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WG 7 REPORT  
FROM GEOMETRICAL THINKING TO GEOMETRICAL WORK 

Alain Kuzniak 
A. Gagatsis, M. Ludwig, C. Marchini 

The Cerme 5 Working Group on Geometrical Thinking worked within the continuity 
of Cerme 3 and 4. During these former sessions, some main points were considered 
within a first common theoretical point of view on geometry with regard to 
epistemology, psychology and semiotic. Before presenting topics debated during our 
last session, we are looking back to the common background built and discussed 
before this session (see also Dorier et al. (2003) and Straesser et al. (2005)). 

THEORETICAL BACKGROUND OF THE GROUP 
Paradigms in Geometry 
Traditionally, Geometry has different, somewhere contradictory, trends which 
roughly said refer on one hand to reality and suitable applications in future life and 
on the other hand to a more axiomatic and logical perspective. To take into account 
the variety of geometrical approaches, a paradigmatic perspective was introduced by 
Houdement and Kuzniak [2003, 2006]. Based on Kuhn’s and Gonseth’s works, three 
main coherent paradigms were brought out to explain various purposes aimed by 
Geometry. In this view, Geometry I (Natural Geometry with source of validation 
closely related to intuition and reality with eventually the use of measurement and or 
construction by real tools) differs deeply from Geometry II (Natural and axiomatic 
Geometry based on hypothetical deductive laws related to a set of axioms close as 
possible on the sensory reality). The last paradigm Geometry III (formal and 
axiomatic geometry) is today of a least importance in the compulsory school but it 
determines the horizon of mathematics at the university: in this case the set of 
axioms is independent of reality and should be complete in the formal sense. 
Naturally, people coming from countries where the Euclidean Geometry is 
traditionally taught recognize here a common problem they are faced with: How to 
manage transition from Geometry I to Geometry II. For the other, this frame could 
appear somehow exotic but it has been shown that it enables to compare different 
institutions with different aims and thought about the role of Geometry. Naturally, 
these paradigms are not explicitly taught and there are to be seen as useful tools for 
explaining some misunderstandings common in the classroom when the teacher’s 
working horizon differs from the student’s ones. 
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Geometrical Thinking and Geometrical Work 
Once the main aim of geometry is accepted, the problem remains of knowing how 
students can be successful at geometrical tasks. At the birth of the group, in 1999, 
the influence of psychologist scholars led to focus on geometrical thinking with 
studies and references to development stages using frameworks like Piaget’s ones or 
the famous Van Hiele’s levels. Naturally, these frames are helpful especially in the 
first access to Geometry by young children, but they do not seem to fit with geometry 
taught at High school or University levels. Otherwise, it appeared that rather than 
focusing on thinking first, it would be more efficient to define and study what kind 
of “geometrical work” was at stake in geometry teaching and learning. In this trend, 
studying geometrical thinking remains a basic and fundamental problem but drawn 
by geometry understanding in a school context rather than in a laboratory 
environment. In this view, we need a clear borderline (even it could change during 
the schooling) between Geometry and Pregeometry: We could accept that this line 
passes through an existing justification based upon a logical and articulate discourse. 
Semiotics and Registers of representation 
The semiotic perspective is nowadays a living trend existing in didactics of geometry 
for a long time as it could be seen in the difference that authors made between 
drawing and figure and which partially refers to the signifier/signified pair. The 
Duval’s registers of representation (1998-2006) are also used as a support of analysis 
with regard to the deductive entrance in Geometry. In this case, it is useful to work 
with several registers especially the discursive and figural. More widely, the semiotic 
approach could give a rich look on the various characterizations of objects used in 
Geometry which can be seen as supports of knowledge, description or perception. 

SOME TOPICS TACKLED BY THE GROUP 
Spatial abilities and Geometrical tasks. 
This topic was at the heart of numerous papers accepted in the group and gave birth 
to an interesting discussion. As Panaoura-Gagatsis pointed it, quoting Weathley 
(1998), we can agree that one unified and wide accepted definition of spatial abilities 
does not exist: the way this term has been defined and the instruments used to collect 
data are nearly as varied as the number of studies using them. The concept of space 
in itself does not allow a unique definition. As Speranza (1997) points out, we can 
enlighten what ‘space’ could be only by using contrapositions: he shows at least ten 
possible conceptual couples useful for the articulation of spatial understanding. 
Therefore it is very important that authors precise their definition of spatial abilities 
before beginning a study on relations between these kind of abilities and those useful 
to solve geometrical problems. In some case, it seems that we can paraphrase the 
famous definition attributed to Binet: What is intelligence? It is what my test 
measures. 
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Based upon traditional tests like ETS (Pittalis), some authors tried to find a 
relationship between spatial and geometrical abilities. But the question is turning to: 
How shall we evaluate geometrical abilities? Such abilities could be defined as 
combination of general intelligence applied to the geometrical context. That 
supposes a definition of the context and we are coming back to our problem. During 
the meeting, different proposals were given to solve this question, more or less 
persuasive. In fact, a tight task analysis is requested to support the results presented. 
Some tasks used are not clearly related to geometry especially tasks situated at the 
visual level from Van Hiele. 
In their paper, Panaoura-Gagatsis introduces 2D and 3D geometrical tasks clearly 
related to the syllabus and they measure spatial abilities using Demetriou and 
Kyriades (2006) model. In this model, the spatial-imaginal system of the human 
being is organized upon three components: Image Manipulation, Mental Rotation 
and Coordination of Perspectives. They gives some interesting results on the relation 
between students’ performances to each category of tests. If the majority of the 
students who performed high scores in geometry belong to high spatial ability group, 
there are some students with high spatial abilities and who do not performed high in 
geometry. At the same time, they show that spatial intuitions remain active even if 
geometrical topics have been taught and that performances on geometric task depend 
closely on the age of the students and the dimension (2D or 3D) of the space where 
the question is posed. 
Knowing young initial pupils’ geometric knowledge 
 One of the more important stake for researchers in mathematics didactics is certainly 
to gain a better understanding of pupils’ abilities in the classroom rather than in a 
laboratory. This point was developed by Marchini-Vighi and Markopoulos who have 
been working with young pupils (5 to 8 years old). They follow a rather similar 
approach to deal with this question: they gave open and fuzzy tasks to catch initial 
conceptions of their students. Inspired by Swoboda (2005) and having given tiles to 
pupils, Marchini and Vighi asked them to build ‘from these tiles as beautiful floor as 
possible’ 
This ambiguous way of giving a problem was naturally questioned by the rest of the 
group, but authors argue that it is probably the best way to let enter young people in 
a task and to obtain information about their initial knowledge. Their results show a 
great variety of “déjà-là” (set-before) knowledge and it is probably possible to 
manage a real geometry teaching based upon it. That leads to an outstanding 
question: Which is the status and the place of “spatial knowledge” into the 
curriculum? 
Do exist epistemological obstacles in Geometry? 
Based on the seminal work of Bachelard, Brousseau (1997) has introduced the 
notion of epistemological obstacle in didactics. An obstacle is made apparent by 
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reproducible errors not due to chance. When the origin of the error could be 
explainable by reasons based upon history and epistemology, it will be talked about 
epistemological obstacle, other kind of obstacles exist related to the ontological child 
development or to teaching methods.  
Papers from Modestou-Iliada, Kratka and Bulf were respectively dealing with some 
initial conception like “linear model”, “infinity horizon”, “principle of symmetry” 
which could sometimes appear as obstacle in new knowledge building. Deciding if 
the former difficulties are or not obstacle and of what kind is not easy and depend 
clearly on each item.  
Related to proportionality, ‘linear model’ seems to appear as an obstacle when 
geometry deals with area and volume. Infinity case is less clear, Kratka argues that 
horizon could explain some problem related to infinity. When do appear infinity and 
horizon in Elementary Geometry? Perhaps, the transition from meso-space to macro-
space (in the sense of Brousseau) rests on this point.  
At least, the ‘symmetry principle’ exhibited by works in cognitive science (see 
Palmer, 1985) belongs to tools helping the students to reach a first stage in geometry 
but it seems that it can act against the development of a more abstract vision of the 
figure. We find again the opposition between knowing and seeing. 
On possible uses of geometrical paradigms 
Since Cerme 3, the theme of geometrical paradigms is taken into account by the 
group and new participants have questioned this point: Which is the real benefit of 
this approach? Two papers gave some perspectives in this way. Houdement shows 
how she uses these tools to explore the comparison between curricula in different 
countries, here France and Chile. With help of the notion of Geometrical Working 
Space (GWS), she had studied the place of Geometry I and II in these countries and 
she could word some general questions into this theoretical framework:  

Do we need to teach Geometry II? 
and if so  

Which is the best way to enter into Geometry II?  
Is it by teaching Geometry I longer?  
What is a coherent and rich approach of Geometry I? 

In a second paper, Bulf deals with the question of the link between Geometrical 
knowledge and the reality. She is studying the use of everyday objects and situations 
in the teaching of symmetry at secondary school level. A double play occurs between 
the couples GeometryI/GeometryII on one side and Reality/Theory on the other side. 
She observed that knowledge used in everyday life context are not very useful in the 
context of the theoretical approach and vice versa.  
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In Cerme4, Kuzniak-Rauscher (2005) have shown a possible use of paradigms in 
teachers’ training by making them aware about some difficulties related to these 
different approaches of Geometry. In this direction, we could interpret some results 
of Kospentaris’ paper. In his study, the author confirms results already presented at 
Cerme 3 and 4 about old student’s geometrical thinking. He shows that students at 
the end of secondary school and with good knowledge in Euclidean geometry solve 
some geometrical problems by using visual strategies or “measurement by compass 
and straightedge” in contradiction with their supposed Van Hiele’s level. He 
explains this by the fact that “they think in another context’. It’s another way to say 
that the problem depends on its paradigm’s horizon (Geometry I or II) and not on a 
developmental approach not appropriated to aged students.  
Artefacts and Geometry 
Nowadays, it is impossible to think about geometry without looking at DGS 
(Dynamical Geometrical Software) which have deeply changed the nature of 
constructions and proofs in the domain. If few papers were concerned by this trend 
(due to Working Groups on proof and on technology at Cerme), the way they took in 
charge the problem seems interesting and gives a new look on ancient problems by 
revisiting them.  

Geometrical paradoxes revisited. 
Based upon a tangram-software, Vighi built an example of a jigsaw possible to solve 
with six or seven pieces. This spectacular paradox depends on how approximation is 
controlled by the software. It did not appear as a paradox for young pupils who find 
natural that two different configurations of the pieces recover a different area. 

Prototypic images revisited. 
Unfortunately absent from the meeting, Larios gave to solve the problem of 
midpoints configuration in a polygon to 14 old students with DGS. He observed that, 
even in this environment, students tried to build prototypic drawings that allow them 
to see some results better. 
Due to Mann-Ludwig’s paper, the relationships between media and didactic 
instruments were touched. Every year, new electronic and interactive tools enter in 
the classroom (like video, internet or interactive whiteboards). How can we turn this 
media into effective teaching and learning tools? In a preliminary study, Mann-
Ludwig have observed students using a DGS enriched by video-facilities. They 
propose an interesting ‘Learner model’ showing the link between different 
approaches, traditional or not. Using this frame, the question becomes : How can we 
include the advantage of the usual learning in the classroom into video 
environments? 
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PERSPECTIVES 
If we look at didactics as a science turned to applications, the proposals made during 
the present work session focused more on description of problems encountered in the 
classroom than to prospective use in geometry teaching and learning. Discussions 
over teaching training that were intense during the former sessions did not emerge 
during the present Working Group. We could perhaps regret this and equally the 
relative weakness of task analysis based upon the traditional tools developed in 
didactics.  
Nowadays, a semiotic approach allows to work on geometrical objects as drawing 
and figural concepts. Some specific components of the geometrical work like 
visualisation, construction and reasoning are deeply studied into the cognitive 
approach. During, this session few papers were based on these aspects and we expect 
that the group’s future work will be nourished by specific studies on these points.  
By focusing the debate on geometric work, we hope to lead the group to precise the 
existing theoretical tools helpful to explore and describe the nature and the 
construction of the Geometrical Working Space used by students and teachers. Do 
we need new tools or are the existing ones sufficient?  
All the people participating to the group – except two – were coming from 
Mediterranean countries. Does it mean that Geometry is a ‘Mediterranean cultures 
state of affairs’? 
We conclude this paper by some ideas of collaboration between participants and 
some suggestions for the future.  
Collaborations are envisaged about the transition from primary to secondary school. 
A common framework to work out such kind of studies could be based on some tools 
discussed by the group, this session and before, like paradigms, geometrical 
workspace, spatial abilities and conception about the figure. Some geometrical tasks 
presented during the meeting could give good common supports to progress in this 
international cooperation. 
And for the future meeting, if we hope that this group could continue we suggest 
changing its name into Research in Teaching and Learning of Geometry (closer to 
the ICMI approach). That will allow a great variety of approaches less centred on the 
student’s way of thinking but on its work and also on the teachers’ work. Equally, to 
work out theoretical approaches it would useful to invite authors or request papers 
presenting the state of art on various points related to geometrical working and 
thinking. 
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THE USE OF EVERYDAY OBJECTS AND SITUATIONS IN 
MATHEMATICS TEACHING: THE SYMMETRY CASE IN 

FRENCH GEOMETRY TEACHING 
Caroline Bulf, PhD student 

University of Paris 7, Denis Diderot, Lab DIDIREM 

This thesis work is concerned by the use of everyday objects or situations in teaching 
a new mathematical concept. The concept of symmetry and in particular its meaning 
both familiar and mathematical, is explored in two different directions: school and 
vocational contexts. Only a part of our investigation in school is presented here: 
analysis of interviews with pupils from 11 to 15 years old and productions. Using 
this data, a phenomenon that we chose to call “transformations’ exclusiveness” is 
brought out. The paper shows how this phenomenon could come from an adaptation 
of schemes to initial perception. 

GENERAL PRESENTATION OF THE RESEARCH QUESTION 
Integrating the real world into mathematics education is not a new issue. However, 
there exist many forms to integrate it. Consequently, the impact of the real world in 
mathematics learning and in the conceptualization of a new mathematical concept 
can be very different too. It is interesting to realize how such-and-such references 
can definitely orientate or not the conceptualization, in order to control them and 
foresee the understanding of pupils. There is a quite strong pressure from French 
curriculum to use real situation through “activities” to introduce a new concept. 

“Architecture, piece of art, natural element, usual objects… we can 
bring out from theses links some universal feature of geometrical object 
connected to their natural or synthetic achievement. (…) difficulties 
from usual vocabulary and previous representations own to pupils (…) 
to work on these primal conceptions (…) the teacher’s management does 
not have to occult these primal conceptions but at the opposite use them 
to make questions.”[1] 

“Activities” from the real world, proposed in classroom are inspired by this wave and 
are used to support the mathematical concept. Bachelard (see Bachelard, 1938) 
points out that “nothing is done, all is building”, he adds the notion of obstacles “to 
set down the problem of scientific knowledge”. In particular, he mentions “the 
excessive using of familiar images”, and suggests how orientating in a wrong way 
can be the way of thinking. Then, there is a question about the result of teaching the 
reflection through a line supported by folding or familiar references. Does it help or 
not to work out mathematical thinking, in particular to understand the new 
transformations of the plan?  
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REFERENCES AND THEORETICAL FRAMEWORK SUITABLE TO 
GEOMETRY 
The real world is precisely used in mathematics teaching to grasp a new concept. 
“Real” is used in a very large and common meaning: what is immediately effective or 
concrete, and can be submitted to our sense and build experimentation. Thus the 
concept of symmetry is the subject of this research because it is everywhere in real 
life and it is a cross concept in school too. Until the beginning of secondary school, 
symmetry is only viewed as reflection through a line which is the usual conception 
too. Then on 5th grade (12 y.o.) pupils learn the reflection through a point, and on 4th

grade (13 y.o.) they learn translation and finally on 3rd grade (15 y.o) rotation.  
Naturally, the first distinction between familiar concept and scientific concept recalls 
Vygotski’s framework (see Vygotski, 1997), but it appeared this strict dichotomy 
was not so relevant for the study despite of his suitable definition. So, it has been 
decided not to be involved in Vygotski’s position even if its definitions of familiar 
and scientific concept were suitable: “it is living in action (perception, folding) 
without being compared or differentiated. Its characteristics and properties are 
neither necessarily aware nor put into words”: the concept of invariance, for example 
is not mentioned in a familiar context. On the other hand, the mathematical concept 
of orthogonal symmetry gets in the isometric category. It is used through “symbolical 
representation” as for example: s is an involutive transformation, that means: s²=id. 
Some “general and useful result” can be formulated as any isometry can be 
decomposed into orthogonal symmetries.  
« In mathematics, it seems necessary to distinguish clearly mathematical objects 
(such as numbers, functions, spaces, etc.) and concepts we use to characterize the 
former with its own properties » [2]. Vergnaud’s theory analyses the human 
component of a concept in action, which seems to be a relevant description as 
regards the familiar component of the concept of symmetry. Vergnaud defines a 
concept with (S, I, s) (see Vergnaud, 1991) where S is the set of different “situations 
of references” which make sense to the concept. The meaning of familiar is not the 
same for everyone (it depends on education, culture, and so on.) but the “operational 
invariants” I which are acting in different situations S, are actually defined by the 
concept-in-action (“relevant or irrelevant notion naturally involved in the 
mathematics at stake”), theorem-in-action (“proposition assumed right or wrong, 
used instinctively in the mathematics at stake”). I add the notion of principle-in-
action (I define it as a theoretical general rule which is at the basis of concept and 
theorem-in-action). The set of theses invariants I make the schemes (notion inspired 
by Piaget) operate. A scheme is the “invariant organisation of behaviour for a class 
of given situation. The scheme is acting as a whole: it is a functional and dynamical 
whole, a kind of module finalized by the subject’s intention and organized by the 
way used to reach his goal”. s, the “signifiers” (according to Pressmeg’s translation 
of Saussure’s meaning, 2006) is the set of representations of the concept, its 
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properties, and its ways of treatment (language, signs, diagrams, etc.). Finally, this 
kind of “conceptual field” of symmetry according to Vergnaud is one of the aims of 
this research.  
Since our research is focused on the interaction between familiar conception, living 
in action in “real” space, and the mathematical conception living in an axiomatic 
form through mathematical model (Euclidian one), the Houdement and Kuzniak’s 
theoretical framework of Paradigm of Geometry I, II, III and the notion of Geometric 
Working Space (see Houdement and Kuzniak, 2006) have been chosen for this study. 
Geometry I (GI) is the naive and natural geometry and its validity is the real and 
sensible world. The deduction operates mainly on material objects through 
perception and experimentation. Geometry II (GII) is the natural and axiomatic 
geometry, and its validity operates on an axiomatic system (Euclid). This geometry is 
modelling reality. Geometry III (GIII) is the formal axiomatic geometry which is 
completely apart from reality and is just a logical reasoning from an axiomatic 
system. The notion of Geometric Working Space (GWS) is the study of the 
environment, organized on a suitable way to articulate these three components: the 
real and local space, the artefacts (eg: tools and schemes), and the theoretical 
references (organized on a model). This GWS is used by people who organise it into 
different aims: The reference GWS is seen as the institutional GWS from the 
community of mathematicians. The idoine GWS is the efficient one in order to reach 
a definite goal. And the personal GWS is the one built with its own knowledge and 
personal experiments. Thus this framework takes into account the double side of our 
concept with a mathematical point of view. The focus of study deals with the 
crossing GI-GII aimed at secondary school. 
The notion of didactical contract designed by Brousseau has been chosen as a 
theoretical reference (see Brousseau, 1997): “Then a relationship is formed which 
determines - explicitly to some extent, but mainly implicitly - what each partner, the 
teacher and the student, will have the responsibility for managing and, in some way 
or other, be responsible to the other person for managing and, in some way or other, 
be responsible to the other person for. This system of reciprocal obligation resembles 
a contract”. It is an important dimension as regards the school factor to analyse the 
nature of the implicit interactions at stake during the crossing GI-GII.  
Finally, the research question focuses on: how are schemes adapted to the 
crossing GI-GII in secondary school? And how do teachers and pupils take into 
account these interactions and adaptations?  
This diagram below summarizes the articulation of our different theoretical 
frameworks: 
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Diagram 1: Theoretical framework suited to geometry. 

