<0,01 indicating a significant difference among students who have 
an inclusive understanding of the equal sign, those who have a restricted 
understanding and those who do not have a clear understanding. Additionally, quite 
similar results have been found (F 3-292 = 20,27, p<0,01) between and within the same 
groups for their ability to complete and construct equalities. 
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CONCLUSIONS
The meaning that elementary school students (grade 3 – 6) give to the equal sign is 

found to be insufficient, particularly in the lower grades. It was found that 
elementary school students have not developed successfully proceptual thinking 

for the equal sign.  This study has also shown that a large proportion of students tend 
to interpret the equal sign incorrectly, while completing and constructing equalities. 
The misconceptions, which have been observed, are influenced by two factors: the 
position of the equal sign and the position of the missing number in the equality. The 
completion of the equalities that have the missing number right after the equal sign 
seem to confuse the students the most.  
Maturation and instruction seems to have contributed to a partial relief of the 
problem. Clearly, the performance of a considerable proportion of 6th graders in both 
equation solving and equality completion and construction is a sign of inclusive 
understanding of the equal sign. Exposure to a short introduction to the concept of 
algebraic equation seems to have positive results, at least for some students. Though 
the findings seem to raise a question about the high proportion of 6th graders who 
failed to conceptualize the relational meaning of the sign (see Table 1). 
Three main questions seem to arise. First, what exactly was the cause of the improved 
picture that appears in 6th graders? Second, what could we do to help lower grade 
students develop inclusive understanding and, third, how far can we help elementary 
school students develop inclusive understanding? Yet the question for the lower 
grade students continues to be there. It is important to keep in mind that elementary 
school students’ restricted understanding and ability to use the equal sign correctly 
may influence later development of important mathematical concepts and processes, 
such as, the notion of equivalence and algebraic equation solving. 
It has been considered that the misconceptions for the equal sign that elementary 
school learners have, may be due to the previous use of this sign during arithmetic. Its 
introduction occurs along with the first student contact with numbers. Further 
systematic study of the notion of equivalence or of the equal sign does not happen 
later. Consequently, the development of this notion depends on the students’ maturity 
level and the study of relevant concepts. We think that it will be useful to develop and 
implement an intervention program, which will focus on developing and mastering 
these two important mathematical ideas: equivalence and proceptual thinking of the 
equal sign. If algebraic thinking is to be developed in elementary school mathematics 
curriculum, it is necessary to emphasize the structural characteristics of an equation. 
When students understand and recognize these characteristics, they can generalize 
their thinking and, as a result, they can think algebraically. 
It is important to treat the difficulties and misconceptions that elementary school 
students have about the equal sign so that they develop the correct meaning for the 
notion of equivalence and the sign that it represents it. Furthermore, it is essential that 
secondary school teachers become aware of these difficulties and misconceptions that 
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elementary students have in order to treat them with remedial teaching before the 
introduction of algebraic concepts, symbolism and algorithms. Developing correct 

meaning for these important algebraic symbols can be crucial to the success that 
students will have in their future work with higher mathematics. 
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APPENDIX
Examples of tasks included in T2 
Numbers (Result unknown)  4 + 8 + 5 = ___ 
Word equation (Result unknown) When I add 5 to 8 and subtract 3, what’s the 

answer? 
Word problem (Start unknown) Chris gathered 9 shells from the beach. He put 

then in his collection and he now has 10 
altogether. How many did he have at the 
beginning? 

Geometrical symbol (Result 
unknown) 

4 + 8 = � 

Algebraic symbol (Start unknown) 7 + � + 6 = 20 

Picture (Start unknown) 

18 

kg 

 
12 
kg  

How many kilograms is 
 

 ? 

Diagram (Start unknown) 

� Km 3 Km 
Barber’s shop Park School 
How far is the Barber’s shop from the Park? 

16 Km 
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A CONTRIBUTION OF ANCIENT CHINESE ALGEBRA: 
SIMULTANEOUS EQUATIONS AND COUNTING RODS 

Giorgio T. Bagni
Department of Mathematics and Computer Science, University of Udine (Italy) 

We shall discuss some educational possibilities connected to the use of an ancient 
Chinese artifact. Our theoretical framework is based upon works by Bruner, 
Vygotskij, Wartofsky and some recent papers by Bartolini Bussi. We posed to a group 
of 10-11 year-old pupils a problem (from the Chinese treatise entitled Jiuzhang 
Suanshu, 1st cent. BC) that can be solved by a couple of simultaneous linear 
equations. Empirical data suggest that, particularly in the context of the game, the 
use of the primary artifacts (counting rods, the counting board), taking into account 
the secondary artifacts referring to the modes of action (rules and prescriptions), can 
be important in order to approach some mathematical contents. 
INTRODUCTION
The main focus of this paper is on the educational possibilities connected to the use 
of an ancient Chinese artifact. Recent research (Bagni, forthcoming) considers an 
experience based upon the counting-rods and the counting board. In this paper we 
shall make reference to a procedure described in the chapter 8 (Fangcheng) of the 
Jiuzhang Suanshu (Nine Chapters on the Mathematical Art, 1st cent. BC), an 
anonymous handbook consisting of 246 problems. Of course this method (i.e. Gauss 
elimination) can be performed with any kind of numerals; the focus or our work is 
not just calculating with Chinese rods or learning fangcheng. We shall analyse pupils’ 
behaviour in order to point out the role of the considered artifacts. 
The idea of using ancient Chinese methods for solving a system of equations can be 
considered as a suggestion for doing pre-algebra. Let us notice that in a positional 
number system a group of rods represents a set whose size is determined by its 
position on the table; in a linear equation, a group of rods represents an unknown set 
whose size, as we shall see, is determined by the box in which it is arranged. Thus, 
the Chinese notion of a system of linear equations is basically formed by their way of 
representing numbers. 
Clearly, the traditional Chinese representation of numbers by counting-rods on a 
board can be referred to the fingers of a hand. The counting-rods are arranged in 
columns placed side by side, with the rightmost column representing the units, the 
next column representing the tens, and so on. Before the 7th-8th cent. AD, there are 
no known written Chinese symbols which may be interpreted as zero (Martzloff, 
1997), so in order to avoid misunderstandings Chinese mathematicians used two 
different dispositions: the aforementioned Tsung disposition for units, thousands and 
so on, and the Heng for tens, hundreds and so on (Figure 1; let us remember that from 
200 BC Chinese mathematicians were used to representing positive and negative 
numbers by red and black counting-rods). 
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(Tsung)  1     2     3     4     5    6    7     8    9    (Heng)   10  20   30  40   50   60  70  80  90 

Figure 1: Tsung and Heng counting-rods dispositions 

In this paper, our goal is mainly of a cognitive nature: to study how pupils reproduce 
the rules of number manipulation and, in particular, to study the relationship between 
artifacts and cognition in a particular context (as we shall see, in a context related to 
the game). Our aim is therefore to discuss a case study whose importance is based 
upon the following elements. The subject is not included in the usual cultural system, 
so the influence of previous activities is rather small; moreover, it is relevant to the 
connections between “seeing”, “doing” and “saying”. We shall explain this point in 
the following section. 

THEORETICAL FRAMEWORK 
In a Vygotskijan perspective, the function of semiotic mediation can be connected to 
technical and psychological tools. Wartofsky identifies technical gadgets as primary
artifacts; secondary artifacts are used in order to preserve and to transmit the 
acquired skills or “modes of action” (Wartofsky, 1985). So counting-rods can be 
considered as primary artifacts; prescriptions and representative rules (expressed in 
original books and commentaries, e.g. in the Nine Chapters on the Mathematical Art)
are secondary artifacts. Finally, a mathematical theory is a tertiary artifact which 
organizes the secondary artifacts and hence the models constructed in order to 
represent the modes of action by which primary artifacts are used (see for instance: 
Bartolini Bussi, Mariotti, & Ferri, 2005). 
We must consider the distinction between artifact and tool (according to Rabardel, 
1995), i.e. the artifact associated with a personal or social schema of action. If we 
make reference to an object as artifact, in order to be able to consider it as a tool, we 
need a constructive mediated activity on the part of the subject (Radford, 2002), so 
the considered artifact must be framed in a wide social and cultural context. When a 
pupil uses a primary artifact with reference to a secondary artifact, he or she follows
the rules, so uses the primary artifact in a rational way. There is an important socio-
cultural element in this point, taking into account that rule-following must be framed 
in an essentially collective practice. 
An aspect to be carefully considered is the context in which we are going to propose 
an activity with counting-rods: as we shall see, pupils will not be asked to approach 
an explicit mathematical (in particular: algebraic) activity. Let us remember the 
following remark by Lakoff and Núñez (2000, p. 30): 
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“Mathematical abilities are not independent of the cognitive apparatus used outside 
mathematics. Rather, it appears that the cognitive structure of advanced mathematics 
makes use of the kind of conceptual apparatus that is the stuff of ordinary everyday 
thought”.

With particular regard to algebraic procedures, Steinbring emphasises that in order to 
record algebraic relations, one does not necessarily require the typical algebraic signs 
(Steinbring, 2006). So we are going to investigate whether the (non-typically 
algebraic) context of the game can be useful in order to allow the internalisation of 
some mathematical contents. 
Let’s finally underline another aspect. According to Bruner’s constructivist approach, 
we create our own realities through interaction with the social world and with 
symbols (Bruner, 1987): learning itself must be considered within a cultural context, 
which involves the shared symbols of a community, its artifacts, and its traditions. A 
key concept is that of context embeddedness, where the term refers to the institutional 
and cultural context (Godino & Batanero, 1997). As we shall see, the method 
children used can be approached as a new game, which is not included in the usual 
cultural system, not as a traditional mathematical task. 
METHODOLOGY 
Let us now summarize the fangcheng method. In order to solve a system of linear 
equations, ancient Chinese mathematicians placed coefficients and numbers on the 
counting board. Nowadays, their arrangement can be changed according to the 
following rules: 
(1) the expression biancheng (“multiplication throughout”, Martzloff, 1997, p. 253) is 
an instruction to multiply all the terms of a row by a given number; 
(2) the expression zhichu (“direct reduction”) carries out a series of term-by-term 
subtractions of a row from another row. 
We are going to summarize an experience involving a group of 11 year-old pupils. 
The experience took place in a 6th grade classroom (in Treviso, Italy). Pupils were in 
the very first period of the Italian middle school; they came from several different 
primary schools. They had not been taught about equations (only some of them, in 
the primary school, had dealt with simple exercises like “what is the unknown sum, if 
you know that three times half of this sum is…”) and they had not been taught 
negative numbers. The experience took place during a lesson in the classroom; all the 
pupils (i.e. 18 pupils), the teacher and the researcher were present (the researcher was 
not the teacher of the pupils in question). 
Let us consider the three stages of our experience: firstly, the teacher presented to the 
pupils how to express numbers with counting-rods. He demonstrated several 
examples and the pupils were invited to represent some numbers. Secondly, a 
counting board with labels was created and simple problems were represented by 
counting-rods. Finally, the pupils were divided into six groups of three pupils. The 
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teacher posed the following problem (problem 1) and represented it with counting-
rods on a counting board; then the teacher emphasised that “the rods arrangement 
represents problem data” and presented (with several examples, too) rules (1) and (2) 
by which rods arrangements can be changed: 
(Problem 1) Suppose we have 5 bundles of type A cereals and 3 bundles of type B 
cereal, amounting to 19 dou of grain. Suppose we also have 3 bundles of type A 
cereals and 2 bundles of type B cereals amounting to 12 dou of grain. Question: how 
many dou of grain in 1 bundle of type A and type B cereals respectively? 
This problem (based upon an original Chinese problem, with some variations of data) 
leads to the pair of simultaneous equations, in our modern notation: 

5x + 3y = 19 
3x + 2y = 12 

Let us see (Figure 2) the rods arrangements suggested by some pupils in order to 
obtain the solution (we report the original counting board used; the translation of the 
labels is: “type A” and “type B bundles”, “cereals”). In particular, a group of three 
pupils obtained the correct solution of the problem: one of the pupils (S.) proposed 
the steps and another pupil (F.) made some interesting comments; the third pupil’s 
(R.) role was not active. During the experience, the teacher gave no suggestions; he 
just pointed out the mistakes. 

Figure 2: Rods arrangements in order to obtain the solution of the first problem 

In order to deepen our comprehension of pupils’ behaviour, we posed to the same 
group of pupils another problem: 
(Problem 2) Suppose we have 4 bundles of type A cereals and 1 bundle of type B 
cereal, amounting to 6 dou of grain. Suppose we also have 2 bundles of type A 
cereals and 3 bundles of type B cereals amounting to 8 dou of grain. Question: how 
many dou of grain are there in 1 bundle of type A and type B cereals respectively? 
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This problem leads to the pair of simultaneous equations (in our modern notation): 
4x + y = 6 
2x + 3y = 8 

Let us see (Figure 3) the rods arrangements suggested by some pupils in order to 
obtain the solution. Of course it is impossible for the pupils to solve problem 2 by 
using only rule (2): its application would imply the use of negative numbers. 

Figure 3: Rods arrangements in order to obtain the solution of the second problem 

DATA
Recorded audio material and transcriptions allowed us to point out some salient short 
passages that were analyzed using techniques of qualitative research (see: Bagni, 
forthcoming). The experimental excerpts allowed us to highlight some elements that 
are relevant to our discussion. 
Let us now examine the following transcript of the resolution of problem 2. It is 
particularly representative because, as we shall see, it gives us the opportunity to 
highlight some elements related to pupils’ use of the artifacts (other data and results 
are not very interesting); the following transcript is to be considered as a case study:
[1] Pupil S.: Mm, no, we cannot take off these from those, there are not enough of 

them there. [S. indicates the second row, then the first row and 
touches the rods of the first square; she looks at the teacher] 
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[2] Pupil F.: The other also is impossible… Well, this time the exercise is 
impossible, isn’t it? [S. touches the rods of the second row several 
times. One minute goes by] 

[3] Pupil S.:  Alright, we must take off the rods, but if we now increase them… 
using the other rule, we can multiply these, that is… yes… until there 
aren’t enough of them. 

[4] Pupil F.: Or those in the upper row. 
[5] Pupil S.: Let’s do it here … by three. [S. indicates the second square of the first 

row]
[6] Pupil F.: Oh yes, yes, we must make this equal to these! [She indicates the 

second squares of the first row and of the second row] 
[7] Pupil S.: Go on, here, let’s do it here by three. This one becomes three, four 

times three is twelve and the grain, six, gives eighteen. [She changes 
the arrangement of the rods] 

[8] Pupil S.: Now we take them off… that is, here they goes away, twelve, ten, and 
ten here, too. [S. takes off the rods] 

[9] Pupil F.: They are equal. 
[10] Pupil S.: The first is done. [S. takes off the rods] 
[11] Pupil S.: Now I need to get rid of that. [She indicates the first square of the 

second row] We just have to multiply by two. [S. adds the rods; then 
S. takes off the rods] 

[12] Pupil F.: Done. 
[13] Pupil S.: Well, we can divide in the usual way, six, we have two. [S. takes off 

the rods] The grain is one here and two here. 

Let us now briefly discuss pupils’ behaviour. The first stage (steps 1-2, with a brief 
period of impasse, one minute without utterances) is interesting: there is a conflict 
between the situation and the necessity of taking off as many rods as possible (as 
pupils did in the previous resolution: see Figure 2). This initial conflict led F. to a 
wrong conclusion. But the utterance [3] by S. is very important: 
[3] “Alright, we must take off the rods, but if we now increase them… using the other 

rule, we can multiply these, that is… yes… until there are enough of them”.

These last words are meaningful: it is necessary that the counting-rods are “enough”. 
The teleological structure of the action has a primary role. When pupils correctly 
used the rule (1) allowing the multiplication of all the terms of the second row by k = 
3, F. realized that her previous conclusion (“this time the exercise is impossible”) was 
wrong, she indicated the different squares and noticed: 
[6] “Oh yes, yes, we must make this equal to these”.

It is worth noting that the pupil connected the application of the considered rule to the 
counting-rods arrangement and to its effect upon this arrangement: F. was finally 
aware of the necessity of the absence of rods in a square in order to solve the 
problem, and she realized that in order to reach this situation it is necessary that two 
squares referring to the same type of bundles contain the same number of counting-
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rods. So solving strategies are connected to a combination of enactive skills (e.g. 
spatial awareness) and iconic skills (e.g. visual recognition and ability to compare: 
Bruner, 1966). 
DISCUSSION 
In the experience considered, pupils approached an algebraic procedure without using 
the typical algebraic signs. They effectively solved a couple of simultaneous linear 
equations by using counting-rods, with reference to the secondary artifact expressed 
in chapter 8 of the Jiuzhang Suanshu. By that we are not suggesting introducing 
systems of linear equations in grade 6 (in many countries, e.g. in Italy, this is done in 
grade 8, or in grade 9); nevertheless the idea of using the ancient Chinese methods for 
solving linear equations for introducing the topic in school teaching can be 
interesting.
According to Bruner (1987), developmental growth involves the enactive, iconic and 
symbolic modes, and requires the ability to translate between them: the experience 
considered provides us with interesting examples of translation (see moreover the 
examples discussed in: Bagni, 2006). An effective translation from the enactive to 
iconic mode (the frequent use of deictic expressions and of gestures, e.g. in steps 1, 5 
and 6) and, in addition, a first approach to the symbolic mode can be seen in the 
pupils’ behaviour. 
Pupils gave a preference to the rule that is based more directly upon the concrete 
presence of counting-rods on the counting board (in the first resolution, see Figure 2). 
Indeed, when they apply rule zhichu (“direct reduction”), which allows term-by-term 
subtractions of two rows, they consider two quantities that they can see and touch; 
whereas when they apply rule biancheng (“multiplication throughout”), which allows 
the multiplication of all the terms of a row by a number k, this number k cannot be 
referred to the concrete presence of counting-rods. So, according to the empirical 
data, we can state that using (original) primary artifacts with reference to (original) 
secondary artifacts can be relevant to the introduction of some methods; more 
generally, the crucial point is that the considered method is based upon the 
“positional” character of ancient Chinese algebra, according to which a particular 
place in the board must be always occupied by a particular kind of number, e.g. a 
particular coefficient. This “positional” character cannot be pointed out in our basic 
algebraic European tradition. 
Let us point out an important element: the artifacts considered are “non transparent” 
(in L. Meira’s words; see: Meira, 1998). In particular, this means that there is no way 
of knowing, for instance, why some entries in the given rectangular array should be 
added together, or why the entries in the last column would represent totals, or why 
the given rules would preserve relevant features of the situation represented by the 
rods arrangement. Nevertheless, pupils effectively used a representation including 
signs, spatial relations and embodied rules with reference to a context having some 
typical features of a game. So an important path to follow can be related to the role of 
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the game: this concrete context may allow a first construction of meanings that can be 
referred to abstract algebraic representation. 
It is worth noting that the secondary artifact introduced is not strictly necessary in 
order to allow a physical action with the primary artifact. From this point of view, the 
introduced rules can be considered conventional, arbitrary (the original secondary 
artifact can be simplified: counting-rods can be arranged in very many ways; of 
course the intercultural aspect leads us to make reference to the original dispositions). 
So pupils made reference to a particular algebraic “language” that is not just a code, 
whose power can be referred to its syntax; its creative power lies in how the language 
itself is embedded into the rest of pupils’ activities (Steinbring, 2006), and, in the 
case considered, into a game, a new game to be explored and played (we are dealing 
with a game making reference to a very different cultural tradition): and this can be 
useful in order to give sense to the algebraic procedure considered.
Of course it is important to investigate the conceptualization of the experience: so 
further research will be devoted to the study of the educational possibilities connected 
to activities similar to the one considered (although, in our opinion, the main point 
cannot be summarised in the possibility of a complete derivation of an argumentation 
or a mathematical proof). 
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This paper gives a description of an ongoing study focused on pattern exploration 
and generalization tasks and justifies that study with respect to the literature. It 
promises to make a contribution to appreciation of the ways in which visual 
strategies can be used to enhance and enrich learners’ experience of generalization. 
The main purpose is to analyse the strategies and difficulties presented by grade 6 
students when solving these activities, along with the role played by visualization in 
their reasoning. Preliminary results indicate that, in general, students prefer analytic 
approaches over visual ones and that, among the group of students that are most 
successful, the majority chooses a mixed strategy. 

THEORETICAL FRAMEWORK 
A quarter of a century ago, problem solving became a focus of school mathematics. 
According to recent curricular guidelines of several countries, one of the main 
purposes of mathematics learning is the development of the ability to solve problems. 
In spite of the growing curricular relevance of this theme over the last few years, 
several international studies (SIAEP, TIMSS, PISA) have shown that Portuguese 
students have low results when solving problems is required (Ramalho, 1994; Amaro, 
Cardoso & Reis, 1994; OECD, 2004). Pattern exploration tasks may contribute to the 
development of abilities related to problem solving, through emphasising the analysis 
of particular cases, organizing data systematically, conjecturing and generalizing. The 
Principles and Standards for School Mathematics (NCTM, 2000) acknowledges the 
importance of working with numeric, geometric and pictorial patterns. This document 
states that instructional mathematics programs should enable students, from pre-
kindergarten through grade 12, to engage in activities involving the understanding of 
patterns, relations and functions. On the other hand, Geometry is considered a source 
of interesting problems that can help students develop abilities such as visualization, 
reasoning and mathematical argumentation. Visualization, in particular, is an 
important part of mathematical reasoning but, according to some studies, its role 
hasn’t always been emphasized in students’ mathematical experiences (Hadamard, 
1973). According to Dreyfus (1991) visual reasoning in mathematics is important in 
itself. Therefore it’s necessary to give increased status to purely visual mathematical 
tasks. The usefulness of visualization and graphical representations is being 
recognized by many mathematics educators. However more research is still necessary 
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concerning the role mental images play in the understanding of mathematical 
concepts and in problem solving. Research is also needed to ascertain when 
visualization is more useful than analytical methods (Gutiérrez, 1996).  
The purpose of this study is to analyse the difficulties and strategies used by grade 6 
students (11-12 years old), when solving problems involving pattern search, and the 
role played by visualization in their reasoning. The tasks that will be used in the study 
involve pattern generalization. Students of this age have not yet had formal algebra 
instruction, thus the importance of analysing their approaches. This study attempts to 
address the following research questions: 
1) Which difficulties do 6th grade students present when solving pattern exploration 
tasks? 
2) How can we characterize students’ strategies?  
3) What’s the role played by visualization in the mediation of students’ reasoning? 
Will it simplify the path to solution or will it act as a blocking element?  

Patterns and generalization 
Using patterns to promote and provoke generalization is seen by many as a pre-
algebraic activity (e.g. Mason et al., 1985; Mason, 1996; Lee, 1996). The focus on 
pattern exploration is frequent in the recent approaches to the study of algebra. The 
search for regularities in different contexts, the use of symbols and variables that 
represent patterns and generalization are important components of the math 
curriculum in many countries. Portuguese curriculum recommends that students 
should develop the predisposition to search and explore number and geometric 
patterns throughout elementary and middle school (DEB, 2001).  
Research on students’ thinking processes in generalization 
There are now several studies about the analysis and development of pattern-finding 
strategies with students from pre-kindergarten to secondary school. 
Stacey (1989) focused her investigation on the generalization of linear patterns, with 
students aged 9-13 years old. A significant number of the subjects used an erroneous 
direct proportion method in an attempt to generalize. Stacey also reported some 
inconsistencies in the strategies used by students in near generalization (activities 
that can be solved by the use of a drawing or the recursive method) and far 
generalization (the strategies stated before are not adequate to these kind of activities, 
they imply the finding of a rule) and concluded that drawing had a major influence on 
their approaches, although she didn’t explore this theme further.  
García Cruz & Martinón (1997) developed a study, with 15-16 years old students, 
aiming to analyse the way they validate results and to ascertain if they favoured 
numerical or geometric strategies. The research showed that drawing played a double 
role on the process of abstracting and generalizing. It represented the setting for 
students who used visual strategies in order to achieve generalization and, on the 
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other hand, acted as a means to check the validity of the reasoning for students who 
favoured numerical strategies.  
Orton & Orton (1999) focused their investigation on linear and quadratic patterns 
with 10-13 years old students. They reported a tendency to use differences between 
consecutive elements and its extension to quadratic patterns, by taking second 
differences, but without success in some cases. They also pointed to students’ 
arithmetical incompetence and their fixation on a recursive approach as some of the 
obstacles to successful generalization.  
Sasman et al. (1999) developed a study with 8th grade students, involving 
generalization tasks with variation of the representations. Results showed that 
students used, almost exclusively, number context, neglecting drawings, and favoured 
the recursive method, making several mistakes related to the erroneous use of direct 
proportion.   
Mason et al. (2005) promotes the use of the strategy of ‘Watch What You Do’ as 
learners draw further cases of patterns and attend to how they naturally draw the 
pattern efficiently. Each such efficient drawing method offers a potential 
generalization when expressed as instructions as to how to draw the pattern. 
Visualization 
The relation between the use of visual abilities and students’ mathematical 
performance constitutes an interesting area for research and does not achieve 
consensus. Many researchers recognize the importance of the role that visualization 
plays in problem solving, while others claim that visualization alone isn’t enough, 
that it must be used as a complement to analytic reasoning. According to Presmeg 
(1986), teachers have a tendency to present visual reasoning only as a possible 
strategy for problem solving in an initial stage or as a complement to analytic 
methods.   
Thornton (2001) points to three reasons to re-evaluate the role of visualization in 
school mathematics: (1) math is currently identified with the study of patterns and 
that, together with the use of technology, has the power to demean the difficulty of 
algebraic thinking; (2) visualization can often provide simple and powerful 
approaches to problem solving; (3) teachers should recognize the importance of 
helping students develop a repertoire of techniques to approach mathematical 
situations.          
Different students can use different strategies when solving the same problem. Some 
prefer visual methods, others are in favour of non-visual ones. Krutetskii’s (1976) 
study with mathematically gifted students showed that they use different approaches 
to problems, leading to the following categorization concerning reasoning: analytic 
(non- visual), geometric (visual) and harmonic (use of the two previous types of 
reasoning).  
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In spite of the preference for the use of numerical relations as a support for reasoning, 
in part due to the work promoted in the classroom, some studies indicate that most 
are more successful when they use a harmonic or mixed approach (Moses, 1982; 
Noss, Healy & Hoyles, 1997; Stacey, 1989). 
METHOD 
The sample used on this study consists of three classes of grade 6 students, from three 
different schools, aged 11-12 years, corresponding to a total of 54 students. The study 
is divided in three stages: the first corresponds to the administration of a test that 
focuses on pattern exploration and generalization problems; the second stage involves 
the implementation of tasks, of the same nature, to all students, in pairs; on the third, 
students will repeat the test in order to examine changes in the results. The second 
stage of the study is, at the present time, in the beginning. All students will be 
involved in solving 10 tasks over the school year and two pairs of students from each 
school will be selected for clinical interviews. These sessions will be videotaped for 
further analysis in order to investigate students’ mathematical reasoning, in particular 
the strategies used to solve each of the problems posed, as well as the difficulties they 
experienced on that activity.   
There will be qualitative and quantitative data. To gather the quantitative data a 
scoring scale for the test was developed in order to compare the two applications. 
Qualitative data will be collected from the interviews with the elements of the pairs 
and from the analysis of the strategies used in the tests. 
PRELIMINARY RESULTS 
At present time only the first stage of the study is concluded. Students were given a 
written test with pre-algebraic questions. The test contains sixteen introductory 
questions consisting of visual and numerical sequences (see a), for an example), 
followed by two more complex tasks involving near and far generalization (see b) 
and c)).  

a) Examples of introductory questions: 
1. Complete the following sequences indicating the next two elements:   

1.2:  2, 5, 8, 11, 14 
 

1.13:    
 
b) Second task: 
2. Joana likes to make necklaces using flowers. She uses white beads for the 

petals and black beads for the centre of each flower. The figure below shows a 
necklace with one flower and a necklace with two flowers, both made by her. 
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2.1. How many white and black beads will Joana need to make a necklace 
with 3 flowers? Explain your conclusion. 

2.2.  How many white and black beads will Joana need to make a necklace 
with 8 flowers? Explain your conclusion. 

2.3. If Joana wants to make a necklace with 25 flowers, how many white and 
black beads will she need? Explain your conclusion. 

c) Third task: 
3. On the following figure you can count three rectangles. 