THE PHENOMENON OF “TRANSFORMATIONS’ EXCLUSIVENESS” 
 A partial look on the investigation 
The aim of this part is to give some results about one kind of situation: symmetry 
recognition task and by extension the others transformations. 
Twenty eight pupils from 11 to 15 years old have been interviewed: 
 - 9 pupils from 6th grade (11-12 y.o.) before the lesson about the reflection 
through an axis. 
 - The same 9 pupils a few months after the lesson. 
 - 9 pupils from 5th grade (12-13 y.o.) a few months after the lesson about the 
reflection through a point. 
 - 10 pupils from 3rd (14-15 y.o) grade just after the lesson about rotation. 
First, I asked them open questions: have you already heard about symmetry? What is 
symmetry for you and how do you recognize it? Then, I asked them to group together 
pictures (see below) with their own criteria:  

a) b) c) d) e) f) g) 

GWS

G I G II 

Local and 
real space   Model Modelling 

Artefacts 
(tools, 
schemes...)

Didactical contract 
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And finally, I asked them if some symmetrical pictures were among these pictures 
and if they can explain why.  
Advanced productions of 3rd grade: A test was given to 10 pupils from 3rd  grade 
with various levels, at the end of the school year. Only three of the five exercises 

posed (still on the transformations recognition situation) are studied here. This 
protocol was worked out a priori in order to evaluate the inference of the reflection 
through a line among the other transformations at the end of secondary school 
(variable on global perception and punctual perception). So, the task in these 
exercises is to recognize and define the transformations of the plan. Two figures (one 
is the image of the other one) are given in the exercise 1 and 2, whereas the exercise 
4 is based on four different global invariant figures: 

 Results 
The reflection through a centre seems clearly differentiated during the interview 

from the reflection through an axis by 8/10 pupils of 3rd grade, and 5/10 pupils 

This figure is composed of four 
parallelograms (from 1 to 4 on the figure) 
which can be superimposed.  

Please show how (with all the possible way) 
and Justify:  

1� 2  1�3 1�4 2�4 

In each following case, which translations 
or symmetries or rotations : 

a) transform ABC on EDG 

b) transform CDE on GFE 

c) transform ABC on MNP 

Please justify your answers.  

Show the symmetries, translations, or 
rotations which transform the rose on itself. 

Please justify your answers.
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mention rotation or translation too (though I do not mention these 
transformations).To the last question on the symmetrical pictures, 9/10 associate 
exclusively one transformation to one figure. Let’s see below which transformation 
is associated to the pictures (see p.5 the pictures) according to the level:
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f) Ref. Ax.
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f) Ref. Cent.
f) rotation

       Photo d)     Photo e) and f) 

0

20

40
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Ref.Ax

Ref. Cent.

 Photo g) 
Diagrams 2: Transformations recognition during interview with pupils from 6th to 3rd grade.  

They answered the same to exercise 4: only 2 among 10 associated more than one 
transformation with one figure. Let’s see now the distribution of the transformations 
in exercise 4 on 3rd grade: 
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Diagram 3: Distribution of the transformations on exercise 4 from test on 3rd grade. 

According to these data, we assume the existence of a phenomenon we call 
“transformations exclusiveness” which consists in associating one transformation to 
one figure. 
Furthermore, in exercise 4 all the figures are invariant by rotation but it appears a 
difference depending on the parity of the rotation. If the rotation is even pupils 
recognize a reflection through an axis more than a rotation (diagram 3 stick 2 and 4) 
and if the rotation is odd, the pupil recognizes a rotation more than a reflection 
(diagram 3 stick 1 and equal for 3). Interviews clearly show it: according to the 
diagram about Picture e) and f), the rate of Ref. Ax. of e) (odd) is falling whereas the 
rate of rotation is increasing and the rate of Ref. Ax of f) (even) is still high. 
Moreover, pupils hardly ever recognize the reflection through a point in exercise 4 
and the picture f) whereas during the interview, most of pupils recognize a reflection 
through a centre at the picture d) or g) (see diagram 2 photo d), g) and f) and diagram 
3). The diagram of a) and c) confirms that pupils recognize straightforwardly a 
reflection through a vertical axis. 
 An interpretation of these results: inhibiting schemes 
According to our study, we assume the following hypothesis: schemes associated to 
an even or odd rotation are different and they seem work as one was inhibiting the 
other. In exercise 1 and 2, an interesting theorem-in-action appears to check a 
rotation: pupils use their compasses to check if the image-points and starting points 
of the figure belong to the same circle:  
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In particular, some pupils use this theorem-in-action to recognize a rotation (exercise 
2 case c) when it is actually a reflection through an axis. It is acting as if the schemes 
of reflection were inhibited by rotation ones. Then, we assume that the same happens 
in exercise 4. This cocyclicity action can be seen as a signifier of one more general 
principle-in-action that we called principle-in-action of the application point by 
point. Then, according to interviews and exercise 4, we suppose this principle-in-
action inhibits the ones associated to the reflection through an axis. The interviews 
with the rest of the pupils (from 11 y.o to 15 y.o.) show that the first schemes used by 
pupils when they look for a reflection through an axis is the principle-in-action to 
divide in two half planes or two equal parts (drawing an imaginary or real axis is 
one of its signifier). This principle-in-action implies the global invariant principle-
in-action: a figure is globally invariant (and not point by point) under the action of a 
transformation (folding is one of its signifier), which is actually a different way of 
thinking from the principle-in-action of the application point by point. Thus this 
could explain the difference between the rate of recognition between odd and even 
rotations. In the last case, schemes of the reflection through an axis are implied by 
the fact that the rotation is even and the schemes from rotation (point by point) looks 
inhibited. 
Moreover, pupils make a reflection through an axis different from the reflection 
through a centre by using the concept-in-action of orientation. That could explain 
why they see easily the reflection through a centre when the rotation is of order 2 or 
4 (photo d) and g)). Indeed they can easily recognize if the orientation is different, 
whereas on photo f) (order is 12) or exercise 4, some figures are invariant by 
reflections through an axis and through a centre, then the concept-in-action of the 
orientation can not be efficient to discern them. 
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Thus some perceptive signs which orientate the schemes chains are just brought out. 
What is known about the other hints based on perception as points or axis already 
drawn? Any axis of symmetry is drawn on exercise 4 but the centre O is mentioned 
on each figure. However, pupils tend all to look for a particular axis more than they 
do for the centre. Besides, we assume that the perception of some typical geometrical 
objects might orientate pupils’ behaviour: as for example the square in exercise 4 
figure 4, most of pupils recognize a reflection through an axis (see diagram 3 stick 4) 
but on the picture d) from the interview where a square is drawn too, most of 3rd

grade pupils are right: they recognize a reflection through a centre without saying a 
reflection through an axis.  
ANOTHER ADAPTATION: FROM GI TO GII 
According to the interviews and the written exercises previously presented, pupil’s 
personal Geometrical Working Space (GWS) is built on a natural geometry GI. They 
mention real space through experiments or movements with some operational 
invariants based on global perception (as folding or half-turn). Afterwards, this 
global perception is enriched with the punctual vision and GI works out to GII, and 
then pupils can make first reasoning using mathematical properties coming from the 
mathematical model about transformations (length, angle, points lie along a line, 
parallel, middle, orthogonal, etc.). Let’s see for example Martin’s theorem-in-action 
of invariance point by point in exercise 2 (see p.5):  
a) is a rotation R(180°; C; -) because B� D, A� E and C is  still the same (rotation point).  

b) is a reflection through an axis because C�G, D�F and E still the same (it is on the axis)                    

Thus the schemes are also working out. The resolution of Exercise 1 and Exercise 2 
gives an interesting example of adaptation of these schemes. In exercise 2, personal 
GWS seems close to the idoine GWS. Indeed, this exercise explicitly requires a 
punctual perception to justify how transformations are used with mathematical 
properties, and nine pupils among ten recognize the right transformations (including 
those who do not write all the punctual characteristics). In exercise 1, the geometrical 
contract expected is less explicit and a global perception is suggested to solve the 
problem and pupils adapt their behaviour and recognize reflection through an axis or 
make mistakes: The parallelogram is seen as a rhombus. Only 4/10 recognize a 
rotation and only 2/10 mention the right rotation centre although it is the only point 
written on the whole figure. According to this result, we conclude that pupils go back 
to GI and use schemes based on perception and adapted to the contract at stake. 
CONCLUSION AND DISCUSSION 
The recognition of transformations situation shows the phenomenon of 
“transformations exclusiveness”. The action of inhibiting schemes based on 
perception could explain it. Furthermore, pupils’ schemes contribute to build the 
personal Geometrical Working Space which seems unbalanced between GI and GII. 
Now, we focus our investigation on the reflection through a point which is exactly 
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situated at this interplay between GI and GII. The aim is to better understand the 
adaptation of pupils’ schemes to different situations and to see how this 
transformation can contribute to unbalance the way to GII. 
Notes 
1. J-P Kahane Rapport to the ministery of national education: commission de réflexion sur 
l’enseignement des mathématiques-rapport d’étape sur la géométrie et son enseignement Janvier 
2000. Éd. CNDP Odile Jacob. p.7  

Official instructions: http://eduscol.education.fr/  programme des collèges mathématiques classe de 
6ème  p.12 

APISP n°167, introduction commune à l’ensemble des disciplines scientifiques p.6 

2. definition of concept in Encyclopedia Universalis. 

3.http://smf.emath.fr/Enseignement/TribuneLibre/EnseignementPrimaire/ConfMontrealmai2001.pdf
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GEOMETRICAL WORKING SPACE, A TOOL FOR 
COMPARISON  

Catherine Houdement 
IUFM de Rouen, DIDIREM Paris 7

This theoretical text is nourished by a comparison project (ECOS program 2003-
2005) on mathematical curricula between Chile and France. How and what to look 
at in curricula? What tools could help to produce fruitful comparison? Following the 
presentation of our theoretical framework, Geometrical Paradigms, the study of an 
exercise about the determination of inaccessible magnitude, from French and 
Chilean point de view will lead on to the definition of  Geometrical Working Space. 
With these concepts, we will precise important differences between French and 
Chilean intended and available curricula, what concerns Geometry between 8th and 
10th grade.

INTRODUCTION
Within the context of education research cooperation between Chile and France 
(aiming at mathematical curriculum comparison) we chose elementary geometry as 
field of study. We think that Geometry is a good mathematical subject for 
comparison:

- it is a field studied from infancy to the end of statutory curriculum; 
- it is a field in which models are produced with different degrees of complexity: 

geometric education usually begins by studying and using real material objects 
(cuboids…  graphic lines on a paper sheet or a computer screen), but more 
stylised than real objects; then it progressively deals with intellectual objects: 
the mathematician’s square is not the child’s square, it is a construction of the 
mind which includes an infinite number of points and exists only through its 
own properties; 

-  it is a field particularly connected with logical thought, deductive reasoning 
and proof, a characteristic property of Mathematics. 

Our study (Castela & al. 2006) has been carried out on four levels.
- The first level we have studied corresponds to the statutory contents of the syllabus 
(knowledge, skills and understanding), which international comparison surveys call 
the intended curriculum.
- The second level that is generally described by what we call accompanying texts
concerns the context, activities and areas of study through which the statutory 
contents should be taught. According to the countries these texts are mandatory or 
just pieces of advice.
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- The third level is composed of text books that offer an organized list of classroom 
activities and exercises ready for teaching. We note that the second and third level 
both concern a part of the available curriculum.
- The last level is composed of practise of some teachers from either country and of 
students’ performances confronted to the same geometrical problem.     
We (Houdement & Kuzniak 1999, 2002, 2003) have worked on Geometry as it is 
taught in France and produced a theoretical framework to understand and describe the 
different meanings determined by the same term of Geometry.   
The aim of this text is to show how Geometrical Paradigms and Geometrical Working 
Space can help to organize a comparative analysis; particularly what concerns 
intended curriculum and available curriculum about determination of an inaccessible 
magnitude. 
Let us present Geometrical Paradigms.  

GEOMETRICAL PARADIGMS 
Our research (Houdement and Kuzniak 1999) following Gonseth (1945-1955) shows 
how three different paradigms could explain the different forms of geometry. We 
keep the idea of paradigm from Kuhn (1962; 1970) who used it to explain the 
development of science. A paradigm is composed of a theory to guide observation, 
activity and judgement and to permit new knowledge production. A paradigm is 
shared by a community; the scientific activity of a researcher is guided by the 
paradigm on which he is working. We made the following hypothesis: Kuhn’s 
analysis of the development of science can be imported into Mathematics, precisely 
into Elementary Geometry.  
We distinguish three paradigms whose names would be easily remembered: 
Geometry 1, Geometry 2 and Geometry 3. Let us now precise some properties of 
each paradigm.
Geometry 1
The objects of Geometry 1 are material objects, graphic lines on a paper sheet or 
virtual lines on a computer screen. Even material, the lines are always consecutive to 
a first representation of reality. Objects of the sensitive space can be schematised in a 
micro-space (Berthelot and Salin 1998) by a network of lines. The straight line is a 
model thus it refuses bumps; the circle is perfect, all its points are at the same 
distance of the centre. The chosen graphic objects (and their properties) are often in a 
first time the most convenient to describe reality, hence the name of Natural 
Geometry for Geometry 1. The objects of Geometry 1 are already the consequences 
of a first classification that gathers all the objects related by an isometric 
transformation. 
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In this paradigm the ordinary techniques are the drawing techniques with ordinary 
geometrical tools: ruler, set square, compasses but also folding, cutting, 
superposing…
To produce new knowledge in this paradigm, all methods are allowed: evidence, real 
or virtual experience and of course reasoning. The backward and forward motion 
between the model and the real is permanent and enables to prove the assertions: the 
most important thing is to convince. 
Geometry 2
In Natural Axiomatic Geometry (one model is Euclid’s Geometry) the objects are no 
more material but ideal. Definitions and axioms are necessary to create the objects, 
but in this paradigm they are as close as possible to the intuition of the sensitive 
space, therefore the name of Natural Axiomatic Geometry. Geometry 2 stays a model 
of reality. But, once the axioms fixed, demonstrations inside the system are requested 
to progress and to reach certainty. In this paradigm the text takes a great importance, 
all the objects should be defined by texts, drawings are only illustrations, 
accompaniments of textual propositions. As it is convenient the expert works with 
drawings, but he knows how to read theses drawing and how all the indications he 
puts on the drawing are validated by the text.
Geometry 3
Lastly we have Formalist Axiomatic Geometry (Geometry III): in this paradigm the 
system of axioms itself has no relation with reality, it is complete and independent of 
its possible applications to the world. This paradigm is not very present in statutory 
curriculum.
Relationships between the two main paradigms, Geometry 1 and Geometry 2 
The true question of geometrical teaching concerns Geometry 1 and Geometry 2. 
Here a table that resumes the main differences between the two paradigms. 

Geometry 1 Geometry 2
Space Intuitive and physical space Geometrical Euclidian space  
Objects Material objects (or digital ones). 

Drawings, models, products of 
instrumental activity  

Ideal objects without dimension  
Figures (some areas of space, some 
relations). Definitions, theorems 

Artefacts Various tools (ruler, set square, 
template, paper folding….).  
Dynamic Software.  

Physical tools (ruler, compass) with 
use theoretically justified
“Logical-deductive  reasoning” 

Proof Evidence, checking by instrument 
(f.i dragging) OR effective 
construction

Properties and “pieces of 
demonstration” (formal proof)  
Partial of axiomatic  

Measuring Licit: it products knowledge Non licit for production of 
knowledge, but licit for heuristics 
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Status of 
drawing 

Object of study and 
object of validation 

Heuristic tool, support of reasoning 
and “figural concept” (Fischbein 
1993)

Privileged
aspect

Self-evidence and construction Properties et demonstration  

Table 1: Differences between Geometry 1 and Geometry 2 

One paradigm is not superior to the other in their relation to space as shown by the 
study of the following exercise.