  
Consider the figure below: 

     
3.1. How many rectangles of different sizes can you find? Explain your 

reasoning. 
3.2. If you had 10 rectangles in a row, how many rectangles of different sizes 

could you count? Explain your reasoning. 
The test was constructed with the purpose of analysing students’ abilities when 
performing pattern seeking and generalization tasks and of studying their problem 
solving approaches. It was validated by a panel of teachers and researchers in 
mathematics education. It was also solved by 5th and 6th grade students of different 
schools before its implementation. 
The application of this test with the sample used in this study made it possible to 
collect some preliminary data about students’ thinking processes and most common 
difficulties. 
Thinking strategies that emerged from the application of the test 
In spite of being given an image of the first two elements of the sequence, in the 
second task students rarely use drawing as a solving strategy, they favoured a 
numerical approach. Some students made a drawing to solve the first two questions 
and applied direct counting to determine the number of beads, but they weren’t able 
to solve the last question by the same method, since it involved far generalization, so 
they left it in blank or presented a feeble attempt to solve it. The few students that 
have successfully solved this task used a mixed strategy, presenting numeric relations 
and referring to the visual structure of the sequence.  
Third task was considered by the students as the most difficult. No one could reach a 
solution. Some students identified the existence of different rectangles but, as they 
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didn’t found an organized way to approach the question, they couldn’t find all the 
cases. In the second question of this task no figure was given. Most students started 
by representing the situation, but in the end they weren’t able to discover the pattern 
due to the application of inadequate strategies like direct counting or the use of a 
confusing diagram. 
Difficulties emerging from the application of the test 
The greatest facility was achieved on the first task of the test, possibly because they 
had prior experience solving this type of tasks. Nevertheless they showed some 
difficulties that should be pointed. Some of the sequences were interpreted, by 
several students, as repetition patterns, both on visual and numerical contexts. The 
two most frequent cases happened with the numerical sequence 1, 4, 9, 16 and the 
visual sequence . Students continued the first by adding 3 to 16 
and 5 to 19, instead of continuing the sequence of squares of whole 
numbers. In the second case, we expected to get a hexagon and a heptagon and some 
students presented a triangle and a square, repeating the sequence. The majority of 
students achieved better results on the questions involving numerical patterns than on 
those involving visual patterns. They presented very low scores in completing the 
following two sequences, whose nature was purely visual:  
 
  
In our opinion, the first one caused some difficulties possibly due to the triangular 
shape of the elements of the sequence and the second one due to the simultaneous 
variation of length and height.      
On the second task there’s a general tendency to the erroneous use of the direct 
proportion method. This indicates that students didn’t analyse properly the structure 
of the sequence, thinking of each flower as a disjoint unit. Most of them considered 
that each flower had six white beads and one black, so a necklace with eight flowers 
would have forty-eight white beads and eight black and a necklace with twenty five 
flowers would have hundred and fifty white beads and twenty five black. These 
students didn’t notice that consecutive flowers had two white beads in common. They 
would easily see the error if they checked the rule with a drawing. On the last two 
questions of this task, which involve the use of the recursive method or the finding of 
a general rule, scores were very low. In our opinion, students’ tendency to manipulate 
numbers only, may have contributed to enhance the difficulty of finding the pattern in 
question. 
The last task of the test was the most difficult for students to solve. The majority 
identified only the smaller rectangles and the bigger one, possibly influenced by the 
example given in the problem. In some cases, they used the direct proportion to 
determine the number of rectangles, similarly to the previous task, considering that if 
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they had ten rectangles in a row, then they would have to duplicate the result obtained 
in the first question. 
DISCUSSION 
Work with patterns may be considered a unifying theme of mathematics teaching, 
appearing in different contexts and contributing to the development of several 
concepts (NCTM, 2000). In this research, the use of pattern exploration tasks has the 
main purpose of setting the environment to analyse the impact of the use of visual 
strategies in generalization.  
Some studies indicate that students prefer analytic approaches to mathematical 
activities, converting into numbers even problems that have a visual nature. At this 
point this research is one more contribution to this view. Research on visualization 
and on the role of mental images in mathematical reasoning has shown the 
importance of representations in conceptual development (Palarea & Socas, 1998). 
Our expectations, at this moment, are that, on the second stage of the study, with the 
implementation of the tasks, students will then use more frequently visual or mixed 
strategies and develop a higher competence in solving pre-algebraic activities. 
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MATRICES AS PEIRCEAN DIAGRAMS: A HYPOTHETICAL 
LEARNING TRAJECTORY 

Willibald Dörfler 
University of Klagenfurt, Austria 

The notion of diagrammatic reasoning (Ch. S. Peirce) contends that perceptive 
observation of transformations of diagrams (iconic signs) is at the centre of 
mathematical inferences and constructions. In the form of a narrative about an 
hypothetical learning process concerned with matrices an exemplary interpretation 
of Peirce's position is offered. At the centre of this interpretation is the view that 
diagrams in the sense of Peirce are not just the means but rather the very objects of 
mathematical activities. The empirical and observational quality of those activities 
with diagrams is exemplified by looking at matrices as diagrams, i.e. as structured 
inscriptions with rule governed transformation rules. 
Introduction
In the broader public and in the scientific communities of mathematics education and 
mathematics as well there are widespread but scarcely reflected and mostly implicit 
presuppositions: mathematical activities (thinking and reasoning) are predominantly 
mental and mathematical objects are abstract (immaterial) and ideal. This basic 
ontology and epistemology has far-reaching consequences on the roles which are 
attributed to external signs, notations and symbol systems which commonly are 
subsumed under the rubric of (external) representations. In this view, representations 
are primarily a means for learning and understanding but they do not become a 
genuine and autonomous topic of it. As the term “representation” already suggests, 
their main purpose is to express and communicate something which is essentially 
different and separated from them. This, for instance, is reflected in the strict 
separation of number and numeral and in the supposed primacy (genetically and 
epistemologically) of the former over the latter. The purported just auxiliary and 
secondary quality of (written) mathematical signs is reflected by the position that 
those signs always signify something else to which they permit cognitive access. For 
all of this and the following please refer to Dörfler (2006). The main intent of this 
paper to the contrary is to offer a view which attributes a central and primary role to 
the signs (without pre-given referents) as being constitutive, and the very objects, for 
all kinds of mathematical activities. Thereby the common representations turn into 
genuine but then perceivable mathematical objects the properties and structures of 
which are to be investigated and learned. A similar view is taken by Rotman (2000) 
who speaks about the inseparable unity of “scribbling/thinking”. The relevance of 
those considerations for mathematics education as a practice in the classroom 
possibly could be to reduce the widespread anxiety of and unwillingness to learning 
mathematics. I suggest that those detrimental phenomena are partly connected to the 
strong belief that mathematics is highly abstract (which is often equated with difficult 
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and inaccessible) and therefore on part of the learner necessitates a special ability. 
The common discourse as it also guides the writing of schoolbooks suggests that the 
mathematical signs and notations refer to something abstract which is essentially 
different from them but which is at the core of learning mathematics. For that goal 
the (external) representations are considered to be an unavoidable means but most 
learners are stuck with mechanic and algorithmic manipulations of the various 
representations. This is reflected in the notorious complaint that our students do not 
use representations as tools for problem solving. This could partly be due to the fact 
that they are not sufficiently familiar with those representations (visualizations) since 
they never had studied them in their own right beyond being a pathway to the abstract 
realm. I contend that the representations or as I will call them the diagrams according 
to the semiotics of Peirce (see below) can and should be much more than just a means 
to construct mental representations.
To make the intention of this paper transparent some more remarks are appropriate. 
Inscriptions as diagrams (something written or drawn on paper, in the sand or on a 
screen together with writing/rewriting rules) play an important role everywhere in 
maths and maths education. This is certified by the comprehensive literature on 
(external) representations, visualizations and the like. Here the ubiquitous discourse 
suggests that those representations by embodying properties of abstract 
(mathematical) objects permit the learner to construct mental (internal) 
representations of those objects. The representations are taken to mediate between the 
mathematics and the mind of the learner. The Peircean notion of diagram focuses the 
interest on the inscriptions themselves and their properties and relationships, 
irrespective of what they might (re-)present. Here it is appropriate to say that Peirce 
himself was rather a realistic philosopher who attributed an important role to the 
objects within his triadic conception of signs. But for diagrams which according to 
Peirce are icons of relational structures he explicitly admits the variant that a diagram 
stands for a possibility which might be realized only in the future. This can also be 
interpreted in the way that for diagrams a kind of identification of object and sign is 
conceivable which is discussed also by Stjernfelt (2000). In this sense then the 
diagrams will be not just a means for investigating an object different from them. The 
diagrams turn into the very objects of investigation and this latter one is carried out 
by manipulating (and inventing) diagrams and detecting recurring patterns within 
these actions with diagrams. Those patterns can then be formulated as theorems or by 
formulas which again are diagrams. Those ideas are not alien to maths education 
where (predominantly for the lower grades) many proposals for investigating 
different kinds of diagrams have been presented (number squares, number walls, 
polyominoes that is squares of equal size arranged with coincident sides, geometric 
figures, etc.). Here, the case of matrices taken as diagrams is to show that this view 
extends to higher mathematics as well. The inventiveness and creativity necessary for 
successful diagrammatic reasoning are discussed in much detail by Hoffmann 
(2005b).
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Diagrams and Diagrammatic Reasoning 
In the past few years the notions of diagram and diagrammatic reasoning as espoused 
by Ch. S. Peirce have received increased interest in mathematics education (e.g. 
Hoffmann, 2005a; Dörfler, 2004, 2005; Marietti, 2005; Otte, 2005). Peirce (1976) 
himself gives among many others the following description: 
By diagrammatic reasoning, I mean reasoning which constructs a diagram according 
to a precept expressed in general terms, performs experiments upon this diagram, 
notes their results, assures itself that similar experiments performed upon any 
diagram constructed according to the same precept would have the same results, and 
expresses this in general terms. This was a discovery of no little importance, 
showing, as it does, that all knowledge without exception comes from observation. 
(Peirce NEM IV, 47 f.) 
For our purposes here consider a diagram as a type of inscriptions with a definite 
(imposed) structure and a set of precise rules for the transformations and 
manipulations of those diagrams. Other examples besides the matrices considered 
here are: decimal numerals, algebraic terms, polynomials, function graphs, geometric 
figures. Thus the Peircean notion of “diagram” is a wide one and differs from the 
more common use of that word. It is related to the Kantian and Piagetian concept of 
“schema” but without their idealistic or cognitivistic aspects. For more details refer to 
Dörfler (2004, in press). Outstanding features of diagrammatic reasoning are: 

� it is based on perception, observation and pattern recognition 
� it is inventive, constructive and creative though following precisely defined 

rules
� it takes the diagrams/inscriptions as its objects of investigation 
� being successful needs much foregoing experience with diagrams, precision 

and attention, persistence and experimental behaviour (e.g. to ask “What 
happens if I do that?”) 

� it needs memory and recall of previous diagrammatic reasoning 
� it detects properties of and relationships between diagrams as regularities 

and invariants when those are manipulated according to the rules 
� it needs a language in which to talk about the diagrams and their properties 

and to interpret and apply them (giving referential sense to the diagrams) 
� it is more like a handicraft based on writing and observing through which 

and in which the reasoning is inextricably carried out (a similar view takes 
Rotman, 2000) 

� it is neither mechanistic/algorithmic nor formal but content-rich because of 
the very many properties of the diagrams 

� it invents and constructs diagrams of different sorts, for different reasons and 
purposes

� it is not an individualistic study of abstract objects but a social practice on 
perceivable, material and manipulable inscriptions.

Working Group 6

CERME 5 (2007) 854



The main purpose of this paper is to demonstrate those features on the chosen 
example of matrices. 

Starting the Process 
The following main part of the paper presents a hypothetical learning process based 
on diagrammatic reasoning, i.e. a kind of thought experiment about what a learner 
might do, observe, note, memorize, discuss with others. This hypothetical course of 
actions/reflections can also serve as guidance for somebody (a teacher) who wants to 
initiate and to keep progressing a process of that kind. As diagrammatic objects I 
have chosen matrices (of, say, whole or real numbers) for the following reasons: they 
are discrete objects with a concise (well observable) structure and simple operation 
rules; though they originate from various problems outside of mathematics, and can 
be applied in a manifold of ways, matrices can be studied as “pure” diagrams 
disregarding their referential interpretations (compare Dörfler, 2004); thus working 
with matrices perfectly exemplifies the above made remarks on diagrammatic 
reasoning, i.e. this can be taken as a paradigmatic case. Thereby the usual notation of 
a matrix, i.e. an inscription, is taken as a diagram and not as a representation of 
whatever other entity. Those matrix-inscriptions and their (rule-governed) 
transformations are themselves to be investigated. The readers are invited to carry out 
themselves all the indicated transformations and observations; and thereby to 
experience the materiality and concreteness of the hypothetical learning process 
which mainly consists in the realization of structural and operational regularities and 
invariants (theorems about matrices). The mathematical content in all of that is 
standard knowledge. The issue in the following rather is how this content is 
developed/ constructed by the learner and what are its essential features and 
characteristic aspects from the semiotic point of view taken here. 
The following must be considered as a thought-experiment about an imaginary 
learner L whose potential activities with matrices are described. As any hypothetical 
learning trajectory (cf. Simon, 1995) it is a theoretical model for possible and 
potential learning processes. Any such real process will deviate in many places, of 
course, and the possibility of realization is an empirical question. 
The imagined learning process starts in a context where the learner who we call 
simply L knows what a matrix and its entries are: a rectangular array (inscription) of 
numbers; and L has already written down quite a few of those matrices which we 
consider as diagrams according to Peirce. Thereby L might be in upper secondary 
grades or an undergraduate in the first year. L finds it convenient to view a matrix to 
be built up either from its single elements, its lines or its columns and can switch 
between those views which correspond to ways of looking and observing. Possibly at 
some time L needs to be told how by convention an arbitrary matrix is noted, i.e. as 
the reader will know in the form ij mxnA (a )�  or more explicitly as 
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11 12 1n

21 22 2n

m1 m2 mn

a a ... a
a a ... a

A
... ... ... ...

a a ... a

: ;
2 <
2 <�
2 <
2 <
= >

By organizing the writing and reading of matrices she observes the alignment of the 
numbers (elements of the matrix) either in lines or in columns, a structure which she 
imposes on the array. Similarly, diagonals and submatrices are for L modes of 
writing and observing/seeing which she can describe verbally, by gestures and 
schematically in various ways. Matrices turn thereby into bodily recognizable 
objects. There again a lot is to be observed in a truly empirical way: how the indices 
are written, which index varies in a line/column, extreme cases (m=1, n=1 or even 
m=n=1). Thus our hypothetical learner again meticulously analyzes the matrix-
diagram and builds up a reliable (iconic) memory or mental image of it which 
comprises well all the modes of writing/seeing/reading. L knows now how to write 
and read an arbitrary line/column and recognizes them as submatrices (with m or n 
equal to 1). This poses some demands to her abilities of pattern recognition and 
perceptive parsing which is strongly supported by communicating and talking about 
her experiences and views with others (learners and/or teachers). This means that a 
shared practice of working with matrices develops which is strongly based on 
writing/reading.  
An important form of diagrammatic activity is the design of new diagrams like the 
building (writing) of the transpose of a matrix: write the lines as columns and observe 
what happens: Where will you then write, say, the old  in the new matrix? What 
are the lines of the new matrix? The latter can be observed in the strict sense of the 
word from the obtained diagram starting from above:

32a

A

11 21 31 m1

12 22 32 m2T

1n 2n 3n mn

a a a ... a
a a a ... a

A
... ... ... ... ...
a a a ... a

: ;
2 <
2 <�
2 <
2 <
= >

L literally sees: the lines of AT are the columns of A. This also works in any specific 
case, of course. Here the previous observations about line index, column index and 
the memory of them guides the visual scanning carried out by L. This perfectly well 
matches the cited paragraph by Peirce. 
All this and the rule for the elements of AT our learner L will verbalize and imagine 
iconically as well, and she will consider extreme cases again (m=1, n=1, m=n, etc): 
She now is good friend with the diagram-matrices and has a reliable bodily, 
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imaginative “feeling” for matrices due to many writing/reading/observing 
experiences.
Observing Matrix Products 
We will now skip the time when L starts to add matrices and to explore the respective 
operation rules (element-, line- and column-wise) by diagrammatic reasoning of a 
similar kind. We return to the process at the time when the product of matrices is 
proposed by the teacher and she does this in the traditional way (motivated by 
mathematizing certain economic situations): the � �i, j -element of the product C=AB 
is obtained by adding the element-wise products of the i-th line of A and the j-th 
column of B, as a formula 

n

ij i1 1j i2 2 j in nj ik kj
k 1

c a b a b a b a b
�

� � � � � ?�

The reader is urged to make a thought experiment as well by imagining being in the 
role of the novice learner L who now starts exploring this new diagrammatic 
operation what very likely is initiated by questions and suggestions on part of the 
teacher. What can L observe, what can L do with matrices, what can be varied, which 
recurring relationships can be detected, what can be generalized? A host of 
diagrammatic reasoning activities is conceivable for being executed by L! 
Just by looking how she writes and calculates product matrices our hypothetical 
learner L will see, for instance, that she needs as many columns in A as lines in B for 
making AB. Similarly, by inspection of her inscriptions she realizes that AB has as 
many lines as A (for the columns likewise with B). To repeat, all this is a (reflected) 
perceptive activity the outcomes of which are described verbally and schematized in 
various ways. From previous experiences and experiments L knows the value of 
“extreme cases”. Thus she investigates the cases “one line times one column” and 
“one column times one line” and very likely will be a little surprised by the very 
different outcomes as for instance 

� � � �1 2 8 3 5 19
0
1
2

�: ;
2 <
2 <
2 <
2 <
= >

� �5 1 2 8 5 10 40
0 0 0
1 1 2
2 2 4

0
8

16

�: ; : ;
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
= > = >
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To obtain especially the latter result L has to keep precisely to the rules. She has 
experience that to recognize regular relationships often the use of variables helps a lot 
and thus she writes the following diagram. I leave it to the reader and her 
observations to speculate what L can see in this diagram and which general 
conclusions in the vein of Peirce's dictum L will draw. Namely, that what she has 
observed (for instance, the structure of the lines of the product) will hold in all 
conceivable cases: 

� �a u v w au av aw
b bu bv bw
c cu cv
d du dv

cw
dw

�: ; : ;
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
= > = >

The manifold success when reflecting on and attentively looking at the products of 
her writings is a strong motivation for L to continue in this manner even if some trials 
and manipulations or calculations appear to lead to nowhere. Sometimes guiding 
questions by others will give new orientation. One such hint makes possible the 
detection (by inspection of the calculation) that for the first line, say, of AB, only the 
first line of A is used. L describes this empirically gained insight as a general rule 
like: line i of AB is line i of A times matrix B (whereby she considers lines as 
submatrices). The way how she calculates convinces her that this rule (“theorem”) is 
of general validity. This experience is in accordance with Peirce who says:  
It is, therefore, a very extraordinary feature of Diagrams that they show, - as literally 
show as a Percept shows the Perceptual Judgement to be true, - that a consequence 
does follow, and more marvellous yet, that it would follow under all varieties of 
circumstances accompanying the premises (Peirce, NEM IV, p. 318). 
As comes clear from the Peircean point of view, diagrams have to be invented and 
designed to serve certain purposes and fulfil specific intentions. This is a creative act 
which possibly is beyond the reach of the learner. For instance, L wants to express 
the insight she just has gained for the lines, and then quickly transferred to the 
columns, in a diagrammatic form, i.e. as a “formula”. For this she needs a notation 
which exhibits, say, the columns of a matrix like the following: 

� �1 2 nB B , B , , B� �

If this diagram is available the observed regularity can be expressed as: 

1 2 n 1 2 nA(B ,B , ,B ) (AB ,AB , ,AB )�� �

Diagrammatization for L and everybody else is a precondition for mathematical 
reasoning. The above diagram-formula exhibits the possibility to further analyze the 
product of matrices by studying the special case of AB where B is a single column. 
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The reader should pay attention to the pivotal role of the diagrams, their structure and 
manipulations, and their interpretation. The latter for L is warranted through the close 
connection between her calculations and diagrams which describe her observational 
experiences with (other) diagrams. The reader is also invited to speculate how L 
could write the corresponding formula for the lines of a product AB. 
In this hypothetical narrative about L and her experiences with matrices as diagrams 
we cannot include everything what L possibly could do. Thus, let us imagine that L 
was asked to write down as explicitly as she wants the product AB for a column B. 
With the appropriate notation she obtains the following matrix (again a column) or 
something like it ( 1 nb , ,b�  are the components of B): 

11 1 12 2 13 3 1n n

21 1 22 2 23 3 2n n

31 1 32 2 33 3 3n n

m1 1 m2 2 m3 3 mn n

a b a b a b a b
a b a b a b a b
a b a b a b a b

a b a b a b a b

� � � �: ;
2 <� � � �2 <
2 <� � � �
2 <
2 <
2 <� � � �= >

�

�

�

� � � � �

�

For L (and very likely for the reader) certain structural features catch the eye when 
one scans this diagram. It is the regular occurrence of 1 2 nb ,b , , b�  in a column-wise 
way. And further, L literally sees that with 1b  stand the elements from the first 
column of A, and for the other b's likewise. This is a great discovery as the informed 
reader will know with far-reaching consequences (e.g. for solving systems of linear 
equations). L can for sure express her discovery verbally but she is aware of the 
importance and usefulness of diagrammatic expressions. Now she already is versed in 
adding matrices of all kinds and knows about number times matrix. Thus she can 
parse or visually slice the above diagram to see that it is – by those conventions – 
equal to: 

11 12 1n

21 22 2n
1 2 n

m1 m2 mn

a a
a a

b b b

a a

: ; : ; :
2 < 2 < 2
2 < 2 < 2� � �
2 < 2 < 2
2 < 2 < 2
= > = > =

�
� �

a
a

a

;
<
<
<
<
>

�

Again L will describe her diagrammatic experiences verbally and might even write a 
more condensed formula. To feel the concrete materiality of those reasoning 
processes the reader is invited to convince herself of the validity of the corresponding 
formula for a product “line times matrix”. Of course we could continue for long with 
the narrative of L's hypothetical, imagined activity with matrices as diagrams but we 
close with a final but even more instructive case of diagrammatic reasoning by L. She 
was very impressed by what she has found out about “column times line” and thus 
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has a very good intuitive iconic feeling for implied relationships (this is my fantasy – 
not empirical data!). Now she looks again at the formula for the elements of AB 

i1 1j i2 2 j in nja b a b a b� � ��

and recognizes that, say, i1 1j  is the (i,j)-element of the product “first column of A 
times first line of B”. A visual hint for that was the empirical observation of the 
regularity of the indices 1,2,…,n with which they occur in all such sums for any i and 
j. And L already knows from experience that such structural features point to 
“theorems”, i.e. general properties of the diagrams and of manipulating them. What L 
by inspection of the above diagram has found and will after some trials formulate is 
that AB equals the sum: (column 1 of A times line 1 of B) plus (column 2 of A times 
line 2 of B) plus… And L is surprised and exhilarated by her discoveries and strongly 
determined to continue her explorations of mathematical diagrams. 

a b

Conclusion
This fantasy-narrative is intended to exemplify the viewpoint taken by Peirce on 
mathematical reasoning, namely that it is based on observation of the outcomes of 
manipulating diagrams, interpreting and describing them again by diagrams. My 
contention is that analogous narratives can be told for other mathematical topics as 
well starting with natural numbers and number sense. Matrices furnish a particular 
transparent case since there are no ontological qualms and the diagrams can be 
viewed in a “pure” way without considering potential referents of the signs (compare 
Stjernfelt, 2000). All this turns mathematics form a mental and abstract activity into a 
rather material, external, perceptive and empirical one. In a way it is based on a shift 
of focus by which the mathematical inscriptions no longer function as signs with 
referents but are treated as very objects of investigation and exploration. They lose 
their mediating function, between learners and objects and between sign and objects 
as well. Mathematics turns thereby into sort of a symbolic/ diagrammatic handicraft 
preserving all its creativity and inventiveness. And for education a broad 
consequence would be to organize learning as the progressive participation in a 
practice of diagrammatic activities in the vein as proposed here. 
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DO YOU SEE WHAT I SEE? ISSUES ARISING FROM A LESSON 
ON EXPRESSING GENERALITY 

Helen Drury 
Centre for Mathematics Education, Open University 

Whilst working on a study designed to explore ways in which teachers’ use of 
language contributes to students’ expression of generality, I became increasingly 
aware of the potential of algebra as a tool for expressing mathematical generality, 
and of the corresponding potential of activity that involves the expression of 
mathematical generality as an opportunity for students to develop, and practise 
using, algebraic notation. In this paper I explore some of the issues connected with 
using algebra to express generality in a secondary mathematics classroom. This 
brings to prominence the issue of how classroom based experiences and findings that 
influence my thinking can also be illuminating for others.
INTRODUCTION
This paper focuses on what can be learnt about students’ use of algebra to express 
generality from reflecting upon lesson observations. Through offering a description 
of a complete lesson, the complexity of the process of expressing generality is 
revealed. The paper contains a brief description of the wider study, of which the 
lesson discussed here forms a part. It then discusses some issues involved in 
describing lessons for others. The lesson in question is then described, with reflection 
on the interpretive tensions experienced during its writing. I conclude that the role of 
algebraic notation as a tool for expressing generality is a complex one, and that 
greater appreciation of this complexity by both teachers and students would 
contribute to student understanding of algebra. The paper also demonstrates how 
explicit and shared consideration of methodological concerns can influence and 
inform research findings.  

RESEARCH BACKGROUND AND THEORETICAL FRAMEWORK
The wider study describes ways in which teachers’ use of language can affect 
students’ appreciation of generality in mathematics. The importance of students’ 
appreciation of generality has long been understood. When examples are used to 
illustrate a whole space of possibilities, it is important that students appreciate this 
general space, and are able to generalise. Krutetskii (1976) observed that the more 
successful mathematics students in his study were those who could generalise on the 
basis of analysis of just one phenomenon. Following this argument, it would seem 
desirable for mathematics classrooms to be places where all students become better 
able to see the general through the particular (Whitehead, 1932). The discussion of 
generality is thus a central part of mathematics education, and the role of the teacher 
in promoting and guiding such discussion is worth serious consideration.  
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The broader study, of which this paper reports a part, asks what generality is 
observably present in whole class discussions, and how language (algebraic or 
otherwise) structures students’ awareness of generality. In the lesson described in this 
paper, teachers work with students on using algebra meaningfully, to express 
generality.

METHODOLOGY
In striving to answer the questions outlined above, my approach was ethnographic. 
Having completed the first phase of my observations (where the intention was to 
minimise intervention, and over fifty lessons were observed and recorded), I offered 
the teachers in my study the task shown in Figure 1, and asked them to plan and teach 
a lesson based on it.

Figure 1 (Mason, 2005: 56)

The intention was to observe ‘normal’ classrooms where there was potential (as a 
consequence of the task on offer) for algebra to be used meaningfully to express 
generality. The transcripts of the resulting lessons were analysed using a grounded 
theory approach (Strauss and Corbin, 1990), with some techniques from discourse 
analysis (Parker, 1992).
It is the intention of my research design that my study benefits from my own total 
submersion in the data, presence in lessons, and transcription. The process of analysis 
of the transcripts of classroom discussion is influenced by my experiences in the 
classroom as an observer. The conclusions reached through this analysis are intended 
to be directly attributable to, and justifiable by recourse to, the data, so that someone 
else could understand the conclusions. Naturally, that person may not have reached 
the same conclusions themselves. It is the customary for readers, perhaps especially 
those who are practising teachers, to compare the data with their own experiences and 
to consider aspects not intended by the researcher when collecting or describing the 
data.
It was these dual aims of wanting my analysis to benefit from my immersion in the 
field, whilst being able to share my findings as fully as possible, that led to my desire 
to write ‘thick’ descriptions (Geertz, 1973 and earlier Ryle, 1949) of the lessons I 
observed. A description of human behaviour is considered to be ‘thick’ if it explains 
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not just the behaviour, but its context as well, such that the behaviour becomes 
meaningful to an outsider. Morrison (1993: 88) argues that by “being immersed in a 
particular context over time not only will the salient features of the situation emerge 
and present themselves but a more holistic view is gathered of the interrelationships 
of factors”. Such immersion facilitates the generation of descriptions which lend 
themselves to richer insights and interpretation of events. Of course, as such salience 
is relative to the observer, thick descriptions can be problematic.  
It is important to acknowledge that, when creating ‘thick’ descriptions of classrooms, 
researchers must go some way towards analysis. Even before the start of the lesson, 
my interpretation of the lesson discussed in this paper may have begun. My reading 
of relevant research literature, my teaching experience and my research design 
contributed to the way in which I read the teacher’s lesson plan, and doubtless 
affected my expectations of the lessons. These implicit expectations resulted in 
certain student actions being particularly noteworthy (because they illustrated or 
conflicted with my expectations). Although, as an ethnographer, I aimed to be open to 
all possibilities, I acknowledge the impossibility of eliminating all conjecture and 
expectation. Better, I believe, to work hard at being open minded, whilst being aware 
of possible structures that I may be imposing on my experiences. As Gadamer (1976) 
argues, prejudice is the necessary starting point of our understanding. The critical 
task lies in distinguishing between “true prejudices, by which we understand, from 
the false ones by which we misunderstand” (Gadamer, 1976: 124). After the lesson, 
interpretation again comes into play. Even if I were to record my experiences fully, in 
order to share my data with others I would need to condense it. Before the 
experiences can be analysed they must be rendered analysable – tapes transcribed, 
experiences noted in journals and written up in detail. Choices must be made about 
when the exact words used are important, and must be quoted, and when the speaker 
can be paraphrased. Paraphrasing often makes the lesson easier for readers to access 
than if it had been written as an annotated transcript. Interpretation is involved again; 
the way I choose to structure my data affects subsequent analysis.  
Describing the lesson in such detail enables the readers to make sense of the data for 
themselves. It may also persuade the reader of the veracity of the researcher’s explicit 
and implicit conclusions.  

THE LESSON
In the process of writing the lesson description that follows, and reflecting on 
interpretive choices (these interpretive reflections appear in italics in this section), 
one possible unifying theme emerged from the data, which provides me with a 
possible lens with which to view the complexities of using algebra to express 
generality. In line with my desire for readers to have the opportunity to interpret and 
reflect on the lesson in accordance with their current thinking, I restrict my analysis 
here to separate incidents, rather than explicitly draw this connecting thread between 
them. Readers who prefer to read the data with a preconception of my interpretation 
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will find my discussion of how it influenced my own thinking in the conclusion 
section.

As students entered the room at the start of the lesson, the tables were arranged for 
groups of 4 students so that most chairs were sideways to the board. There was an A3 
sheet of questions on each table. The students were told that they could choose who to 
sit with, although the teacher intervened in deciding that a ‘fifth’ person on one table 
should move to join a table with only three students.  

This teaching decision suggests that the teacher prioritises discussion and students’ 
expression of mathematical ideas. Group work offers its own opportunities and 
challenges, the exploration of which is beyond the scope of this paper.  

The register was taken, with students asked to respond to their name with the counting 
numbers (first student responding ‘one’, second student ‘two’, third student ‘three’, 
etc. They were also asked to give special answers according to two criteria. If their 
name’s position in the register was in the sequence 2n, they were to reply ‘buzz’. If 
their ‘number’ appeared in the sequence 3n + 1, they replied ‘fizz’. The answers of the 
first 8 students in the register are shown below, for illustration:

Student 1 2 3 4 5 6 7 8

Response ‘1’
‘buzz

’
‘3’

‘fizz
buzz’

5
‘buzz

’
‘fizz’

‘buzz
’

They then discussed how frequently a student would be both of these things. 
Reference was made by students to multiples of six.

In this segment of class discussion, the teacher speaks to and with the whole class 
about a selected phenomenon, and leads individual students to explore it verbally 
with the rest of the class. Segments such as these leave both teacher and observer 
unsure about the consequences of this ‘discussion’ for the majority of students who 
merely listen. Does one individual student’s expression of a generality support other 
students’ understanding? If a student does not follow the reasoning expressed by a 
fellow student, it is possible that this might put them at an affective disadvantage for 
the remainder of the lesson.  
The temptation in writing about the register activity is to share the full transcript of 
the discussion, so that the reader might have their attention directed towards 
particular areas of tension and possibility within it. Constraints of space necessarily 
restrict ‘thick’ descriptions, and in this case I believe exploration of this issue 
deserves separate attention elsewhere. I am also confident that the reader will be 
able to draw on their own experiences of such discussions. Such self-illustration 
might not be so easy for later issues, which are consequently described in more 
detail.

The teacher then introduced the main theme of the lesson.
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Teacher: We’re going to be looking at sequences today, ok, and in particular we’re 
going to be looking at picture sequences. It’s easy enough for most of us, 
especially if you’ve had somebody tell you how to do it, to work out nth
terms for things and work out what sequences should look like. What’s a 
much harder skill, that we love to develop in you, is to be able to look at 
pictures, and try to ascertain sequences from the pictures.  

Students were invited to work in their groups, and given around ten minutes, subject to 
what the teacher could see and hear happening in the groups. The teacher told them 
that he was very interested in what ideas they would come up with:

Teacher: I’d love you to feed back your ideas to me as I’m coming round as well, so, 
maybe, you know, as I’m approaching your table you can speak up that much 
louder or say one of your very good ideas, as a group, ok.

This teacher comment can be interpreted as contributing to a conjecturing atmosphere 
in which students’ ideas are considered to be worth listening to. The comment could 
also be interpreted as a behaviour management technique, with students not being 
trusted to talk about the task in their groups unless they thought they were to be 
‘checked up on’ by the teacher. It seems feasible that students, and the teacher, 
believe that the way they express their mathematical ideas to each other in groups 
should be different from the way they would express them to a teacher. It is possible 
that, for some students, this teacher comment leads to their attempting to clarify or 
formalise their expressions in preparation for explaining them to the teacher.

Most groups quickly began lively discussion, which generally appeared to be related 
to the task. One student in each group seemed to take on a ‘chairing’ role, reading out 
the questions and writing down the answers. The layout of the tables in squares 
appeared to make it difficult for some of the other group members to see.  

The questions on the sheet were as follows:

1. How many matchsticks are needed for each diagram?
2. Which matchsticks are added on each time?  
3. How many matchsticks are needed for the 50th diagram?
4. What is the rule for finding how many matchsticks are needed for the nth

diagram?
With the permission of one group, I left a recorder on their table. When listening to 
their discussion later, while they were deciding which matchsticks were ‘added on 
each time’, I was struck by how limited their descriptions were.

Student 1:  It’s these 
Student 2:  Just these, yes. 
Student 3:  I think it’s that one, that one and that one. Those three. 
Student 4:  I think its, 
Student 1:  No, I want that one. 
Student 3:  It’s that one, that one and that one. 
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The students seem to be relying on pointing to matchsticks, rather than describing 
them verbally. Given that some group members were finding it difficult to see the 
sheet, this seems restrictive and prone to misunderstanding. There was a contrast here 
with the teachers’ discussion during the INSET session, where they used expressions 
such as ‘the walls’, ‘the roof’ to make clear what they meant. This made me question 
the extent to which unambiguous communication was valued by the students. Perhaps 
they felt they benefited from ‘hedging’ their suggestions in this way (Rowland, 
2005), leaving them less exposed to criticism by their peers.  

After fifteen minutes of group work, several students came up to the board to describe 
their ‘way of seeing’.

In the last five minutes, the teacher invited the class to consider four expressions 
(taken from Mason, 2005: 57) that could be used to describe the number of matches in 
the nth pattern:

2 + (p – 1) + (1 + 2p + 1);  2 + (3p – 1) + 2;  4 + 3(p – 1) + 2;  3(p + 1) 

In their groups, they were asked to choose an expression and think about what ‘way of 
seeing’ it related to. Some groups drew the ‘nth’ house in stages using longer lines as 
groups of n matches, and shorter lines as individual match sticks.  

One group considered 2(2 + n) + (n – 1). Their work is shown in figure 2 below.

Figure 2

The first diagram, 2 + n, shows a line 
indicating n matches along the base of the 
house, with a single match on each side. 
In the second diagram, the expression is 
doubled, and written as 2(2 + n), and the 
diagram shows this doubling, with the 
addition of another line of n matches 
along the base of the roof, with a single 
match on each side. The third diagram 
shows the addition of (n – 1) to the 
expression, with the roof drawn on.

The students’ diagram does not seem to provide a convincing explanation for why the 
total length of the roof is n + 1. The line at the top of the roof (which has a length of n
– 1) is of ambiguous length in the diagram, only slightly longer than the single match 
and about half the length of the line used to denote n matches. This may be because 
this had already been discussed as a class, and was taken as a given.
When describing students’ discussion, or written work, there is an interpretive 
tension concerning the extent to which it is desirable to use language that the 
students did not use themselves. To do so might give the reader the impression that 
the students’ appreciation or use of algebraic notation is more accomplished than 
they offered evidence for in the observed lesson. It is important to clearly distinguish 
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between what the students actually wrote or said, and my own interpretation of the 
possible underlying generalisation.

The second way of directing attention towards the general rule, or locating the n,
proved even more popular: looping the sections corresponding to the variable. Asked 
to justify others’ rules, many groups worked on 3(p+1). One group’s work on this 
expression is shown in Figure 3. Thus, the first diagram has 3 groups of 2 looped, the 
second has 3 groups of 3, the third 3 groups of 4 and the fourth 3 groups of 5.

The difficulty here is giving the impression that 
all communication was successful. There is a 
tension in trying to give an accurate 
description of all that happened without 
offering every student’s work in full. Arguably, 
if the description is intended to show what is 
possible, it is acceptable to focus on the 
positive. This may, however, lead to readers 
developing unfeasible expectations that may 
lead to feelings of disillusionment, if they try 

the task with students themselves.
Figure 3
The ‘looping’ technique became confusing when students chose to use the same set 
of diagrams for all their general rules as shown on the right, below.  This illustrates 
the dual, potentially conflicting, roles of language (in this case the language of 
‘looping’) as both a way for individuals to work something out for themselves, and a 
tool for the communication of their findings to others.  
The inclusion of this diagram here results in the reader 
experiencing 50% successful and 50% unsuccessful examples 
of looping. A judgement needs to be made at this stage about 
students’ understanding, so that the description allows the 
reader to have some idea of how representative is each piece 
of work offered.
The looping technique enabled students to express and share their general 
understandings without the algebra, as shown by the work on the right, below.
The following two paragraphs offer alternative descriptions of what is shown by the 
students’ work in figure 4. In the first paragraph, I set out to describe only what 
could have been observed by the students. In the second paragraph, I intend to 
describe the work as clearly as possible to a reader with some background in 
algebra, and to indicate the generalities observable in the work. 
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Description 1 

The students’ work shows the first 
three houses with the roof and the 
main body of the house separately 
circled. They have recorded the 
number of matchsticks in each 
looped section. Underneath this it 
is written that the ‘10th thingy’ 
would have ’11 on top’ and ’22 on 
the bottom’. There is a large ‘33’ 
that appears to be their calculation 
of the total number of matchsticks 
used in the 10th diagram. 

Figure 4

Description 2 

In the students’ work, three diagrams have been drawn, resembling the 1st, 2nd and 3rd

diagrams (i.e. where n = 1, 2 and 3). The students here have indicated that the roof of the 
house consists of n + 1 matches, and the body of the house consists of twice this amount. 
They have circled the roof section, and written the corresponding value of n + 1, and circled 
the body of the house, writing the corresponding value of 2(n + 1). 

Again, in describing the students’ work, my attempt to create an ‘account of’ suffers 
from interpretative tensions. My desire to offer an adequate description of the lesson 
leaves me tempted merely to offer the students’ work with no explanation. As a 
reader, however, I know I gain more from the data by reading a description, or even 
analysis, of it, as it provides a structure around which I can build my own ‘story’. As 
long as I remain aware of the distinction between the two, there is a role for both 
‘account of’ and ‘accounting for’ here.
The objective of the students’ work is unclear during this section. As they have 
written ‘nth thingy’, it seems that at least part of the aim is to ‘write it as algebra’. 
What is less clear is what the ‘it’ might be in this situation. It is possible that, rather 
than the algebra providing a useful tool for the students to communicate ‘what is 
happening in general’, the goal of communicating has been superseded by the desire 
for correct use of algebraic notation, as a goal in itself. 

2 + (p – 1) + (1 + 2p + 1);  2 + (3p – 1) + 2;  4 + 3(p – 1) + 2;  3(p + 1) 

Not all groups were successful in explaining the different 
‘ways of seeing’ that had resulted in the four expressions. 
A student in one group wrote the comment on the right.  

The choice to include the student note above in my description illustrates that the 
tools offered for understanding the generality had not been successful for all 
students. It also enables me to point out that this was unusual – this was the least 
expressive and all other students achieved more.
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I felt that the students were confident and honest, working in a conjecturing 
atmosphere. The apparently willing acknowledgement of not being able to ‘do any’ 
suggests that the students did not feel constrained by pressure to succeed (Boaler, 
1997). It is also interesting to reflect upon what it was that the student who wrote this 
believed they were trying to ‘do’. It is quite possible that these students were aware of 
(and, perhaps, informally expressing to each other) patterns in these four expressions 
but took the view that their solutions were not what was required by the teacher.
CONCLUSION
A key noticing that appears to connect all the lesson segments described in the 
previous section, was that of why the generalities were being expressed, and for
whom. The role of language shifts during an activity, as the participant moves 
between talking for themselves and talking for others. It is important that teachers and 
students are aware of the purpose of their language use – on a spectrum between 
personal exploration and communication – and the relative merits of the different 
available registers (ordinary language, the mathematics register, algebraic notation, 
looping) to fulfil this objective. This need for students to be aware of the purpose of 
the activity they are carrying out has been previously emphasised (e.g. Pimm, 1987: 
34; Ainley, 1996: 406-7), and seems to hold a particular significance when 
considering the development of algebraic notation as a tool for expressing generality. 
Experienced mathematicians are aware of the advantages of using algebraic notation, 
in appropriate situations, both for developing new ideas, and for communicating 
those that have already surfaced. The wider study seeks to explore what teachers do 
to make students aware of algebra’s potential and use as a language for expressing 
generality.
This paper has also been concerned with the numerous interpretative tensions 
involved in writing ‘thick’ descriptions of lesson observations. I have shown how 
research might benefit from increased openness regarding the interpretations and 
choices made in data descriptions. I note tensions in describing a lesson vividly and 
convincingly without conveying value judgments about the effectiveness of the 
teaching and learning. I also question the extent to which it is appropriate or 
justifiable to use language to describe student work that the students might not 
themselves have used. The answers to such questions will vary according to the 
purpose of the research. By being open about the tensions I have experienced in 
describing observed lessons, I found myself making more considered and informed 
choices. Wolcott (1990) argues that ‘writing is thinking’, and points out the value of 
writing during the process of qualitative research. I would go further than this, and 
argue that writing about decisions made while writing is also of significant value. In 
this study, data description and data analysis were intrinsically linked. The act of 
carefully considering what to describe from the lesson, and how, and the resolution of 
tensions between telling ‘a lot about a little’ or ‘a little about a lot’, became a process 
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of analysis through which a meaning emerged from the lesson which contributed to 
my research questions.  
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SIGNS USED AS ALGEBRAIC TOOLS – A CASE STUDY 
Astrid Fischer

Universität Duisburg-Essen 
In mathematics signs play an important role both for gaining new knowledge and for 
communicating knowledge. In an empirical study students were asked to write short 
essays on the mathematical structure of the set of cosets of 5Z. Some essays displayed 
inventive ways of sign usage. One of these essays is discussed in this paper. The focus 
will be on the way the student uses signs for representing and communicating her 
ideas of Z/5Z. The analysis of the essay reveals hints that in the process of 
communicating her ideas these ideas are further shaped. 

INTRODUCTION: FOCUS OF THE PAPER 
How are abstract mathematical objects “learned”, i.e. mentally constructed or 
reconstructed by mathematical novices? Mathematical signs provide useful tools in 
this endeavour. This paper considers an example of a student struggling with the 
problem of adding sets of numbers as elements of Z/5Z. The focus is on the way she 
uses signs to present this addition in a short essay. An analysis of this essay discusses 
hypotheses on possible meanings she has in mind for the signs she uses.  
Sáenz-Ludlow & Presmeg (2006) ask if learners can be challenged to use signs in 
creative ways as tools to express their personal mental ideas of mathematical 
conceptions. The presented essay will be an example where a student does so.  
THEORETICAL FRAMEWORK 
Research on the epistemology of mathematical concepts both in the historical 
development and in the cognitive (re)construction of students many times is 
concerned with the use and meaning of representations. Cobb et al. (1997) propose 
the use of signs – either conventional or unconventional – as a didactical means to 
support the emergence of mathematical meaning with learners. They argue for an 
invention of signs which can serve two intentions: First, such a sign can be used as a 
model of a starting situation that is familiar to students. Second, as the learning 
process progresses, the sign can serve as a model for mathematical activity or 
mathematical objects on a higher level.  
The special role signs play in mathematics is partly due to some characteristics of 
mathematical objects. Sfard (2000) holds the view that mathematical objects have no 
“actual reality” but are of purely “virtual reality”. Yet they are treated by experts as if 
they were of actual reality. Sfard claims that the only possible access to a 
mathematical object is via representing signs which themselves are not identical with 
the object. She describes the following as one way for learners to mentally construct 
mathematical objects. They may start with signs introduced by teachers, regarding 
these signs as mathematical objects. The signs are treated according to certain given 
rules. After some time of using these signs learners will eventually change their 
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viewpoint and no longer regard these signs as objects themselves but as 
representations of virtual objects. This change is marked by a different behaviour and 
attitude. A hint for this change would be when a learner refers to two representations 
of the same mathematical object as the same. This happens when, for example, the 
graph of a function and the equation of the function are regarded as representing the 
same object, and statements on one of them are considered to correspond to 
statements on the other. 
Steinbring (2005), too, emphasises specific characteristics of mathematical objects. 
He claims that mathematical objects always are relations between other 
(mathematical or non mathematical) objects. He describes the way in which learners 
(re)construct a mathematical concept as follows. Signs that will later be representing 
the concept are used in contexts familiar to the learners. Within these contexts, the 
learners will develop the abstract relation the concept stands for. One difference 
between Steinbring and Sfard is the way they interpret the original meaning of signs 
for learners: Whereas Sfard assumes that the signs are treated as objects themselves 
with no referential meaning and meaning is developed by the way the signs are used, 
Steinbring postulates that signs are always interpreted with referential meanings, but 
the meanings are changed during the learning process. 
My own conviction is that learners or researchers in mathematics do not always use 
signs with referential meaning. In particular, I agree with Sfard that new abstract 
objects may be mentally constructed during a phase of getting used to certain rules on 
certain signs. However, I am also convinced that abstract mathematical objects can be 
constructed by using signs referentially within concrete contexts and changing 
referents in a process of abstracting general features from different contexts. Which 
path a learner will take may depend on his or her personal disposition as well as on 
the learning environment. 
In the second part of this paper the use of signs as means for constructing an abstract 
mathematical object in a student’s essay will be discussed, both in respect to 
meanings given to the used signs and to operations used on these signs. The analysis 
will neither postulate the position of Sfard nor of Steinbring but be opened both to 
sign usage purely according to given rules and to signs used as referring to 
mathematical objects.

RESEARCH METHODOLOGY 
Research plan
The aim of the research study was to find out about students’ strategies of 
constructing and representing the abstract mathematical objects “residue classes”. A 
sub point contributing to this concern seemed to be the way students use signs. In this 
paper I will discuss the use of formal mathematical signs in a student’s essay with the 
research question: 
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“How does the student use signs as tools for communicating and – possibly – thereby 
refining her ideas of residue classes?” 
The concept of the study was to construct a learning environment in which students 
would experience different characteristics of residue classes. After this a writing task 
was planed in which they were to elaborate on their ideas of residue classes.   
Proceedings
In their first weeks at university students of a linear algebra course worked in small 
discussion groups, in class, on problems leading to the construction of the group 
(Z/nZ,+). When needed they could ask the teacher for help. After each set of 
problems there was a presentation and discussion of the work done in the small 
groups. The first set of problems asked them to discuss the role of remainders in 
respect to division by 2 or by 3 or by another given natural number n when two 
natural numbers are added. In the next set of problems they had to consider 
operations on the set of the first n natural numbers conforming to their previous 
observations. In the third set of problems the whole numbers on the number line were 
coloured with four different colours, where each fourth number got the same colour. 
The numbers of the same colour were combined in one set and an addition was 
defined on these sets. In the last set of problems they were asked to discuss a formal 
definition of cosets of 4Z –  defined as “classes of congruencies modulo n” – and the 
group (Z/4Z,+). They also had to compare the three different ways of constructing a 
cyclic group of n elements. In class, different types of signs for denoting residue 
classes were used. These were signs like 1, 1+4Z, and in the third set of problems 
these were the names of colours and descriptions like {4z+1|z�Z}.
After about four weeks the students had worked through these problems. Until now 
no data had been collected. In the following lesson the students were given the 
writing task for the empirical study. In this investigation 39 students in two classes 
took part. They were asked to take 20-25 minutes time in class for writing the essays 
and they delivered answers of a length between a few signs and two handwritten 
pages. They were given the task: 

The following table is meant to illustrate the set of classes of congruencies modulo five. 
Explain in a short essay. Consider: 

 - elements 

 - addition 

 - connection with Z 
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Before we discuss one of the essays let us have a look at the task and some possible 
answers. The general ideas of these answers are found in various ways in the 
responses of the students. 
Discussion of solutions 
The task asks for an interpretation of the table as representing Z/5Z, the set of residue 
classes modulo five [1]. We find the five elements of this set represented by the 
columns. In numerating the elements of the residue classes, the table emphasises the 
perception that the elements of Z/5Z are sets, not numbers. A solution of the task 
could be: The columns represent the five elements of Z/5Z. Each of these elements is 
a subset of Z. Addition of two columns (i.e. residue classes) is done by the following 
procedure: Choose an arbitrary number in each of the two columns. Add these two 
numbers. Find the column in which the sum of the two numbers lies. This column is 
the sum of the two original columns. The resulting column is independent of the 
choice of the two numbers, because they are unique except for multiples of five and 
adding a multiple of five to any number will not change the column. 
If a student has not yet mentally constructed the abstract idea of sets being 
mathematical objects that can be elements of a set and can be added, he or she may 
find an interpretation of the table by focussing on the remainders: The table arranges 
all numbers with a common remainder modulo five in one column. This column 
represents the remainder (named in the third line of the table). We add the remainders 
and calculate the remainder of the sum.
A third interpretation may focus on the whole numbers: The table represents the set Z 
of the whole numbers. They are arranged in the following way: In each of the five 
columns we find the numbers with a common remainder when divided by five. If you 
add two numbers their sum will always be in the same column as the sum of their 
remainders.  
The task to interpret the table and relate it to Z/5Z asks for assignment of meaning of 
the components of the table. Thus, it does not encourage a treatment of signs without 
referential meaning. However, answers may take this viewpoint in illustrating the 
rules of addition in Z/5Z with some signs without committing themselves to referents, 
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i.e. without a definite decision if the signs used for this illustration refer to numbers, 
remainders, subsets of Z, or if they are mathematical objects in their own right 
without referent.
Among the 39 essays there were only 9 interpreting the table as an illustration of  
Z/5Z as a set of residue classes. Most essays were not clear on the referents of their 
signs or were concentrating on the whole numbers and residues or residue classes as 
instruments of classifying whole numbers. Some of them seemed to be on the verge 
of viewing residue classes as abstract mathematical objects. These are of special 
interest in respect to the research question, because the essays may give some hints 
on the cognitive conflicts connected with this change of perception and attempts to 
overcome them. One of these is Maria’s [2] essay.

MARIA’S ESSAY 
Maria wrote the following [3]: 

“The set of classes of congruencies modulo five (Z/5Z) can be subdivided in 5 classes. 
In the following way all elements of Z can be assigned to these classes: 

 Group 1: 5x 

 Group 2: 5x+1 

 Group 3: 5x+2 

 Group 4: 5x+3 

 Group 5: 5x+4 

By this arrangement all elements of Z are included and grouped.

The classes of congruencies can also be composed. In the addition of two elements of 
(Z/5Z) you add only the “remainders” and assign the new remainder to one of the groups. 
Example: (5x+2)+(5x+3)=5x+5=5x, therefore the result of the addition of elements of 
group 2 and 3 is in group 1.” 

An analysis of the essay 
In her first sentence Maria treats Z/5Z in a way appropriate for Z. Does she identify 
the two sets? In her following subdivision she obviously makes a difference between 
the two: The residue classes each contain certain whole numbers, which she refers to 
by formal notation. I suppose that “5x” in her table is meant as a description of the 
multiples of five. She does not define “x”. It may stand for one whole number or for 
any whole number. Since she introduces her subdivision of Z by saying that all
elements of Z are put in one of the classes, it is more likely that she is thinking of x as 
any whole number [4]. In this case the numbers in her five “groups” are identical with 
the five columns of the given table. It should be remarked that the five subsets which 
Maria calls “groups” are not numbered according to the remainder of their elements 
(modulo five), but from 1 to 5.  
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Now Maria announces the composition of two residue classes. She then explains how 
this addition can be carried out: Only the remainders are added and the remainder of 
their sum is assigned to one of the “groups”. She puts the word “remainder” in 
quotation marks. This may indicate: she does not regard residue classes as numbers 
and wants to remark that they do not have remainders in the strict sense. Besides the 
numbering of the “groups” this is a second hint that she does not identify the residue 
classes with remainders. 
Maria demonstrates the addition with an example: She adds the formal terms “5x+2” 
and “5x+3” which she has used before for description of the numbers in “groups” 3 
and 4 respectively. Why does she use these signs? Does she refer to something by this 
notation, and to what?

(a) If Maria means x to be any whole number as I have supposed before, then 
5x+3 denotes the number following 5x+2. She reduces this sum: 
(5x+2)+(5x+3)=5x+5=5x in a surprising way. According to conventional 
use of these signs we would have (5x+2)+(5x+3)=10x+5 and 5x+5=5(x+1). 
It is not likely that Maria thinks that she conforms to the common rules, i.e. 
that 5x+5 is equal to 5x in usual terms. Rather, there seems to be a scheme 
leading her to make these “mistakes”: She wants to express some idea with 
this notation concerning something different from whole numbers.  

(b)Perhaps this idea is not specified enough for her to be clear about the 
meaning of her signs. It may be that she simply wants to demonstrate the 
rules valid in this setting concerning “remainders”.  

(c) If “5x” is meant for “a multiple of five” then “5x+2” would be “two more 
than a multiple of five” and “5x+3” would be “three more than a multiple of 
five”. Then the equation can be translated: “The sum of a number that is 
two greater than a multiple of five and a number that is three greater than a 
multiple of five is a number that is five greater than a multiple of five, and 
this is a multiple of five.” 

(d) If we let Maria’s explanation on addition guide our interpretation, we find 
that she means to add residue classes. Then the first summand “5x+2” 
denotes what she has named “group 3”. She says that only the remainders 
are added, and this is what she does: She adds 2 and 3 – the numbers 
carrying the characteristic information – and copies the term “5x”. In the 
next step she assigns one of her “groups” to the result: 2+3=5 has the 
remainder 0, so the resulting group is “5x”.  

Maria’s final conclusion is concerned with the addition of numbers: If you add a 
number of “group” 2 and one of “group” 3 [5], then you get a number of “group” 1. 
In this interpretation of her own formal notation she no longer speaks of addition of 
residue classes, but of numbers. This again implies that her summands are meant as 
numbers like in the interpretations (a) and (c).  
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It seems that an interpretation that complies with the complete essay would have to 
take into account a change in meaning, possibly also an unspecified use according to 
the rules of addition valid within the context “remainders”. The following table gives 
an overview of possible referential or nonreferential use of “5x+2” in the course of 
her writing. The different referents are labelled with R1, R2, and R3, nonreferential 
use with nR: 

Activities of Maria: Two possible developments of meanings of  5x+2: 
(i) Writing down the 

table, which is 
giving account of 
the arrangement of 
the whole numbers 
in five subdivisions

R1
any or all whole numbers 
with remainder 2 

R1
any or all whole numbers 
with remainder 2 

(ii) Interpreting the 
table, in which 5x+2 
appears quasi as a 
formal term for the 
“group” 3 

R2
the residue class of 
“group” 3 

R3 or nR 
something unspecified 
that is associated with 
remainder 2 or is to be 
treated as remainder 2 

(iii) Starting with the 
example for addition 
of residue classes 

R2
the residue class of 
“group” 3 

R2
the residue class of 
“group” 3 

(iv) Manipulating the 
formal terms, 
ignoring
conventional usage 
for number variables 

R2
the residue class of 
“group” 3 

R3 or  nR 
anything  unspecified that 
is associated with 
remainder 2 or something 
that is to be treated as 
remainder 2 

(v) Interpreting the 
result of the 
manipulation 

R1
any whole number with 
remainder 2 

R1
any whole number with 
remainder 2 

Maria assigns meanings to her signs by announcing her intentions. But we see that 
the assignments are not consistent. Eventually, she either acts according to different 
meanings or according to rules associated with her signs without thinking of objects 
her signs refer to. We have at least two changes in the meaning of “5x+2”: from R1 to 
R2 and back. They may be induced by associations with the configuration of the 
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written signs. In both cases the missing of a declaration of the meaning of this 
algebraic term makes a reinterpretation possible.  
According to the interpretation given by the second column of the table, Maria’s 
behaviour conforms to the Steinbring’s postulation of signs always having referential 
meaning. If we follow the interpretation in the third column of the table, Maria’s 
operating with the term “5x+2” in step (iv) signals a sign usage, where she does not 
consider ontological characteristics of the object “5x+2” or its referents but where she 
simply follows the rules valid in an environment where only the remainders of 
numbers are of interest. This would be a sign usage as described by Sfard (2000). 
However, different from Sfard’s description, this sign usage does not mark the 
beginning of Maria’s considerations. Instead, she is slipping into this attitude in 
between attempts of assigning referential meaning to “5x+2”.       
Maria’s cognitive representation seems to be a step ahead of her ability to 
communicate it. We see that she has an understanding of residue classes that goes 
beyond the idea of classifying whole numbers. She is trying to demonstrate an 
addition defined on residue classes. She is acquainted with all components necessary 
for carrying out the process of addition: Picking elements of each summand, adding 
only the remainders, choosing the correct residue class. Her personal, unconventional 
way of sign usage offers inventive opportunities to express her ideas of character and 
treatment of residue classes. Thus she is able to make use of the general idea that the 
treatment of the classes is derived from the rules of operating with the numbers. The 
same is true for the general idea of the class being a way of identifying and 
representing numbers with a common remainder. The problem Maria is facing is how 
to state – or grasp – her ideas more precisely. Instead of naming the residue classes 
by signs, distinguishing them from numbers, she uses each sign for several alternative 
meanings: the class as set of all numbers fitting the description, one particular number 
fitting the description, and any number fitting the description. She does not discuss 
questions like: What names do I choose for my different objects? What objects do my 
different notations refer to? And, as a consequence, what rules for operating with 
these signs are valid? Maria’s use of formal signs gives her a great flexibility. She is 
actually able to denote the addition of two classes. However, in the end, Maria is 
trapped by her inconsistency in reference of her signs: In her final interpretation of 
her equations she does not hold on to her achievement but goes back to the idea of 
having added numbers. Yet perhaps this (probably unconscious) strategy of changing 
interpretations of signs – taking steps towards new abstract objects and retreating to 
the safer ground of familiar objects – is a helpful strategy in collecting experiences 
with the new objects, getting used to them, and constructing mental representations of 
them. Similar strategies are displayed in the concept of the “chain of signification” in 
Cobb et al. (1997). For Maria a sign like “5x+2” has double (or even multiple) 
functions. On the one hand it can be described as a model of the numbers with 
common remainder two (modulo five), as it concentrates on their common 
characteristics both in numerical features and in the way they are operated upon. On 
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the other hand it is a model for the residue class of two, as it is used to subsume the 
idea of combining the all numbers with remainder two and to treat this consumption 
as an object of calculating. Thus it serves as a step in between two levels of 
abstraction.