HOW DO GEOMETRICAL PARADIGMS WORK?
A particular study 

The drawing shows André and Bernard 
standing on the same river bank at a 
distance of 50 meters from each other. 
Camille stands on the opposite bank.

How far away is André from Camille? 

Figure 1: Excerpt coming from Matemática 2° Medio. Chile: Arrayan Editores (2001),

Why did we choose this exercise (from a Chilean text book for 10th grade -15-16 old 
students)? First it evokes a real problem through a representation of the situation. But 
the representation is not transparent; it must be read with geometrical knowledge: the 
given triangle is isosceles, which can not be seen immediately. To be informed of the 
nature of the triangle it is necessary to deduce it from the information provided by the 
angles. This first part of geometrical activity is important and related to the 
“education of sight” in geometrical teaching. 
How could it be solved? A first method consists in constructing a similar triangle 
A’B’C’ on another scale, measuring A’C’ and deducing AC through calculation. In 
the French curriculum this method would be accessible in the 7th grade, but rejected 
in upper grades. Another method, more formal, consists in first deducing from the 
angle magnitudes that the triangle is isosceles (using the theorem of the sum of three 
angles in a triangle) and then trying to calculate the unknown length: this calculation 
requires the drawing of further lines like the right bisector of AC or the perpendicular 
height from B -to obtain two right angled triangles) and the use of theorems like 
Pythagoras or cosine. In the French curriculum these methods are expected from 8th

to 10th grade.
What does the Chilean text book of the 10th grade suggest? We can deduce it from the 
study of another activity in the same book, just before the preceding river exercise.
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If you want to calculate the distance between a point A that is situated on the river bank and 
a tree that is situated on the opposite bank, you can act this way: 

A          d          B 

1- situate a point B at a determined 
distance from A; 
2- measure off the angles PAB and ABP 
taking line of sight; 
3- measure off the distance AB; 
4- construct a scale drawing of a triangle 
A’B’P’ similar to the triangle ABP 
(angular criteria for similarity); 
5- measure with a ruler the length of A’P’; 
6- calculate the length of AP taking into 
account the similarity ratio of the scale 
d/d’.

''' d
d

PA
x

�

Figure 2: Excerpt coming from Matemática 2° Medio. Chile: Arrayan Editores (2001)

The heart of the solution is propositions 4-5-6; the former one helps to transform a 
space question (to calculate a real distance) into a geometric question. 
It is remarkable that the Chilean textbook recommends to draw and to measure on the 
drawing. The drawing is an object of study and permits to obtain the unknown length 
by effective measuring.
It would be inconceivable at the same age group in France: the unknown length could 
only be deduced from given textual information in a way as independent as possible 
from the drawing in most French text books of 9th grade where no other method is 
suggested, as it is shown below.

To determine inaccessible magnitude…

A precise point T is taken as sight from situated points 
R and S whose distance as the crow flies is known.

Then the angles of the triangle RST are measured, 
which allows to determine the distances with 
convenient approximation, because of :

T̂sin
R̂sinRSSTet

T̂sin
ŜsinRSRT ��

Figure 3: Excerpt coming from Maths 3°.Cinq sur Cinq. France : Hachette (2003)

Already in most of the 8th grade (13-14 years old students) French text books there is 
the assertion « Seeing or measuring on a drawing is not enough to prove that a 
geometrical phrase is true » (Triangle 5ème Editions Hatier 2001 page 127, Triangle
4ème Editions Hatier 2002 page 94…). 
Thus the Chilean curriculum accepts and expects a method that is refused at the same 
grade in the French curriculum. These methods would be accepted in France in lower 
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grades, but such problems whose first work consists in thinking how (and why) to 
schematize reality (propositions 1-2-3-4) are generally not proposed in lower grades 
text books.
Consequently in similar questions 10th grade French students prefer not to answer 
rather than to propose an answer by making a drawing and measuring it.   
An analysis with Geometrical Paradigms 
In 10th grade even if students are confronted to the same river problem, the answers 
are not the same: France considers that a treatment in Geometry 1, with the effective 
use of measures is not convenient. On the contrary in Chile a treatment in Geometry 1 
is convenient and recommended by text books as we have seen above.
To solve practically the problem, the first method, drawing at scale that takes place in 
Geometry 1 is sufficient and effective. The other methods, in Geometry 2 because 
they don’t depend on the drawing, consider ideal situations and use conceptual 
results: they bring more precision and allow generalisation without new drawings.
But precision and generalisation are not required in the river problem. The other 
methods enable to solve other questions than the determination of that distance only.  
It looks as though in France, Geometry 2 takes the place of Geometry 1 and makes it 
disappear, whereas it is easy to see how complimentary both paradigms are.  
Knowledge and practise of Geometry 1 is always necessary first to realise a 
convenient drawing (see the first exercise), more generally to treat space professional 
problems with drawing as schematisation; secondly to visualize specific 
configurations in this drawing (add right further lines to divide the first triangle into 
two right angled triangles): Duval (1998) already studied the importance of 
visualization.
Geometry 2 often permits generalisation and logical justification of action in 
Geometry 1. Geometry 1 is necessary to Geometry 2 as an experience field (Boero 
1994), but could not be reduced to an application of Geometry 2.  
We now need a new concept to conciliate Geometry 1 and Geometry 2, Geometrical
Working Space (Kuzniak 2004).

GEOMETRICAL WORKING SPACE: GWS 
The Geometrical Working Space (GWS) is the place organized to ensure the 
geometrical work and to integrate the play between both paradigms. It puts the three 
following components in a network: 

- the objects whose nature depends on the geometrical paradigm,  
- the artifacts like drawings tools, computers but also rules of deduction used 
by the geometrician, 
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- a theoretical system of reference possibly organized in a theoretical model 
depending on the geometrical paradigm. 

The Geometrical Working Space becomes manageable only when its user can link 
and master the three components above mentioned. An expert solving a problem of 
geometry creates a suitable GWS to work. This GWS must comply with two 
conditions: its components should be sufficiently powerful to handle the problem in 
the right geometrical paradigm and its various components should be mastered and 
used in a valid way. When the expert has decided what geometrical paradigm is 
convenient for the problem, s/he can organize the use of artifacts and the type of 
reasoning thanks to the GWS which suits this paradigm.  
When a person (student or professor) is confronted to a problem, this person handles 
the problem with his/her personal GWS. This personal GWS generally depends on the 
knowledge of the person but also on the institution where the person works: what 
kind of geometrical productions are accepted or valorised by the institution at any 
time?  
Through the organization of the geometrical different contents by grade, the teaching 
recommendations to the teachers and the notes about how a student can learn 
geometry, the curricula define specific geometrical environments that can also be 
seen as GWS: we will call them institutional GWS.

THE INSTITUTIONAL GWS OF A PARTICULAR THEME 
Taking an example “figures of same shapes”, it is easy to make clear the difference 
between Chile and France, only through a syllabus reading. 
In France the different notions: enlargement-reduction (4th and 5th), scale 
representation and lengths (7th), Thales theorem (8th and 9th), similar triangles (10th),
enlargement transformation (11th in speciality) are successively taught in different 
grades with a perspective strongly focused on Geometry 2 from 8th (following
syllabus and textbooks). Thus scale representation (and plan reading) could not be 
functional either in mathematical activities (it becomes fast forbidden to measure on 
drawing) or in practical problems (not practised in classrooms). 
In Chile students meet enlargement-reduction activities first in 6th grade, similar 
triangle and scale representation in 8th with a Geometry 1 perspective on lengths and 
angles and in relation to proportionality. But in 10th grade all these notions are taught 
again in a network with mathematics’ complements (Thales theorem, enlargement 
transformations) and also history and arts complements about the theory of 
proportions. The main perspective is always Geometry 1 to create relationships 
between different notions of a same theme and construct the students’ practical 
culture, even nourished by some theoretical results of Geometry 2 (like Thales 
theorem).  
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We think that relating mathematical teaching to reality including in the succession of 
the different notions of a same theme is also a way to define institutional GWS. The
Chilean curriculum permits a play between both paradigms from 10th grade; the 
French curriculum does not officially permit that different ways to solve a problem 
meet, for it officially rejects Geometry 1 already from 8th grade.
The study of the institutional GWS has become our first work to precise the 
difference between both curricula. 

BACK TO GENERAL COMPARISON THROUGH INSTITUTIONAL GWS 
We will try to precise particularly the crucial differences between Chile and France 
for the period between 8th and 10th grade. 
The system of reference
Both curricula don’t act with the same institutional GWS. The French reference is 
Geometry 2: the unique authorized public reasoning concerns ideal objects and even 
conceptual objects and logic deduction. Geometry 1 is not a suitable paradigm in 
French 10th grade curriculum; it is not officially integrated in the institutional GWS; it 
must stay private. In Chile Geometry 1 is an assumed reference and plays a public 
role in the institutional GWS. Geometry 2 can exist too, but it is entirely under the 
teacher’s responsibility. 
The place of drawing 
In Chile the drawing is taken as a field of experience (Boero 1994) and also a 
validation object: a field of experience because students are taught to experiment on 
drawings, to look for reasons of regularities on drawings, to extend validity of 
observed regularities on drawing; a validation object because constructing a drawing 
allows to check regularities and to convince of the plausibility of an assertion.
The drawing with usual geometrical tools is considered as a prime model of reality: 
for example the triangle is introduced as the simplest non deformable structure to 
show its interest for construction. 
A special teaching time is dedicated to techniques of drawing and construction drills 
(not directly but through various activities).
In France geometrical drawing has no official place; it must stay private and only 
serve as a support for a conjecture. But how it can serve for geometrical thinking is 
not taught, thus it can not constitute an experience field. Out of the private mind, 
drawing is simply and purely forbidden.  
Construction activity (for example with ruler and compasses) is not emphasized (it 
disappears in France from 6th grade) and in the textbooks each spatial problem is 
immediately illustrated by a drawing, so that students are always in front of a 
schematised situation. The construction act appears as not very important for 
geometrical thinking in French curricula. 
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Validation
In France the only recognized validation is that which verifies the non contradiction 
inside mathematics; a new proposition is accepted as valid only if it can be logically 
deduced from other accepted propositions.  
In Chile two levels of validation are accepted and distinguished: first conformity to 
reality, reality of the sensible world, the graphic line on paper; this conformity can be 
a pretext for a declaration that is recognized and accepted as ‘plausible’; this 
declaration must be demonstrated to become true in mathematics. 
The geometrical objects
From French 8th grade, licit geometrical objects are definitions and theorems, hence 
only textual declarations that can be accompanied by drawing (as ‘figural concept’ 
Fischbein 1993). Thus all objects are conceptual, that means ideal but coherent with 
and inside a theory (Bunge 1983). There is no recognized place for other objects 
(material or virtual), even if they are used inside the classroom.
In Chile all the objects are accepted, material (like drawings), ideal, but the quality of 
the declaration made about the drawing does not have the same conceptual quality as 
that made by the teacher quoting mathematics.  

CONCLUSION
For our comparison we have studied syllabus, accompanying texts and text books 
through a particular filter: institutional GWS. GWS organizes different components of 
geometrical activity: what objects, what licit tools and what licit validation, what play 
between both paradigms? Let us resume the main differences. 
The study of the nature of objects and the validation precise what paradigm is referent 
and what type of reasoning is valid inside the institutional GWS. Chile accepts 
explicitly two levels of reasoning, thus implicitly two paradigms (Geometry 1 and 
Geometry 2). France only considers a deductive organisation of discourse (reference 
Geometry 2) as licit to produce valid declarations.  
The study of drawing is related to licit tools (and the use of these tools and the 
teaching of the use of these tools); the given status of drawing contributes to define 
the institutional GWS. In Chile Geometry 1 and all the work on drawing is 
considered as the heart of geometry, the experience field on what the students could 
constitute their prime experience and confront their declarations. In France
Geometry 1 is considered as a perturbation of geometrical teaching that must be 
forgotten to access to “true geometry”.
Our very few effective class practices seem to confirm these differences but a larger 
survey would be necessary to take a sight of implemented curriculum and attained
curriculum.
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We hope our readers will be convinced that an entry through the institutional GWS in 
different grades of curricula could produce rich comparison at least in intended
curriculum and available curriculum and open new perspectives for geometrical 
teaching in his/her own country. 
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COMPARISON OF OBSERVATION OF NEW SPACE AND ITS 
OBJECTS BY SIGHTED AND NON-SIGHTED PUPILS 1
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Comenius University, Bratislava, Slovak Republic  

  

It is almost a commonplace to state that the visually impaired people use different 
methods than people who can see to receive information about features of the objects 
and spatial localization. In this paper we briefly present research that was realized in 
order to better understand the perceiving the space and its objects by non-sighted 
pupils. Three non-sighted and four sighted pupils participated in the experiment and 
results of the qualitative analysis offer some proposals and ideas how to improve the 
teaching of space geometry to non-sighted and also sighted pupils.  

INTRODUCTION
The changes in society, inflow of liberty and humanism, caused the integration of 
handicapped people (Slovakia in 1993) have became an actual problem and one can 
partly speak about it as fashion trend that is carrying its advantage and limitations. 
Nowadays, we notice use of mathematics in lot of disciplines, the serious 
mathematical grounding is necessary not only for prospective mathematicians, but it 
begins to be popular also at humane sciences as sociology, psychology, linguistics or 
philology. We are also witnesses to rapid expansion of information technologies that 
require new technicians all the time, whose education is based on mathematics as 
well. So we cannot wonder about the attendance of visually impaired people who 
would like to engage in study of mathematics. These facts, as well as author’s 
experience with working with visually impaired pupils lead us to pay more attention 
to study of mathematics of visually impaired people. The other remarkable thing is 
the question of limit. Since in Slovakia there is no standard for teaching mathematics 
to integrated visually impaired students on the secondary level (the standards for 
common students are valid), the teacher has to determine requirements on these 
students by his own, on his subjective opinion.  
This paper is based upon previous research that was realized in academic year 
2004/2005 (Kohanová, 2005). The non-sighted people (students and adults) were 
asked to solve four mathematical problems that concerned algebra, mathematics of 
common life, Euclidean geometry and analytic geometry. We find out that the 
visually impaired people use personal geometrical instruments and strong 

                                           
1 This article was supported by grant: European Social Fond JPD 3 BA - 2005/1 - 063 
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imagination, all object (solids and plane figures) are first touched and then stored. 
Geometry is for them kind of adaptation to the environment. So we think this 
adaptation is dynamic in sense that they continually change the system of operations 
of environment that explores. Since every environment is a new environment s/he has 
to store all information (tactile, auditory, olphactive, etc.) and so make mental 
images. All that has inspired us to study more in the field of space geometry, to see 
how non-sighted people are adapted to various environments, what are their personal 
tools, since geometry can provide a more complete appreciation of the world. Results, 
interviews, remarks and observations of this research will act as propaedeutic of 
teaching solid geometry at the secondary school. But not only for teaching visually 
impaired students, but also for sighted ones, since there does not exist any methodical 
guide for teachers of mathematics at special primary and secondary schools. Last, but 
not least, it might be methodical guide for teachers at schools, which integrate 
visually impaired students and do not have any experience of working with non-
sighted students. 

THEORETICAL FRAMEWORK 
Understanding of geometric figures
Van Hiele (1986) published a theory in which he classified five levels of 
understanding spatial concepts through which children move sequentially on their 
way to geometric thinking. Different numbering systems are found in the literature 
but the van Hiele’s spoke of levels 0 through 4. At each level of geometric thought, 
the ideas created become the focus or object of thought at the next level as shown in 
Fig. 1 (Van de Walle, 2001). 
 
  
 
 
 
 
 

Fig. 1: Van Hiele’s levels. 

According to Jirotková (2001) there are three levels of the quality of the mental 
picture of a perceived solid: 
1. the solid is a ‘personality’ for the pupil, 
2. the solid is unknown to the pupil, however, the pupil perceives some relationship 
between the considered solid and another solid which is a ‘personality’ for him/her, 
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3. the solid is entirely new for the pupil 
Analysis of the activity 
Activity theory originated in the former Soviet Union as a part of the cultural-
historical school of psychology founded by Vygotsky, Leontiev and Luria. Its unit of 
analysis is an activity that is being composed of a subject, and an object, mediated by 
a tool. In following model (see Fig.2) of an activity system, the subject refers to the 
individual or group whose point of view is taken in the analysis of the activity.  
 
 
 
 
 
 
 
 

Fig. 2: Model of activity system. 

The object (or objective) is the target of the activity within the system. Instruments 
refer to internal or external mediating artifacts, which help to achieve the outcomes of 
the activity. The community is comprised of one or more people who share the 
objective with the subject. Rules regulate actions and interactions within the activity 
system. The division of labor discusses how tasks are divided horizontally between 
community members as well as referring to any vertical division of power and status. 
We have used this model as a tool for description and analysis of realized experiment.  

THE RESEARCH AND DETERMINATION OF THE HYPOTHESES 
We have placed various subjects of different shapes in the room. Except of typical 
office subjects (table, chairs, PC, cabinets) we put in the room the fit ball, air 
freshener, the clock of pyramid shape and flowers as well. The lamp on the table was 
on as well as the PC; water in the sink, which is in the closet, flow. That all because 
we wanted to observe what sense the person in the room will use while exploring the 
room. Before realizing the experiment, we consulted about the location of subjects in 
the room with visually impaired university student, who is experienced in exploration 
of new places. Final arrangement is shown in following figures.   
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Fig.3: Arrangement of the objects in prepared room. 