CONCLUSION
The example presented in this paper shows a flexible and creative way in which a 
student uses formal mathematical signs for communicating and possibly constructing 
or advancing her mathematical ideas. In spite of her mistakes, her way of dealing 
with the subject shows a great deal of consideration and meaningful action that seems 
to be helpful in the process of mentally constructing the abstract objects. How can 
teaching support students to use signs in such a creative way? Further investigations 
on students’ potentials of using signs as tools for representing and developing their 
ideas should be done. These could help us to design applicable learning 
environments.   

NOTES
1. In class these three names “Z/nZ”, “set of congruencies classes modulo n”, and “set of residue classes” had 

been used synonymously. 

2. The name has been changed. 

3. This is a translation of the original essay, which is written in German. It is published in Fischer (2006). 

4. She may also think of x as a variable running through the whole numbers subsequently. Then, too, 5x covers 
all multiples of five. 

5. She makes a mistake in the numbers of these groups.  
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PROBLEMS OF A LINEAR KIND: FROM VALLEJO TO 
PEACOCK1

Gómez Alfonso, Bernardo
Departamento de Didáctica de las Matemáticas. Universidad de Valencia, Spain. 

This work is concerned with epistemological conceptions linked to a historical and 
pedagogical alternatives and approximations in the evolution of teaching of algebra, 
with respect to the solving of linear problems through algebraic method. 
Same of these alternatives are epitomized into two books published at about the same 
time: Vallejo’s Treatise (1812-1841) and Peacock’s Arithmetical Algebra (1830-
1842). We analyze the proposal for teaching these problems reflected in the first book 
(Vallejo’s), taking into account the historical and cultural background in which it 
appeared, and then, we contrast this with the proposal for teaching these problems 
that appears in the second (Peacock’s). 
 Such analyses shed light on pedagogical approaches, which helps us understand the 
historical roots of the organization of elementary school teaching of algebra, with 
relation to this topic. 

AIM AND METHOD 
For a very long time mathematicians have solved a great variety of problems whose 
common unifying nexus is the theme of linearity. Also, secondary school students 
advancing from arithmetic to algebra find a wide variety of problems of this kind, 
with differing teaching focuses, and alternative algebraic and arithmetic methods for 
solving them. 
It is believed that the solution of these problems is elementary and has already been 
dealt with. However, when studied in depth, it can be seen that in the same way that 
there is not only one way of solving a linear problem, neither is there only one way of 
teaching it. The idea of linearity can be treated from different perspectives: through 
proportionality, through first-degree equations, and through linear functioni. These 
three foci correspond to epistemological conceptions linked to a variety of historical 
and pedagogical alternatives and approximations that reveal the wealth of 
mathematical thought lying behind such an apparently simple topic. 
The historical change from one conception to another caused changes with 
repercussions in teaching them. One of these occurred on substituting arithmetic 
methods for algebraic ones to teach and solve linear problems. Another had to do 

                                          
1 This research was supported in part by a grant from the Spanish MEC.. Ref.: SEJ2005-06697/EDUC. 
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with the way of organizing these in textbooks. These changes in focus, in textbooks 
in the first half of the 19th century, are epitomized in the treatises of Vallejo and 
Peacock. The former is a key piece of work, due to its influence, for studying the 
incidence of these changes in mathematical teaching in Spain, and represents a 
traditional textbook. The latter represents a forefront textbook, an Arithmetic 
Algebra, this being a bridge between arithmetic and symbolic algebra. 
The main goal of this research was to analyze the pedagogical approaches for 
teaching and solving linear problems, as reflected in Vallejo’s Treatise (1821, third 
edition). For this analysis two main features have been considered: a) the conceptions 
reflected in Vallejo’s text with respect to mathematical concepts linked to algebra, 
and the way of classifying/organizing/solving the problems of first degree equations; 
b) its relation to the historical and cultural background in which it appeared, and the 
proposal for teaching the first degree equations problems that appear in Peacock’s 
Arithmetic Algebra (1845). 

THE TREATISES OF VALLEJO AND PEACOCK IN THEIR HISTORICAL 
CONTEXT
At the moment in history when the Treatises of Vallejo and Peacock appeared, an 
algebra concentrating on finding solutions to equations was giving way to an algebra 
aimed at studying the conditions necessary for these solutions to exist. Arithmetic 
began to take on the kinds of approach typical modern or structural of algebra, such 
as the horizontal language of equalities and parentheses. At the same time the school 
system began to be reorganized itself into a general, centralized, state system of 
education.
The Elementary Treatise of Mathematics by José Mariano Vallejo (1779 - 1846) was 
first published in 1813. Written in 5 volumes, it underwent four re-editions, the last 
being published in 1841 after Vallejo’s travels round Europe, for political reasons, 
which served to give him knowledge with which to broaden and perfect his work. In 
this period, interest in the study of mathematics in Spain was found not so much in 
civil society as in military institutions. Although the mathematicians who gave 
classes in them did not bring anything new to mathematics in itself, one could say 
that they did add to the teaching of it in that they updated mathematics textbooks, 
thus renewing the Spanish mathematics bibliography. These authors produced 
encyclopedic works in which they presented mathematical advances of the 18th 
century which had not yet been published or widespread. They did this with two aims 
in mind: to give a general view of mathematics, and to be used as textbooks for 
official institutions. In these works they synthesized and adapted previous prestigious 
authors, taking care to produce a strict, intrinsically coherent presentation of ideas 
that, together with a good job done in reproducing them, made them invaluable and 
popular.
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Vallejo’s text on algebra appeared at a transitional moment in the history of 19th 
century mathematics when steps were being taken towards a general theory of 
algebra, or an abstract algebra, whose interests lay more in algebraic structures 
(groups, rings...) than in the theory of equations. These steps were directed at finding 
and stating the conditions under which solutions to a specific equation or system of 
equations exist, rather than determining what those solutions are. It seems that this 
change of direction was influenced by the demonstration that in general no algebraic 
method exists to demonstrate a fifth degree equation, though Vallejo made a great 
effort to find one, eventually even believing that he had managed to do so. 
Arithmetical Algebra, as Peacock called it, forms part of A Treatise on Algebra in its 
two versions of both 1830 and 1842. This work announces the existence of two 
different bodies of algebra, “Arithmetical Algebra” and “Symbolical Algebra”. In the 
second version of his Treatise Peacock dedicated a volume to each one of these two 
domains. While Peacock may be considered the driving force behind the birth of 
current-day Modern Algebra, the most interesting side of him with respect to this 
study is that of a 19th century author concerned with teaching algebra to students, and 
in this sense one can take his Arithmetical Algebra (Gallardo y Torres, 2005). On 
reading this (chapter V, “On solving equations”) one finds elements of analysis with 
respect to the way of organizing the teaching of that part of algebra dedicated to 
solving problems modeled on first-degree equations. 

THE CONCEPTIONS REFLECTED IN VALLAJO TEXTBOOKS WITH 
RESPECT TO MATHEMATICAL CONCEPTS LINKED TO ALGEBRA

Vallejo’s textbooks organized the algebra into two parts. In the first, one learns the 
syntax of algebra; and, in the second, one learns how to use this calculating system to 
solve problems, by means of equations.

In the first part, we find an explanation of what means a negative solution in an 
algebraic problem, where the epistemological conception of that period in time are 
reflected. Vallejo states that although negative it is a correct solution algebraically 
speaking, it represents a mistake in the original problem statement, because the 
difference between two numbers must always be less than the greater of the two. “So 
that if we wish the result to be in positive numbers we must vary the way of working 
out the problem” (op. cit., p. 251). In stating that the difference between two numbers 
must be less than the greater of the two, he is not saying anything unusual in the 
context of the concept of numbers in his time. At that time, a pair formed by a 
number with its sign was not considered anything more than an adjectival quantity, 
and when this quantity’s adjective meant “opposite” it was called a negative quantity 
which, considered on its own, meant nothing more than the answer to an opposite 
question or the objective contrary to that for which the calculation was performed. 
Specifically, he speaks of negative quantities and not negative numbers, the former 
being algebraic quantities which arise from algebra and which have not been needed 
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in arithmetic because, there, in solving problems “everything is substituted by words” 
(op. cit., p. 173). On the other hand, on stating that the solution 	6 represents a 
mistake in the definition of the problem, he is echoing the idea that D’Alembert 
expressed in the article “Negatif”, which appeared in Diderot’s Enciclopedia.
In the second part of the algebra, Vallejo tries to teach how to solve problems by 
means of what is called “analysis”. Throughout the text Vallejo unveils what 
“analysis” is for him, following steps in this order:  

Assume that we know that which we are trying to discover in order to find it afterwards. 
Express the quantities in letters, such that the known values are distinguished from the 
unknowns. To express through equations the conditions that must be met by the 
aforementioned quantities. This is called “stating the problem”. Determine what known 
quantities are equal to the unknowns, by means of operations that are performed to leave 
just one member remaining. This is what is known as “clearing away the unknowns”. 
Translate the formula obtained by clearing away unknowns into ordinary language, so as 
to obtain the practical rule that can be applied to all similar problems.

These steps expressed the logic that underlies the Cartesian Method. The main 
features, as Puig y Rojano (2004) have pointed out, are the actions of analysing the 
statement of the problem and translating it into equations which express, in algebraic 
language, the relations among quantities. 
In Vallejo’s opinion, there are no general rules for stating problems, since this 
depends on the talent of the calculator (op. cit, p. 230), such that his only advice is to 
ensure a diligent translation from ordinary language to algebraic language. There are 
two ways to formulate equations from verbal data: either by direct translation of the 
key words to symbols or by trying to express the meaning of the problem. These 
ways are referred to in current literature as syntactic or semantic translation
respectively (MacGregor & Stacey, 1993). Vallejo showed his preference for the 
former, agreeing with Newtonii, and the more frequently used method for formulating 
equations. Here, he coincides with Peacock but this author goes further in his 
suggestions:

In some case the conditions may be symbolized in the order in which they present 
themselves in the problem, by an immediate translation of ordinary into symbolical 
language; in others they will be involved in such a manner that the discovery of their 
relation and succession and their consequent symbolical expression will present 
difficulties, which can only be overcome by close attention and a clear insight into the 
relations of the numbers and magnitudes which they involve; for such cases general rules 
are nearly useless, and the student must trust to the diligent and patient study and analysis 
of examples alone for the acquisition of those habits of mind which will guide his course 
in their symbolical enunciation (op. cit., p. 250). 

In this second part of the algebra, also we find a notion of equation and an algebraic 
concept of variable. 
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Equation was related to the comparison of quantities, which in turn was related to 
relations of equality and inequality. Comparison by equality led to the idea of the 
equation, and comparison by inequality to the idea of reason. Through this concept, 
the equation was seen as a way of thinking that need not be restricted to algebra, 
since an arithmetic equality such as “1+1=2” was an equation as was the algebraic 
equality “ax+b=c” (Brooks, 1880, p. 194). And need not be a conditioned equality, 
which is only verified by certain values – the roots of the equation -, since it includes 
when the two expressions, connected by the sign “=” are identical or are reducible to 
identity, such x=x, x+5=x+5, … , 3x+4x=7x. Vallejo adopted this broad concept of 
the equation although he was aware of (and also explicitly noted in a footnote) the 
more restricted position of other contemporary authors who differentiated between 
equation and equality (the expression of two quantities separated by an equals sign). 
The restricted definition of equation to a conditioned equality, is the one that finally 
prevailed in school textbooks but, as happens all too often in such books, no 
justification was given as to why one position should be justified and not another. 
Although in general the notion of an unknown refers to an unknown number, it can 
also refer to a variable. This happens when, on defining the problem, indeterminate 
equations are obtained – those that have fewer equations than unknowns. This is 
because when we have, for example, “an equation such as: ax + bz = c, there is no 
other way of finding any of the unknowns x, z than giving values to the other; and 
since for each value given to z, for example, a different one will appear for x, it is 
deduced that in an equation of this kind the quantities indicated by the last letters of 
the alphabet are called variables, because within the same problem there may be as 
many values as one likes; and those that are indicated by the first letters are called 
constants because they can have only one value” (op. cit., p. 375). 

CLASSIFYING/ORGANIZING THE PROBLEMS TO BE TAUGHT 
It is reasonable to suppose that Vallejo aimed to encourage the acquisition of habits 
that guide the students in stating the problems that lead to equations, and help in 
familiarizing them with their rules to clear away unknowns. To illustrate these 
principles and tips, and to familiarize the student with their use, Vallejo sets out and 
solves a collection of problems. However, in the text there are no comments to help 
deduce the criteria he followed in their choice and sequence, other than putting them 
under three different headings, interwoven among others, whose titles are:  

On algebraic analysis and the resolution of first-degree equations. On the rule of three 
and others that depend on it, such as exchange, fellowship, alligation, false position, etc. 
On indeterminate first-degree equations. 

Note that Vallejo showed his preference for the ancient practices to classify problems 
according to certain characteristics related to the context, or method. Whereas 
Peacock classifies the problems choosing a particularly pertinent point of view, 
according to whether they involve one or more unknowns and the relations between 

Working Group 6

CERME 5 (2007) 886



them: 
We shall now proceed to the consideration of the general rules for the symbolical 
enunciation of problems, in which the unknown number or numbers are more or less 
involved in the conditions which are required for their determination, and it will tend to 
facilitate this enquiry if we classify, very generally, the problems which present 
themselves for solution, with reference to the unknown number or numbers which they 
severally involve (op. cit., p. 249). 

Along these lines, he says:
There are three great classes of such problems to be considered 
First Class. Problems which involve one unknown number only, which is throughout the 
subject of the conditions proposed.
Second Class. Problems which involve two or more unknown numbers, which are so 
related to each other by the conditions of the problem as to be expressed or immediately 
expressible in terms of one of them only. 
Third Class. Problems which involve two or more unknown numbers which are 
immediately expressible in terms of one of them, but require to be denoted by distinct 
symbols” (op. cit., p. 249). 

This classification, of problems, implied a change of perspective with other systems 
for classifying problems, according to their method of solutioniii, given that in many 
cases there is no single method of solving the same linear problem; or according to 
certain characteristics of the statement of the problem related to the contextiv, given 
that problems of a different appearance can have the same structure and methods of 
solution.
It is clear that some of these were soon displaced by the method of equations, but the 
way of organizing problems would resist Peacock’s proposed change, despite its 
advantages in methodological clarity and generality, the preference being for the 
traditional teaching of collections of methods and “curious” problems with no 
apparent unifying nexus. In any case, the generalization of algebraic method was to 
bring with it the loss of arithmetic methods based on the study of numerical relations, 
methods eclipsed by the dominant idea that it was enough to study only one method 
and this should obviously be the best one. And this was the algebraic one, since it 
was the most general. 

SPECIFICS PROBLEMS OF FIRST DEGREE EQUATIONS
Under the heading dedicated to “solving first-degree equations” Vallejo sets out 18 
problems. The order in which they are presented does not follow a flow in keeping 
with Peacock’s three classes; they appear to be shuffled up. It seems clear that Vallejo 
uses other criteria to organize them. Nor is there a criterion for distributing the 
problems according to an increasing level of difficulty with respect to the data (whole 
numbers, fractions), the complexity of the problem’s conditions, or the operations or 
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extensions to the rules for clearing away unknowns. Rather, it seems that he wants to 
attend to some of the elements that constitute the analytical spirit.
In the first one, a Diophantus problem: “To divide a proposed number into two parts 
whose interval or difference is given”, Vallejo introduce and shows how algebra is a 
language which enables us to move towards generality by means of literal 
representations and the quantities involved, and how it helps create statements of 
general rules and formulae for solving families of problems. In the second problem, 
an abaci problemv expressed verbally, with almost nothing else than numbers and 
abstract relationships of quantities, he carefully explains the syntactic translation 
process to algebraic symbols. The third problem is an example in which we need to 
designate all the conditions of a given problem by an equal number of equations. The 
four following problems show the special interest of Vallejo in enigmatic problem 
statementsvi, where the difficulty seems to lie more in the language distracters present 
in the text. The last nine problems are supplementary or for revision. Most of them 
are problem statements that can be found in texts by contemporary or previous 
authors, all involving one unknown number only.  
Peacock distinguishes two cases of these classes of problems. In one, the conditions 
can be symbolized in the same order in which they appear in the problem by means of 
immediate translation from ordinary to symbolic language. In the other, the 
conditions are so mixed up that it is difficult to discover their relationships and how 
they succeed one another, and consequently it is also difficult to define them 
symbolically. Vallejo presents problems of both kinds, without paying much attention 
to this fact. On the other hand, he stresses the importance of a diligent syntactic 
translation, and thus shows in the first problems how he substitutes expressions from 
symbolic language to algebraic language. Among these problems we can highlight 
one of “God Greet You Problem”vii, another of “people who buy one thing 
together”viii - both linked traditionally to the rules of false position; and two more 
with travelers which correspond to the cases: - “they go to meet another”, and “they 
go after another to catch up”. 

SPECIFICS METHODS TO SOLVE PROBLEMS OF FIRST DEGREE 
EQUATIONS REFLECTED IN VALLEJO’S TREATISE 

The algebraic method enables one to define and resolve rule of three problems in a 
different way from the traditional one based on the old theory of reason and 
proportion. To do this, one only has to set about solving the problems of 
proportionality considering the reasons as fractions and the proportion as an equation. 
This is what Vallejo does, without abandoning the old theory, to which he dedicates 
two sections within the algebra, before the rule of three. These sections are: “On 
reasons and proportions”, and “On the transformations that can appear in a proportion 
while maintaining the existence of the proportion, which is how the analysis was 
performed in ancient times”. Here, as well as the standard problems, Vallejo includes 
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a problem of “cisterns” and one of “clocks”. He solves the former through algebraic 
method and the latter with proportions.  
The “faucets filling a cistern” can be seen as an example of “Co-operative work 
problems” that were very popular in texts of the ancient and medieval world 
(Kangshen, et al, 1999, p. 338).

There were two types of such problems: (i) The days required to complete a task by A or 
B (or more than two) is known and one is asked to find the days required to complete the 
task by A and B (or more than two) together. (ii) ) The number of task of type A or of 
another task of type b (or more than two task) that one individual can complete in a day 
is known, and it is asked to find the number of sets of task (containing one each of types 
A and B, etc.) that one individual can complete in a day (Kangshen, et al, 1999, p. 337).

The solution of the first type of problems is obtained through comparison with unity 
in two ways by using unitary fractions or the minimum common multiple. In the 
former case, the method taken up by Vallejo, one must consider two parts, and in 
both a reduction is made to unity: first, the amount of the tank filled in one hour or 
day is calculated; then knowing this one can calculate how much time it takes to fill a 
complete tank. In both parts a rule of three is usedix. The other case also has two 
parts. First the minimum common multiple is calculated to find the effect of the taps 
together. Knowing this, a reduction is made to unity as beforex.
In the “clock” problemxi, Vallejo does not strictly use the algebraic method, but the 
one of proportions. This deals with finding at what time the minute hand is above the 
hour hand, starting from a given time of day. To solve this, he establishes the 
relationship between the distance covered by the hour hand, x, and that covered by 
the minute hand, a+x. Then he establishes the proportion at the moment they 
coincide: 12 : 1 :: a+x : x., reducing through the properties of the proportions and 
clearing away algebraically, x=a/11. The problem is similar to that of two travelers 
that reach each other, which has been solved in a previous section, but Vallejo makes 
no mention of this similarity. Moreover, the method for solving the problem is not 
strictly algebraic.
Of the three problems that Vallejo solves with the two rules of false position, the first 
one is of two deficits, while the second and third have one deficit and one excess, and 
so they are similar. One of these problems is a repetition of another that he already 
solved by algebraic methods in a previous sectionxii.
Thus, one may conclude that once again his criteria for choosing the problems is 
nearer that of the ancient practices, as have been commented before. Also one might 
think that he separates the problems of syntactic translation from the problems that 
are not of this type, when the circumstances of the stated question (or problem) 
appear unsuitable to be translated directly.

SYNTHESIS AND CONCLUDING REMARKS 
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Generally speaking, we have seen a conception of the teaching of elementary algebra, 
reflected in a Spanish textbook that was used as a reference in the first half of the 19th

century. The way in which this conception is manifested in questions solved with 
first-degree equations is contrasted with Peacock’s proposal.
Both positions show an interest in pointing out that the general method, the algebraic 
one, is the best method. But, one way of teaching this topic is to present a collection 
of apparently arbitrary, but traditional problems, that have more or less interest from 
the point of view of developing analytical skills, and to organize them in agreement 
with this. (e.g. distinguishing those that have syntactic translation into algebraic terms 
from those that do not); without abandoning the ancient practices (Specifics problems 
and methods). As opposed to this, there is an organization of the questions following 
a precise, well-defined classification according to the number of unknowns and the 
relations between them.
In addition, we can look into technical and pedagogical guidelines, sometimes 
underlying in Newton’s tradition, for the teaching process of analysing and solving 
linear problems. Vallejo, especially offers us points of discussion and ideas quite 
enlightening related to: The negative solutions when problems are solved by means of 
equations, the notion of equation and its relation with identity, the notion of variables 
in algebra and its relation with the unknown quantities, examples of the process of 
syntactic translation to write equations, the idea of algebra and its relations with 
equations, letters and unknowns (involves only activity with). 
The challenge now is to deduce how these positions and guidelines have been 
incorporated into subsequent texts, in order to try to understand the roots of the 
present curriculum. In future, it will be necessary to evaluate how general methods fit 
in with specific personal ones, and how the powerful tool of algebra sits with the 
legacy of arithmetic, in relation to new approaches and aims in the teaching of current 
mathematics. 
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i From a historical point of view, functions are not formally a part of algebra. So we shall not tackle here. 
ii “for the solution of questions whose preoccupation is merely with numbers, or the abstract relationships of quantities, 
almost nothing else is required than that a translation be made from the particular verbal language in which the problem 
is propounded into one (If I may cal it so) which is algebraic; that is, into characters which are fit to symbolize our 
concepts regarding the relationships of quantities” (Newton, “Newton’s Lectures on Algebra during 1673-1683”. 
Whiteside “The Mathematical Papers of Newton”, Ed. D. T. Whiteside. Cambridge. Cambridge University Press. 1972. 
Vol. V. p. 133).  
iii reduction to unity, simple and compound rule of three, rules of false position, rules of per cent, of interest, discount, 
alligation, proportional sharing and fellowship, bartering and exchange
iv travelers that split up to meet each other later, taps or cisterns that fill up or empty, clocks that go fast or clock hands 
that coincide, co-operative jobs, …
v “There is asked a such number, which if to the quintuple of the number are added seven times the twelfth part of the 
same number, and take from of all 17 units, turns out to be 17 added to 203 units” (Vallejo, op. cit., p. 242). 
vi “On being asked how old Alexander the Great was, Artemidoro the philosopher gave the following reply, according 
to the bishop Caramuel: 

On asking Diodoro 
Ambassador of the Prince of Egypt  
The Age of the undefeated Macedonian, 
Artemidoro 
Answered him ingeniously 
Two years more has the bellicose  

King than his comrade 
Efestion, whose father 
Four years more than the two he counted, 
And the father of Alexander 
When ninety six journeys of Apollo 
Were all the years these three counted”. (p.244). 

vii God greet you with you 100 scholars! We are not 100 scholars but our number and the number again and its half and 
its fourth are 100. How many are we? (Kangshen et al., 1999, p. 161). 
viii x people buy an item costing y coins. If each one pays a1, there is an excess of c1; if each one pays a2 there is a deficit 
of c2.
ix One task completed by A and B in p, q days (respectively), is transformed to 1/q, 1/p task respectively in one day. 
Knowing this one can calculate how much time it takes to complete the whole task with a rule of three (1 day is to 1/q 
task like x days is to x/q). Therefore we can find the solution solving the equation x/q + x/p = 1.
x A completes one task in p days, while B takes q days. Suppose they work together for pq days, then A will complete q 
task, and B, p task. Therefore they will complete p+q task in pq days, i.e. together they will complete one task in 
pq/(p+q) days. 
xi Knowing that the handle of a clock is between a given hour, to find what hour will be when the handle of the 
minutes is on the hours. 
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xii A father in order to stimulate his son whom he studies, says to him: for every day that you know the lesson I give you 
10 coins, but for every day that you do not know you have to give me 4; after 15 days the father had to give him 66 
coins; he wonders, how many days he studied and how many not? 
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DEVELOPMENTAL ASSESSMENT OF ALGEBRAIC 
PERFORMANCE

Constantia Hadjidemetriou    Maria Pampaka, Alexandra Petridou,  
                                                            Julian Williams, Lawrence Wo  

     Intercollege, Nicosia                             University of Manchester 

We report a study of 12 to14 year old pupils’ performance on algebra, using three 
diagnostic age-standardised assessment tests. A difficulty scale, using the Rasch 
methodology was built. The items form a 3 level hierarchy describing algebraic 
performance. Key errors were also incorporated in the hierarchy. The items were 
divided in two categories according to their context: symbolic and word/story tasks. 
Previous literature indicates that teachers consider story problems and word 
equation problems to be more difficult than symbolic problems, whereas pupils find 
symbolically presented problems more difficult. Our analysis shows that, according 
to pupils’ achievement, there is no clear precedence of the word/story over the 
symbolic tasks. Items in both categories appear within the same Level, finding that 
may have a considerable impact on learning sequences and teaching approaches. 
Errors concerning algebra were consistent with previous literature. However, by 
comparing the performance of our pupils on items which were used in the CSMS 
study, we found that some symbolic tasks concerning ‘combining of like terms’ 
behaved in a different way.

BACKGROUND OF THE STUDY
Although it has been found that teachers’ beliefs about their pupils’ ability have great 
influence on their instructional practice, several studies (Alexandrou-Leonidou and 
Philippou, 2005; Hadjidemetriou and Williams, 2002; Nathan and Koedinger, 2000a 
and 200b) indicate that teachers fail to identify the correct (according to their pupils’ 
ability) difficulty of mathematical tasks. This may have an impact on teachers’ 
pedagogical content knowledge. Shulman (1987) stresses that understanding of what 
makes particular tasks easy or difficult is an important component of this knowledge.   
The debate about the ‘concrete’ and the ‘abstract’ is a frequent topic in mathematical 
studies. It plays a significant role on the way teachers introduce concepts to their 
students; it relates powerfully to learning and instructional sequences. Cooper and 
Dune (2000) cite a variety of quotes, spanning over a period of 80 years, to 
demonstrate the view that mathematics was perceived as the study of the ‘abstract’ 
which had to be made comprehensible to all the students. The application then of 
mathematics to everyday situations used to be, and still is, a major component of the 
UK National Curriculum. Cooper and Dunne moreover show how the context of an 
assessment task can be a serious puzzle particularly for students who take the context 
more seriously than the mathematical symbol ‘game’.
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The research of Nathan and Koedinger (2000b) examined teachers’ predictions about 
the development of algebraic reasoning and looked for discrepancies between 
teachers’ perceptions of item difficulty and pupils’ actual performances:    

The most salient discrepancy is teachers’ predictions that story problems and word-
equation problems would be more difficult than symbol equation problems, whereas 
students found symbolically presented problems most difficult (p. 180).   

In order to find a possible source of this discrepancy, Nathan and Koedinger (2000b), 
examined the content of two textbooks. Their analysis confirmed that the arithmetic 
computations in symbolic form preceded the application of these computations to 
stories. Nathan and Koedinger (2000a) state that a teacher with symbol-precedence 
view may withhold story problems from a student until he can demonstrate fluency 
with symbolic problems. Such decision may restrict the teacher’s beliefs about 
pupils’ algebraic development and also does not provide the opportunity to the 
teacher to explore other possible instructional sequences. Pupils in another study 
(Hadjidemetriou and Williams, 2002), found some contextualized tasks (based on a 
story) easier than symbolic/abstract items, whereas teachers ranked those items in a 
different order of difficulty, with symbolic items appearing lower on the difficulty 
scale.
Many studies focused on the difficulties pupils experience with algebra (Booth, 1984; 
Küchemann, 1995; Macgregor and Stacey, 1993). The CSMS (Concepts of 
Secondary Mathematics and Science) study by Küchemann (1995), which 
investigated the performance of school students aged 13-15 on items regarding the 
use of algebraic letters in generalised arithmetic, found that many students were 
unable to cope with items that required interpreting letters as generalised numbers or 
specific unknowns.
Herscovics (1989) found that although most students were able to recognise a pattern 
presented in a table of ordered pairs connected by simple rules, the majority were 
unable to express these rules algebraically. Pupils find it difficult to generate 
algebraic rules from number patterns. When they have to generate the nth term of a 
sequence, pupils seem to focus on the difference between successive values of each 
variable. They look for a recurrence rule that will help them predict the next number 
from the value predecessor without focusing on the functional relationship that links 
the pairs of the numbers (Arzarello, 1991; Macgregor and Stacey, 1993).   
In this study we limit our scope on the aspects of algebra as they relate to generating 
expressions from word problems, generating and generalizing linear patterns, 
combining of like terms, substituting and moving between different representations of 
an equation (symbolic and graphical). We analyzed data obtained from a large scale 
national-representative survey. We report empirical results concerning the 
performance of 3302 pupils on symbolic and word/story tasks in order to uncover 
pupils’ actual difficulty on such items. The method we employed also allows us to 
rank not only the items (in terms of difficulty) but also the most common errors. This 
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methodology is a useful tool for teachers who need to know not only their pupil’s 
most common errors and misconceptions but also at which stage of their development 
they will most probably exhibit them.         