Consequently, seven pupils took part in the experiment, the sighted pupils (SP) were 
selected at random and all pupils were of 7th - 9th grade. Pupils of these grades know 
2-D and 3-D shapes and their characteristics; they have their personal experience and 
they have learned it also in the school. However, the problem was the number of 
pupils who took part in experiment. We wanted to form pairs of all possible 
combination of sighted and non-sighted pupils (NSP), which means 4 pairs. It is 
needed to say we concentrated only on pupils who are non-sighted since birth and so 
do not have any visual imagination. That is why we were able to find only 3 non-
sighted pupils (age 13-14) attending the special primary school for visually impaired 
children in Bratislava. Then we changed pairs for trinities and pairs as follows: 

NSP1-NSP2-SP1 NSP3-NSP2-SP2 SP3-SP4 
where always the first one of the trinity/pair went in to the room and verbally 
described what s/he sees and the others of the trinity/pair built the model of the room 
on the basis of audio record. The first one of the trinity/pair built the model of the 
room as well, but on the basis of her/his memory. In the first and second trinity is the 
same person (NSP2) and we are conscious that it might influence the results, but NSP2 
was not told that she is building the model of the same room in both cases.  
During the experiment we observed: 
� the orientation in the space 
� the way of description of the room and objects 
� the relationship between the image in the pupil’s mind and the vocabulary s/he 

uses in the communication 
� what is the dominant attribute by description of the room 
� perception of the shapes, positions and dimensions 
� what senses s/he uses 

Working Group 7

CERME 5 (2007) 985



  
� what way s/he builds the model of the room  
� differentiation of the shapes and characteristics of the objects 

Consequently we have set following hypothesis: 
H1: The sighted and non-sighted pupils perceive the space and its objects in 

different way. The point of view on geometry of the space of visually impaired 
people is point of perception and it is dynamic. The point of view on geometry 
of sighted people is static. 

H2: Based on the senses the non-sighted pupils are able to differentiate and name 
basic geometric figures and solids. 

H3: When exploring new room and objects in it, the non-sighted are using several 
senses; sense of touch, smell and ear; while sighted rely only on sight. 

H4: The non-sighted pupils will describe objects in the space (shape and position) 
better and more exact as sighted pupils. 

H5: The non-sighted pupils have better imagination about position of objects in the 
space as sighted pupils and so they build more precise scale model of the room, 
even if they build it on the basis of given audio record. 

Method and description of the experiment 
As written above we have divided children into the trinities and pair. We call the one 
who goes into the room pupil A, pupil B is the one who doesn’t go into the room. The 
tasks for the pupils were as follows:  
Task 1 

Pupil A: Enter the room. Within the twenty minutes explore it and tell me 
exactly what do you see. Tell me about everything, about all objects, their 
characteristics and their localization. 

Task 2a 
Pupil B: By using these packages and stuff try to build the model of the room 
on the basis of audio record of Pupil A. The caps of plastic bottles represent the 
chairs. Later on you can ask for more information, but only by asking questions 
to which Pupil A can only answer ’Yes’ or ’No’.  

Task 2b 
Pupil A: By using these packages and stuff try to build the model of the room 
on the basis of your memory, on the basis of what you have seen. The caps of 
plastic bottles represent the chairs.  

Applying the Activity theory we described two activities, one that has been carried 
out in the room (Task 1) and the second activity that has been realized out of the 
room (Task 2). In Task 1 we made audio records of Pupils A descriptions of the 
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room. In Task 2a we made audio records of dialogs between Pupil B and Pupil A, in 
Task 2 pictures of all 8 models of the room.   
The exploring and describing the prepared room is the activity that refers to the 
subject of Pupil A, who goes into the room. The object of her/his activity is the room 
and all objects in it. The expected outcome is the as precise verbal description of the 
room as possible; consequently we are going to analyze this description in sense of 
perceiving the space and its objects. There were no seted rules concerning the 
progressing activity, just one restriction regarding the time was given. It has an 
implication that Pupil A can proceed as s/he wants, in the way s/he likes, so there are 
no horizontally segmented tasks of division of labor. Anyway, with respect to action 
of university student M. and our experience we have expected the following possible 
actions which Pupil A could make in the room: 
� to specify the shape of the ground plan and verify the dimensions of the room; 
� to seek points of the reference by means of the echo of the windows, of the 

doors, of the voice, etc.; 
� to individuate and memorize every possible obstacle; 
� to look for references in the noises and vibrations or in the odours; 
� to clapp one’s hands to grasp the dimensions and the volume of a room; 
� to move with the white stick and perceive the space, objects and obstacles; 
� to perceive the obstacles by air pressure on the face; 
� to touch all objects and describe them. 

Mentioned possible actions could be done by using the white stick, all senses, 
language, imagination, etc. and these are mediating tools or instruments by which the 
Pupil A can achieve the outcome of the activity. There is also no vertical division of 
status and power concerning the division of labor, since the community of this 
activity consists only of researcher who is present in the room in order to record the 
description and assist if necessary. It is needed to mention that the whole environment 
in which the experiment was realized, as well as the researcher was new for pupils, so 
that is the reason why we are conscious of pupils’s doubtful and sometimes reserved 
behaviour. All that might influence the objectivity of the experiment.  
The second activity was realized out of the prepared room and its outcome is to 
interpret the room by building the model, which is also kind of description of the 
room and we can analyze it in the frame of perceiving and recognition of the space 
and its objects. The model of the room built by us is shown in following picture. 
This activity has to be distinguished with respect to the pupil who is building the 
model (Task 2a, Task 2b). In both cases the object of the activity is the prepared room 
and the rest changes. 
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In case of Pupil A, who is the subject of the activity, the rules are given only by 
saying that pupil should build the room by using given packages and stuff, moreover 
the bottle caps have to be used as chairs. In case of Pupil B we have two more rules 
about the building the model according to record and about the way of asking 
questions to Pupil A. All given packages and stuff of different shapes and sizes 
(playing cubes, packages of tea, matches, medicaments and cosmetics; tennis’s and 
squash’s balls, buttons, batteries, eraser, carton models) are for Pupil A and B 
instruments to build the model. The difference between Pupil A and Pupil B is that 
other instrument of Pupil A is her/his internal model of the room stored in her/his 
memory, while Pupil B has audio record of Pupil A at disposal. Pupil B can ask for 
more information that is becoming also his/her instruments. The community in both 
cases consists of researcher and her assistant and other pupils who took part in 
experiment. In case of Pupil A all community except of researcher is just side, 
unimportant effect; they were just observers, no interfering into the process of 
building the model. On the other hand, important role of community plays in case of 
Pupil B the researcher who moderates the conversation and Pupil A, who answers to 
the questions. Since the instructions of Task 2a say to Pupil B first to build the model 
of the room on the basis of audio record and later on to ask the supplementary 
questions, here we have horizontally segmented actions of division of labor (which is 
actually given by the rules). Also the succession: question, answer, and potential 
change of model represent partial horizontal division of the actions.                

RESULTS OF THE QUALITATIVE ANALYSIS 
The sighted pupil really showed expected behaviour, right she entered the room she 
stated what is in there (sometimes very inexactly), while the non-sighted pupils 
detected the space gradually. So here we have development and dynamics of 
detection, which are actually facilitating the subsequent better description. If we 
would be able to bring the sighted pupils to such a dynamics, then the certain 
superficiality can be eliminated and hence also the superficial perception of the space. 
In Task 1 pupils should describe the room and its objects, their characteristics and 
localization so pupil B in Task 2a can build the model of the room. We had seen that 
non-sighted pupils recognized and named many objects of different shapes (cube, 
cuboid, pyramid, cylinder, triangle, circle, trapezoid, square, and rectangle), so the 
second hypothesis seems to be true, although in some cases they used wrong 
terminology. 

R2: Then there is cabinet, also shape of rectangle, classic cabinet with rectangular 
shelves. 

M27:  So, in the middle of the room is the table in shape of rectangle. 

The hypothesis H3 has been confirmed only partially because the non-sighted pupils 
didn’t use sense of smell, neither by finding the air freshener nor by flowers. The 
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sense of touch is their leading analyzer and sense of ear is complementary analyzer. 
We can illustrate the usage of sense of ear by demonstrations from the protocols: 

R22: I have heard water and then I went to see... 

M39:  You can hear here the whirr of computer and like […] as the water flows […] 
or like that. 

Also in case of sighted pupil SP3 we cannot claim she only relied on sight. The true is 
she also didn’t notice the air freshener, she saw the flowers, but she mentioned the 
sink in the cabinet even she couldn’t see it since the door was closed; on the other 
side she didn’t say anything about hearing. 

J6: At the door are cabinets, where is for example the sink, in one there are books. 

Since non-sighted pupils had to go over the whole room and touch everything, they 
described continuously and more exactly the objects in the room than sighted pupil, 
who stand in one point and described what she saw. Sighted pupil didn’t mention lot 
of things, she didn’t find it as necessary, even she was told to describe it precise. On 
the other hand, when building the scale model of the room, she did it very exact, 
which says about her strong visual memory. Based on these facts we can confirm 
hypothesis H4. 
The fifth hypothesis wasn’t neither acknowledged nor disproved since all Pupils A 
(sighted and non-sighted as well) built almost exact model of the room. In the case of 
pupils B we had noticed the ability to interpret the verbal description of the space and 
ability to create an image of solids and their location in the space. We cannot 
compare the results of sighted and non-sighted pupils who participated in Task 2 
since there was the same non-sighted person participating two times in experiment. 
Anyway, regarding the mental representation of the space, the world of non-sighted is 
not different in comparison with that one of people who are sighted. 
Except of determined hypotheses we came also to following conclusions that are 
applicable in pedagogic practice of the teacher.  
� Right in the experiment, concretely at Task 2, the visiting math’s teachers from 

special school for visually impaired children pointed out that the same or 
similar tasks have considerable value as educational tools. They could be used 
for the diagnosis and assessment of pupils’ levels of understanding of three-
dimensional solids (van Hiele’s levels) and metrics of the space and to develop 
their communicative skills about the solids. The Task 1 required the pupils to 
describe new space and its objects. This gave a very clear indication of level of 
vocabulary of the pupils and the communicative skills.  
R48: …this one side […] front […] If I hold it like this […] it is longer than the other 

side. Actually, the horizontal side is longer than vertical. It depends how you 
hold it. I have it along, horizontally to me … 
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R49: And under it is bigger packet which has shape of […] it is also not the shape of 

cube […] but it is shape of [...] what can I compare it to? It is shape of cuboid. 
Also the upper packet has had this shape. Yes […] it is cuboid. 

According to some similar experiments (Littler, Jirotková 2004) when authors 
observed sighted children in process of tactile manipulation with solids and 
their verbal communication, this analysis help us also to construct the process 
of building structure of geometrical knowledge or even the process of creating 
new knowledge by extending the existing structure or its restructuring. 

� At the first glance we saw the difference, while models of sighted pupils were 
large, the models of non-sighted were “small”, tight, all objects were close to 
each other. The reason for it might be on one side the necessity of the control 
of the model by hands, on the other side also the lack of experience with 
metrics. The other point is related to the estimation of distance and measure. It 
is shown in the protocols that non-sighted pupils compared the measures to 
their body.  
R7: That cabinet is high about […] something more than knees or like my thighs. 

It could be meaningful to think about the usage and application of English 
system of measurements instead of metric system in their case. 

� Both sighted and non-sighted pupils built quite exact model of the explored 
room and thus, as regards the mental representation of the space, the world of 
non-sighted is not different in comparison with that one of people who are 
sighted. The difference is the way one gets information about the space. 
Through the sense of sight, one can obtain an overall knowledge of the 
environment, whereas one can achieve it through an analytic way, if s/he 
employs the haptic perception. 

� Except of some above mentioned proposals for future phase of the research we 
consider as interesting to observe the perception of the space and its object in 
connection with language as an individual tool. In what way the language and 
exactness of expression might influence the knowledge, but not only in the 
case of non-sighted pupils. The other improvement might be done in 
connection with realization of similar experiment with more pupils. However, 
we cannot influence the number of non-sighted pupils who will participate. 
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ASSESSING THE ATTAINMENT OF ANALYTIC-DESCRIPTIVE 
GEOMETRICAL THINKING WITH NEW TOOLS  

G. Kospentaris – T. Spyrou
 Mathematics Department, University of Athens

Transition to Van Hiele level 2 is characterized by a gradual primacy of geometrical 
structures upon the gestalt unanalyzed visual forms and application of geometric 
properties of shapes. Some special test items have been constructed to clarify some 
aspects of this transitional process. Perceptual strategies seem to persist even in 
university students, suggesting complementation of typical tests with items focusing 
on this issue. 

INTRODUCTION
Van Hiele (1987), describing the evolution of his theory since 1955, regrets the fact 
that initially he “had not seen the importance of visual level”, but finds that 
“nowadays the appreciation of the first level has improved” (p.41). However little 
research has been made to analyse more systematically levels 1 and 2. As 
Hershkowitz (1990) nicely puts it: “Visualization and visual processes have a very 
complex role in geometrical processes…More work is needed to understand better 
the positive and negative contributions of visual processes” (p.94). The results 
reported in this paper are part of a wider research attempting to elucidate certain 
aspects of this contribution (and its inverse also: the effect of geometry learning to 
the visual processes) and are related exclusively to the problem of the transition from 
level 1 to 2. Assuming in principle Van Hiele’s theoretical framework the main 
questions posited were:
-To what degree secondary education students have substantially progressed from the 
“visual” level 1 to the “descriptive-analytic” level 2 and particularly: do they apply
the geometric structures of the second level in a visually differentiated context?  
Or more specifically: Do secondary students tend to use “visual” (level 1) or 
“analytic” (level 2) strategies to solve tasks which allow both procedures? 

THEORETICAL CONSIDERATIONS 
Some remarks upon Van Hiele level 2 
Certainly, Van Hiele considered as main characteristic of level 2 the fact that the 
visual figure recedes to the background and the shape is represented by the totality of 
its properties. He stressed however that the discovery of these properties should be 
made by the pupils themselves and not be offered ready-made by the teacher (Van 
Hiele,1986;p. 54,62,63). But this is not sufficient: level 2 is attained when the pupil is 
able to “apply operative properties of well-known figures” (ibid. p. 41, see also p. 
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43). We should keep in mind that attainment of level 2 is not simply recollection of 
learned properties of shapes, but possibly a more active state: a mode of mental 
activity that tries to find new properties and apply the already known ones.
Type and content of test items 
Reviewing the research literature on Van Hiele levels we find out that the test items 
specific to level 2 are of the following kind: a simple, basic geometric shape (e.g. a 
rhombus) is shown to the student and he/she is asked to “list its properties” (Gutiérrez 
& Jaime, 1994, 1998) or to identify a particular quadrilateral in a set including a 
variety of different types (Burger & Shaghnessy, 1986) or to select among 
propositions referring to known properties of basic shapes (Usiskin, 1982). 
Considering what have been said above about the application of properties it is clear 
that this kind of task puts a rather one-sided weight upon the recollection of 
properties instead of application of them in novel situations. The skill of 
“applicability of properties” has been taken previously into account by Hoffer 
(1983,1986) and Fuys et al. (1988), who set additional criteria like “discovering of 
new properties by deduction” and “solving problems by using known properties of 
figures” (level 1!). Another matter of concern is the one-sided dealing with the 
concept of “congruence” (of line segments or angles) and neglecting other topics, a 
point already mentioned by Senk (1989). 

METHOD
Under the above considerations some special geometrical tasks have been constructed 
focusing on three essential concepts: congruence, similarity and area. The main idea 
is to present a problem but in a visual context different of that of a usual geometry 
textbook. The correct answer could be found either by some geometrical reasoning 
pertaining to level 2 or by a visual estimate leading, with the higher degree of 
certainty attainable, to perceptual misjudgement, due to the well-known limits of the 
human visual system’s capacities. So the deliberate aim of the problem’s set was to 
test the students’ choice concerning the appropriate strategy and not of course the 
latter’s efficiency or exactness. There were two tasks for each topic and two 
alternative versions (to prevent students cheating, depending on the classroom 
conditions), six in all for each student. Fig.1 shows two examples of the test items 
related to congruence of figures (C1) and line segments (C4) (Application of property 
of circle and rectangle). Task C2 was a more difficult one about congruence of 
triangles and C3 the known Müller-Lyer optical illusion with two equal line 
segments, one double arrowed the other tailed, against a background of parallel lines 
and circles that provided geometrical cues for reasoning. Tasks S1 and S2 (shown in 
Fig.2), and their alternate versions S3 and S4 with exactly the same underlying 
geometrical idea but different visual context, had to do with the concept of similarity. 
Finally tasks Ar1 and Ar2 (Ar2 is the same task by means of which J.Piaget (1960) 
tested whether the relation between length and area has been established), and their 
corresponding variations Ar3 and Ar4, were about the concept of area. The paper and 
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pencil test battery included 11 items in all (the remaining five tested other spatial 
capacities) and total process time allowed was 25 min.   

      Figure 1: Congruency (The pictures are scaled-down to one half of the original) 

                                                   Figure 2: Similarity 

                                                     Figure 3: Area

This test questionnaire was administered to 478 students (ages ranging 15 to 23). This 
sample was composed of two main groups. Firstly, we sought for a population in this 
age range undergone the minimum possible geometrical instruction (another research 
matter was to elucidate the pattern of the effect of various types and contents of the 
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formal geometrical education upon the process of the development towards level 2) to 
compare the effect of formal education; a likely candidate was a group (labelled A1) 
of 80 students attending Bakery-Pastry Practical Apprenticeship School (under the 
supervision of Greek State Organization for the Employment of the Working Force). 
These students had received some basic geometry instruction in elementary and lower 
secondary school, but possibly their involvement in the educational process was 
limited. A second subgroup (A2) consisted of the typical tenth graders (154 in 
number) entering the upper secondary school and ready to attend the Euclidean 
Geometry syllabus (mandatory for all students of this level in Greece). So members 
of group A were young adolescents with a non-systematic instruction in Geometry. 
Group B consisted of two subgroups; 150 upper secondary twelfth graders (B1; age 
17-18) and 94 Mathematics Department students in Athens University (B2; age 20-
23), both subject to substantial and systematic geometrical instruction. The test 
battery was administered in the period between the 4/2004 and the 10/2005 in the 
corresponding classrooms.  
We assumed that wrong answers mainly implied either unsuccessful visual estimates 
or defective geometrical reasoning. However, in case of a correct answer there was 
the possibility that student might have used the visual estimate strategy and this 
particular difference mattered for the transition to level 2. We considered that a 
written instruction asking “How you worked it out?” shouldn’t be included in the 
paper test for the following reasons: the aim of the study was to test the student’s 
spontaneous reaction and immediate choice without any clue relating the task to 
geometrical reasoning; the reply “By the eye” doesn’t necessarily precludes another 
more analytic strategy at her/his disposal as an alternate, second choice; it would be 
of considerable interest to check whether this questionnaire could serve as reliable, 
convenient and independent instrument for level 2 assessment; and , finally, for 
general methodological reasons (triangulation). So we interviewed a number of 
students of the subgroups A1 (14), A2 (101) and B1 (42). The interview protocol was 
based on three questions; first: “How did you obtain the answer to this question?” 
(for correct answers only); in case the student answered “By the eye”, we proceeded 
to the second: “Could you imagine a different, more secure, way to solve it?”; in case 
of a negative answer we framed the third: “What about using some property of the 
shapes you see, for instance this is a circle etc.”. 
To compare the performance of the students in a more typical Van Hiele assessment 
instrument, we composed two variations of Usiskin’s test (1982), each including ten 
tasks aiming at levels 1 and 2, and administered it to a sample from A2 (70) and B1 
(50). Finally, for group A1 we had at our disposal each student’s marks in 
mathematics lesson for his/her three years in lower secondary school (of which we 
took the average). For group B1 the marks in Geometry lesson for the two years it is 
taught (again we took the average). This mark has been taken as an indicator of 
student’s formal education competence. 
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RESULTS
The alternate versions C3, C4 (about congruence), S3, S4 (about similarity) and Ar3, 
Ar4 (about area) were administered only to a number of students of subgroups A2 
and B1; differences in performance for these groups across tasks C1, C3 and C4 were 
insignificant (X2=1.273, d.f.=2, n.s. and X2=1,226, d.f.=2, n.s, correspondingly), so 
we pooled these data, under a general label C1. This was possible for similarity and 
area tasks except tasks S1 and S3 for subgroup B1 (X2=11,97232, d.f.=1, p<0.005). 
Task C2 demanded more difficult reasoning, so we present the corresponding results 
separately. Group B2 outperformed significantly the other three in task C1 
(X2=41.62, d.f.=3, p<0.0001), S2 (X2=61,97, d.f.=3, p<0.0001), Ar1 (X2=43.23,
d.f.=3, p<0.0001) and Ar2 (X2=71, d.f.=3, p<0.0001), all other differences between 
subgroups A1, A2 and B1 being insignificant, except in task S2 (X2=20,54, d.f.=2, 
p<0.005). The correct rate (%) for each group and task is presented in Table 1.

            Group 

Task
A1 A2 B1 B2

C1 (C3,C4) 47.5 58.46 65.53 90.42

C2 68.75 71.79 54.25 59.57

S1 (S3) 50 37.01 55.31 16.07 51.06

S2 (S4) 1.25 2.59 14 32.97

Ar1 (Ar3) 43.75 44.80 57.33 81.91

Ar2 (Ar4) 21.25 19.48 30 68.08

                        Table 1:Correct rate (%) of the subgroups in the six tasks. 

Rating one point to a correct answer each student’s total score is composed. ANOVA 
single factor analysis upon these score data showed significant difference between 
groups (F(4,474)=33.77, p<0.0001). Post hoc comparison test between groups limited 
this difference to B2 relative to the other three and to B1 relative to A1 and A2 (in the 
A2-B1 comparison using Bonferonni and Scheffé test a significant difference was 
found (t(474)=-2.68, p<0.0083 and F(1,474)=7.228, p<0.01, correspondingly), but 
applying Tukey HSD test this proved insignificant (q=3.237,n.s.)).  
In the following paragraph some examples of the interview procedure are presented 
(the questions concern right answers only): Student G.L. (group B1, task C1):

Interviewer: So how did you worked it out? 
G.L.: By the eye!
Interviewer: Could you imagine a more secure way to solve it? By the eye you are not 

so certain, are you? 
G.L.: Eh… eeeh….No…I think I cannot find something. 
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Interviewer: Look, how about using some geometrical properties that you know? Here, 
for example it says something circle radii…What do you know about 
them?

G.L.: They are all equal…So, …eeh…..all these line segments are equal…hence the 
rectangles are congruent? 

Interviewer: Does it suffice? ….To have two sides equal , I mean? 
G.L.: I think so… Yes. 
Interviewer: O.K. You’re right!  

This student was classified as one having of course an initial response pertaining to  
visual strategy, but after probing during the interview as one that could attain 
geometrical reasoning. Student M.L. (group B1, task A2):  

Interviewer: And this one how did you worked  it out? 
M.L.: I put the small one [T] inside the big ones [she has sketched on the test paper a T 

square inside each one of the bigger squares] and estimated by the eye the 
remaining area to be equal to that of T… 

Interviewer: And in the case of B you found that the remaining area is the same as that 
of T? Well, this seems quite difficult to me! … Isn’t there some other, 
more certain and easier way to find it? 

M.L.: What else….nothing comes into my mind.  
Interviewer: Something that has to do with the area of certain shapes? 
G.L.: Oh, sir, geometry has never been my strong point !  

This student was classified as one having the same response before and after the 
interview. Student S.K. (group B1, task S1):

Interviewer: And how did you find the answer to this one? 
S. K: I found the ratio of the two sides and compared these ratios … similar rectangles 

have the same one. 

This was of course a clear case classified as one implementing geometrical reasoning 
in the initial response. The results of the interviews are shown in Table 2. We 
included in the correct geometrical reasoning answers to tasks C1-C2 the 
“measurement by

A1 A2 B1

Geometrical 
reasoning in

  0 

task 

0

task

1

task

2

tasks
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task
s

0

task

1

task

2

tasks

3

task
s

4

task
s

5

task
s

6

task
s

Initial
response 100 84.15 12.87 2.97 0 54 24 4 2 2 8 6

During the 
interview 100 60.39 25.74 10.89 2.97 40 30 12 0 2 6 10

                                       Table 2 Interviews’ results (percentage)

Working Group 7

CERME 5 (2007) 997



straightedge, compass, pencil, etc.”. For example, as came up during the interview, 
24% of group B1 had an initial response involving some form of geometrical 
reasoning in only one task and this percentage became 30% after the interviewer’s 
help (second row labelled “during the interview”). Or 2.37% of the A2 gave 
geometric solutions in 2 tasks in their initial response and this changed to 10.98% 
during the interview. 
According to our version of the typical Van Hiele test and using the “strict criterion” 
(4 correct answers in 5 questions) the 42.85% of the sample of group A2 and 61.64% 
of the sample of group B1 had acquired already level 2. 
The Pearson product moment correlation coefficient between performance in formal 
mathematical education (specifically geometrical for group B1) and the six tasks of 
our test found r=0,381 for group A1 and r=0,284 for group B1. 
DISCUSSION-CONCLUSIONS

Level 2 seems to be critical for the subsequent progress of a student in more abstract 
geometrical education (Senk, 1989). In the second section we argued for a widening 
of the test items both in type and content, specifically for level 2 contrasted to the 
“visual” level 1. It is evident that the choice of the criteria and the corresponding tests 
should have substantial effect upon the assignment of a Van Hiele level to a student. 
In the traditional Van Hiele levels research have been developed two standard 
versions: the, so called, “strict criterion”, that is: a particular level is assigned to a 
student if she/he answers correctly to 4 out of 5 questions pertaining to this level, and 
the “lax criterion”, where we have 3 out of 5 correct answers. The choice of the 
success rate that should be considered as the appropriate qualifier for a student is 
clearly a matter of discussion.  

Indicatively we could accept as a “lax criterion” of level 2 attainment, considering the 
difficultness of the tasks compared to the traditional instruments as well, the 3 correct 
answers out of 6 (50% success rate). Taking additionally into account the fact that 
performance in congruence tasks (C1-C4) can be based quite efficiently on visual 
strategies (as is well established in cognitive science experimental research and 
actually confirmed by the above results) we can set as criterion the following: C: “At 
least 3 correct answers, but in case of only 3 (correct answers) not 2 of them 
pertaining both to congruence”.

Applying this criterion only 22% of A2 could be classified in level 2 compared to 
44% of the traditional test (applying the “lax criterion”), and only 38% of B1 
compared to 62% of the traditional test. These percentages are closer to those 
revealed by the interviews, where 15% and 40% of groups A2 and B1, respectively, 
managed to find some form of geometrical reasoning in more than 2 problems. 
Almost 100% of A1 sample, 60% of A2 and 40% of B1, insisting on visual strategies 
in all tasks even after probing during the interview, we might say that are still in level 
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1. In Figure 4 the percentages for all groups concerning our written test  are shown. 
As already mentioned above, setting another criterion would of course result in quite 
different percentages. 

0
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40
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A1 A2 B1 B2

 Figure 4: Percentage of students that have attained level 2 according to criterion C. 

The results imply that the typical tests putting exclusive stress on recollection of 
properties of figures or formal definitions (especially Usiskin’s test questions 
pertaining to level 2 have not easy quantifiers and figures do not play any role except 
in one) rather fail to capture the above mentioned processes substantial for attainment 
of level 2. Therefore traditional test instruments might be complemented with items 
like the ones presented above.
The overall performance of group B2, as was reasonably expected, is higher than that 
of the others. But the fact that a not negligible percentage of Mathematics students 
have not yet attained some form of the geometrical concept of similarity (see also 
Kospentaris & Spyrou, 2005) or the relation between square’s side and its area, 
should not pass unnoticed. The extensive use of visual-perceptual strategies may also 
be verified by the results in the more demanding task C2 or S1. In these tasks this led 
to loss of whatever geometrical advantage they might have relative to the other 
groups. Van Hiele explicitly states (1987, p.63) that a person after having attained 
level 2 even in visual thinking the formed structures of this level are always at his/her 
disposal, but with one exception: if he thinks in another context. But this effect of the 
visual set seems not to be evenly distributed among tasks and may related to the 
task’s content (i.e. inadequate or ineffective instruction in similarity and area). The 
question arising is: have these students really attained level 2 and have a trouble to 
apply simple geometrical structures of level 2 in a visually differentiated context or 
they are still acting in level 1, at least in these particular topics? Previous research 
(Mayberry, 1983; Gutiérrez & Jaime, 1987) in fact revealed that preservice 
elementary school teachers usually act in level 1 or 2, but here we have to do with a 
mathematically sophisticated population.      
Another result worth noticing is the marginal difference between B1 and A2, despite 
the great amount of geometrical instruction the former have received (3 or 2 hours per 
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week for 2 years in Geometry and 5 in Analytic Geometry for a year for 
approximately 80% of them) and the observed low correlation to school geometry 
performance. A likely explanation seems to have to do with the presentation of 
Geometry as axiomaticodeductive system and the method of instruction; as Van Hiele 
warns (1986,p.63)

If pupils do not find the network of relations of a given level by themselves, when 
starting from a concrete situation, will have difficulties returning to the corresponding 
signification in the developed network of relations, unless the concrete situation happens 
to be that of the teacher’s original situation.

It would be useful to make use here of the notions (and the corresponding 
terminology) of Kuziak et al. (2007) about the different paradigms or “geometrical 
worlds”, inside which each student thinks and behaves: Geometry I is the domain of 
space relations of the real world discovered and validated mostly by experiment, 
measurement, visual estimations, etc. Geometry II is the domain of abstracted 
relations and deductions based on fixed axioms and logical rules and its archetype is 
classic Euclidean Geometry. The objects and the basic axioms are modeled according 
to the real world experiential relations, but with a great degree of idealization.
So we can restate the problem as follows: why these students cannot transfer the 
procedures of Geometry II in a context that strongly induces Geometry I situations? 
One likely explanation is that formal geometry curricculum in lower secondary 
school does not provide enough time and adequate learning activities related to 
Geometry I and jumps abruptly to a Geometry II style. 
Furthermore, insistence to present Euclidean Geometry in more abstract, 
logicodeductive manner, that is: moving mainly inside a Geometry II environment, as 
things continue to happen until today in Greece, implies that we take for granted that 
students entering upper secondary education have mastered level 2, that is: they are in 
position to act appropriately in a Geometry II environment. The above results posit 
serious questions about this assumption.      
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The paper refers to a horizon as a main principle of an understanding of infinity, 
more specifically as the process from ‘very big’ towards potential infinity and actual 
infinity. The role of the horizon will be maintained by the results of interviews, 
supplemented with illustrations, and some ideas of historical development of the 
infinity concept (particularly in a geometrical context). We are able to formulate 
conclusions about the characteristics defining the phenomenon of the horizon in the 
development of the understanding of infinity. 

INTRODUCTION: CONCEPT OF INFINITY 
Infinity as a mathematical concept is highly abstract and at the same time very 
attractive. It is related to the amount of mathematical and non-mathematical concepts 
such as basic geometrical objects, functions and their behaviours, set cardinality, size 
of the universe etc. Thanks to the richness of context where we can meet the concept 
of infinity, it was necessary to focus attention only on some of them. I have chosen 
the geometrical one. One reason is that children meet infinity in this context at an 
early age (implicitly first). Another reason is that a main part of mathematics (above 
European mathematics) is built on geometry.  
This article is focused on one phenomenon – the phenomenon of the horizon – one of 
the significant elements present in analysis of interviews with students. All the 
mentioned interviews were conducted as a part of wider research comparing the 
phylogenetic and ontogenetic development of the concept of infinity in a geometrical 
context. The interviews were focused on the understanding of concepts such as the 
point, the line, their parts and their mutual relationships.  

THEORETICAL BACKGROUND: EPISTEMOLOGICAL OBSTACLES 
In this part, we outline the key thoughts of the theory enabling us to compare 
ontogenetic and phylogenetic development of mathematical concepts in general. 
Following, we compare possible attributes of the phenomenon of infinity and suggest 
possible obstacle of a process of understanding it. 
Why we can find connection between ontogeny and phylogeny? 
We can find different reasons to accept and reject the idea of ‘genetic parallel’ 
(Radford, Boero a Vasco, 2000; Radford, 1997; Rogers, 2000). I have chosen the 
Brousseau’s theory of epistemological obstacle. The theory proved to be the most 
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suitable for our aim – to find reasonable and non-random connections between 
ontogenetic and phylogenetic development of the conception of mathematical notion. 
G. Brousseau defines an obstacle [1] as a set of mistakes related to previous 
knowledge. These mistakes are not unstable, but on the contrary, they are recurrent 
and permanent. The obstacle can be  

Knowledge (there is a domain where particular knowledge is used fruitfully, this domain 
is usually investigated, the knowledge is verified by many experiences). 

But there is a domain where the knowledge fails and produces wrong results, the 
knowledge is not able to transfer to another context (because there is a different 
viewpoint of thought or/and it is thought in a more general context). 

Knowledge, which resists contradictions and discrepancies with which it is confronted 
and hence, does not lead to a creation of ‘better’ knowledge. (It is the difference between 
an obstacle and a difficulty.) Knowledge presents itself in the same way whenever there 
is a repetition of such a situation. 

Knowledge establishes itself after its integration into a system of cognition. Because 
there are other notions connecting to original knowledge – obstacle. (Brousseau, 1997) 

The guiding idea of the theory is that an obstacle does not represent an absence of 
knowledge, the knowledge is there but it does not succeed in a particular situation. 
Knowledge, as an obstacle, is resistant to rejection. It has a tendency to adapt locally, 
to modify itself with a change as small as possible, and to optimize within a narrower 
domain. The reason is that an obstacle is knowledge related to a concept, that means a 
mathematical notion with a set of situations – problems which give to the notion a 
sense, a set of meanings which an individual is able to connect with the notion, and a 
set of tools, theorems and algorithms which an individual is able to use in working 
with the notion. We can classify the three following sources of obstacles: an 
ontogenetic source; a didactic source; an epistemological source. Each of these 
sources is connected with a different system, which enters into a pedagogical 
interaction. The most important for us, an epistemological source relates to the 
process of gaining the knowledge itself. These are obstacles, which we cannot and we 
should not divest ourselves of, because they are fundamental and essential for a 
formation of target knowledge. We can meet these obstacles within a history of 
notions themselves (Radford, 1997; Spagnolo and �ižmár, 2003).  
Attributes of the phenomenon of infinity 
We are not able to see the infinity itself, in its absolute pureness. We acquaint 
ourselves with it, understand it, and interpret it by help of such attributes, which 
appear always when meet it. Already Rodrigo de Arriaga [2] distinguished between 
the possible manifestations of the phenomenon of infinity: infinity as far as size is 
concerned; infinity as far as the number of elements is concerned; and infinity as far 
as intensity is concerned. We do not move very far away from his ideas when we 
consider following attributes: cardinality (of sets), orderliness (discrete ord. and 
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continuum); limitedness or boundedness; measure (an object of zero-measure); 
infinite process; and limit, convergence, and supremum/infimum. We do not assume 
that this list is fully exhaustive. From a different point of view, we can get new 
important determinant attributes of ‘infinite objects’. For example, we do not mention 
uncertainty, which was an inseparable phenomenon for the ancient Greek 
philosophers but unacceptable for European mathematics. 
We can consider the horizon as fundamental phenomenon for each of the attribute. 
Crossing the horizon, rediscovery of the horizon and a hypothesis that the world 
beyond the horizon is similar to the world in front of it, or on the other hand, 
expecting fantastic things beyond the horizon, is an impetus to a process of 
understanding of the infinity – from ‘big’ or ‘very big’, over ‘potentially infinite’, 
after as much as ‘actually infinite’ – in all of its attributes 
The questions in interviews, which are introduced in the next paragraph, were 
formulated with an aim to cover these attributes and with regard to excepted 
obstacles, which are closely connected to them. 