METHOD
Data and sample 
Diagnostic assessment materials for ages 5-14 were developed by the Mathematics 
Assessment for Learning and Teaching (MALT) team from the University of 
Manchester with collaboration with the publishers Hodder Murray (Williams, Wo & 
Lewis, 2005). The items of the assessment materials were developed from the 
research literature to suit the UK National Curriculum. These items formed 10 papers 
(years 5 to 14) without any common items between papers. There was, though, 
vertical linking with a subset of students sitting two papers. A total of more than 14 
000 pupils took part from a nationally representative sample of schools from England 
and Wales.
For this piece of research, we selected only the 16 items that belong to ‘algebra’ 
across the years 12 to 14. We aimed to examine the developmental difficulty of the 
items as experienced by 3302 pupils and compare the results to previous studies.
Analysis
The data of this research were analysed using the one-parameter Item Response 
Theory (IRT) model or Rasch model (Hambleton et al., 1991). The mathematical 
models of IRT calculate the probability of a correct response to an item as a function 
of the subject’s ability, the item’s difficulty and some other characteristics (depending 
on the relevant model).  
IRT analysis was selected in order to develop a scale measuring pupils’ algebraic 
ability, which will incorporate common errors and misconceptions. The Rasch model 
calculates the ‘item difficulty’ and ‘pupil ability’ estimates, which have the same 
measurement unit. This allows us to plot the items on a hierarchical scale according 
to their difficulty and locate pupils on the same scale according to their ‘ability’. This 
analysis allows us to average the ability measures of the pupils who exhibit a 
particular error response. By using the average ability parameter of the pupils who 
made the error as a proxy difficulty parameter we can scale the pupils, items and 
errors on the same scale. The hierarchy then shows which items a pupil of a given 
ability is likely to achieve but also which are the most likely errors he/she will 
exhibit. Such a hierarchy then entails information about curriculum designs, teaching 
sequences, and possible hypothetical learning trajectories
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RESULTS
16 items were sorted into 3 levels according to their difficulty (Table 1). The fit 
statistics indicated that the data fitted the model well. There were no items or children 
who behaved in an inconsistent way with Rasch measurement prescriptions. This also 
suggests that the scale is unidimensional and measures a single ‘trait’, what we call 
here pupils’ algebraic ability. 
Table 1 shows the resulting detailed hierarchy of children's performance. It is an 
empirical hierarchy that describes pupils’ attainment. Each X on the figure represents 
18 pupils. The higher the place of the X on the scale the higher the ability of those 
pupils. On the right hand side each number corresponds to a mathematical task. 
Difficult items are located at the top of the scale and easier ones at the bottom.
The level boundaries (see Table 1) were drawn according to two criteria: (a) the 
statistical analysis (where groups of items seem to cluster on the difficulty scale) and 
(b) on a qualitative analysis based on homogeneity of item content within the levels.  
Level A includes items that deal with generating expressions from story problems,  
generating a later term of a linear sequence and combining like terms. There is a 
progression of these story problems starting from those which involve addition (i.e. 
Tom scores x points in a quiz. Greg scores three more points than Tom. Write an 
expression for the number of points Greg scored), moving on to the multiplication 
ones (20n) and then to subtraction tasks (20-n). Another progression in difficulty is 
evident for the items concerning combining like terms, with the easiest being the ones 
where pupils have to ‘add a number to an algebraic term’ (add 5 to 3n, add 3 to 7y).  
It is interesting to note that both 12 and 13 year old pupils found it easier (Level A 
tasks) to ‘add a number to an algebraic term’ (two unlike terms together) than ‘adding 
a number to a sum’ (i.e. add 6 to x+3). There is a gap of 1.63 logits for 12 year old 
pupils between the two types of tasks, and 1.22 logits for the 13 year old pupils 
between the difficulty estimates of the two tasks (Table 2). Given the distribution of 
this sample, it seems that this gap is likely to be very significant educationally, since 
one logit equates to approximately one standard deviation of one years population. 

Item  Year Difficulty
12q22a: add 5 to n+3 12 0.23
13q15a: add 6 to x+3 13 0.21
13q15b: add 3 to 7y 13 -1.01
12q22b: add 5 to 3n 12 -1.40

Table 2: Pupils’ performance by year on the ‘combining terms’ tasks 

According to the CSMS study, these items (add 5 to 3n, add 6 to x+3) fall into the 
category ‘Letter as specific unknown’ where ‘children regard a letter as a specific 
but unknown number and can operate upon it directly’ (Küchemann, 1995, p.104). 
However, in their study, it was found that 14 year olds found it easier to ‘add 4 onto n 
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+5’ (which was an item belonging to Level 2 of their hierarchy) and more difficult to 
‘add 4 onto 3n’ (which belonged to Level 3 of their hierarchy). The CSMS team also 
acknowledged this order of difficulty as surprising:

It may seem surprising that 4(ii) [Add 4 onto 3n], in particular, turned out to be quite so 
difficult (Level 3). The answer 3n+4 appears to be very simple, but for this reason it is 
rather unsatisfactory. In a sense nothing has been done with the 3n and the 4 to arrive at 
the answer but since n is an unknown, children have to recognise that this is all that can
be done to combine the elements. Many children were unable (or willing) to do this, and 
instead gave the answer 7n or just 7 in which the elements that were meaningful (the 
numbers 3 and 4) were ‘properly’ combined but the letter was simply left as it was or 
ignored entirely (p.108).

In our study, the opposite occurs with both year groups. A simple way to interpret 
this is to just accept that pupils find it easier to ‘add 5 to 3n’ since this is ‘an one step 
question’ given that pupils accept the ‘luck of closure’, whereas the other task (add 6 
to x+3) requires one additional step, to combine the like terms, which also makes use 
of the commutative property of addition. If we analyse this task according to Sfard’s 
theory of process-object duality, where at first we deal with a process (operational 
stage) on already established objects, then this process becomes an ‘autonomous 
entity’ and transforms to a ‘more compact, self-contained whole’ (Sfard, 1992, p.64), 
we can argue that pupils have to conceptualize 3n as an object in order to be able to 
act on it (i.e. add a number to this object). The next step is to conceptualize the idea 
of a sum (such as 3n+4) as a whole entity in order to be able to act on it operationally 
(add a number to 3n+4). In the past two decades, a substantial body of research on the 
learning and teaching of algebra has been established, considerable emphasis was 
given to early algebra education and generalized arithmetic which seem to have 
helped pupils achieve higher success rates on similar items.    
Level B includes items that involve simplifying of LAE (Linear Algebraic 
Expressions), substitution and the linking between a graph and its equation. It also 
includes an item where pupils have to generate a formula for a given pattern.   
Pupils achieving Level C can solve an equation by trial and error, can find the value 
of an algebraic expression by substitution and can generate the rule for the nth term 
of a sequence.
The hierarchy shows that there seems to be no clear story/verbal over symbolic 
precedence of items. Both forms of items (story/verbal and symbolic) seem to have 
similar difficulty estimates; generating expressions from word problems appears in 
Level A and simplifying symbolic expressions (add 3 to 7y) also appears in the same 
Level. According to previous research, teachers usually have a Symbolic Precedence 
view of algebra. More recently, research by Nathan and Koedinger (2000a,b), and 
Hadjidemetriou and Williams (2002) claims that pupils find word/story problems 
easier than symbolic and abstract ones. This analysis goes even a step further to 
indicate that pupils of a certain ability are able to solve story problems and at the 
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same time combine like terms (symbolic). More specifically the hierarchy indicates 
that a pupil of a certain ability can solve both of the following items: 1) Tom scores x 
points in a quiz. Greg scores three more points than Tom. Write an expression for the 
number of points Greg scored, 2) Add 5 to 3n. Pupils with ability within the level A 
(which also includes the above items) can also solve the following story problem: A
packet of rulers has N rulers each costing 20 pence. Write an expression for the total 
cost of the number of rulers.
Items at Levels B and C are mainly symbolic, fact which strengthens the pre-existing 
idea that pupils experience difficulties with purely symbolic items.  
Errors
The data drawn from the sample were also used to scale the ‘common’ errors on the 
same scale, using the average ability parameter of the children who made the error. 
The most common errors are shown in the third column of Table 1. Although the 
errors found confirm previous literature we go a step further to plot the mean ability 
of the pupils producing a particular error on the developmental map.  
One error which appears persistent is the ‘lack of closure’ where pupils exhibit 
difficulty in accepting that adding 3 to 7y does not equal 10y. Misunderstanding of 
the order of operations might be another possible cause of this error (i.e. pupils may 
apply addition first and then multiplication).  
In the CSMS study (Table 3) an answer such as 7n (for the item ‘add 4 onto 3n’) was 
given by 31% of the 14 year olds and an answer such as 7 (a number) by 16% of the 
14 year olds. In our study, the answer 10y was given by 27% of the 13 year olds and 
just ‘a number’ by 8%. Only 18% of the 12 year old pupils gave the answer 8n, and 
12.5% gave just a number. According to our developmental map, these two errors are 
exhibited by 12 year old pupils of very similar mean ability (-1.23, -1.33 
respectively). Results show that in our study, pupils in general had higher success 
rates than the CSMS study. 13 year olds had a high percentage of correct responses 
(47%) comparing to the 13 year olds of the CSMS study (22%). Additionally, a 
smaller number of our pupils performed the common errors.  

Year Item Study % correct Error % Error %
12 add 5 to 3n MaLT 39 8n 18 Number 12.5
13 add 3 to 7y MaLT 47 10y 27 Number 8
13 add 4 onto 3n CSMS 22 - - - -
14 add 4 onto 3n CSMS 36 7n 31 Number 16

Table 3: Comparison of Pupils’ performance and errors (1) 

As far as the items dealing with adding ‘a number to a sum’ (Table 4) are concerned, 
a common but not very frequent error was to add the two numbers together and then 
just write the variable next to the number. Hence, for the item ‘add 5 to n+3’ and ‘add 
6 to x+3’, 8% of the 12 year old pupils and 10% of the 13 year old pupils gave the 
answers 8n and 9x respectively (mean ability -0.51). Additionally, 9% of the 13 year 
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olds gave the answer 6x+3. Here, again the percentages of the error ‘number’ of the 
younger pupils were a lot lower than those of the CSMS study (14.5 and 10 
comparing to 20).

Year Item  Study % correct Error % Error % Error %
12 add 5 to n+3 MaLT 23 8n 8.3 Number 14.5 - -
13 add 6 to x+3 MaLT 40 9x 10 Number 10 6x+3 9
14 add 4 onto n+5 CSMS 68 - - Number  20 - -

Table 4: Comparison of Pupils’ performance and errors (2) 

In two other tasks, in an attempt to generalize a pattern, a significant number of 
pupils tended to use the difference between two consecutive terms in a sequence to 
produce the nth term (Figure 1, questions b). Item 39 (Z counters) was given to the 12 
year olds and item 21 (Toothpicks) to 14 year olds.  

Figure 1: Pattern Generalizing 
It is interesting to note that the answer to the first part can be found by horizontal 
reading of the ‘Counters used’ or the ‘Number of toothpicks’ rows respectively. 
Counters/toothpicks go up by 3 each time. This part does not help pupils to answer 
the second part of the item where they have to read the table vertically and make the 
connections i.e. 1 to 7, 2 to 10, 3 to 13 and so on. A common mistake then is to give 
the answer n+3 or +3 (Table 5), which is also supported by the picture provided 
(every next Z or square has three more counters/toothpicks than the previous one). 
This ‘unidimensional reading of patterns’ is a well known error. Here we provide 
evidence which indicates this error is usually exhibited by 12 year old pupils of high 
mean ability (-0.1) and by very low ability 14 year old pupils (-1.08).  A significant 
number (21%) of 12 year old pupils of average ability of -1 also gave ‘a number’ for 
the nth term, instead of an expression.   
 Year Item  % correct Error % Error % Error %
12 Z counters 2.5 n+3, +3 11 number 21 NA 37
14 Squares 42.5 3+n 30.5 4n 14 NA 6
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Table 5: Generating Patterns-Pupils’ performance and errors by year 

CONCLUSION
In this paper we have described an empirical hierarchy of the development of 
algebraic performance of 12 to 14 year old pupils, in order to examine whether 
teachers’ beliefs about the so-called Symbolic Precedence View of algebraic tasks 
(Nathan and Koedinger, 2000b; Hadjidemetriou and Williams, 2002) is valid. The 
data were obtained from a large scale national-representative survey in England and 
Wales. The hierarchy was divided into 3 Levels and items within each level were 
categorized as ‘symbolic’ or ‘word/story’. The research by Nathan and Koedinger, 
(2000b) on algebraic development showed that pupils find symbolic items more 
difficult than story related items. Our analysis shows that pupils do find symbolic 
items difficult (since many symbolic items were located towards the top of the 
difficulty scale), however the order of the difficulty of the items at the lower level 
does not indicate clear precedence of the word/story over the symbolic tasks. It 
indicates that pupils of a given ability are able to answer correctly both categories of 
items with the same ease.  
A hierarchy of performance illustrates one possible trajectory of the way pupils think 
and perform. We share the view that there may be serious dangers if teachers use 
such tools as recipes of instructional and learning sequence (Brown, 1989; Noss et al, 
1989). However, we do not claim that this is the only possible learning sequence for 
pupils.
The ‘abstract’ versus ‘concrete’ issue has a wider importance in mathematics 
education. It is not a debate which relates only to the teaching and learning of 
algebra. The findings of this study indicate that pupils tackle word/story problems 
and symbolic problems with similar ease. We need to investigate whether this is 
result is true for other mathematical domains as well and make the relevant 
curriculum modifications to support our students’ learning.  
Additionally, a comparison of our results to the CSMS results showed an increase in 
success rates on similar items. This indicates that in the last two decades there have 
been changes which we have to research and find ways to reshape the algebra 
curriculum in order to have more immediate value to our students. We need to 
identify explicit examples, in meaningful contexts, which will be more easily adopted 
by the pupils.
We believe that it is very important for teachers to know what makes a particular task 
easy or difficult. The ‘same mathematics’ might be easier in one task than in other. 
Thus, if the teachers’ perception of task difficulty is misconceived (because it might 
be based only on the concept of the task and not on the surrounding context) then 
their pedagogical approach is likely to be flawed.
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The ReMath project is a European project that addresses the task of integrating 
theoretical frames on mathematical learning with digital technologies at the 
European level. A specific set of six dynamic digital artefacts (D.D.A.) is currently 
developed, reflecting the diversity of representations provided by ICT tools. Here we 
consider two D.D.A.s related to the learning of algebra a) the ‘Cassiopee - calculator 
of functions’ developed by a French team, b) ALUSNET, a set of closely integrated 
components (Algebraic Line, Symbolic Manipulator and Cartesian Plane) by an 
Italian team.
The two D.D.As are developed for students at upper secondary level. The two teams 
share a common concern that secondary students generally lack of proficiency in 
algebraic representation. They start from a common analysis of students’ difficulty in 
algebra. They nevertheless reflect specific orientations and decisions with regards to 
algebraic representations, students’ algebraic activity and the help that technology 
can provide.

STUDENTS’ DIFFICULTY IN ALGEBRA 
In recent years several researches have interpreted the students’ difficulty in algebra 
as a lack of capacity to control the sense and the denotation of algebraic expressions 
or of algebraic propositions. We can make reference to the Frege’s triadic semantic 
model to explain what we intend for sense and denotation of algebraic expressions 
and propositions. The Frege’s model distinguishes between sense (Sinn) and 
denotation (Bedeutung) of an expression (Zeichen): the denotation is the object which 
the expression refers to, while the sense is the way in which the object that is denoted 
is presented to the mind by it or is understood by the mind. In elementary algebra 
“Zeichen” is an algebraic expression or an algebraic proposition. An algebraic 
expression is a writing composed of numbers and/or letters connected by the symbols 
of mathematical operations (addition, subtraction, multiplication, division, power of a 
number, extraction of root); this expression indicates the result of the operations 
performed in sequence. Two algebraic expressions can have different senses and the 
same denotation. For example the two expression 2x+1 and x+(x+1) considered in N 
denotes the same function that associates the result of the operations indicates in their 
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form  to each value of the letters but have different sense (for example the first one 
presents the odd numbers as the successive of an even number while the second one 
as the sum of two consecutive numbers). Algebraic transformations change the sense 
of an algebraic expression preserving its denotation. An algebraic proposition is a 
writing that expresses a relationship between two algebraic expressions by means of 
the signs =, >,<. It denotes a truth value (true/false). For example the proposition “2x-
5=x-1” denotes “true” for x=4 while it denotes “false” for all the other numerical 
values of x).
The students difficulties in algebra emerge in two distinct circumstances: when they 
write or interpret an algebraic expression or proposition in order to solve a specific 
situation, and when they transform an algebraic expression in order to highlight a 
specific property of that situation or to find the solutions for it. Using Frege’s model 
we can explain these difficulties in terms of lack of control of the sense and of the 
denotation of algebraic expressions or propositions.
Students defined by Sfard (1991) as pseudo-formalists are unable to imagine the 
intangible entities that underlay the use of algebraic writing. For these students, 
algebraic expressions and propositions are “things” in themselves that do not stand 
for anything else. The students are unable to grasp the invariance of the denotation as 
regards the changes of sense. They are unable to recognize that a syntactic structure 
of an expression reflects in a iconic way a property of a numeric set, namely they are 
unable to recognize the sense of an algebraic expression in relation to the aim for 
which an algebraic expression or a proposition is constructed or transformed. They 
show a sort of rigidity and they operate as if there were a one-to-one correspondence 
between sense and denotation. Their algebra is purely syntactic; for these students a 
mathematical expression denotes itself. In contrast other students are unable to use 
the algebraic language and the methods of algebra for tackling the assigned tasks. 
They prefer to elaborate solution strategies using different representations such as the 
verbal language and the method of arithmetic. In both the two cases there is not a 
development of a genuine algebraic thinking.  
With the two DDAs we are developing within the ReMath project we intend to make 
available new effective tools to overcome some of the difficulties evidenced.  

THE CASYOPÉE PROJECT: LINKING ENACTIVE EXPERIENCE OF 
FUNCTIONS WITH ALGEBRAIC REPRESENTATIONS 

Motivation
The D.D.A. Casyopée is built as an open problem-solving environment with the aim 
to provide students a means to work with algebraic representations, progressively 
acquiring a control of the sense of algebraic expressions and of their transformations. 
Functions are the basic objects in Casyopée. Using this tool, students can explore and 
prove properties of functions. 

Working Group 6

CERME 5 (2007) 904



Casyopée takes into account the potentialities that Computer Algebra Systems  offer 
to teaching/learning: going beyond mere numerical experimentation and accessing 
the algebraic notation, focusing on the purpose of algebraic transformations rather 
than on manipulation and connecting the algebraic activities. A major choice in the 
Casyopée project is to develop a software environment embedding algebraic 
transformational knowledge by way of a ‘state of the art’ symbolic kernel and 
facilities to help build and write a proof. 
Exploring and proving seems to us particularly relevant when students work on 
algebraic models of domains where they can experiment ‘enactively’. We expect that 
students will make sense of algebraic representations by linking these with 
representations in these domains. For instance, a geometrical figure can be a domain 
for experimenting dependencies between measures. Then an algebraic model can be 
built choosing one of the measures as an independent variable and the other as the 
dependant variable. Properties of the dependency can be conjectured and proved: they 
take sense both in the algebraic and in the geometrical settings. 
In its present state, Casyopée is limited to algebra. Thus the algebraic work is 
separated from the enactive exploration and of the modelisation. It would be better if  
students could go forth and back between algebra and a domain of enactive 
exploration, building and testing models. Our goal in the ReMath project is to include 
this possibility in Casyopée. We choose the domain of dependencies between 
measures in geometrical figures that we gave above as an example. Casyopée is then 
being extended to include a ‘dynamic geometry’ (DG) module and facilities to help 
students to link geometrical dependencies and algebraic representations. 
In order to explain how the present version of Casyopée works, the motivation for 
this extension and how it will be implemented, the next section offers an example of a 
scenario of use.
An example of an evolutionary scenario 

The problem
ABCD is a rectangle, M is a point on [A,B], N on [B,C], O on [C,D] and P on 
[D,A] such as AM = BN = CO = DP. How does the area of the quadrilateral 
MNOP vary when M is moving on [AB]? Is there a minimal value? 

This problem can be found in French textbooks for the 10th grade under various 
forms. Generally, values are given for the lengths of the sides of the rectangle. 
Analysing this problem, Artigue (2005), distinguishes first an ‘initial question’, 
where values are given for the lengths of the sides of the rectangle, and a ‘new 
development’, where a general conjecture, following the study of the initial problem 
can be proved. 
The initial question 
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Let us consider the rectangle ABCD with AB = 9 cm and BC = 6 cm. Starting from 
AM=0, it is clear that the area of MNOP becomes smaller when AM increases and 
also that it becomes again bigger when AM increases towards AB. A first conjecture 
could be that a minimum occurs when M is at the middle of [A,B]. Exploring this 
situation with dynamic geometry software, confirms the intuition that the area 
decreases, goes through a minimum then increases again. It also invalidates the first 
conjecture because it appears that a minimum is reached for AM between 3.5 cm and 
4 cm and not for AM= 4.5 cm. We can correct the initial conjecture by noticing that 
3.75 cm, which is the 1/8th of the perimeter, is at the middle of these two values. This 
conjecture remains to be proven. 

To achieve this proof, we have to define a function whose independent variable (x) is 
the length AM, and the dependent variable (f(x)) is the area of MNOP. Various 
computations give f(x) = 54 - x(6-x) - x(9-x).
The minimum of f can be proved using an algebraic technique currently taught at the 
10th grade. If 3.75 is the value where the minimum of f(x) is reached, then the 
difference f(x)-f(3.75) has to be positive for every x in [0;6]. Actually, we find that 
f(x)-f(3.75)= 2x2 – 15x + 225/8 = (4x-15)²/8.
A new development 
In the above rectangle, the minimum is at 1/8th of the perimeter. For a mathematician, 
it is natural to wonder whether this is a general property. Building an algebraic model 
is particularly relevant for this generalisation. We have to introduce the lengths of the 
rectangle and to do the calculations as above. We get f(x)= AB.AD –x (AB+ AD) + 2 
x² .
The minimum for x= (AB+AD)/4 can be proved using the above technique because 
f(x)-f((AB+ AD)/4)= (4x- (AB+ AD))²/4 

Experimenting with the existing Casyopée 
This problem was given to 10th grade students of a teacher participating in the project, 
during two one-hour sessions. Before that, students had had a session using Casyopée 
to learn about linear functions and algebra. At this point in the academic year, they 
had just started to learn about quadratic functions and algebraic methods. 
Consistantly with or our focus on modelling we wanted that students explore the 
geometrical situation before considering an algebraic model. Then students had to 
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prepare at home a geometrical study showing that MNOP is a parallelogram, and to 
find a method to compute its area. The first session with Casyopée was devoted to the 
conjecture In our meaning, studying a numerical case like in the ‘initial question’ 
above was not enough to justify the use of algebraic methods. A decision was then to 
consider the general case (the ‘new development’ above) as the main goal and to 
make students explore numerical cases, as a preparation of a general conjecture. In 
order to reduce complexity, we chose to have only one parameter a, and values of the 
sides (AB=4 and BC= 4a) giving a minimum for AM= a+1. This we expected to be 
easily conjectured by students.
Using Casyopée, students had to create a parameter a and functions corresponding to 
the areas of AMP et BMN and then of MNOP. They had to observe the minimum 
values of a from 1 to 4.75, by steps of 0.25 and to try to think of a general conjecture. 
Casyopée was expected to help them to switch from geometry to algebra, and to 
search for a conjecture by exploring numerical cases and generalising. 
In this first session, the students’ main obstacle using Casyopée, was that they had to 
find and enter a domain for each function. They were used to domains for functions, 
but in problems they encountered before, this domain were given relatively to the 
algebraic conditions of existence. Here they had to find it from the geometrical 
situation. This difficulty is clearly linked to insufficient understanding of the links 
between the geometrical situation and the algebraic model.
When studying the minima, it was difficult for them to engage in a conjecturing 
process. Instead they looked closely to each numeric case, refining the values as 
much as possible, but not trying to make sense of what they found. This is evidence 
that students cannot find a conjecture by looking at one isolate numerical case, as a 
mathematician would do. The teacher draw a table of x and a for each numeric case, 
and students could get the conjecture by pattern recognition. Again, the obstacle was 
in the difficult link between the figure and the algebraic model.
The second session, three weeks later, was devoted to proof. Because of the 
difficulties in the first session, we thought it necessary that students make sense of the 
conjecture in the geometrical situation before building an algebraic proof. That is 
why the teacher prepared a dynamic geometry figure displaying the rectangle with the 
parallelogram, and a curve of the values of the area. With this figure, the students 
could animate the variable x, modifying the rectangle and moving the current point on 
the curve. They could alternatively animate the parameter a, modifying the rectangle 
and the curve. Thus they understood better the dependency between the minimum 
and the parameter a.
Students had to build a proof using a technique similar to what was outlined above. 
They had seen this technique before. The goal was not that they become skilled at this 
technique, but rather that they get notions about algebraic treatments and recognise 
their power. Students easily made sense of the equivalence between s(x) 
 s(a + 1)
for every x in [0;a] and the sign of the function x -> s(x) - s(a + 1)defined on [0;a].
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After entering this function in Casyopée, they tried the entries of the ‘compute’ menu 
(expand, factor, normal…) and choose the factored form because they thought that it 
was simple and therefore more easy to use. They then used the ‘justify’ menu, which 
produced elements of the proof in the Note Pad. After that they edited these elements 
to write a proof. In contrast with paper/pencil situations, it was a very active and 
satisfactory part of the work, thanks to the help of Caysopée.
A scenario for the extension 
The above report on these two sessions of experiments using the existing version of 
Casyopee is evidence of its support to students’ algebraic activity, but also highlights 
their difficulty in making sense of the links between the geometrical situation and the 
algebraic model. In the second session, we made students use the dynamic geometry 
software before using Casyopée so as to help them to make this link, but this was 
limited because they could not go back and forth and move objects from one 
environment to the other. 
With the extension planed in the ReMath project, students will be able to create the 
rectangle and the points in a dynamic geometry (DG) module, M being a free point 
on [AB]. The lengths AB and AD will be Casyopée parameters (like a above) and the 
students will be able to change them by animating the parameters. Casyopee will then 
provide a means for defining and computing symbolically the geometrical functions. 
Students will be able to choose an independent variable (for instance the length AM 
or BM) and a calculation involving lengths as a dependent variable. They will be then 
able to build a function for the area of the parallelogram. The DG figure and the 
functions will be dynamically linked. Animating the parameters will change the 
rectangle as well as the representations of the functions (expressions, graphs, 
tables…) Dragging M will move the trace on the graphs. Conjecturing and proving 
the minimum will be done by steps similar to the situation experimented without the 
extension. However, we expect that these steps will involve more exploration with 
the geometrical situation in mind. 

A NEW OPERATIVE AND REPRESENTATIVE ARTEFACT FOR 
ALGEBRA LEARNING: THE DIGITAL ALGEBRAIC LINE OF ALNUSET 

In order to mediate and to support the development of the capability to control the 
sense and denotation of algebraic expressions and propositions, in the ReMath project 
a working group of ITD-CNR is developing ALNUSET (ALgebra of the NUmerical 
SETs). In this document we consider only a component of ALNUSET, namely the 
Digital Algebraic Line (DAL). 
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The DAL environment of ALNUSET comprises two parallel lines intersected by a 
perpendicular line. The two points of 
intersection define the points 0 on the 
two algebraic lines, which are 
characterized by the same dynamic unit 
of measure. A post-it is associated to 
each point represented or constructed on 
the DAL: the content becomes visible 
when the mouse pointer moves close to 
it. The DAL is based on a representation built by mathematicians in the preceding 
centuries, the numbers line. In the ReMath project with the design and the 
implementation of ALNUSET we have exploited the possibility of visualisation, 
interactivity, dynamicity and computation offered by technology to transform the 
numeric line into a digital algebraic line, making available a new operative and 
representative possibility, not available on the numbers line: to use mobile points on 
the line marked by letters to express, in general form, the generic element of the 
considered numeric set. The mobile point is a useful metaphor to conceptualize the 
notion of algebraic variable and it is a useful operative tool to geometrically construct 
algebraic lettering expressions on the line and to externalize what they denote. We do 
believe that the Algebraic Line can exist only as digital artefact because its algebraic 
nature is due to the introduction of mobile points on the line and this characteristic is 
possible only through digital technology. The new operative and representative 
possibilities offered by the DAL of ALNUSET allow the user to perform the 
following four algebraic activities: Construction of algebraic expressions and their 
representation on the line; Externalization of what variables and algebraic expressions 
depending on them denote; Research of real roots of polynomials with integer 
coefficients; Identification of the truth set of algebraic propositions. In the following 
we will present the first two activities.
Activity 1: Construction of algebraic expressions 
The DAL is an operative and representative environment for the construction of 
algebraic expressions involving integers and letters defined on a specific numeric set 
(natural integers, relative integers, rational numbers, rational numbers extended to 
rational powers). Three geometrical models are available to join numbers and letters 
by means of the symbol of the mathematical operations and to construct algebraic 
expressions: a model for addition/subtraction, a model for multiplication/division, a 
model for integer power/rational power. Each of these three models can be used to 
perform both the direct operation and the inverse one. In the figure three examples 
concerning the model of the operations are reported.  

Working Group 6

CERME 5 (2007) 909



In the first case the model of addition is used to perform 2/3+3/2; in the second case 
the model of the division is used to construct the fraction 3/2; in the third case the 
model of power is used to construct until the fifth power of 3/2. As a basis for 
constructing new mathematical expressions, the DAL makes available a predefined 
range of integers on the lines and provides the opportunity to use letters as names of 
mobile points represented on them. Integers represented on the lines, letters 
corresponding to mobile points and mathematical expressions already represented on 
the DAL can be joined up by means of the geometrical models of mathematical 
operations in order to create new mathematical expressions. Every new mathematical 
expression constructed in this way is associated both to a point that indicates the 
result of the operations performed in sequence and to a post-it that will contain all the 
equivalent expressions constructed by the user denoting that point. Some examples of 
mathematical expressions: 

� “2/3” is a mathematical expression produced by combining the integers 2 and 3 
with the operation of division. The expression created in this way is associated to 
a point on the line and it is inserted in the post-it associated to this point. Any 
equivalent expression of 2/3 constructed by the user denotes the same point and it 
is inserted in the same post-it. We note that the point constructed on the line is a 
efficient metaphor for the notion of rational number while the post-it associated to 
it that contains all the fractions that are equivalent to 2/3 is an efficient metaphor 
of the notion of “class of equivalence”.  
The DAL makes available an important conceptual metaphor for the construction 
of the concept of algebraic variable: the algebraic variables are mobile points on 
the DAL that denote numbers. The variable associated to a mobile point can be 
exploited to generalize properties of the numerical sets. For example, once the 
variable n is represented on the line the expression (n*2)/(n*3) can be constructed 
and it is possible to verify that such expression is associated to the same point of 
2/3 and it is contained in the same post-it, whatever the value of n is, namely 
whatever the position of the mobile point n on the line is.  

� 2*x+1 is a mathematical expression produced through two constructive steps: 
construction of the expression 2*x by combining the integer 2 and the letter x by 
means of the operation “*”; construction of the expression 2*x+1 by combining 
the previous expression 2*x and the integer 1 by means of the operation “+” 
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We note that the expression x+(x+1) is an equivalent expression of 2*x+1, i.e. it 
makes reference to the same point on the DAL, and so it appears in the same post-it 
of that point. Activities of this type can be of great importance to construct the idea of 
what an algebraic expression denotes or to understand what means that two 
expressions are equivalent or to learn how to build algebraic expressions addressing 
specific aims.
Activity 2: Externalization of what a mathematical expression denotes 
Once a mathematical expression that contains letters in its structure has been 
constructed and represented on the line, it is possible to drag the variable points on 
the DAL referring to those letters. When a mathematical expression depends on a 
variable, the dragging of the variable point on the DAL will refresh the expression 
depending on it. It is not possible to show on a static support the dynamic effect 
produced by the drag of the variable point on the DAL. Referring to the previous 
figure the reader has to image to drag the mobile point x and at the same time to see 
the movements of the points that are associated to the expressions depending on x 
(i.e. moving the "x" point will make the "2*x+1" and “x+(x+1) points move 
accordingly). Hence, the dragging of variable points on the DAL is a way of 
externalizing what a mathematical expression denotes (e.g. in the previous example, 
the set of odd numbers) and the sense incorporated in its syntactical structure (odd 
number as successive of an even number or as sum of two consecutive numbers)  
Moreover the drag action can be used to highlight different meanings of the use of 
letters and of mathematical expressions in algebra. For example, when the user drags 
the variable x point to verify what the expression 2x+1 denotes, s/he uses the letter as 
a means of numerical generalisation. 
When the user drags the variable x point searching for the value(s) for which two 
points relating to the A(x) and B(x) expressions coincide, s/he uses the letter as an 
unknown and this meaning is reified in the way s/he uses the drag. A variable point 
assumes the meaning of a parameter when the drag is used to instantiate only some 
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specific values of the associated letter with the aim of evaluating the corresponding 
results of a mathematical expression containing that letter.   

CONCLUSION
Casyopée and ALNUSET share a common motivation: to use technology to provide 
students a means to access existing algebraic representations, built by mathematicians 
in the preceding centuries. It is based on a transpositive perspective: mathematicians 
did not abandon the algebraic notation, but rather developed specific computer 
artefacts (symbolic calculation, mathematical writing systems…) to help in their 
everyday practice of this notation. 
Researchers in both teams also think that technology must be used to enrich the 
existing algebraic representation. In ALNUSET new cultural artefacts embedding 
new ways to represent mathematical object are made available. Caysopée focuses 
rather on new opportunities for operating upon algebraic representations and on new 
possibilities for linking algebra to other domains. 
These new operative and representative characteristics exist thank to the possibility of 
visualisation, computation, dynamicity and interactivity offered by the technology. 
They can facilitate the user to interpret algebraic phenomena or to recognize specific 
mathematic meanings in what the representation exhibits in the interaction. For 
instance the possibility to construct mobile points on the line in ALNUSET is a 
concrete way to reify the idea of letters as unknowns for the aim to use them to build 
algebraic expressions and polynomials in a constructive way. As another example, 
modelling a geometrical dependency into an algebraic function in Casyopée helps to 
give a meaning to letters involved in the algebraic definition and treatments. 
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RESEARCH AND PRACTICE IN ALGEBRA: 
INTERWOVEN INFLUENCES 

John Mason
Open University UK 

I report on the development of curriculum materials in which pedagogy, didactics 
and mathematics are interwoven.  The course was intended for practising teachers 
whose own perceptions of and competence in algebra is limited and whose choices 
when teaching are therefore circumscribed. The materials were informed by 
research, and designed to influence practice. Some of the principles underpinning the 
development of the materials are described, and observations are made about the 
kinds of research which proved informative and influential.

BACKGROUND
The Open University has a significant history spanning nearly 40 years in the 
presentation of distance learning materials for teachers at all ages and stages of their 
careers. In response to evidence that a significant number of teachers in secondary 
school have limited, and usually very traditional views about mathematics, it was 
decided to prepare courses contributing to an Advanced Diploma which would 
broaden their perception of what algebra is and could be about, and which would also 
enrich their access to informed choices when planning and leading lessons in algebra. 
In the event, probably due to lack of funding for teachers to undertake professional 
development once they are qualified as teachers, and probably also due to severe 
pressures on their time and their energies, the audience is rather varied. Some 50% of 
the people taking the course are people who wish to qualify as a teacher, and who 
therefore require an undergraduate degree with substantial mathematics in it before 
they can go on to become qualified teachers. Many of these are already employed as 
teaching assistants in schools. Some 40% are actually practising teachers, and some 
10% are parents, consultants, and other people with an interest in mathematics 
education.
The course, called Developing Thinking in Algebra is based on a book of the same 
name (Mason et al 2004) and is a companion to similar courses in Geometry and 
Statistics, with an introductory course on Developing Mathematical Thinking to 
round out the Advanced Diploma.  Each course is considered to involve 200 hours of 
study.  Assessment is by tutors who contact the students by phone and who mark 
their four assignments.  There is also a website where issues and concerns can be 
raised and discussed by staff and students.  Typically 150 students take each course 
each year, though even if there were 500 on each, the national need would not be met. 
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CORE OF THE COURSE 
The algebra course is based around the notion of expressing generality as being the 
essence of school algebra. Historically, algebra is usually seen as arising through a 
desire to be able to solve problems involving some unknown number or numbers. As 
Mary Boole (Tahta 1972) put it, by ‘acknowledging your ignorance’ you can denote 
what you do not know with a letter, and then manipulate that letter as if it were a 
number in order to express relationships and constraints arising from the problem. 
Support for this view can be found in the use by early authors of the term cosse
(‘thing’) as the ‘as-yet-unknown’. 
At the same time however, there is a pervasive historical thread by authors wanting to 
solve every problem, or trying to indicate that the solution to a particular problem 
was to be seen generically as a method for solving a whole class of similar problems. 
Authors used a variety of means for informing the reader of the ‘general rule’, in 
words, and through the use of examples. Newton may have been one of the first to 
use letters to denote as-yet-unspecified parameters so as to solve a problem ‘in 
general’.
There is however a conceptual commonality between the use of a letter to stand for an 
as-yet-unknown and the use of a letter to stand for an as-yet-unspecified parameter: 
both depend on the person to be stressing the letter as label rather than as the value 
signified. Flexible movement between attending to the label and attending to the 
content (syntax and semantics of expressions) is the essence of working effectively 
with expressions of generality. 
Clearly every discipline involves expressing generality about something: geometry 
for example is about relationships and properties to do with shape and space, or as 
Gattegno put it, ‘about the dynamics of the mind [mental imagery]’; algebra arises 
from expressing generality about properties of and relationships between numbers.  
Gattegno (1970 p. 26) goes further and suggests that

Algebra is present in all mathematics because it is an attribute of the functioning mind. 

He was convinced that awareness, recognition, and explicit evocation of the powers 
of the mind, could make mathematics much more meaningful to learners. In a sense, 
algebra arises when we transcend the particular, when we refer not to the actual but to 
the possible. In algebra we refer to quantities and relationships which cannot be seen 
or touched because they exist only in our minds as potential.
Core Principle 
The conjecture and core principal underlying the course materials is that where 
learners have been explicitly involved over a long period of time in becoming aware 
of and expressing generality involving quantities, the manipulation of algebraic 
symbols and the use of algebra to resolve problems is relatively straightforward.  
However, where learners are thrown straight into the manipulation of symbols ‘as if 
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they were numbers’, the whole process becomes mysterious, the purpose unclear, and 
the practice merely routine; motivation and performance suffer, and interest in 
mathematics itself declines.   
It is not easy to point to specific empirical research to validate the core conjecture 
using statistical studies. However, taking the core conjecture as a stance, reading 
through the literature confirms that where learners have struggled with algebraic 
thinking, generality, and manipulation, they have usually had a very limited explicit 
exposure to these ideas. I am however not aware of research which has been able to 
pinpoint the source of algebraic success to expressing generality specifically. 
Fairchild (2001) did show significant improvement in scores for learners enculturated 
over a year into expressing generality using the visual metaphor of area.  
Course Structure 
The course is divided into three blocks of four chapters, with three final chapters 
summarising and collecting in one place various remarks about the pedagogical 
principles employed in the construction of the materials, and which can also inform 
and underpin pedagogical and didactical choices teachers can make when preparing 
for or participating in lessons. Each block has a chapter which develops the theme of 
expressing generality; a chapter which develops the notion of learners’ powers to 
make mathematical sense, and the notion of pervasive mathematical themes; a chapter 
on the role and use of symbols, including symbol manipulation; and a final chapter on 
representations and the use of ICT (graphics calculators, spreadsheets and graphing 
software in the three blocks, respectively). 
Thus the course design follows a form of Bruner’s spiral curriculum, seeking to 
deepen and enrich learners’ sense of the topics by returning to them repeatedly in 
more detail. Our own version of the spiral curriculum is expressed in terms of 
‘frameworks’ or ‘pedagogical constructs’, including a spiral of personal development 
and insight summarised as Manipulating–Getting-a-sense-of–Articulating by drawing 
attention to the nature of activity which contributes to effective internalisation and 
hence learning.  As articulations become succinct, they in turn become manipulabel 
components for further use. The framework See–Experience–Master acts as a 
reminder not to expect instant mastery or evidence of ‘learning’ when introduced to a 
new way of thinking or a new concept. Often considerable re-experiencing is required 
before fluency and facility (components of competence or mastery) are achieved. 
An unusual feature of the book is the large number of tasks on which the reader is 
invited to work, with, in many cases, only passing indirect reference to ‘answers’.  
This is in order to emphasise that the purpose of working on tasks is to generate 
experience from which to learn, rather than to obtain answers to check at the back of 
the book.  There are far more tasks than anyone can work on much less explore fully, 
because the book is seen as a lifetime resource, not simply a once-off course.  While 
the tasks are aimed at people studying the course, most have been adapted for use in 
classrooms by ourselves or others. The course is explicit about providing not ready-
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made tasks for use in classrooms, but rather principles for augmenting and modifying 
tasks so as to suit specific learners in particular situations. 
Another unusual feature of the book is the interweaving of suggestions about 
pedagogical strategies and suggestions about specific didactical tactics and devices 
(which are at least algebra specific if not topic specific within algebra).  This, like the 
high density of tasks, has been a hallmark of CME materials since the centre began in 
1982. We have always seen working on mathematics for yourself as an essential 
component of preparing to teach others, and that in order to sensitise yourself to 
learners it is vital to become more aware of your own experiences and propensities, 
your own use of your powers and your own encounters with significant and pervasive 
mathematical themes.

MATHEMATICAL POWERS 
Concomitant with the core conjecture is the observation that every learner who gets 
to school has displayed the powers necessary to think mathematically, and certainly 
algebraically.  What is needed therefore is not ‘instruction in algebra’ but rather the 
evocation and application of those powers to number relationships and properties. 
The issue is how to get learners to use, develop, refine and hone their powers rather 
than have them usurped by textbooks (as is usually the case) and teachers. When 
teachers and texts do the specialising and the generalising, the conjecturing and even 
the convincing for students, they enculturate students into parking their own powers 
at the classroom door as ‘not wanted here’. 
Fundamental among the powers referred to explicitly in the course is imagining & 
expressing, which may make use of a variety of modes including movement, gesture, 
pictures, words and symbols. Expression includes Mary Boole’s ‘acknowledging 
your ignorance’ and so denoting that which is as-yet-unknown or un-specified by 
some sort of a symbol (a little thought bubble, a box, an acronym, a letter). A 
particular feature of imagery associated with algebra is seeing through the specific to 
something more general, to seeing the particular as exemplary rather than simply as 
singular, to seeing the particular as indicative of possible variation. Specialising & 
Generalising are powers which are hardwired in people in order to cope with the 
myriad of sense-impressions which impact them at every moment.  These powers 
have been referred to explicitly by many, including Whitehead (1911) and Polya 
(1962) and reiterated in our materials since 1982. 
Conjecturing & convincing are core human powers, since every action is a 
conjecture, no matter how confidently asserted. Justifying actions is what is meant by 
‘being responsible’ (from the verb spondere). Western culture has amplified two 
aspects of convincing: explaining our actions (as if ‘to mummy’) and justifying our 
actions (as if ‘to daddy’), hence the continuing confusion between proof and 
reasoning. Mathematics involves, among other things, being enculturated into the 
practices of convincing others, not on the basis of emotion or tradition, but on the 
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basis of mathematical structure, on the basis of mathematical reasoning itself. This 
can provide an important emotional experience for troubled and turbulent adolescents 
looking for solid ground in which to anchor themselves, by providing experience of a 
way of recognising cause-and-effect in relation to their actions outside classrooms.  
Organising a complex of objects by isolating certain properties and sorting out 
relationships between classes, is primal human activity. It is one of the major 
contributions of language, and involving as it does the characterising of objects 
which belong in a specific class.  Without organisation into classes and groups, every 
sense impression, every encountered ‘object’ would be individual and unique. Much 
of mathematics concerns organising problems into problem-types resolvable by the 
using the same technique(s) or method(s), and specifying properties which 
characterise the objects belonging to a class (Lakoff 1987). 
These powers are only some of the most pervasive, significant and effective human 
powers which can be, which need to be exploited and developed in order to make 
sense of algebra and to make algebraic sense.  

MATHEMATICAL THEMES 
Pervasive themes which serve to integrate apparently disparate mathematical topics 
are interwoven in the course materials. For example: 
Freedom & Constraint: Every mathematical task and exercise is an example of 
constraints placed upon freedom. Think of a pair of numbers (bcome aware of the 
freedom of choice available to you: did you consider rationals? irrationals?); add the 
constraint that their sum must be 10; (what is the effect on the freedom available 
now?); add the constraint that the difference is 3 (what has happened to freedom 
now?).  Not only can this perception of tasks be liberating, but it can also offer an 
approach to solution: try to express the most general possibilities at each stage, 
adding the constraints one by one, rather than trying to deal with all the constraints at 
once.  This theme mirrors adolescent experience of institutions, and if made use of in 
mathematics, can serve as a model for how to deal with imposed constraints in the 
social dimension.  
Doing & Undoing: Every time you find yourself ‘doing something’ in order to get a 
result, you can ask yourself whether you could go backwards from the result to the 
given.  Put another way, what sorts of actions can be undone uniquely, or even at all?  
Much of the power of mathematics derives from the creative undoing of routine 
doing (Melzack 1983, Groetsch 1999, Gardiner 1992, 1993) 
Invariance in the Midst of Change: Many mathematical theorems are statements of 
some invariant relationship.  But invariance only makes sense and is only detectable 
when there is variation.  So any theorem stating an invariant also has to state what is 
permitted to change, and in what ways. When two things are considered to be the 
same in some respect, then an invariance has been detected, and it is useful to 

Working Group 6

CERME 5 (2007) 917



consider what changes will preserve that invariance.  This is what Marton (see 
Marton & Booth 1997) refers to as dimensions of variation, which Watson & Mason 
(2002, 2005) extended to the domain of mathematical pedagogy by referring to 
dimensions of possible variation and ranges of permissible change.  This language is 
used in the course to draw teacher attention to the importance and pervasiveness of 
this mathematical theme. 

PEDAGOGICAL STRATEGIES AND CONSTRUCTS 
A number of distinction-triples are proposed in the book, as frameworks on which to 
hang examples drawn from personal experience which can act as reminders to choose 
to act in a particular way in the future. Thus the more someone can relate their own 
experience to a label, the more likely they are to find a relevant distinction come to 
mind when planning or conducting a lesson. These constructs were used to inform the 
writing of the book and the course. 
Enactive–Iconic–Symbolic: These modes of (re)presentation identified by Bruner 
(1966) provide a framework-label not simply for different modes of (re)presentation, 
but as reminders about different worlds which people occupy at different times, and a 
reminder that many people learn more effectively if they are given support for 
working in different modes, as well as prompts to make transitions from one mode to 
another.  Bruner paradigmatically refers to using apparatus, having it present but 
slightly out of reach, then present but requiring an effort to use, and finally being 
weaned off the apparatus altogether.  This is also a paradigmatic example of 
scaffolding–and–fading which provides an alternative and complimentary label for 
access to the same awarenesses when teaching. 
Do–Talk–Record: Introduced in Floyd et al (1981), this construct can act as a 
reminder that it is not enough simply that learners be ‘doing something’, but rather 
that what they are doing supports and promotes desire to articulate what they are 
doing in preparation for making written records.  Forcing learners to record in 
symbols, or even in pictures, before having sufficient time to develop some facility in 
the doing and some fluency in the talking, can inhibit rather than support learning. 
Trying to articulate can clarify actions; trying to record can clarify both doing and 
articulating.  All three together contribute to learning. 
See–Experience–Master: In order to make more precise the notion of spiral learning, 
Floyd et al (1981) introduced these distinctions as a reminder that early encounters 
with an idea, technique, concept, method, way of thinking etc.. is more a matter of 
‘seeing something go by’ than of ‘taking on board’. With ongoing experience of 
(re)encountering the same idea, perhaps in fresh contexts, its significance and utility 
can begin to be appreciated.  Masterful proficiency cannot reasonably be expected 
without continued exposure and learners realising that it is indeed re-exposure to 
things they have encountered previously. 
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Manipulating–Getting-a-sense-of–Articulating: This framework-label was also 
introduced in Floyd et al (1981) to complement and precise aspects of the other 
frameworks.  Here emphasis is on the purpose and intention of specialising: not 
simply to ‘do some particular cases’ but to ‘get a sense of’ underlying structure, of 
what is permitted to change (and in what way) and what is invariant.  Hence it 
supports the process of generalising.  It also acts as reminder that talking about what 
you are doing, if only in your own head, is an important contribution to the processes 
of assimilation (what is the same about this and other things experienced previously?) 
and of accommodation (what is different about this situation and what was expected 
based on past experience, and how can these be reconciled?). 
Watch What You Do: A really useful strategy when specialising (working on 
particular cases in order to locate and express a generalisation) is to watch what you 
do as you ‘do’ the particular or special case.  Often your body and-or your 
subconscious will display patterned behaviour that indicates how to generalise your 
actions to other cases or situations. 
Say What You See: Given a picture, drawing, diagram, figure, set of exercises, an 
algebraic expression etc., it can be very helpful to get into the habit of rehearsing to 
yourself (be articulate and explicit about) what strikes you.  This can be developed by 
getting people to say what they see in small groups, where, starting very simply, 
people discover details to discern that they may have overlooked, and relationships 
they may not have contemplated. 
Structure of Attention: We have never been reticent about putting forward conjectures 
in our courses which have not been validated by large scale empirical studies. Quite 
the contrary. We have found that distinctions which we find fruitful are likely to be 
fruitful to others. To this end we included in both the algebra and the geometry 
course, suggestions about the way in which attention is structured. The idea is that if 
teacher and learner are attending to different things, or if they are attending to the 
same thing but in different ways, then there is likely to be confusion.  By becoming 
aware of what they are attending to themselves, and how they are attending to it, 
teachers can be sensitised to consider what it is that learners are attending to and how. 
This in turn may suggest actions so as to try to bring these into closer alignment.  
The structure of attention proposed in the course is based around terms which are 
closely related to the van Hiele levels in geometry (van Hiele 1986, Usiskin 1982) but 
makes use of the observation that often people experience rapid fluctuations between 
the different states of attention, while at other times the states seem to be quite stable.  
The states identified are: gazing or holding a whole; discerning details; recognising
relationships between discerned details; perceiving properties of which the 
relationships are particular cases; and reasoning on the basis of agreed explicit 
properties, rather than simply on the basis of any properties that come to mind.  
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While it is never appropriate to label people with levels, it can be helpful to be aware 
of the structure of your own attention, so that you can take action to direct the 
attention of learners appropriately. 

DIDACTICAL TACTICS 
Didactical tactics are specific to particular mathematical topics.  For example, there 
are a number of tactics which support the expression of generality and the uncovering 
of structural properties.  Here is one such. 
Tracking Arithmetic 
A specific strategy promoted in the book is called tracking arithmetic. It is not ‘new’, 
but expressed as a didactical choice, it seems to strike many people as ‘so obvious, 
why did I not think of it?’.  THOANs (Think Of A Number games) provide a rich 
context for engaging learner interest: 

Think of a number.  Add one.  Multiply by 3. Subtract the number you first thought of. 
Add one.  Divide by 2.  Subtract the number you first thought of.  Your answer is 2. 

By undertaking to do the calculations on a specified number BUT to carry out only 
those operations which do not actually involve your starting number is to track your 
number through the calculations.  Experience suggests that it is useful to track an 
unfamiliar number like 7 rather than a familiar number like 2 or 3 which is more 
likely to crop up as part of the structure.  A useful side-awareness is that not all 
occurrences of a number have the same status: in other words, the same number can 
have several roles in the same expression, a structural role as well as an incidental 
role.
Stepping back and asking yourself what happens if someone else starts with a 
different number, most people can see what will be the same and what will be 
different about the calculations.  Once fluency and facility is gained in ‘seeing’ the 
effect of tracking a particular number, it is a short step to denote the tracked number 
by some other symbol such as a little cloud (the number I am currently thinking of or 
starting with) or even a letter or acronym such as SN (starting number) or S (for 
Starting).
Note that this tactic makes use of a pervasively fruitful pedagogic strategy of asking 
yourself (inviting students to ask themselves) what is the same and what is different 
about two or more objects. (Brown & Coles 2000) This itself makes use of learners’ 
powers and plunges to the heart of mathematical thinking, and particularly algebraic 
thinking when concerned with relationships between numbers. 

INFLUENTIAL RESEARCH 
Research which has influenced the development of our materials is invariably 
research which highlights or brings to our notice a useful distinction where 
previously there was little or no discernment of difference.  In other words, 
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distinctions which promote noticing and becoming aware of finer distinctions than 
had been made previously, or which highlights and sharpens a distinction which had 
been made but which had not yet been articulated. However, distinctions themselves 
are not enough. To be useful, a distinction has to help make sense of previous 
experience, and-or has to be associated with tactics or strategies which can be used in 
the future when the distinction comes to mind.  
The professional development issue is then how to arrange that distinctions come to 
mind when they could be useful.  In order that they come to mind in the future, there 
must be a sense of possibility, of appropriateness or fit with current ways of working.  
The issue is thereby transformed into working on ways of presenting possibilities to 
teachers so that they can readily imagine themselves acting in some new way in their 
own situation, motivated to do so because they perceive more details, more 
relationships than previously, and because they feel that alternative actions on their 
part could improve the learning of their students. The various ways that were 
developed in our centre for helping people have something come to mind when they 
wanted it to has been elaborated as the Discipline of Noticing (Mason 2002). 
Research that did not have significant influence on our materials was empirical 
research which at best illustrated or exemplified a distinction in transcripts and other 
material put forward as data. Sometimes the illustrative feature could be used, but 
only where the distinction was considered informative and insight-generating. 
Empirical ‘findings’ on their own are not something that, in my experience, fully 
convince practicing teachers. The claim that some percentage of some particular 
subjects scored better on some test than did others is not sufficient evidence to change 
my teaching practices much less my way of perceiving and construing the world, 
unless of course the change is something I wanted to do anyway, or at least fits within 
my theoretical perspective (however implicit or explicit). Convincing evidence 
supports my intuition or challenges it in some acceptable manner. By contrast, trying 
to get people to act differently against their better judgement is extremely difficult, 
and fraught with danger because when a practice is carried through mechanically 
rather than generatively, it is very likely to fail.  This is where education differs 
substantively from natural sciences: cause-and-effect does not apply to actions 
initiated by wilful agents such as human beings in the same way that cause-and-effect 
applies to mechanical actions like the tightening or loosening of a nut. 

REFERENCES
Boole, M. (1909). Philosophy and Fun of Algebra. (London: Daniel). 
Brown, L. & Coles, A. (2000). Same/different: a ‘natural’ way of learning 

mathematics.  In T. Nakahara and M. Koyama (Eds.) Proceedings of the 24th 
Conference of the International Group for the Psychology of Mathematics 
Education, p2-153-2-160. (Hiroshima, Japan). 

Working Group 6

CERME 5 (2007) 921



Bruner, J (1966). Towards a Theory of Instruction. (Cambridge: Harvard University 
Press).

Fairchild, J. (2001) Transition from arithmetic to algebra using two-dimensional 
representations: a school based research study. Occasional Paper Number 2: 
(Centre for Mathematics Education Research, Oxford: University of Oxford). 

Fairchild, J. (2006). retrieved July 20 2006 from 
http://mcs.open.ac.uk/jhm3/SVGrids/Comments%20from%20Classrooms.html 

Floyd, A., Burton, L., James, N., & Mason, J. (1981). EM235: Developing 
Mathematical Thinking. (Milton Keynes: Open University). 

Gardiner, A. (1992). Recurring themes in school mathematics: Part 1 direct and 
inverse operations. Mathematics in School, 21(5) p5-7. 

Gardiner, A. (1993). Recurring themes in school mathematics: Part 3 generalised 
arithmetic. Mathematics in School, 22(2) p20-21. 

Gattegno, C. (1970). What we owe children: The subordination of teaching to 
learning. (London: Routledge & Kegan Paul). 

Groetsch, C. (1999). Inverse Problems: activities for undergraduates. (Washington: 
Mathematical Association of America). 

Lakoff, G. (1987). Women, Fire, and Dangerous Things. (Chicago: Chicago 
University Press). 

Marton, F. & Booth, S. (1997). Learning and Awareness. (Mahwah N.J.: Lawrence 
Erlbaum).

Mason, J. (2002). Researching Your Own Practice: the discipline of noticing.
(London: RoutledgeFalmer). 

Mason, J. with Johnston-Wilder, S. & Graham, A. (2005). Developing Thinking In 
Algebra. (London: Sage (Paul Chapman)). 

Melzak, Z. (1983). Bypasses: a simple approach to complexity. (New York: Wiley). 
Polya, G. (1962). Mathematical discovery: On understanding, learning, and teaching 

problem solving. (New York: Wiley).
Tahta, D. (1972). A Boolean Anthology: selected writings of Mary Boole on 

mathematics education. (Derby: Association of Teachers of Mathematics). 
Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry.

(Chicago: University of Chicago). 
van Hiele, P. (1986). Structure and insight: A theory of mathematics education.

Developmental Psychology Series. (London: Academic Press). 

Working Group 6

CERME 5 (2007) 922



Watson A. & Mason, J. (2002). Student-generated examples in the learning of 
mathematics. Canadian Journal of Science, Mathematics and Technology
Education, 2 (2) 237-249. 

Watson, A. & Mason, J. (2005). Mathematics as a Constructive Activity: learners 
generating examples. (Mahwah: Erlbaum). 

Whitehead, A. (1911). An introduction to mathematics. (reprinted 1948) (Oxford: 
Oxford University Press). 

Working Group 6

CERME 5 (2007) 923



DISTINGUISHING APPROACHES TO SOLVING TRUE/FALSE 
NUMBER SENTENCES1

Marta Molinaa, Encarnación Castroa and John Masonb

aUniversity of Granada, bThe Open University 
This paper focuses on eight-year old students’ ways of approaching true/false 
number sentences. The data presented here belongs to a teaching experiment in 
which the use of relational thinking when solving number sentences was explicitly 
promoted. The study of the use of this type of thinking and of students’ structure of 
attention allow us to make distinctions between strategies which are more and less 
conceptual and to provide a description of the variety of approaches available.
As a mathematic learner, when working with numeric or algebraic expressions, I have 
always enjoyed looking for ways to simplify the expressions before and during my 
manipulation of them. To me it is fun doing it and it also helps to save some work. 
From another point of view, as a mathematics teacher, it is quite frustrating when 
students embark on quite difficult computations before looking at the expressions 
they have to work on and getting a sense of their structure, so missing the opportunity 
to choose the best approach or to simplify the work to do before starting to operate. 
Other researchers have commented on the occurrence of this type of event at 
university level when working on other contexts such as integral calculus, by 
claiming that often students’ mathematical knowledge seems to be only mechanical 
(Hejny, Jirotkova, and Kratochvilova, 2006).