INTERVIEW: METHODOLOGY AND RESULTS 
I carried out 22 semi-structures interview with students aged from 9 to 19 years. The 
aim was to discover how the students understand the concept of infinitely long line, 
the concept of a point and the concept of an arrangement of points on a line [3].  
Key questions of the interview where: (Q1) We have a straight line and a half line. 
Which one is the longer one? (Q1a) We have two half-lines. Which one is the longer 
one? (Q2) We have given line d and point A not lying on the line. Construct square 
ABCD, where point D is on line d and its area is large as possible. (Q3) We have a 
square ABCD. Find such point X on the side BC that the area of the triangle ABX is 
small as possible. When interviewing the students, I used questions which are not 
legitimate from mathematical point of view but legitimate from the respondents’ 
point of view, as they help to create a conflict in the students’ knowledge of infinity. 
As an illustration, I chose only interesting parts out of the interviews [4] to 
demonstrate the main ideas: 
Interview 1: Jan, a good grammar school student, 17 year old boy 

Interviewer: … which one is longer, a line or a half-line? 
Jan: it cannot be determined as the line as well as the half-line are infinite… or 

they do not have an end  … if we have given, given the infinity, we could 
say that the half-line is shorter …  

Interviewer: There are two half-lines. Is any of them longer? If yes, which one? 
Jan: … again, if we have infinity, simply, where the infinity is or ends (smiling)  

the infinity ends, simply, where the infinity is placed, … However, infinity 
is not given so it is not possible to determine it … 

Interviewer:  [see Q2]. 
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Jan: Well, as the line is indefinite, I could take another line to the line we have, 

well, line AD could be parallel with d, so they would intersect somewhere 
in infinity, so they would be almost parallel ... Actually, in infinity we could 
see they are not parallel ..  and the square would be infinitely large. 

Interviewer:  Where would be point B and C in this case? 
Jan: Points B and C would be in an infinite distance from point A. They would 

be dependent on point D, so if I have pint D somewhere in infinity in this 
direction, there would be in the same distance point B… perpendicular on 
line AD. (pointing to it) 

Analysing the interview, we can perceive many different and interesting phenomenon 
important (not only) for his conception of a straight line and parallels. But our aim is 
the role of horizon, so focus just on the underlined parts of the answers from this 
point of view. He answers very often “it cannot be determined” or something similar. 
These answers are common in all interviews where there is a conflict of the concept 
of actual and potential infinity concerning students’ knowledge. A dynamic using 
with the horizon is typical for potential approach and the argument of moving is very 
telling. But we need to break trough and to make a clean break with horizon for truly 
understanding of actual approach. 
Jan also uses formulation “if we have given infinity” or “where ‘the’ infinity is” and 
we can come across to similar expression in most of the interviews. I understand 
these formulations in the way that Jan unintentionally assign the role of actual infinity 
to the horizon. In the concept of potential infinity it is possible to prolong a line in the 
direction of the horizon, in the concept of actual infinity we have already reach the 
horizon and it is not possible to go further. The reason is that the way of thinking 
concerning the potential concept can not be usefully applied in the actual concept. 
The typical argument of ‘more and more’, or ‘further and further’ fails if we want to 
understand objects as actually infinite. 
Jan’s answer “[parallel lines] intersect somewhere in infinity” and “not until we reach 
the infinity we could see they are not parallel” or “in infinite distance” express that 
actual infinity has been replaced by the horizon. The expression “go up to infinity” 
can be understood as ‘go to the horizon’. Therefore the horizon is the place where 
infinity is! 
Interview 2: Martin and Vasek, good grammar school students, 15 year old boys 

Martin: The line is, by me, just a series of such points, the minimal ones, which is 
not seen and we only magnify it that would be seen. 

Vasek: It is just for us. 
Interviewer:  So, do you thing that the line has some width? 
Martin: Some minimal of the one undefined point. 
Vasek: I thing that it do not have. In this case it wouldn’t be a straight line. 

Students have bigger problems with ‘small’ infinity than ‘big’ infinity. We can see it 
very often. The small infinity – e.g. a point – is everything before us and still behind 
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the horizon. Martin works with the minimal measurement corresponding to a point. 
On his way from ‘a small point’ over ‘a very small point’ to ‘a minimal point’, he 
shifts his horizon many times. But his point is still on his last horizon. On the other 
hand, we guess Vasek was able to accept the idea of absolute exceeding the horizon, 
because he rejects the minimal width of a line. But he answers differently in another 
place of the interview:  

Intrviewer: [Q3] 
Martin: Tightly over the point B. 
Vasek: Possibly closely to the point B, but different. 
Interviewer: Is there something between the points B and X? 
Vasek: I thing, there is nothing.  
Vasek:  But the point will probably have some measurement, otherwise a set of 

points could not be a straight line.  

Vasek, in fact, works with points as with a minimal atom, similarly to Martin. The 
reason is that something what does not have any measurement is not able produce an 
object with nonzero measurement. This hypothesis does not allow him to break the 
horizon. 
Interview 3: Lada, a good grammar school student, 15 year-old girl 

Interviewer: [see Q2] 
Lada: So, the point could be, maybe, here. (pointing on the end of drown line on 

the paper) 
Interviewer:  But you sad the line continues on. 
Lada: So, I do not know. Somewhere, just there the line finishes. 

The reason why I included this interview is to show that 15 years-old good grammar 
student is able to work slightly in front of the visible horizon. She is also able to shift 
her horizon ahead, to some finite distance, however the principle of crossing the 
horizon is not still handled. 
Interview 4: Marek, a good primary school student, 10 year old boy 
On the other hand, younger students are able to work with infinite lines or an infinite 
process: 

Interviewer: [see Q1a] 
Marek: (5 sec) Not a single one. 
Interviewer:  Why? (10 sec) One girl said that both of them have the same length. Do you 

agree with her? 
Marek: Yes, I do. 
Interviewer:  But another girl said that the half-line b is longer. 
Marek: No, the half line a can finish farther. 

Marek’s answers do not differ from Lada’s. But he is able to repeat the imaginary 
movement – he prolongs a half-line in his mind whenever he needs it and uses it for 
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speculation about (not yet actual) an infinite line. Thus, using the horizon (even if 
implicitly) is a fruitful tool for handling infinite objects. 
To end this part, we should mention attributes, which occurred in discussing the 
situations. Questions about lines (Q1 and Q2) focus on the attribute of unlimitedness 
or unboundedness; we can see unsurprisingly the attribute of measure and infinite 
process; but also the attribute of supreme. The Question Q3 regarding the distribution 
of points on a line refers to following attributes: orderliness, measure, infinite 
process, and supreme.  
In the following part, we try to find connection with ideas from historical 
development of conception of infinity. 

LINKS WITH HISTORICAL DEVELOPMENT: COMPARISON OF 
INTERVIEWS ANALYSIS 
The aim of this paper is not to analyse deeply the historical development. We merely 
mention some important ideas or events, which could be useful for our intended 
comparison with students’ answers. We outline very briefly the main approaches to 
geometrical phenomenon. Than, we try to point out some ideas, where we can see 
haw mathematicians coped with the problems of infinity focusing on the horizon. We 
refer to the works of Petr Vop�nka, a significant Czech mathematician, historian and 
philosopher of mathematics, who profoundly studies problems of infinity [5]. 
Geometrical object can be seen (in simple) from two viewpoints. If we understand 
them in the potential concept then there exist only those we are able to make (for 
example to draw them or to imagine them). The number of these objects is finite even 
though it is always possible to make another one. This concept has its own 
consequences. For instance, a line is a unique object, not a set of points. On the 
contrary, if we understand geometrical object from the point of view of actual infinity 
all such objects are existing and existed before. They had existed before we started to 
work with them (Vop�nka, 2004a). Both concepts are possible. Let’s explain that 
Euclid approaches the geometrical object from the potential point of view. This fact 
can be proved by his postulates formulated as tasks (Eukleidés). On the other hand, 
Hilbert armed with modern logic and the set theory approaches geometrical objects 
from the actual point of view seeing the space as if it is filled with all the existing 
objects. “The principle of creator” is the original approach to the geometry for all 
students. It could bring obstacle of picture – as a model, for example. Overcoming the 
principle connects with the horizon again. The horizon is tightly linked with creating 
person. So, leaving the principle of creator connects with breaking the horizon [6]. 
Even the translator of Bernard Bolzano (1781–1848) noticed that Bolzano’s function 
cannot exist, because it is not possible to draw it (Vop�nka, 2004b). 
The ancient mathematicians were afraid of stepping over the horizon. They dared to 
do it only in case they needed to ensure themselves about something which was in 
front of the horizon. Illustration of such insight beyond the horizon is can be for 
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example Euclid’s fifth postulate. Why did so many people want to ‘prove’ the fifth 
postulate? The problem is that some truth about our world in front of horizon is based 
on something behind the horizon (Vop�nka, 2000). 
Euclid of Alexandria (about 450-370 B.C.) was very careful as regards infinity. In his 
work Elements (Stoicheia) accepts the theory of Aristotle [7]. In definition XIV of 
the first book says that all shapes are limited [8]. It is essential for us to see his 
concept of a line (eutheia), our concept is represented by any part of a line (straight 
line). This limited line (eutheia peperasmenes) can be, according to postulate II, 
„prolong without a bound… to produce a limited straight line in a straight line“ [9], 
he regards such a line as eutheia grammé, and if necessary the line can be prolonged 
ep apeiron. We are reminded of the way how Lada and Marek worked with the line. 
Lada explicitly worked only with limited objects. Marek spoke about arbitrary 
prolongation, but still works with eutheia, not with a straight line in contemporary 
meaning. 

The introduced problem of the conflict between potential and actual infinity 
continued until the beginning of 20th century, when the set theory was formulated. 
We encounter attempts to overcome horizon in an incorrect way during the whole 
history of mathematics. For instance, H. Schumacher used the circle in an infinite 
diameter to ‘prove’ the fifth axiom in his letter to Gauss (Vop�nka, 2004b). 

Zeno of Elea (about 490–430 B.C.) in his paradoxes presents in a mastery way the 
conflict between sensual perception and abstraction of thoughts and idealisation. In 
his arguments „ad absurdum“, he comes to a conclusion that movement is impossible 
(Dichotomy, Achilles and the Tortoise, The Arrow, The Stadium). Zeno comes to the 
paradoxical connection of the world of pure, unchangeable ancient mathematics and 
infinity which steps over the horizon in its own essence. Thanks to the works of Zeno 
and his teacher Parmenides the Greek mathematics started to be attracted by the 
problem of infinity (Trlifajová, 2001). We can see the conflict between the potential 
and actual approach in the interviews, too. Clearly, it is evident in Vasek’s answers 
(Interview 2), but also in the Jan’s interview (1). It is typical common obstacle to 
understanding of actual infinity, as it is described in many studies, e.g. (Eisenmann 
2002, Jirotková 1997, Jirotková and Littler, 2003, Monaghan, 2001, Tall, 2001). 
The problem explicitly formulated by Zeno was not satisfactorily solved till Aristotle 
of Stagira (384–322 B.C.). Aristotle excluded actual infinity from the pure ancient 
science and left the space only for potential infinity. In his conception, a line is 
arbitrarily long, it means infinite in a possibility.  

Our conception of limitlessness does not remove the ideas of mathematics saying that it 
denies that the enlargement of a line would be unlimited in real as it cannot be brought to 
the very end; mathematicians do not need limitlessness in real and do not use it, they are 
satisfied with the fact that an unlimited line is arbitrarily long; … For their proofs it is 
indifferent how it is with existing sizes. [Aristotelés, book III, chapter 7, p. 89] 
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Before Aristotle, Democritus of Abdera (460–360 B.C.) set out a different way of 
solution to Zeno’s problem. He formulated well known theory of atoms (Pato�ka, 
1996). The analogous way of thinking is evident in many interviews, markedly e.g. in 
the interview with Martin and Vasek. From young children till university students, all 
the students tend to stop on ‘their atom’. The concept could be ‘a 1mm–point’, ‘a 
very, very small point’, or ‘a minimal point’, but always the horizon plays important 
role – my point is as small as I am able to shift my horizon. We encounter similar 
answers about numbers and number line. For example, students of every age answer 
that the smallest positive (real, rational) number is ‘0.1’, ‘0.00…01’ or ‘1/�’. We can 
again observe shifting the horizon, stopping on it, and replacing objects for infinite 
ones on it. To add, René Descartes (1596–1650) used the idea of neighboring points 
in his physics, though it was he, who created the number representation of 
geometrical objects. From this point of view, remark that identifying the number line 
and a straight line is a nontrivial, highly abstract process. 

CONCLUSIONS

As was already mentioned, the obstacle is a knowledge, which can produce incorrect 
answers when is used in a new context. This knowledge must be familiar to its owner 
and must be many times successfully used. These requirements are met by the 
concept of the horizon as a tool for understanding infinity. 

As we can see from the interviews, the horizon is something which can help 
significantly to clarify infinity – enables us to understand it better. The answers of the 
students such as “go to infinity” can be interpreted as ‘go to the horizon’. Therefore 
the horizon presents more palpable position for infinity, as it seems to be less abstract 
– ‘the horizon is the place where infinity is’. The horizon is a tool we use to 
understand actual infinity. However, it is an obstacle for a full grasp of actual infinity 
with all its consequences. For this reason we can conclude that the horizon plays a 
role of an epistemological obstacle in Brousseau’s concept of the transition from 
potential to actual infinity. 

The last note is devoted to the relationship of these hypotheses with the learning 
process. One of the essential thoughts and ideas for the theory of obstacles is that 
they should not be avoided but broken through. It requires teachers to be conscious of 
these obstacles and be prepared for them. In this case, it means they should expect 
incorrect answers (which are quite common) as well as elaborate and organise the 
situations built on carefully chosen problems, which will challenge the student's 
previous conceptions of (potential) infinity and allow to overcome other and other 
horizons. A possible starting point could be the mentioned interview questions.
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NOTES
1. The idea of an epistemological obstacle was firstly used by G. Bachelard in his work La formation de l‘esprit 
scientifique (Bachelard, 1993). 

2.  The Spanish Jesuit and professor of Prague University; lived from 1592 to 1667. 

3., See (Krátká, 2005; Krátká, in press) for more details. 

4. The interviews were video-recorded. All the answers were accompanied by pictures. 

5. Relevant works are (Vop�nka, 1989, 2000, 2004a, 2004b). Unfortunately just one book was translated to English: P. 
Vop�nka, Mathematics in the alternative set theory, Teubner (1979). 

6. The horizon itself is unchangeable. If we set off toward the horizon, it moves in the same direction and stays 
unreachable. Today’s geometry is fully embedded in the classic world of geometry and not in the natural world of 
geometry. It means that all geometrical objects are placed on the horizon and are regarded as absolutely infinite 
(Vop�nka, 1989).  

7. We can see a strong influence of the philosophy of Plato, for example the definition of the point, but it is not true in 
case of infinity. 

8. Definition XIII: “Limit is something which is a border of something.” Definition XIV: “Shape is something which is 
limited by borders.” It is also confirmed by principle VIII: ”The whole is greater than the part.“ (Eukleidés) 

9. Translation (Artmann, 2001). 
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GEOMETRICAL RIDIGITY AND THE USE OF DRAGGING IN A 
DYNAMIC GEOMETRY ENVIRONMENT 

Víctor Larios-Osorio
Universidad Autónoma de Querétaro, México 

Abstract. Dynamic Geometry offers the opportunity to approach Geometry with a 
dynamic handling of geometric objects; this allows possibilities not available so far 
for high school students. However, some cognitive phenomena are still present, such 
as geometric rigidity, and the fact of preferring some geometric properties which are 
visually evident over some others. These phenomena are influenced by the geometric 
object perception which, in turn, is influenced by the dynamic feature of software, 
particularly the dragging operation. To go deeper on this direction, we carried out a 
research with secondary school students in Mexico; we used the Theory of Figural 
Concepts in order to study these phenomena on a Dynamic Geometry environment.

INTRODUCTION
The presence of Dynamic Geometry Software (DGS) in Mathematics Education field 
has motivated the creation of teaching proposals of Geometry using it, but it also rises 
the necessity of research about its teaching consequences in order to prepare the 
teacher for a suitable using as semiotic mediator between knowledge and student 
(Vygotski, 1979). 
We know, according to scientific literature about it, that DGS allows the design of 
useful learning environments as experimentation fields of geometric objects 
representations, but the user (i.e., the student) also has to realize the software main 
features, like the dynamic aspect of constructions, and the teacher must take into 
account the possible difficulties which appear during its use in a Geometry course. 
Therefore, in this paper some research results and remarks are reported. The research 
was made with 14-15 years old students in Mexico (see Larios, 2005). Here I will 
focus only on geometrical rigidity -which happens when individual cannot mentally 
manage a geometrical figure when its orientation is not standard or cannot imagine 
the result of one transformation-, and the influence of dragging as part of a semiotic 
mediator. 
With this in mind, I posed the following questions: Which phenomena regarding 
visualization arise when geometric facts are watched and when justifications are 
constructed in dynamic geometry environment? In particular, which is the influence 
of “geometrical rigidity” phenomenon over the identification of figures and 
geometrical properties? and, which is the influence of the perception of the main 
feature of DGS called ‘dragging’?
According to these ideas, we should have some references about aspects concerning 
geometrical objects and their representations. This I will do in the next section. 
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FIGURAL AND CONCEPTUAL ASPECTS OF GEOMETRICAL OBJECTS 
In research, when considering geometrical objects handling we have to consider its 
nature and how students conceive them. According to this idea, we can explain 
students’ behaviour based on the fact that geometrical objects have a figural
component and a conceptual one, according the ‘Theory of Figural Concepts’ of 
Fischbein (1993). Both components are closely related, and they force us to 
distinguish between figures and drawing (Parzysz, 1988; Laborde & Capponi, 1994; 
Hölzl, 1995; Goldenberg & Cuoco, 1998; Maracci, 2001). This distinction “is 
strongly emphasised by programs like Cabri” (Hölzl, 1995, p. 118). 
Drawing is a graphical, material representation which refers to a geometrical object,
which in fact has its own theoretical reference and it is restricted or “controlled” by 
definitions and logical restrictions. Drawings correspond to the figural aspect of 
geometrical objects according to Fischbein (1993) and contain information that 
sometimes is not necessary, because perhaps it includes colour, thickness, or 
orientation. Now then, as we cannot access to geometrical objects directly, we 
represent them by drawings and we assign them meanings, which are the relations 
between objects and its representations assigned by an individual. 
This meanings correspond to figural concepts (in Fischbein’s theory) or to figures
since they are considered as “the agent of an objects’ class which shares the set of 
geometrical properties the figure was built with” (Sánchez, 2003, p. 31). 
However, both aspects (figural and conceptual) influence an individual according to 
his or her cognitive development. Indeed, it is even necessary a fusion between both 
kinds of aspects to be successful in the appropriate management of geometrical 
objects; this situation seems ideal and extreme (Maracci, 2001). Fischbein says: 
“What happens is that conceptual and figural properties remain under the influence of 
the respective systems, the conceptual and figural ones” (1993, p. 150). 
Nevertheless, it seems that students look for that fusion in several ways when they try 
to build satisfactory drawings, that is the drawings must have a good gestalt that 
convince students about their correctness (Maracci, 2001). But this satisfaction is not 
always related to logical or conceptual restrictions, since some conditions are more 
related to figural restrictions (orientation, shape, etc.). 
On the part of DGS, its dynamic feature creates the need of evidencing the difference 
between drawing and figure, because in this environment the geometrical 
constructions are built according to logical relationships between objects, not 
according to figural aspect. This is because dragging, the operation that allows the 
user to directly manipulate the objects in screen, is a tool student can reach and use. 
With dragging he or she can modify possible configurations of one geometrical 
construction, but ever preserving the geometrical properties the objects was created 
with. In this way DGS is converted in a semiotic mediator that influences the 
Geometry’s perception. 
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In general, this skill of direct manipulation over geometrical constructions might 
allow students to begin to differentiate between drawing and figure, which is related 
with individual’s skill to “see” beyond graphical representation and acquire a higher 
level of abstraction (Hoyles & Jones, 1998, p.124). However, the user has to realize 
about this difference, as well as the dependence between geometrical objects in a 
construction, to exploit the dynamic feature of software in an effective way. 
In this sense, Cabri-Géomètre may be turned into a environment that allows 
exploration in Geometry, but it also may result in new situations in teaching, as well 
as in the research field of Mathematics Education. 