TWO DIFFERENT APPROACHES 
When working on true/false number sentences such as 43025734257 		�	  or 

, whose design is based on some arithmetic properties, in general 
there are two different approaches to follow: doing the computations on both sides 
and comparing both results, or looking to the whole sentence, appreciating its 
structure and making use of relations between its elements as well as of knowledge of 
the structure of arithmetic to solve it (Carpenter, Franke, and Levi, 2003; Koehler, 
2004; Molina and Ambrose, in press). Similarly when solving equations such as 

27484827 �	�
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, students may proceed by operating on the variables and 

the numbers on each side as well as regrouping them, or they pay attention to its 
structure and appreciate that this equation is equivalent to 5�	 x  by noticing that 
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x
x

 is repeated in both sides (Hoch and Dreyfus, 2004). 
We identify the first approach as what Hejny et al (2006) call a “procedural meta-
strategy” and the second one as a “conceptual meta-strategy”. The main distinction 
between these two types of strategies is that the first one is based on the student 
activating some procedures in his/her mind after having identified the area to which 
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the problem belongs, while, in the second one, the student creates a image of the 
problem in his/her mind as a whole, analyzes it to find its inner structure, and looks 
for some key elements or relations to construct a solving strategy. While the first 
process leads students to become more skillful in problems of the given type, the 
second one leads them towards a higher level of understanding of the situation in 
question (Hejny et al, 2006)2.

NUMBER SENTENCES AND RELATIONAL THINKING 
Our interest is focused on the use of these two types of strategies when working on 
solving number sentences, especially sentences whose design is based on some 
arithmetic properties. We choose this context because of its potential for integrating 
the learning of arithmetic and the development of algebraic thinking. Number 
sentences are frequently used to introduce students to equations by drawing a figure 
or a line instead of a variable, as in 754_ ���  (Radford, 2000). Discussions about 
these equations and the properties that they may illustrate can help students to learn 
arithmetic with understanding and to develop a solid base for the later formal study of 
algebra by helping them to become aware of the structure underneath arithmetic 
(Carpenter et al, 2003; Hewitt, 1998; Kieran, 1992; Resnick, 1992). Carpenter et al.
(2003) illustrate the potential of number sentences to work on the development of 
generalizations of arithmetic relations and their symbolic representation. 
When students solve the sentences by using conceptual meta-strategies, we say that 
they are using relational thinking (a term introduced by Carpenter et al., 2003) or 
analyzing expressions (as expressed in Molina and Ambrose, in press), as their 
thinking makes use of relations between the elements in the sentence and relations 
which constitute the structure of arithmetic2. Students who solved number sentences 
by using relational thinking (RT) employ their number sense and what Slavit (1999) 
called “operation sense” to consider arithmetic expressions from a structural 
perspective rather than simply a procedural one. When using relational thinking, 
sentences are considered as wholes instead of as processes to carry out step by step. 
For example, when considering the number sentence 5_48 ���  some students notice 
that both expressions include addition and that one of the addends on the left side, 4, 
is one less than the addend on the other side, 5. Noticing this relation and having an 
(implicit or explicit) understanding of addition properties enable students to solve this 
problem without having to perform the computations 8 plus 4 and 12 minus 5.  
Some previous studies have provided evidence that elementary students are capable 
of using relational thinking when solving number sentences, overcoming some issues 
such as the “lack of closure” as well as an operational understanding of the equal sign 
(Carpenter et al, 2003; Koehler, 2004; Molina and Ambrose, in press, Molina, Castro 
and Ambrose, 2006).  
In this paper we focus on analyzing the range of different ways in which this type of 
thinking was used by a group of eight-year old students when solving true/false 
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number sentences. Relational thinking allows us making a finer distinction within the 
duality procedural-conceptual meta-strategies (Molina, 2007).

METHODOLOGY
We applied the “conjecture-driven research design”, which Confrey and Lachance 
(2000) propose for teaching experiments aiming to investigate new instructional 
strategies in classroom conditions and to analyze different approaches to the content 
and the pedagogy of a set of mathematical topics. Our research method shared the 
features of design experimentation identified by Cobb and his colleagues (Cobb, 
Confrey, diSessa, Lehrer, and Schauble, 2003). 
We worked with a group of 26 eight-year old Spanish students during six sessions 
over a period of one year. In this paper we will focus on the data gathered on the last 
four sessions as the first two were directed to exploring and extending students’ 
understanding of the equal sign. The general aim of this research work was to study 
students’ thinking involved in solving number sentences, in the context of whole 
class activities and discussion. We analyzed the strategies that students used to solve 
the sentences, focusing on detecting evidences of use of relational thinking.
The tasks used were number sentences, mostly true/false number sentences3

(e.g., ,145672 	� 914977 ���� , 104410 ��� ) which were proposed to the students in 
written activities, in whole-class discussions and in interviews. All the sentences used 
were based on some arithmetic property or principle (e.g., commutative property, 
inverse relation of addition and subtraction, compensation relation) and, therefore, 
could be solved by using relational thinking.
We did not promote the learning of specific relational strategies but the development 
of a habit of looking for relations, trying to help students to make explicit and apply 
the knowledge of structural properties which they had from their previous experience 
with arithmetic. Students’ use of relational thinking was favoured by encouragement 
of looking for different ways of solving the same sentence and special appreciation of 
explanations based on relations. 
The data here presented provide evidence of diversity of approaches without paying 
attention to how frequently the students evidence each one4. The study of the use of 
this type of thinking and of students’ structure of attention allow us to make 
distinctions between strategies which are more and less conceptual and to provide a 
description of the variety of approaches available.

STUDENTS’ BEHAVIOURS WHEN SOLVING T/F NUMBER SENTENCES 
We identified six different behaviours when attending at students’ ways of solving 
the considered true/false sentences5. In all of them, except for the first one, we 
identify some use of relational thinking. 
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Non-RT Behaviour. Students who display this behaviour solve each sentence by 
obtaining the numeric values of each side and comparing them. They do not provide 
any evidence of having noticed any relation or characteristic in the sentence apart 
from the numbers in it, the operations which combines them and the presence of the 
equal sign. For example, Irene displays non-RT behaviour when solving the 
sentences gathered on Figure 1. She computed the numeric values of each side by 
using the standard algorithms for addition and subtraction6.

18 – 7 = 7 – 18 75 – 14 = 340 17 – 12 = 16 – 11 6 + 4 + 18 = 10 + 18 
False because 18 – 
7 = 11 and 7 – 18 = 
19
(She computes 7 – 
18 = 19 and 18 – 7 
= 11 by using the 
standard
algorithm)

False because 75 
– 14 = 61 and 14 
– 75 = 49 not 340 
(She computes 75 
– 14 = 61 and 14 
– 75 = 49 by 
using the 
standard
algorithm)

False because 16 
– 12 = 05
(She computes 17 
– 12 = 05 by 
using the 
standard
algorithm)

True because 6 + 4 + 
18 = 28 and 10 + 18 = 
28.
(She computes 6 + 4 
+ 18 = 28 and 10 + 
18 = 28 by using the 
standard algorithm)

Figure 1: Irene’s answers to some true/false sentences. Italics are descriptions of her 
computations.

Simple-RT behaviour. Students displaying this behaviour solve some of the sentences 
by directly applying a known fact (an arithmetic law or principle) after having 
noticed a particular relation or characteristic in the sentence which led them to recall 
that fact. Students recognize in the sentence a particular case of a general fact that 
they know in an implicit or explicit way. Some students recall and use the properties 
of zero as identity element and the property “ 0�	 aa ”. We see this strategy as a basic 
use of relational thinking. In other sentences they proceed as in behaviour non-RT.
For example, Jose Luis seems to show this behaviour when solving the sentences 

 and : “It is false [Why do you think is false?] Because three 
hundreds and twenty-five plus zero is three hundreds and twenty-five, and three 
hundreds and twenty-six… is nothing”; “It is true because…because twenty-four 
minus twenty four is zero”. We infer that he didn’t do any computation as the 
numbers involved in the sentences don’t allow easy mental computation and he 
provided his answers very quickly without having done any writing. In other 
sentences he computed the numeric values of each side and compared them.

3260325 �� 02424 �	

RT-Sameness behaviour. The students displaying this behaviour solve some 
sentences, without making any computations, by noticing some sameness between the 
numbers in the sentence. They apply the reflexive property of the equality relation, 
the commutative property of addition, an over-generalization of the commutative 
property to subtraction or an overgeneralization of the reflexive property (i.e. 
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assuming that a sentence is true if and only if it contains repeated numbers, no matter 
their position). The relations that students appreciate are based on sameness or not-
sameness. In other cases they may proceed as in the non-RT or simple-RT 
behaviours.
This behaviour shows a more elaborated use of relational thinking as it is not based 
on simply applying a known fact but on making flexible use of observed relations to 
get an answer. 
Miguel shows this behaviour when solving the sentences  and 

, while solving other sentences by computing the numeric values of 
each side. 

187718 	�	
75232375 ���

18 – 7 = 7 – 18 75 – 14 = 340 6 + 4 + 18 = 10 + 18 75 + 23 = 23 + 75 
True because 
eighteen minus 7 
and the other is 
the same, and if it 
is the same they 
are equal.

False because 
seventy-five minus 
14 is not three 
hundreds and forty. 
(He computes 75 – 
14 = 51 by using 
the subtraction 
standard
algorithm)

True because 6 plus 
four plus eighteen is 
28 and 10 plus 
eighteen is 28 
(He computes 6 + 4 
+ 18 = 28 and 10 + 
18 = 28 by using the 
standard algorithm) 

True because they 
are the same and 
then it is the same  

Figure 2: Miguel’s answers to some true/false sentences. Italics are descriptions of his 
computations.

One-shot-RT, frequent-RT and all-RT behaviours. These three behaviours correspond 
to the cases when students solve some sentences by using relational thinking, making 
use of a pair of distinctions or relations such as sameness between the numbers in the 
sentence, difference of magnitude between those numbers, a number fact contained in 
the sentence or some numeric relations between the numbers. Sometimes they also 
apply some knowledge of the effect of operations on numbers. Table 1 shows some 
student’s explanations which evidence the use of relational thinking based on pairs of 
the mentioned elements. 

Elements at the base of 
the RT used 

Examples : Student’s explanations

Sameness between 
numbers in the sentence 
and knowledge about the 
effect of operations

In 122 + 35 – 35 = 122: “True because if we add 122 
to 35 and we take it away, it is as if we don’t add 
anything”

Number fact contained in 
the sentence and sameness 

In 7 + 7 + 9 = 14 + 9: “True. I did it by adding seven 
and seven…. which is fourteen. The same than there 
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between numbers  [right side]”. Nine, the same than there [right side] 
too.

Numeric relations between 
numbers in the sentence 
and sameness between 
numbers 

In 13 + 11 = 12 + 12: “True because you subtract one 
to the twelve and you give it to the other twelve, and 
you get what it is there [left side]”  

Differences of magnitude 
between numbers and 
knowledge about the effect 
of operations 

In 75 – 14 = 340: “False because 75 minus 14 is less, 
it can not be a bigger number”  

Numeric relations between 
numbers in the sentence 
and knowledge about the 
effect of operations 

In 11 – 6 = 10 – 5: “True because if eleven is higher 
than ten and you subtract one more than five, you get 
the same” 

Table 1: Examples of students’ explanations which provide evidence of use of 
relational thinking based on various observations and arithmetic knowledge  

We distinguish between the behaviours “One-shot-RT”, “frequent-RT” and “all-RT”, 
depending on the variety of ways in which students use relational thinking, according 
to the elements at the base of their thinking from those indicated in Table 1. These 
behaviours do not differ in the way students proceed when solving the sentences but 
in the diversity of ways of using relational thinking. In behaviour “One-shot-RT”, 
students provide evidence of having use relational thinking based on just one of the 
above referred elements. “Frequent-RT” behaviour corresponds to those cases in 
which the students solve a variety of sentences by using relational thinking based on 
several but not all the elements in Table 1. The behaviour “all-RT” refers to the cases 
in which the child provide evidence of solving different sentences by using relational 
thinking based on all those elements. 
Therefore, each one of these six behaviours includes the previous ones as shown in 
Figure 3, but it is characterized by ways of solving number sentences not included in 
previous behaviours or by the variety of ways in which relational thinking is used. 
However, this doesn’t mean that, for example, all students displaying RT-sameness 
behaviour do also provide answers as those from non-RT or single-RT behaviour. 
The inclusion relation that we are highlighting expresses that it happens in some 
cases.
In all except the “Non-RT behaviour”, we distinguish two different ways in which 
students invoke relational thinking. In some cases they start by looking at the 
sentence, making distinctions and noticing some relationship which they used to 
solve the sentence, following what Hejny et al. called a “conceptual meta-strategy”. 
In other cases they start by computing some of the operations involved in the 
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sentences, and during the computation process, they notice a special characteristic of 
the sentence or a relation between its elements which leads them to change their 
approach and to solve the sentence without computing the numeric values of both 
sides. This change of approach can be recognize in the following student’s answer to 
the sentence 51 + 51 = 50 + 52: “True because as fifty-one plus fifty-one is one 
hundreds and two, but if you subtract [one] from fifty-one, fifty, you can add to fifty-
one from the other, one more, and you get fifty-two…and you get fifty plus fifty-two”. 
In other cases we identify this change of approach by comparing the students´ notes 
with their explanation.

One-shot-RT, frequent-RT and all-RT behaviours 

Figure 3: Relationship between the identified students’ behaviors when true/false 
solving number sentences.

DISCUSSION

The different behaviours suggest a variety of ways in which students approach 
solving true/false number sentences whose design is based on arithmetic properties 
and relations, as well as a variety of different students’ structures of attention when 
working with the sentences (Mason and Johnston-Wilder, 2004). The behaviours 
differ in the way students’ pay attention to the sentences (initially and during the 
solving process), the distinctions they make within them, the relations that they 
display evidence of noticing and the arithmetic knowledge that those distinctions and 
relations trigger in the students’ mind.  
Some students consider sentences and expressions with more than two terms in a 
global way (as a whole) and look across the equal sign as well as within each side to 
make distinctions and to establish relationships between elements. The way they use 
these relations is influenced by their awareness of the structure of the sentence (e.g., 
the equal sign differentiate two sides in the sentence) as well as their knowledge of 
arithmetic structure (e.g., inverse relation of addition and subtraction, commutative 
property of addition). Other students proceed to do the computations, apparently 
paying attention only to the numbers involved and the operations to perform on them, 
considering each side or even each operation separately. Other students’ attention, 
while initially being placed on doing the computations, fluctuates between numbers, 

RT-sameness behaviour 

Single-RT behaviour
Non-RT behaviour 
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partial results and elements of the sentence. This fluctuation cues to become aware of 
characteristics or relations within the sentence not previously noticed.
Looking for evidence of the use of relational thinking in the students’ solving 
strategies promotes appreciation of a range of strategies between procedural and 
conceptual meta-strategies. Considering these distinctions, the appreciated 
differences between the structures of students’ attention provide a point of entrance to 
allow teachers to help students to develop more conceptual approaches. Some ways 
could be encouraging students to look at the sentence before computing and 
formulating questions which draw children’s attention to the sameness or differences 
of some elements in the sentence as well as to look for relations between the terms. 
Discussions of students’ various approaches in which the use of relational thinking is 
encouraged seem also to be effective. 
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NOTES
1 This study has been developed within a Spanish national project of Research, Development and Innovation, identified 
by the code SEJ2006-09056, financed by the Spanish Ministry of Sciences and Technology and FEDER funds. 

2 Within the context of problem solving, the use of conceptual meta-strategies may be considered to be related to an 
element of heuristic competence referred as “internal monitor” (Mason, 1985) or “instructed manager” (Puig, 1996). 
This element include various capacities such as examining possible ways of approaching a problem before addressing 
its resolution in order to make an informed choice of a solving strategy or keeping an eye on calculations to make sure 
that they remain relevant to the question. However, the distinction we want to make when distinguishing conceptual 
and procedural meta-strategies, it is not that the person does a informed choice of a strategy but that he/she uses 
mathematical relationships (or the mathematical structure of the situation) when constructing the strategy. 

3 In a previous study (Molina and Ambrose, 2006) we appreciated that true/false number sentences, unlike open number 
sentences, contribute to break the students´ computational mindset as the students don’t need to provide a numerical 
answer. Therefore, this type of sentences eases the consideration of number sentences as wholes and the use of 
relational thinking in its resolution.   
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4 For further description and information about this teaching experiment see Molina (2007), available at 
http://cumbia.ath.cx:591/pna/Archivos/MolinaM07-2822.PDF.

5 The examples provided have been translated from Spanish to English.  

6 This student appreciates some structure in the sentence 18 – 7 = 7 – 18 which she applies when solving the sentence 
75 – 14 = 340. However, she does not provide any evidence of having use relational thinking for solving any of the 
sentences in Figure 1.
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STUDENT DIFFICULTIES IN UNDERSTANDING THE 
DIFFERENCE BETWEEN ALGEBRAIC EXPRESSIONS AND THE 

CONCEPT OF LINEAR EQUATION 
Irini Papaieronymou

Michigan State University, USA 
Algebraic expressions and equations have been an essential part of the history of 
mathematics and of the secondary school mathematics curriculum. In this study, four 
ninth grade students were interviewed in an attempt to examine students’ 
understanding of the difference between algebraic expressions and the concept of 
linear equation. Although these students were able to simplify algebraic expressions 
and solve linear equations with ease, the data show that they still had difficulties 
indicating a relation between algebraic expressions and linear equations.

HISTORICAL AND CURRICULAR IMPORTANCE 
Expressions and equations have been a vital part of the history of mathematics.  
Starting with the ancient Egyptians and Babylonians about 3000 years ago, rhetorical 
algebra was used in the form of words to solve linear equations. In the 3rd century AD 
the Greek mathematician Diophantus was the first to use abbreviated words for 
algebraic expressions, giving rise to “syncopated algebra” (Sfard, 1995, p. 18). In 
830AD, the Persian mathematician Al-Khwarizmi wrote al-Kitab al-mukhtasar fi 
hisab al-jabr wa'l-muqabala or The Compendious Book on Calculation by 
Completion and Balancing. In this book, the term al-muqabala, which translates to 
balancing, refers to the process of combining like terms when simplifying an 
equation. Centuries later, and specifically in 1591, Francois Viete wrote an algebra 
book which formally gave rise to symbolic algebra (Sfard, 1995). Following, in 1830, 
the British mathematician George Peacock proposed that in algebra letters replace 
numbers and that, in general, algebra was arithmetic using symbols (Sfard, 1995).  
Algebraic expressions and equations have also been a significant part of secondary 
school mathematics curricula. Particular to the United States mathematics school 
curriculum, the National Council of Teachers of Mathematics (NCTM) published the 
Principles and Standards for School Mathematics, in which it is recommended that a 
curriculum be “focused on important mathematics” (2000, p. 14). The Algebra 
Standard for grades 6-8 states that students “use symbolic algebra to represent 
situations and to solve problems … that involve linear relationships” and that they 
“recognize and generate equivalent forms for simple algebraic expressions and solve 
linear equations” (2000, p. 222). Moving on to high school, the Algebra Standard for 
grades 9-12 suggests that students “understand the meaning of equivalent forms of 
expressions, equations, …” and that they “write equivalent forms of equations” 
(2000, p. 296).
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LITERATURE REVIEW 
Student difficulties with algebraic expressions 
A substantial amount of research has been carried out indicating student difficulties 
with algebraic expressions. The research shows that students should gain experience 
with modelling situations using expressions and producing equivalent expressions 
before they are introduced to the concept of equation. Otherwise, they will view the 
equal sign as merely a signal to “do something” and not as a symbol of equivalence 
and balance (Kieran, 1990).
The available literature also indicates students’ difficulties with recognizing and 
using the structure of algebraic expressions (Kieran, 1989a; 1990). According to 
Kieran (1989a), the surface structure of an algebraic expression refers to “the given 
form or arrangement of the terms and operations, subject … to the constraints of the 
order of operations” (p. 34). That is, the surface structure of the expression 6+2(x+5) 
consists of taking 6 and to that adding the multiplication of 2 by x+5.  On the other 
hand, the systemic structure of an algebraic expression refers to the operational 
properties of commutativity, associativity, and distributivity which would permit one 
to express 6+2(x+5) as 2(x+5)+6.
A study by Tall and Thomas (1991) identified four obstacles to making sense of 
algebraic expressions. First, many students tend to interpret expressions such as 3+4k 
as 7k. This, which the authors call the parsing obstacle, arises because of the way we 
read from left to right. From prior experiences with arithmetic students expect to 
perform some calculation when they encounter an operation sign such as +.  So, when 
faced with algebraic expressions such as 3+4k they expect to produce an answer. This 
is what the authors call the expected answer obstacle. Related to this issue, is the lack
of closure obstacle which refers to students’ view of 3+4k as an incomplete answer. 
Last, the authors identified the process-product obstacle which refers to the inability 
of students to view algebraic expressions as having a dual nature; that of a process
and of a product. For example, an expression such as 3+4k indicates both the 
instructions to perform a calculation (process) and it is also the result of such a 
calculation when a value is not assigned to the variable (product). If an algebraic 
expression is only viewed as a process then “the powerful way in which it can be 
manipulated and linked to other expressions makes little sense and failure with 
algebra becomes inevitable” (French, 2002, p. 16). 
Student difficulties with linear equations 
Various studies have also been conducted that looked at student difficulties when 
dealing with the concept of equation. Equations are defined as open number 
sentences consisting of two expressions which are set equal to one another. This is 
what Kieran (1989a) calls the surface structure of an equation and it is an aspect that 
students find challenging to recognize. In addition, students have trouble recognizing 
the systemic structure of an equation which includes the equivalent forms of the two 
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expressions given in the equation (p. 34). Kieran (1989a) claims that students who 
“view the right-hand side of an equation as the answer and who prefer to solve 
equations by transposing,” lack an understanding of the balance between the right and 
left hand sides of the equation (p. 52). Moreover, Kieran (1990) found that many 
algebra students “could not assign meaning to a in the expression a+3 because the 
expression lacked an equal sign and right-hand member” (p. 104). Relating to this, a 
1984 study by Wagner, Rachlin, and Jensen found that students added “=0” to any 
expression they were asked to simplify (as cited in Kieran, 1990).  
Students also face difficulties when working with equivalent equations. In a study by 
Steinberg et al. (1991) participants were given pairs of equations and were asked to 
identify whether the equations in each pair were equivalent. The data showed that 
many students could not distinguish between expressions such as 3x and 3+x and 
some thought that subtracting a number from both sides of an equation would alter 
the answer because “-4 on each side is subtracting 4 twice” (1991, p. 117).
Furthermore, a study by Hall (2002) examined the errors that secondary school 
students make when attempting to solve simple linear equations. The results showed 
that many students “find the process of collecting “like” terms so difficult that they 
cannot confidently simplify an expression such as 3x+2x” (p. 46). Moreover, Hall 
reports that some students have difficulties combining “like” terms in expressions 
such as “3x+2y+4x” which involve “unlike” terms within the expression (p. 46).  

PURPOSE OF THIS STUDY 
This study attempts to address students’ understanding of the differences between 
algebraic expressions and the concept of linear equation. The reason for carrying out 
this study arose after a close reading of the available literature relating to the two 
concepts. Since algebraic expressions and linear equations are essential in the 
mathematics curriculum and since the literature has shown that students have 
difficulties recognizing the structure of both of these concepts, as well as making 
sense of them and working with them, this led to question whether the problem lies in 
that students might not see a relation or any differences between the two concepts. 
Furthermore, since mathematics curricula use a specific vocabulary associated with 
each of these concepts, it seemed possible that this vocabulary might have an effect 
on students’ understanding of the difference between algebraic expressions and linear 
equations. Thus, the need arose to study the way that students make sense of this 
vocabulary.
Since school algebra in the United States curriculum formally begins either in the 
eighth or ninth grade, ninth grade students were asked to participate in this study in 
the attempt to make sure that the participants had instruction in algebraic expressions 
and linear equations prior to this study. 

Working Group 6

CERME 5 (2007) 936



RESEARCH QUESTIONS 
Specifically, the following questions are addressed in this study: 
1) What difficulties do 9th grade students have with identifying differences between 
algebraic expressions and linear equations even when they have the ability to simplify 
expressions and solve linear equations? 
2) What sense do 9th grade students make of the various verbs (such as ‘simplify’ and 
‘solve’) and nouns (such as ‘solution’, ‘value’, and ‘variable’) associated with 
algebraic expressions and linear equations?

DATA SOURCES 
Participants
Four fifteen-year old ninth grade students participated in the study. All students 
received classroom instruction on simplifying algebraic expressions and solving 
linear equations prior to the study. Two of them, Ellen and Tim, were enrolled in an 
algebra class during the time of the study whereas the other two, Kathy and Susan, 
took algebra in grade eight and were at the time enrolled in a geometry class. Ellen 
and Kathy attend the same high school in a middle-sized city in the state of Michigan, 
Tim attends a different high-school in that same city, and Susan attends high school 
in a metropolitan area in Michigan. These students were chosen because they 
represent a variety of high schools, had different teachers, used different curricula in 
their algebra classrooms, and they were all of high mathematical ability.  
Data Collection 
The students were observed as they worked with various mathematical tasks relating 
to algebraic expressions and linear equations. The interviews were audio taped and 
later transcribed. The students were asked to provide written responses to the items 
on the instrument. In addition, they were asked to talk about their thinking and the 
processes they used to respond to the items. In some cases, field notes were also 
taken. In particular, Activity 1 (Instrument section) required the students to sort cards 
on which either an expression or linear equation was written. Since this task did not 
involve providing a written solution, field notes helped in keeping record of the 
student actions while performing the task and the result of their actions. 
Instrument
Overall, the students worked with five types of tasks, organized under four activities: 
Task 1) sorting cards on which an algebraic expression or linear equation was written 
(Activity 1); Task 2) observing common characteristics of and identifying differences 
between algebraic expressions and linear equations. (Activities 2 and 4); Task 3) 
combining like terms/simplifying expressions (Activity 3); Task 4) solving linear 
equations (Activity 3); Task 5) producing algebraic expressions and linear equations 
(Activity 3).
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Activity 1: Sorting cards 
Twelve index cards are provided.  On each index card I have written something.  I 
will place down the first two cards (cards 1 and 2).  Sort the remaining ten cards 
according to what you see as common among them. If a phrase is written on a card, 
sort according to what the phrase would result in if written mathematically. 

         3x + 2 

        1
       x + 10 = 5 

       2
      add 3 to 5a 

        3
            6 + n

        4

      z + 5 = 19 

       5
y is 10 more than x 

        6
n +  = 

        7
25 +  = 142 +  + 

                           8

2226
4
1

2
1

��� yx

9

rqp
8
1

2
1

2
1

��

     10

    4(6r – 3s) + 5r 

      11

x + y + z = x +p+z 

      12

Activity 2: Characteristics of algebraic expressions and equations
Why did you sort the cards the way you did? What do you observe that the cards in 
each of the piles you sorted them into have in common? What do they have different? 
Activity 3:
1) Simplify 2x - 5 + 11x – 41 
2) Solve 2x - 5 = 11x – 41 
3) Simplify 2x - 5 + 9y + 11x + 41 + 6y 
4) Solve 2x - 5 + 9y = 11x + 41 + 6y 
5) Combine like terms: 14z + 134 + 3z + 3(12z + 22 + 9z)  
6) Solve 14z + 134 = 3z + 3(12z + 22 + 9z) 
7) Give an equation that has 2 as a solution 
8) Give an expression such that when x is 3 the value of the expression is 0 
9) Give an expression such that when x is 0 the value of the expression is 3 
Activity 4:
1) What is/are the differences between expressions and equations? 
Mathematics curricula usually provide students with problems such as those found in 
Activity 3, asking students to either solve an equation or simplify an expression. Such 
problems are used in this study in order to identify whether the participants have the 
ability to simplify algebraic expressions and solve linear equations, thus 
accommodating for the condition set in the first research question. In addition, the 
tasks in Activity 3 will provide insight into what sense students make of words and 
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phrases such as ‘solve’, ‘simplify’, ‘combine like terms’, ‘expression’, ‘equation’, 
‘solution’, ‘value is’, and ‘x’ thus helping in gaining insight relating to the second 
research question. Activities 1, 2 and 4 are not commonly asked of students. These 
activities are used in the study in order to help address the first research question. In 
particular, Activity 1 is meant to indicate whether students can distinguish between 
expressions and equations. Activity 2 is used as a follow-up to Activity 1 in order to 
gain insight into whether students identify any differences or similarities between 
expressions and equations thus directly addressing the first research question.

METHOD OF ANALYSIS 
In attempting to address the research questions, the focus was on how and to what 
extent the students used the terms expression and equation during the interview.  
Attention was also paid as to whether the students made a distinction between the two 
terms. In relation to the literature, attention was given as to whether the students 
recognized and used the surface structure and systemic structure of an expression 
and/or an equation as defined by Kieran while attempting to respond to the 
mathematics problems they were given. Moreover, the actions that the students took 
when encountering the terms expression and equation were observed. That is, did 
they immediately perform any particular procedure when they viewed an expression 
or an equation? Did the students associate the verb simplify with expressions? Does 
the word solution lead students to think that they must be asked to deal with an 
equation? Furthermore, attention was paid as to whether the students were able to 
correctly simplify algebraic expressions and solve linear equations given to them in 
symbolic form.  

FINDINGS AND DISCUSSION 
Overall, all four of the students simplified algebraic expressions and solved linear 
equations with one unknown given to them in symbolic form with ease, arriving at 
the correct result.  When faced with the instruction simplify all students combined like 
terms. During the interview, all students mentioned that simplifying and combining
like terms is one and the same thing. However, they all mentioned the term simplify in 
relation to algebraic expressions and none of them related the term to equations. 
When the students were faced with the instruction solve (Activity 3 tasks 2, 4, 6) 
three of them (Ellen, Kathy, and Tim) performed a do the same thing to both sides
procedure indicating that they viewed the equal sign as a balance sign. Susan was the 
only student who followed the procedure move the unknowns on one side and the 
numbers on the other.
The table on the next page shows the way that each student sorted the cards in 
Activity 1. The Intended Sorting column indicated in the table is the sorting of cards 
that, as judged by the author, would have indicated that students observe a difference 
between expressions and equations and that would, furthermore, specify that the 
students view the equal sign as part of the structure of equations. 
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Intended
Sorting

Ellen Tim Kathy Susan

1 2 1 2 1 3 1 2 1 2

3 5 3 5 9 2 6 3 5 3 5

4 6 4 7 10 4 7 4 7 4 7

10 7 6 8 5 8 6 8 6 8

11 8 10 9 11 12 10 9 10 9

9 11 12 11 12 11 12

12 

Table 1: Results of the task on sorting cards (Activity 1) 

Notice that the sorting performed by Ellen, Kathy, and Susan is identical whereas 
Tim chose to sort the cards in a way that he thought was more appropriate. As Tim 
said, he placed cards 9 and 10 on the same pile by themselves because “they were the 
only ones that contained fractions”. He then placed cards 1, 2, 4, 5, and 11 on the 
same pile because “they contained either one or in the case of card 11, two variables. 
So, they had a small number of variables.” As he indicated, he chose to place cards 3, 
6, 7, 8, and 12 together because they “have more words or shapes like circles or they 
have many variables”. It is interesting to note Tim’s conception of variable. He 
seems to associate variable with letter denoting an unknown whether that unknown is 
a constant (cards 2 and 5) or can vary in value (card 1). So, according to Tim, the 
number of letters in an expression or equation denotes the number of variables. 
However, Tim’s conception of variable falls short when considering cards 7 and 8. 
Tim seems not to view shapes (circles and squares) as place holders for an unknown. 
If he did, then he would likely have realised that a single letter could be used to 
denote the unknown on cards 7 and 8 and would have placed cards 7 and 8 in the 
same pile as cards 1, 2, 4, 5, and 11.  
When Ellen, Kathy, and Susan were asked about the differences in the two piles in 
which they sorted the cards (Activity 2), they all indicated that the cards on the right 
pile had an equal sign whereas those on the left did not. Also, these three students 
identified the cards on the right pile as “equations”. However, they could not 
remember the term “expressions” when asked what name they would give to the 
cards on the left pile.  This however, does not indicate a lack of understanding from 
the part of the students of the differences between expressions and equations. None of 
the students though indicated that equations are a pair of expressions set equal to one 
another by the equal sign. Thus, none of the students identified the surface structure 
of an equation.
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When students were asked to produce expressions and linear equations in Activity 2 
tasks 7-9 their responses were as follows: 

Student 7)Give an equation that 
has 2 as a solution 

8)Give an expression such 
that when x is 3 the value of 
the expression is 0 

9)Give an 
expression
such that 
when x is 0 
the value of 
the expression 
is 3 

Ellen 1 + x = 2 0 x = 0 x + 3 = 3 

Tim 1 + 1 = 2 x = -3 x = 3 

Kathy 12 – x = 2 3 – x = 0 3x = 3 

Susan 10 ÷ x = 2 x – 3 x + 3 

Table 2: Results of Activity 2 Items 7-9 

The only student who made a distinction between expressions and equations in the 
above set of tasks was Susan who provided correct algebraic expressions in tasks 8 
and 9. During the interview Susan was asked about her choice of equation she gave as 
a response to task 7. At that time she corrected her response to task 7 to be 10÷x=5. 
Ellen on the other hand did not distinguish between the terms equation and 
expression in the above items and instead provided equations in all three cases. 
During the interview, Ellen specified that it was because of the words ‘value is’ that 
she associated the last two tasks with equations.
When students were asked in Activity 4 to describe what, according to them, are the 
differences between expressions and equations they gave the following responses: 

Ellen: Equations have an equal sign and variables. Something equals something 
else. Expressions don’t have an equal sign. 

Tim: Expression is like giving a certain number to a variable, I think. And then 
equation is a whole bunch of numbers added together kind of a thing. 

Kathy:  I think equations don’t have variables and expressions do. When you have 
an expression and you simplify you don’t find the exact answer, but you 
just kind of add like terms together. But when you solve an equation you 
find the exact answer. 

Susan: Expressions don’t have the equal sign. They have a variable like x. 

From the above comments, one is able to see that Ellen identifies the surface structure 
of equations (“something equals something else” and “equations have an equal 
sign”). However, Ellen’s response to activity 4 makes her responses to Activity 3 
tasks 7-9 problematic. Ellen recognizes that expressions do not have an equal sign. 
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Yet, when asked to provide expressions in tasks 8 and 9 she gives an algebraic 
sentence that indeed contains an equal sign. Susan also identifies that expressions as 
opposed to equations do not have an equal sign. However, Susan, Tim, and Kathy 
were unable to view equations as being made up of two expressions. Kathy’s 
comments are particularly interesting. She seems to be viewing variables as obstacles 
to arriving to the “exact answer” but does not seem to reject expressions as answers 
to problems. Kathy seems to be more of an ‘action person’ since she refers to the 
actions or procedures she would use when faced with expressions or equations. Kathy 
clearly identifies that the noun expression is related to the verb simplify and the noun 
equation is related to the verb solve. None of these students seemed to face any of the 
obstacles suggested by Tall and Thomas. They all accepted expressions as answers to 
problems and did not view algebraic expressions as incomplete answers.   

CONCLUSION
Ellen’s association of “value is” with equations makes one realize that language plays 
a vital role in student performance and understanding. Student confusion may not 
arise because of student misconceptions or difficulties with using mathematical 
concepts but perhaps because of the language they face. Teachers should be 
extremely careful with interchangeably using mathematical terms in the classroom 
such as expression and equation. If they are not careful with language use then 
students might come to believe that the two concepts are actually the same and thus, 
not be able to distinguish between them. Also, the inability of the students to recall 
the term expression accompanied by their ability to spontaneously recall the term 
equation when asked to provide a general name for the piles in which they sorted 
their cards in Activity 1, seems to suggest that perhaps the term equation is more 
frequently used in the mathematics classroom. Teachers should use the term 
expression more frequently even after having finished instruction on expressions. 
Students should be reminded of the term expression while they receive classroom 
instruction on equations so that they acquire the correct mathematical vocabulary. 
In general, the data collected in this study has shown that students associate the term 
simplify with algebraic expressions and the term solve with equations. Although 
students may not have difficulties manipulating, and simplifying algebraic 
expressions and solving linear equations, they may still not be able to identify the 
difference between the two and may find it very challenging to generate expressions 
or equations. Thus, instruction on linear equations should include identifying the 
difference between algebraic expressions and linear equations so that students can 
make connections between concepts they learn in their mathematics classrooms. 
With consideration to the above, it is important to analyze the effects of teaching on 
the students’ ability to recognize the differences between algebraic expressions and 
equations. Due to time constraints, classroom observations were not carried out in 
this study. However, classroom observations of teachers teaching the units on 
algebraic expressions and linear equations along with interviews with their respective 
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students as they respond to the instrument in this study would help clarify possible 
sources of students’ difficulties even further.

ACKNOWLEDGMENTS
The author would like to thank Nathalie Sinclair for her insightful comments on the 
first draft of this paper and Jon Star for his recommendations during the development 
of the instrument used in the study. The author would also like to express her 
appreciation to the CERME reviewers and Luis Puig for their feedback. 

REFERENCES
French, D.: 2002, Teaching and Learning Algebra, Continuum Books, London. 
Hall, R. D. G.: 2002, ‘An Analysis of Errors Made in the Solution of Simple Linear 

Equations’. Philosophy of Mathematics Education Journal 15.
Kieran, C.: 1989a, ‘The Early Learning of Algebra: A Structural Perspective’, in S. 

Wagner and C. Kieran (eds.), Research Agenda for Mathematics Education, 
Research Issues in the Learning and Teaching of Algebra, Vol. 4, NCTM, Reston, 
VA, pp. 33-53. 

Kieran, C.: 1990, ‘Cognitive Processes Involved in Learning School Algebra’, in P. 
Nesher and J. Kilpatrick (eds.), Mathematics and Cognition: A Research Synthesis 
by the International Group for the Psychology of Mathematics Education,
Cambridge University Press, Cambridge, pp. 96 -112. 

National Council of Teachers of Mathematics: 2000, Principles and Standards for 
School Mathematics, NCTM Inc., Reston, VA.

Sfard, A.: 1995, ‘The Development of Algebra: Confronting Historical and 
Psychological Perspectives’, Journal of Mathematical Behavior, 14, 15-39. 

Steinberg, R. M., Sleeman, D., and Ktorza, D.: 1990, ‘Algebra Students' Knowledge 
of Equivalent Equations’, Journal for Research in Mathematics Education 22(2), 
112-121.

Tall, D. and Thomas, M.: 1991, ‘Encouraging Versatile Thinking in Algebra Using 
the Computer’, Educational Studies in Mathematics 22(2), 125-147. 

Working Group 6

CERME 5 (2007) 943
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This paper reports on one aspect of a longitudinal study which seeks insight into the 
ways in which spreadsheet experience and teachers’ pedagogic strategies shape 
pupils’ construction of meaning for algebra.  It offers a categorisation of what 
teachers actually do when using spreadsheets in their teaching, and discusses how 
these practices relate to pupils’ construction of meaning for algebra.  Five practices 
are identified: demonstrating; developing socio-mathematical norms; reflecting on 
activity; focusing attention on meaning; and legitimising algebraic activity.  These 
practices are illustrated with extracts from lessons.

ALGEBRAIC THINKING/ACTIVITY AND SPREADSHEETS 
Research suggests that spreadsheets can support the learning and teaching of algebra.  
In a spreadsheet a cell reference refers to the particular number in a cell, and any 
number that may be entered into that cell, as well as describing its physical location.  
Spreadsheets also have the facility for filling down a formula through a range of 
cells; hence the column can also be seen as representing a variable.  In a longitudinal 
study of two groups of 10-11 year old pupils working on traditional problems, 
Sutherland and Rojano (1993) conclude that ‘a spreadsheet helps pupils explore, 
express and formalise their informal ideas’ (p.380), moving from thinking with 
specific numbers to symbolising a general rule.  The use of algebra-like notation and 
the activities of writing formulae and graphing are typically cited as offering access 
to the meaning of symbolic notation and to algebraic activity.   
Several researchers point to the important role of the teacher in guiding pupils’ 
construction of meaning when working with such technological tools (for example 
Dettori et al, 1995).  The practice of what teachers actually do, however, has received 
relatively little attention in the literature.  Monaghan (2004), for example, notes that 

‘research focused on teachers’ practices in mathematics classes is a relatively recent 
phenomenon and what there is to date has largely focused on forms of knowledge and on 
beliefs, with little attention to the whole experience of using technology in the classroom’ 
(p.328).

Hennessy, Deaney and Ruthven (2005) draw on socio-cultural theories of mediation 
and guided participation to identify pedagogic strategies for mediating pupil 
interactions with technology in secondary schools.  Although mathematics teaching 
was not a specific focus of the research, the typology of strategies points to the need 
to maintain focus on subject discourse and to the ‘underdeveloped’ role of whole 
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class interactive teaching using technology.  In terms of technology in mathematics 
education, teachers’ practices have been discussed in relation to the instrumental 
approach, considered further below. 
The instrumental approach (described in Trouche, 2004), is a theoretical framework 
that offers a way of describing how an artefact such as a spreadsheet becomes an 
instrument.  Trouche describes an instrument, which includes a psychological 
component related to how an artefact is used, as: 

‘the result of a construction by a subject, in a community of practice, on the basis of a 
given artefact, through a process, the instrumental genesis’ (p.289). 

The process of instrumental genesis, in which an artefact is appropriated by a learner, 
consists of two combined processes: instrumentation and instrumentalisation.  The 
former refers to the way in which an artefact such as a spreadsheet influences the 
learner, allowing them to engage in mathematical activity using the artefact.  The 
latter is directed towards the artefact, and refers to transforming the artefact to 
become a mathematical tool.  Trouche introduces the term ‘instrumental 
orchestration’ to describe the ‘external steering of students’ instrumental genesis’ 
(p.296).  Exploratory research by Haspekian (2005) within this frame indicates the 
complexity of such processes (see also Artigue, 2002).  The ways in which teachers 
orchestrate, or guide their pupils’ construction of meaning is the focus of this paper. 

DATA COLLECTION AND ANALYSIS 
This study builds upon the Purposeful Algebraic Activity project1 which aimed to 
explore the potential of spreadsheets as tools in the introduction to algebra and 
algebraic thinking.  The project involved the design of purposeful spreadsheet-based 
tasks (see Ainley, Bills and Wilson, 2005a; Ainley, Bills and Wilson, 2005b) which 
formed the basis of a teaching programme for pupils in the first year of secondary 
school (aged 11-12).  Five classes participated in the project, spending approximately 
twelve hours of spreadsheet-based activity within their mathematics curriculum over 
the course of the year.  Four experienced teachers, who collaborated with the project 
team throughout, taught all of the lessons to their usual classes.  In the schools 
involved, pupils were divided into four mathematics sets by attainment.  In one 
school Graham taught set 1 and Judith taught two sets, set 3 and set 4. In another 
school Anne taught set 1 and Rachel taught set 4.
This research seeks insight into the ways in which spreadsheet experience and 
teachers’ pedagogic strategies shape pupils’ construction of meanings for algebra.  It 
draws upon data from the Purposeful Algebraic Activity project, but focuses more 
closely upon the role of the teacher in order to gain further insights into the social 
construction of meaning.  This paper reports on one aspect of the longitudinal study; 
the practices of the teachers.  It attempts to address the question ‘When working with 
spreadsheets, how (if at all) do teachers guide pupils’ construction of meaning for 
algebra?’  Although the tasks had been designed by the research team in collaboration 
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with the participants, the four teachers had the freedom to use the materials as they 
wished.  For example, the teachers made decisions about how to introduce tasks, 
when to intervene, how to respond to pupils seeking help and how (and whether) to 
orchestrate plenary discussions.
A range of data was collected from each of the teaching programme lessons, 
including audio recordings from a radio microphone of teachers’ interactions with 
pupils.  These interactions included work with the whole class, often incorporating 
the use of an interactive whiteboard, and discussions with individuals, pairs and small 
groups when circulating the room.  Field notes were also made with a view to 
recording what happened; these included chronological jottings of non-verbal 
activity.  In light of the broader aims of the study, other sources of data included 
video and screen recordings from a targeted pair of pupils, and semi-structured 
interviews with targeted pairs over a two to three year period.
The audio data from the radio microphone was semi-transcribed, focusing on the 
development of mathematical meaning rather than general classroom management 
activities such as organising groupings and managing behaviour.  Using a broadly 
grounded approach (Strauss and Corbin, 1998) NVivo software was used to develop 
and refine coding of the teacher transcripts.  The analysis focused on how the 
teachers guided pupils’ construction of meaning for algebra; it was informed by the 
ideas of instrumental orchestration (Trouche, 2004) and the role of the teacher in 
semiotic mediation (Mariotti, 2002).  The analysis involved identifying 
commonalities in the practices of the teachers specifically in relation to constructing 
meaning for algebra.  Essentially, the analysis sought overarching themes beyond the 
specifics of the task at hand.  In total, over five hundred and fifty passages were 
coded from the sixty-six lessons, and five themes, or practices, emerged. 

CHARACTERISING FIVE PRACTICES
The categorisation offers a broad description of what teachers do which, to varying 
degrees and in different ways, guides pupils’ construction of meaning.  The five 
practices offer a way of characterising the complexity of what teachers actually do 
when working with technology. 

Practice Definition
Demonstrating Demonstrating or supporting a local process, such as writing 

a spreadsheet formula or constructing a graph.   
Developing socio-
mathematical norms 

Establishing expectations or fostering emerging norms 
through verbal interactions and computer-based activity.   

Reflecting on activity Reflecting on a local process at a global level in terms of the 
value of the local process and/or the value of the local 
process in the context of the task at hand.

Focusing attention on Focusing attention on the meaning of an idea or an image, 

Working Group 6

CERME 5 (2007) 946



meaning such as the variable cell or the use of notation.
Legitimising algebraic 
activity

Legitimising or validating mathematical activity, such as 
using algebraic conventions.  Making links to ‘algebra.’ 

Within a particular episode, such as a teacher-pupil interaction or teacher-class 
interaction, various passages were coded.  Most passages fell clearly within one of 
the five practices; others overlapped two or more.  Some episodes consisted of 
various passages which spanned a range of practices.  For example, a teacher may 
demonstrate a local process, focus pupils’ attention on the notation used, reflect upon 
why the technique is useful in the context of solving the problem, and then develop 
the sociomathematical norm that she expects the class to use that process.  It is 
acknowledged that the interaction between practices is very powerful, but for the sake 
of clarity, each of the five practices is outlined below and illustrated with extracts 
from the lessons.  In considering each of the practices, commonalities and differences 
between the teachers are described. 
Demonstrating
This practice involves demonstrating or supporting a local process, such as how to 
construct a spreadsheet formula, how to drag down a formula or how to construct a 
scatter graph.  It is parallel to the strategy that Anghileri (2002) describes as ‘showing 
and telling.’  Teachers showed pupils processes, often using the interactive 
whiteboard or projected image to demonstrate a series of technical steps, which may 
involve strong mathematical content.  In many cases the technical aspects were 
interwoven with commentary which aimed to draw pupils’ attention to particular 
aspects, such as the need to use certain notation. 
When classes were engaged in spreadsheet activity the teachers responded to pupil-
initiated questions and made interventions.  Teachers used such opportunities to 
reinforce processes that had been previously demonstrated and to teach new 
processes, as they interacted with individual pupils.  With her lower attaining set in 
particular, Judith supported pupils in writing a formula by encouraging them to 
express a calculation for a particular number or explain in words and then ‘tell the 
computer.’

Ashley I would add um fifteen twenties 

Judith Okay, fifteen twenties, so how do we tell the computer to do that? (task 4, 
Mobile Phones, lesson 1) 

In plenaries and mini-plenaries during the lesson, demonstration was also used to 
consolidate and extend pupils’ understanding of how a spreadsheet can be used.  
Over two hundred passages were coded as instances of teachers demonstrating a 
process.  Given the nature of the practice, it is unsurprising that more demonstration 
occurred in the earlier tasks.  In terms of instrumental genesis, the practice of 
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demonstrating supports the development of instrumentation, whereby techniques are 
increasingly regarded as an appropriate response to a given task.
Developing sociomathematical norms 
Developing sociomathematical norms, a practice described by Yackel and Cobb 
(1996) and Hershkowitz and Schwarz (1999) includes establishing expectations and 
fostering emerging norms.  The kinds of norms developed included normative 
routines for using the spreadsheet related to the layout, the process of writing a 
formula, and the methods used to solve problems.  In addition to the procedural 
aspects of activity, normative ways to engage with and think about notation were also 
developed during the teaching programme.
Over one hundred and eighty passages were coded as developing sociomathematical 
norms, and across all of the classes this practice was most prominent in the first task.  
This practice declined (with one slight exception) over the course of the teaching 
programme.  Whilst all of the teachers actively established norms for spreadsheet 
activity with their classes, these were reinforced more with the two lower attaining 
classes where the number of passages coded was approximately double that of each 
of the other classes.  Two common norms were strongly established in relation to 
formalising rules and generating data: writing a formula and filling down a formula.    
Normative ways of entering a cell reference in a formula were established by three 
teachers.  Both Judith and Graham encouraged pupils to click on the cell reference 
rather than type it, whereas Rachel emphasised strongly the idea of telling the 
computer where to find the number: 

‘You’ve got to tell the computer “where to find the number to calculate with, and to do 
that, you give it its “cell reference with the letter first and then the number’   (Rachel, 
task 1, Multiplication Tables, lesson 1) 

Thus, whilst there were commonalities in the practice of developing norms, the actual 
norms and emphasis varied to some degree. 
Reflecting on activity 
Reflecting on activity involves considering the value of a local process either at a 
global level or in relation to the context of the task.  Whereas the practice of 
demonstrating introduces pupils to and supports them with carrying out processes, 
and developing sociomathematical norms encourages pupils to interact with the 
spreadsheet in certain ways, the practice of reflecting relates to the usefulness of such 
activity.  It includes teachers meta-commenting about why particular processes are 
useful as well as inviting pupils to interpret data and graphs. 
All of the teachers engaged in the practice of reflecting, with over one hundred and 
eighty passages coded and a number of themes emerging in relation to usefulness.  A 
theme that Judith and Rachel referred to frequently was the value of the spreadsheet 
in performing a calculation.  A second theme relates to the efficiency of using 
spreadsheet formulae beyond that of performing a calculation.  Within this theme are 

Working Group 6

CERME 5 (2007) 948



examples of teachers referring to changing the number in a cell and to filling down a 
formula: 

‘It’ll be a lot quicker if you use the formulas … you’ve just gotta change these numbers 
and you can see immediately what the total is’ (Anne, task 6, Fairground Game, lesson 1) 

‘you don’t have to keep typing that in, you can pull it down and it … saves you some 
time’ (Judith, task 3, Sheep Pen, lesson 1) 

‘the computer can do this in the next few seconds.  Before the end of the lesson the 
computer can have worked this out for us’ (Rachel, task 3, Sheep Pen, lesson 1) 

Teachers tended to consider the efficiency of solution strategies in the tasks that lent 
themselves to a graphical approach.  The interpretation of graphs involved 
consideration of the task at hand, and seemed to be useful in offering visual support 
for reflecting upon progress towards solving the problem at hand. 
Focusing attention on meaning 
The practice of focusing attention on meaning includes amplifying a particular aspect 
of activity, offering images or metaphors and negotiating meanings.  The discussion 
of this practice is organised around two key themes: the variable cell; and the variable 
column.
Focusing attention on the meaning of the variable cell was a practice used by all of 
the teachers.  Anne was responsive to the difficulties of individuals in constructing 
meaning for notation, explaining that ‘it’ll change everything automatically.’  Rachel 
similarly explained that a calculation with numbers only works once whereas with 
formulae the numbers change, an idea that Graham also made reference to.  Judith’s 
practice, however, involved frequently amplifying the idea of the variable cell.  The 
extract below illustrates Judith’s language use in developing the idea of a variable: 

‘I want “any number.  I want to be able to change that number there.  So I want 
whatever’s in that box.  It doesn’t have to be forty-three, it’s whatever’s in that box.  So 
how can I tell it “that box?  (.) … Right so, click, to say I want that box there, just click 
on that box.  Right, and it puts B14 look.  B14 so that means whatever’s in that box’ (task 
2, Hundred Square, lesson 1) 

The phrase ‘whatever’s in the box’ interpreted out of context could refer to the 
number that happens to be in the cell or to whatever could be entered into the cell.  In 
context, however, Judith’s intention is clear in referring to changing the number, 
which she also demonstrated in different tasks and reinforced by developing the norm 
of ‘doing a sum,’ that is writing a formula. 

Judith Right once you’ve typed in the number five, once you’ve typed in the 
number five it stays a five, it won’t change, it’ll stay a five.  How can we 
make that five “change, if we change the two above? 

Pupil Um by doing a sum 

Working Group 6

CERME 5 (2007) 949



Judith By doing a sum, good, by doing a sum on the computer. (task 5, Bonus 
Points, lesson 1)

Judith’s emphasis on change was also seen in tasks where the pupils did not actually 
change the numbers in cells; instead they listed values in a column.   

‘Now you notice he just said well whatever was in that box there, because I want to 
change that number to a different number, I want to change it to a three or a five or a ten 
or an eleven.  I want to “change that number so it’s whatever’s in that box, whatever I 
choose to pick’ (Judith, task 3, Sheep Pen, lesson 2) 

In this extract Judith was responding to a pupils’ use of the phrase ‘whatever was in 
that box there.’  Although she said ‘I want to change that number,’ she did not 
literally mean that she wanted to replace the number in the particular cell, but that the 
class would need to consider different widths of sheep pen and hence write a formula 
that could be filled down.  Thus the idea of change referred to the variable, the width, 
which she also expressed as ‘whatever the width’ in the Sheep Pen task and ‘however 
many minutes’ in the Mobile Phones task.   
Focusing attention on the meaning of the variable column was used, but was less 
common as a practice.  Teachers tended to focus pupils’ attention on the variable cell 
and develop the sociomathematical norm of dragging down a formula, but relatively 
little attention was given to the meaning of this process.  Rachel focused attention on 
the idea of location, which is consistent with the norm that she developed for 
constructing a formula.   

‘So, that formula tells the computer to find the number that is in cell B2, and add one to it 
… And then, as you drag that down, it tells it always, to add one to the cell before it … 
it’s telling it where it is and it’s telling it what to do with it’ (task 1, Multiplication 
Tables, lesson 2) 

Anne similarly used the idea of location to help pupils understand filling down a 
formula, explaining to a pair of pupils that ‘it’s taking a cell above it and adding one’.
Anne tended to focus attention on the meaning of the variable column more than the 
variable cell.  Graham and Anne tended to refer to dragging down in the context of 
generating data to solve a problem, encouraging reflective activity, rather than 
focusing attention on meaning.  Judith did on occasions invite pupils to attend to the 
notation used in a variable column, although little attention was given to the notation 
used in a variable column in comparison to Judith’s focus on the variable cell.   

‘Let’s have a time to think.  Have a look at it.  This one says E2, E2 which is that one, 
plus one.  This one says E4 plus one.  This one says E6, which is that blue one, plus one.  
What have I actually told the computer to do this time? … Right so it’s three add one, 
“four add one, “five add one, “six add one’ (task 1, Multiplication Tables, lesson 2) 
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Legitimising algebraic activity 
The practice of legitimising algebraic activity involves legitimising or validating 
spreadsheet and other activity and ideas as mathematical, and specifically algebraic.  
It includes the social appropriation and validation of culturally mediated practices and 
conventions.  Examples of the kinds of passages coded are given below.

‘How on earth can I write in there, not just any particular number, but “any number?  …  
x, that’s a great idea’ (Graham, task 2, Hundred Square, lesson 2) 

‘I’ve got an a and a b and I’ve got a b there as well … a plus two lots of b.  How do I 
write two lots of b in algebra? … a plus 2b’ (Graham, task 5, Bonus Points, lesson 2) 

‘We’ve had one or two people succeed with the letters, see if you can explain, see if you 
can use that to explain’ (Anne, task 6, Fairground Game, lesson 2) 

‘I’d like you to try and “prove to me that definitely putting one in the middle gets used 
more frequently than putting one at the end.  See if you could actually do that in some 
way, maybe with symbols’ (Judith, task 6, Fairground Game, lesson 2) 

‘Over the past few weeks you have had quite a bit of practice at doing algebra, using 
formulas etcetera’ (Rachel, task 6, Fairground Game, lesson 1) 

‘We’re gonna do exactly the same but this time with some letters there so that first box is 
whatever the number in a is, plus the number in b’ (Judith, task 6, Fairground Game, 
lesson 2) 

Three kinds of legitimising emerged from the analysis.  The first two examples 
illustrate teachers legitimising mathematical conventions, in these cases the use of a 
literal symbol for a variable, and the convention for multiplication.  The second two 
examples, Anne’s reference to explaining and Judith’s reference to proof are 
examples of legitimising the significance of practices.  In the final two examples the 
teachers attempt to make links, one global and one local, between spreadsheet activity 
and algebraic activity, thus legitimising spreadsheet activity as algebraic.  The first 
two kinds of practices were seen less in the lower attaining sets, often a reflection of 
less work with standard notation. 

DISCUSSION
The categorisation of five practices offers a broad description of what teachers do 
which, to varying degrees and in different ways, guides pupils’ construction of 
meaning.  Alongside the design of tasks (see, for example, Ainley, Bills and Wilson, 
2005b), the practice of teachers is a key aspect of pedagogy.  The five practices were 
identified in a specific context, with particular sets of pupils.  Nonetheless, they offer 
a way of characterising the complexity of what teachers actually do when working 
with such technology.  They form an interpretive framework, which is primarily 
grounded in data, but also links with key ideas in the theoretical frameworks outlined 
earlier in the paper; ‘instrumental orchestration’ (Trouche, 2004) and the role of the 
teacher in developing ‘instruments of semiotic mediation’ (Mariotti, 2002).   
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In light of the broader aims of the study and the broader range of data collected, the 
categorisation was used in the analysis of pupils’ evolving meanings for algebra.  
More specifically, the relationships between teachers’ practices and pupils’ meanings 
were tentatively explored.  It is likely that a number of interwoven factors contributed 
to the patterns observed at class level, not least of which was the attainment level of 
the set.  A more fine grained level of analysis attempted to embrace this complexity 
by tracing pupils’ evolving meanings through chains of episodes (Cobb and 
Whitenack, 1996) and developing case studies of pairs of pupils.  Within these, data 
relating to teachers’ practices was a particular focus of analysis.  Each of the five 
practices was seen to steer and colour pupils’ meanings.  Aspects of pupils’ activity, 
such as clicking on spreadsheet cells or making errors, were identified as triggers for 
mobilising particular meanings. 
The categorisation outlined in the paper is grounded in rich, longitudinal data.  The 
five emerging themes offer a framework for characterising and comparing teachers’ 
practices.  This offers some insight into how teachers guide the social construction of 
meanings in a spreadsheet context.  In this study, the themes were used in the 
longitudinal analysis of pupils’ evolving meanings for algebra.  Future reports on the 
evolution of meanings will draw upon the categorisation outlined here. 

NOTES
1. The Purposeful Algebraic Activity project and this study were both funded by the Economic and 
Social Research Council

2. The following conventions are used in the transcripts 

“ precedes emphatically-stressed syllable 

… indicates omission of part of transcript for presentation purposes 

(.) timed pause (number of dots corresponds approximately to number of seconds) 
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