METHODOLOGY
The research process was carried out with teams of two 14 and 15 years old students, 
in a suburban town near to Querétaro city, Mexico. The teaching experiment lasted 
two weeks. 
Students made twelve activities grouped in three sets: five with triangles, five with 
quadrilaterals, and two with hexagons. In all these the tasks were designed according 
to:

Figure 1: 

That is, at the beginning of teaching experiment’s each part students were asked to 
make geometrical construction in order to observe parallelism between sides of 
constructed figures. Later on the conditions were changed since students were asked 
to make inverse constructions: using the observed properties they had to reconstruct 
the original figure. 
The activities were based on Acuña (n.d.) using the middle points polygons [1]. We 
just used triangles, quadrilaterals, and hexagons, with their respective middle points 
polygons (see Figure 2 for some examples). 

E

D
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Figure 2: Triangle, quadrilateral, and hexagon with their middle points polygon 
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During this process, students had to measure their constructions, to make an 
exploration through dragging, to observe geometrical properties, and to provide 
arguments in order to justify their observations. These observations must regard to 
the geometrical relations between original figure and its middle points polygon.
Students also must provide conjectures, which allow students to detect necessary, 
sufficient conditions for the geometrical constructions. 
Triangles’ activities were: 
T1. Students are asked to write down their conceptions about triangles in order to 

know about it. 
T2. Students construct one triangle and its middle points triangle through middle 

points in triangle’s sides, as well as observe parallelism between sides of both 
triangles. Students used only the software. 

T3. Students construct a middle points triangle through a reciprocal situation than 
above. Observation of parallelism is emphasized. 

T4. Students are asked to propose a procedure to construct the original triangle 
starting from its middle points triangle.

T5. Students perform their procedure with a scalene triangle provided by researcher 
in a cabri file. They check it and provide a logical justification. If the 
construction (and proposed procedure) fails the researcher encourage students to 
figure out the mistakes and look for suitable properties. 

Quadrilateral’s activities were: 
C1. Students construct one quadrilateral, its middle points quadrilateral, and observe 

the properties. We wanted to students realize the kind of quadrilateral the middle 
points quadrilateral is. It is a parallelogram. 

C2. Students were asked to explore relations between the quadrilateral’s diagonals 
and the middle points quadrilateral. They might justify the parallelism with 
observations made in T2 activity. 

C2a y C3.  Students were asked to figure out the properties of a quadrilateral in order 
to its middle points quadrilateral be a rectangle. Properties observed before have 
to be taken in count. 

C4. Students were asked to propose one procedure to build a quadrilateral starting 
from its middle points quadrilateral. One cabri file with a parallelogram was 
provided to them by researcher. 

Hexagons’ activities were: 
H1. One regular hexagon was provided to students in a cabri file. They had to 

observe parallelism in opposite sides using the diagonal between them, and 
extending adjacent sides. Students had to relate this activity with properties 
observed in the second and third activities with triangles (T2 y T3).
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H2. Starting with one regular hexagon provided in a cabri file, students were asked 
to construct its middle points hexagon and to observe properties in order to 
determinate whether the last one is a regular hexagon too. 

In each task students were asked to observe and justify using geometrical properties 
observed in former activities. 
The software was a window on students thinking (Noss & Hoyles, 1996) and we used 
it (through cabri files), as well as protocols (worksheets), and some talks recorded to 
get information of students’ work. 

RESULTS AND DISCUSSION 
We identified students’ teams thanks to their names, so we got 22 protocols’ sets and 
cabri files. Next we shall show some examples of students’ responses and their 
analysis.
On preference of geometrical properties 
During the activities students were asked to observe some properties about 
parallelism. However, it happened that students didn’t consider them. It seems 
students “see” properties closer than their direct experience. 
By example, in the third activity of triangles we asked them: 

Question: a) How are sides BC and EF? 

Nine teams gave as a reference that segments are equal, six gave references regarding 
the sizes, and two gave references taking in count the shape. 80% of the references 
regard to the shape or the sides’ size, and only 20% says something about parallelism. 
In the next question, we asked to students to justify their descriptions. Just one team 
uses parallelism: 

Question: a) How are sides BC and EF? 

Answer: They are two equal lines. 

Question: Why? 

Answer: Because they are parallel. 

In the next activity (T4) students were asked to propose a procedure to get triangle 
ABC starting from its middle points triangle. They should take in count parallelism, 
but six teams used the sides’ sizes, others six said something about the location of 
vertex, four said something about the necessity to locate the middle points, and three 
gave references to shape (Catalina & Patricia said: “we put points d e f and as the 
little one is pointed down we joint vertex, then we put the points for the bigger 
triangle and we got three big triangles and one little”). In other words, 77% of 
references are related to movement or visual properties, meanwhile only five percent 
mentions parallelism. 
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In the fifth triangles’ activity (T5) we asked to students: 
Question: How do remain the sides of triangle ABC regarding those of triangle DEF? 

The majority gave references of sides’ size and just three of them said something 
about parallelism. Some teams mentioned the change of position, or the sides are 
“symmetrical”, or the sides “are going in opposites directions”. All of these responses 
are related to visual aspects. 
According to this idea, we might say that parallelism is not a relevant, evident 
property for students. It seems that for students are more evident other properties like 
length (in segments) and shape (in polygons). It appears that students prefer 
properties based in figural aspects rather than conceptual ones. 
Geometrical rigidity and constructions’ orientation 
Another aspect we studied was the “geometrical rigidity”. This phenomenon is 
related with visualization of geometrical figures, and it is strongly influenced by 
orientation of graphical representations because is very common individual cannot 
mentally manage a geometrical figure when its orientation is not standard or cannot 
imagine the result of one transformation. Next there are some examples. 
Bibiana & Mariana’s team made direct references to geometrical objects’ shape when 
were asked about the properties of middle points quadrilateral:

Question: g) The inner quadrilateral has a special property? 

Answer: Yes. Even although the big one is bent [2], the little one still have two 
equal sides. 

In the cabri files is evident that they prefer to use constructions with standard position 
and shape. In the third triangles’ activity (T3) they even anticipated the final position 
of triangle ABC and built a “suitable” triangle DEF (see figure below): 

Question: b) About the little triangle, it has have some special property? 

Answer: Yes  Because it has to have the sides of the same length. 

Question: c) Can you use any triangle as the middle points triangle?

Answer: Yes. 
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On its own, Celene & Marissa’s team also showed the same tendency in using figures 
with standard position and shape. In the second activity of triangles they used one 
isosceles triangle pointing up with a horizontal side: 

Even if it is necessary, they modified the provided construction. In the fifth triangles’ 
activity they changed the shape of the provided triangle in order to get one more 
“comfortable” triangle (one horizontal side and almost an isosceles one): 

In the same activity Luis & Fernando made a cabri file whose picture is below: 

You may note that points a, and c are not over the sides of the biggest triangle. 
Despite little triangle’s shape, the big one’s shape clearly looks like an isosceles 
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triangle with one horizontal side. Furthermore, we note that students switched the 
vertexes’ labels since those of the little triangle should be D, E, and F, but now they 
are a, b, and c, while the biggest triangle’s vertexes have not labels. 

FINAL REMARKS 
As I said above, the cognitive phenomena related to figural aspects in students’ 
responses are geometrical rigidity, using of empirical justifications, and using 
dragging as an external tool. 
Geometrical rigidity is a phenomena related to visualization of geometrical figures. It 
happens when individual is not able to mentally manage geometrical figures when 
they are not in standard positions or to imagine when a figure is translated or 
deformed (Larios, 2005). This phenomenon showed up at different times with 
students on this research. 
This phenomenon may be related to conflicts existing between figural and conceptual 
aspects of geometrical objects, as well as the need of satisfactory drawings (Maracci, 
2001). Indeed, some students need to use drawings in standard positions, otherwise 
they cannot “see” the figures, their relationships, and their movements. By example, 
Celene & Marissa’s team changed the shape of the provided triangle in activity T5
and made it isosceles with its base in horizontal position. In this way, they recovered 
a known, rigid, and “right” figure to be managed. 
Therefore the figure orientation is considered by students as an important figure 
attribute, despite of the fact that it is not shown in objects’ definitions. 
On other hand, sometimes when some students used the dragging, arose an inability 
to visualize the whole process of transformation of figure. Those students couldn’t 
visualize intermediate steps and consider them as particulars cases. I observed that 
students perceived something I called start-end dragging (Larios, 2005) and Olivero 
(2003) called photo-dragging. Students just considered two cases: the starting and the 
ending constructions. We think this phenomenon is another form of geometrical 
rigidity (Larios, 2005), because that one reported in scientific literature is in regard to 
inability imaging the figures’ movement, but here we talk about the inability to “see” 
as a figure itself the intermediate steps during the transformation. 
In general we perceive the preponderance of figural aspects and therefore the 
observation of geometrical properties is affected. Indeed, using figures in standard 
positions and shapes limit the possibilities during exploration and, therefore, the 
number of observed properties is quite less. When students use this kind of 
configurations in their constructions they miss the opportunity to observe some 
necessary conditions and, therefore, some properties. 
In our view, these phenomena show us that figural concepts have not been 
appropriated by students, since figural aspect is not used as heuristic resource but as 
referential one, while the conceptual aspect is restricted in its performance because 
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students don’t see the necessity of using geometrical properties. This means that the 
fusion between both aspects cannot happen. 
Other phenomenon, although linked with the above-mentioned, is the fact of 
considering some properties and ignoring others. We mentioned this above, at the 
beginning of previous section. We noted that there are properties more evident to 
students, and they “deserve” to be considered, while others don’t. In this sense, some 
observed properties or situations about size of geometrical objects, or about their 
shape, or the concurrence of curves, seem to have more possibilities to be taken in 
count than other properties less evident as, in this case, parallelism. 

NOTES
1. The middle points polygon of one polygon is obtained when the sides’ middle points of the original polygon are 
joined by segments. 

2. Emphasis added. 
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THE UTILISATION OF VIDEO ENRICHED MICROWORLDS 
BASED ON DYNAMIC GEOMETRY ENVIRONMENTS 

Markus Mann, Matthias Ludwig 
University of Education Weingarten, Germany 

Abstract. Dynamic Geometry Environments (DGEs) are more and more used in 
today’s classrooms. Their potentials to teach and learn Geometry were evaluated by 
many researchers. On the other hand more and more students have internet access. 
So they have many opportunities for learning provided over the world wide web. For 
our studies we developed and evaluated a learning environment that includes 
geometrical microworlds that are based on a DGE. These microworlds were enriched 
with screen recording videos to support students in their individual learning process. 
Up to now we could observe 32 students working with the environment. Our findings 
indicate that there are potentials for learning success in the student’s individual and 
self-directed learning process.

INTRODUCTION
In this paper we report about experiences we made with the assignment of interactive 
worksheets to learn Geometry. These worksheets are web-based (i.e. available 
everywhere and anytime) and with a high degree of interactivity. The essential parts 
of them can easily be generated with the Dynamic Geometry Environment Cinderella
(Richter-Gebert and Kortenkamp, 1999). The worksheets are mathematical 
microworlds that provide different kinds of multimedia assistance to students , 
namely hints in text form, construction videos and other aids. So learners are able to 
work individually and self-directed on construction tasks.
Our study took place with 8th grade students. Our findings expose different strategies 
and patterns of computational activity developed and used by students who worked 
on geometrical tasks. A future goal will be the development of learning sequences 
(Arzarello, 2002) setting up on a learning environment that is described in this paper. 
As Boon (2006) argues: “For development researchers the challenge lies in the design 
of convincing learning trajectories that integrate these new tools.”

THEORETICAL FRAMEWORK 
The substantial elements of our research are video enriched, interactive worksheets. 
In short an interactive worksheet is a webpage including a Java applet that offers a 
geometrical task, for instance a construction task or a manipulative task. So it 
combines a number of features and potentials of DGEs with some basic ideas of 
mathematical microworlds. Hence our theoretical framework relies on these two 
major ideas. It is partly based on the ideas of microworlds as described by Hoyles & 
Noss (1992), Hoyles & Noss (2002) and Boon (2006) as well as on substantial results 
of research on Dynamic Geometry Environments (e.g. Laborde et al., 2006, Jones, 
2002) and their use in the classroom (e.g. Gawlick, 2002).  
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As we are particularly interested in individual and self-directed learning we will 
need to have a look at the role of feedback. If there is no teacher supervising the 
learning process the feedback will be in electronic form and has to be seen under 
aspects of interactivity. We will see that the role of feedback for students is essential.
The Microworld idea. 
What is a microworld? Hoyles and Noss (2002) describe it as follows. 

Thus microworlds are environments where people can explore and learn from what they 
receive back from the computer in return for their exploration. It follows, therefore, that a 
microworld has its own set of tools and operations that are open for inspection and 
change.

So microworlds can be very open constructs with a variety of possibilities for its 
users. But they can  also be more close or instructive, leading learners on clear, given 
paths. What the learner receives ‘from the computer’ is at first any kind of feedback. 
Learners are expected to learn from this feedback (Hoyles & Noss, 2002). This 
feedback is often in a graphical or iconic form: “while the user is manipulating 
objects directly, there is also graphical feedback as to the results of their actions” 
(ibid.). Of course other kinds of feedback are thinkable. 
Microworlds differ not only depending on the kind of feedback, but also on the kind 
of task . So Boon (2006) categorises three kinds of microworlds, because “this 
classification helps to structure the underlying design choices”. The third category is 
called “Applets that offer a mathematical microworld. In these applets mathematical 
objects like formulas, equations and graphs can be constructed and transformed.” So 
it “contains applets that work on formal mathematical objects,  etc. In this sense they 
are comparable with mathematical tools like the graphic or symbolic calculator or 
CAS.” But these ideas can be assigned for DGEs as well, e.g. in the form of 
interactive worksheets. 
Construction tasks in Dynamic Geometry Environments.  
DGEs in their ‘natural’ form are very open tools. They “offer ways of teaching and 
learning Geometry, which are not available in a traditional paper-pencil-
environment” (Strässer, 2006). Because of its variety of features and potentials 
research on DGEs concentrates on a number of different aspects. For us the following 
are of importance. First there is the drag mode. You have to consider if learners used 
this mode they need it for adjusting in construction tasks (Laborde, et al., 2006). 
Laborde, Kynigos, Hollebrands and Strässer (2006) report on the solution of 
construction tasks in DGEs. They stress that a “construction by eye or by manual 
adjustment fails” in a DGE, since it must be preserved by the drag mode. This 
adjustment describes a typical behaviour of students if working with a DGE. A 
problem that arises from this is the need for feedback. To see their failure students 
must receive adequate feedback. 
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When Jones (2002) summarises research on the use of Dynamic Geometry Software 
(DGS), he also discusses the importance of the feedback. He argues research 
“suggests that DGS cannot provide a self-contained environment, but that other 
activities are needed for students to make progress in mathematics”. Jones (2002) 
suggests that the teacher plays an “important role in guiding students to theoretical 
thinking”. With these aspects in mind we developed a learning environment for 
individual, self-directed learning. This means at first we had to ask, if students cannot 
learn individually with a DGE at all. Or the other way around: What can they learn on 
their own? And how can they learn it? Furthermore we have to evaluate what other 
activities are needed and if these activities can be provided by a web-based, 
interactive learning environment. A special point is the role of the teacher. What role 
does he take and can this role be occupied by an “electronic teacher”? In particular 
this means that the feedback, which is as we have seen essential for learners, can be 
given by a computational environment. Another aspect emphasised by Jones (2002) is 
the fact that it matters how DGEs are used. As consequence following questions arose 
for us: How is the software used? Where are problems and how to face them? And 
can these problems be eliminated by an environment that is not as complex as a DGE 
and which provides more aids? So we created different kinds of assistance, worked 
with an instructional design and always observed the interaction between learner and 
environment, too. 
The Role of Feedback and Interaction. 
As we have emphasised, the role of feedback is essential for the learners in electronic 
learning environments. DGEs provide graphical feedback indeed by direct 
manipulation but it is no didactical feedback. This has to be given by experts (e.g. 
teachers). Laborde, Kynigos, Hollebrands and Strässer (2006) stress the role of 
feedback, such as the potential of feedback in the learning process and on the impact 
on learning. The feedback in electronic environments is closely linked to interactivity 
or to the interaction between user and environment. As the term of interactivity is 
understood in different ways, we reference to Schulmeister (2002). He classifies 
multimedia elements in his “Taxonomy of the Interactivity of Multimedia” according 
to the degree of interaction between a user and a multimedia component. According 
to this taxonomy interactive worksheets are on the highest level (Mann et al. 2004). 
We took this into account for the development of the   interactive worksheets and for 
the analyse of our data.

DESIGN OF THE LEARNING ENVIRONMENT 
Our research focus is on self-directed, individual learning. For individual learning 
inside or outside the classroom with computational learning environments students at 
first need appropriate tasks. Further it is necessary for them to get assistance for the 
solution of their tasks. And as mentioned before feedback is of importance. These 
aspects in mind we developed interactive, web-based worksheets.
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Interactive Worksheets: Integrating a DGE in a mathematical microworld.  
The Dynamic Geometry Environment Cinderella in its handling does not differ 
significantly from other representatives for DGEs such as Cabri (Cabri II plus),
DynaGeo or Sketchpad. With Cinderella it is possible to export interactive, web-
based worksheets very fast, easily and comfortably by One-Klick-Export. This way 
two different types of interactive worksheets can be created. The first one is the 
interactive webpage, the second type the interactive exercise. An interactive webpage
in this case is a webpage including a Dynamic Geometry applet which is created and 
designed by the developer, e.g. a teacher or a didactician. Interactive webpages allow 
direct manipulation, so the learner can use the drag mode and experiment with ready-
made geometrical constructions (manipulative tasks). With an interactive exercise the 
learner can do a lot more. The developer of the exercise can provide construction 
tools, so that the user can construct geometrical constructions on his own. The 
developer decides, which of the DGEs construction tools are available for the student 
working on the task. Moreover hints can be created and provided in textform or in the 
form of insertion of construction elements. In the process of development of an 
interactive worksheet certain design and development criteria have to be considered. 
In addition general criteria for the design of websites (e.g. see 
http://psychology.wichita.edu/) and special mathematical aspects (e.g. the tool 
selection) have to be taken into account. Furthermore didactic criteria must be 
fulfilled in the creation of an assistance. 
The advantages of interactive, web-based worksheets are obvious. Learners do not 
need to be familiar with all the different tools, features and icons of a ‘traditional’ 
DGE. They just need to know how to use the tools needed for their task. In case that 
they are not familiar with those tools we integrated different kinds of assistance. 
Finally every interactive, web-based worksheet includes a Java applet, support for the 
use of the construction tools and different kinds of assistance for the solution of a 
construction task, namely textual hints, construction elements, a manipulative 
construction and a video recording of the solution process. To sum up the worksheets 
are produced with a DGE and include the potentials of DGEs. They are mathematical 
microworlds in the form of applets including graphical and symbolic feedback. And 
as they are web-based they can be “distributed over the world wide web, which 
makes them accessible quite easily” (Boon, 2006). 
Video enriched interactive worksheets. 
Interactive worksheets so far can relieve of some of the students’ problems with the 
use of DGEs and the corresponding tasks. But some problems remain. How do 
students have to use special tools, which are unfamiliar to them? And how can they 
solve construction tasks without an expert’s help, i.e. in the form of individual, self-
directed learning. We suggest that for this individual work assistance is essential. 
Therefore we offer different kinds of so-called construction assistance. As 
construction assistance a whole set of multimedia components is conceivable. In our 
learning environment the following kinds of construction assistance are available:   
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- Help with the construction tools: name, description and video description.
- Hints in text form, colouring and display (insertion) of construction elements.
- (Dynamic) sketch of the construction.
- A “dynamic constructional description” in form of videos.

All kinds of assistance are available anytime (see illustration 1). Sometimes the user 
has to wait for a defined period, before he may call it. The videos can be viewed with 
a common (Windows) media player. So all features of this software can be used, 
namely Play, Stop, Pause and Seek.  

Illustration 1: Translated example of an Interactive Worksheet 

METHOD
Our methodology is partly influenced by the approach of Arzarello (2006) as well as 
by experiences with log file analyses (e.g. Priemer, 2004 and Degenhard, 2001). 
Furthermore we use a classical experimental design as described e.g. by Kerlinger 
(1964) consisting of pre-test, treatment, post-test and delayed post-test. In this paper 
we report of the first phase of the empirical study. This first phase has already taken 
place. Goals of the second phase which is currently in progress will be discussed in 
the conclusion.
Overview 
32 students participated in the first phase. They all were students of the 8th grade of a 
German secondary school and between 13 and 14 years of age. All students 
participated voluntarily. The study was divided into two parts hence our results are 
obtained by two groups. The first group consisted of 13 students. They were given 
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five tasks concerning the Theorem of Thales. Students first had to construct a right 
triangle, then a square, a kite, a rectangle and the tangents to a circle. 
An example for one of the tasks was as follows: 

Given the diagonal AC. Construct a square ABCD by using the Theorem of Thales. The 
distance AC is variable. 

No student had ever worked with Geometry software before, but all of them had 
some experiences with ICT (Information and Communication Technologies). So 
every student had the possibility to use a PC at home, eleven of them had internet 
access at home. Ten of them had used a media player before (to watch videos). This 
means that they knew the basic functions of a media player. Only three female 
students had never used a media player before. But they did not have any technical 
problems with the use of video assistance.
The second group included 19 students. They also were given tasks around the 
Theorem of Thales like the construction of a right triangle, the construction of the 
midpoint and the construction of the tangent lines to a circle. All students of this 
group had the possibility to use a PC at home, 17 of them had internet access at home 
and 17 of them had used a media player before (to watch videos). In this group 17 
students had worked with Geometry software at school formerly.  
Data Collection and Analysis. 
We wanted the students to work through a sequence of specially designed 
geometrical construction tasks provided in the form of interactive worksheets (see 
illustration 1) in our learning environment. When working with the environment the 
students were observed and recorded in the following ways: 
- Their face and parts of their torso were recorded by a Webcam.
- A directional microphone recorded their statements (when thinking loudly or in 

communication with a partner).   
- By means of screen recording software the screen and all mouse activities were 

recorded.
Similar to a log file analysis (Priemer, 2004, Degenhardt, 2001) the collected data 
could be synchronised and analysed with a special software. A questionnaire, the pre-
test, the post-test and the delayed post-test provided information about the 
mathematical knowledge before and after the treatment. And it provided information 
about the students’ experiences with digital media. In that way we wanted to identify 
a possible increase of mathematical knowledge and if ICT competences influence it 
(cp. Lagrange, 2003). In the first phase we obtained 26 sets of data out of the 32 
students. 20 of them learned individually, 12 in pairs. Each set of data consisted of a 
video recording (Webcam and screen recording, cp. illustration 2), log file data and 
the tests. The lengths of the recordings reach from about 25 up to 50 minutes.  
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Illustration 2: A student working with an interactive worksheet. 

OBSERVATIONS ON STUDENTS’ ACTIVITIES
Three striking results will be discussed in the following: firstly the intuitive 
utilisation of the learning environment and its integrated videos, secondly different 
patterns or strategies of use and finally some test results. 
Intuitive use of instructional designs and the utilization of videos 
A striking observation was the way students intuitively used our learning 
environment, especially the interactive worksheet and the given assistance. The 
entrance in the environment in most cases took place very effortless and impartial. 
The students sat down in front of their notebooks and started working immediately. 
Also the usage of the videos took place very smoothly. Many students used the 
pause- and play-buttons when watching a video clip for the first time. Afterwards 
they used this function for several times. We assume that with the design of our 
learning environment an introduction to the usage of a microworld like this is no 
longer necessary.
In the questionnaire filled out after the intervention we asked about self-assessment 
of the assistance received by the video of a construction. In the first group all 
participants declared, that they have used the assistance “video of a construction”. 
And 12 out of the 13 students estimated it as helpful for them, only one person rated 
it as partially helpful. In the second group, where we received 16 questionnaires, for 
12 of them the video assistance was seen as helpful. Three students rated it as 
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partially helpful, only one as not helpful for him. Thus we argue that students 
accepted the videos and the assistance given by them very well. 
Utilization patterns 
In the first group we analysed the student’s work with the interactive worksheets and 
in particular with the assistance given with a focus on patterns of use. We were able 
to observe and describe seven different patterns or strategies developed by the 16 
students. Some worked with different strategies depending on the task they had to 
solve. Surprisingly there were some special patterns, which were developed 
independently by different students. For example the pattern we called “video 
strategy” was used systematically by four students and sporadic by all other students 
as well. A systematic implementation of the so called “sketch-strategy” we could 
discover by three other students.
For example the “video strategy” proceeds as follows. First the student tries to get an 
overview over the interactive worksheet. In doing so he moves his mouse over 
striking images and notices if something happens. Then he tries to construct the 
required figure. When a problem with a tool appears, he calls the explanation in text 
form and skims through the text. If this does not help, he watches a video which 
describes the tool or reads the text more concentrated. When he has difficulties with 
the construction, he starts the video description for the construction, watches it for 
some seconds and presses the pause-button. Then he imitates the viewed steps of the 
construction on his worksheet, goes back to the video, watches the next step and so 
on. Instead of using a video the students pursuing the “sketch strategy” made use of 
the dynamic sketch of the construction [1]. 
But there were also completely different strategies, which for example made more use 
of the assistance in text form. It could also be observed that students revised or 
adapted their strategies in their working process. 
Results of the delayed post-test 
The video strategy and the sketch strategy are founded on instructional ideas.  Since 
most students used one of these strategies it was interesting for us to see how 
effective the strategies were. I.e. we were interested in their learning success. We 
wanted to know what the students had learned, what they could reproduce and what 
they could remember after four weeks. The delayed post-test could give us some 
answers. Between treatment and delayed post-test both groups did not learn anything 
in their regular classes about the mathematical contents covered by the worksheets. 
The result was that quite a remarkable number could solve the construction tasks. 
The most interesting cases were the students that could not solve the construction task 
in the pre-test but in the post-test and the delayed post-test. I.e. they could at least 
reproduce the construction. It was striking that there were some students who could 
not solve the tasks in the pre-test but both in the post-test and the delayed post-test 
and who only used the video strategy. That is one reason why we assume that our 
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instructional design can be successful under certain conditions. To uncover these 
conditions in detail will be one of our main future aims.  

CONCLUDING REMARKS 
With the second phase of our study we pursue this and other goals. In this phase the 
students will work with an optimised version of the learning environment. Another 
goal is to identify the dependencies between learning success and the kind of 
assistance that is used by the learner. After identifying that nearly all students were 
developing their individual utilisation patterns another interesting topic is how 
students react, if they fail with a self-developed strategy although this has been 
successful before. And we will have an eye on the relationship between the 
effectiveness of any assistance and the complexity of a task. 
If we are able to uncover the important variables we will develop learning sequences 
(or learning trajectories) for geometrical contents based on our findings. These 
sequences will be based on the described microworlds. And they will implement the 
best suited kinds of assistance. 

NOTES
1. No student really used the drag mode with such a construction´, which was only seen as a static one. Otherwise using 
the drag mode was neither necessary nor requested for solving the task. 
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GEOMETRICAL TILES AS A TOOLS FOR REVEALING 
STRUCTURES [1] 

Marchini Carlo, Vighi Paola 
Mathematics Department of University of Parma - ITALY 

Abstract. In School Year 2005/2006, we extended, in Italy, a part of a research 
initiated by Ewa Swoboda in Poland. Our research used simple tools but early results 
indicate that certain geometric aspects may depend on factors such as competency, 
psychology and gender. In this paper we present a preliminary analysis of the 
protocols. 

THEORETICAL FRAMEWORK. 
This work can be considered in between spatial and geometrical understanding. We 
ask the pupils to perform a (free) drawing, with the aim of investigating their spatial 
abilities by working with direct manipulation. Nevertheless we investigate the 
protocols from geometrical point of view: connexions, continuity, isometries and so 
on, which can be settled in Geometry 1 paradigm, following Houdement & Kuzniak 
(1999). The starting point of the work is an interesting research carried out by 
Swoboda. She puts forward an interpretation of children’s protocols, based on van 
Hiele’s theory (van Hiele, 1986), a theory studying geometrical thinking and 
understanding. This theory divides the educational processes in geometry into 
different levels. In particular, the analysis of three initial levels shows a very 
important common aspect: manipulation. Van Hiele also distinguishes between rigid 
or feeble structures. Regarding the last point, the Polish researcher notices: 

“In his opinion feeble structures are worth noticing, they fill out the majority of our 
everyday life. They come from a non-verbal, intuitional way of thinking, but 
mathematical thinking is not superior to the intuitional one. Feeble structures may be a 
beginning of knowledge on a higher level of thinking where we may have something to 
do with, ex. rigid structures or still a feeble one” (Swoboda, 2005b).  

This intuitional way of thinking can be considered spatial rather than geometrical 
(Panoura et al., 2007; Pittalis et al., 2007). Moreover Swoboda shows that feeble 
structures can be used to study and to analyse an activity based on the creation of a 
floor. Feeble structures are very important for educational research in order to detect 
the child’s thought. They can reveal the process of early geometric knowledge 
appropriation. They are expressions of spatial intuitions that cannot be expressed by 
word, but only by graphical language, but they are the first steps in geometric 
understanding (Bishop, A., 1980, 1983). Feeble structures are characterized by 
presence of connections, rotations, parallel translations, symmetries, applied only 
locally in the drawing. Rigid structures reveal the presence of a mental project using 
both geometric shapes or isometries or the sake of regularity. Pupil could pass 
through feeble structures to rigid ones by awareness of the ‘regularity’ and of 

Working Group 7

CERME 5 (2007) 1032



  
isometric transformations, using sight. Swoboda (2006) shows that there is a relation 
between mastery of rigid structures and school success. 
We give to pupils four kinds of tiles as a sort of alphabet for a language, which can be 
considered the first step of a future expression by words. Therefore, following 
Vygotsky (Vygotskji, 1992), we helped the coming into existence of geometrical 
concepts.  
We ask pupils to pave an A4 paper sheet with these tiles with the aim of constructing 
a ‘floor’. In this way we arrange a milieu (Perrin-Glorian & Hersant, 2003), from 
which we can explore, geometrical aspects and children’s ability and potentiality 
relating with spatial and geometrical thinking: 

“… activities such as these described here give the opportunity to bring out many 
intuitions that can be treated as a basis for developing not very simple geometrical 
notions” (Swoboda, 2005b).  

This sort of activity is customary in school for introducing the concept of area, 
nevertheless Rozek & Urbanska (1998) has shown children have different levels of 
awareness of ‘horizontal’ and ‘vertical’ organisation. 
The tiles we use have inherent symmetry; therefore they can suggest constructing 
regular tessellations, based on symmetries. Following Nùñez et al. (1999), the 
metaphor of balance:  

“is so basic that all homo sapiens – no matter when and where they live on earth – have 
experienced it […] this experience [the balance], it’s working out in cultural expressions 
such as language, art, dance, science”.  

This embodied cognition must affect the pupils’ products, thence there must be a 
relevant presence of symmetries in their protocols. 
Moreover the act of constructing a tessellation requires a long sequence of elementary 
acts: observation, ordering, copying, and repeating. Swoboda (2005a) shows that 
drawing a pattern is not a mere perceptual copying, but it is a deep thinking process 
which involves body and gestures (Marchini & Vighi, 2005). 

“Of the domains of knowledge where children must enter, geometry is the one needing 
the fullest cognitive activity, as it requires gesture, language and looking. It requires the 
child to construct, to reason and to see, each activity indissoluble from the others.” 
(Duval, 2005).  

Arzarello (2004) emphasises the role of the body movements and gestures in 
learning. Gesture expressiveness can be considered a sort of language useful to 
understand pupils’ thoughts taking in account of the poor language competencies of 
children of these ages.  
For other aspects of the theoretical framework of this research we refer to (Swoboda 
2005b) and the references therein. 
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THE RESEARCH. 
Our research uses exactly the same setting as (Swoboda 2005b), in order to compare 
Polish and Italian results. The tiles are proposed by Ku�ina (1995):  
 
 

Fig. 1: Ku�ina (1995) tiles.      cb da
 

Pupils suggested name for tiles: 1.a: straight, 1.b: branch 1.c: flowery, and 1.d: 
swallows; the names, in themselves, reveal a naturalistic interpretation, not a 
geometric one. The same happened with many titles children gave to protocols. 
Remark static (1.a – 1.c) and dynamic interpretations of tiles (1.d: swallows as 
trajectories of the birds). The task is to pave a floor, but the pupils tended to see it as 
an opportunity for self expression. They produced gardens or flowers (girls) and 
streets or racing tracks (boys).  
The first author requested permission and obtained it to conduct the experiment in the 
Kindergartens and Primary Schools of his home town, Viadana (MN) in the province 
of Mantova, Northern Italy [2]. Viadana is a small town with agriculture and artisan 
industry. There are many immigrants from other Italian regions and from abroad, but 
there was no statistically significant difference between the protocols of Italian and 
non-Italian children, nevertheless, some specific protocols seem to be influenced by 
the familiar culture of these foreign pupils. In this research were involved 212 pupils 
(97 - last year Kindergarten, 68 - first year Primary School, 47 - second year Primary 
School) worked singly in classroom environment. 
The first phase of the research consists of manipulation activities. The task is: “Create 
from these tiles as beautiful floor as possible” (Swoboda, 2005b).  
We can discuss this requirement, since it seems too ambiguous, but it allows the 
children express themselves in a good way. In other words, the children are 
completely free to choose which, how, where, how many tiles, and how many times, 
in order to obtain the most beautiful flooring that they can, so that individual artistic 
taste and choice of design are what determines the choice of tile. Looking for their 
intuitions, we are interested in some geometrical order; other more precise statement 
of the task would be more difficult to be interpreted by these young pupils.  
The task offers an approach very different from the customary one in the school, the 
one introducing ‘standard’ geometric figures. Our request can be presented very early 
and it is motivating and well accepted also by kindergarten pupils; the time that 
pupils spent in constructing their works supports this conclusion. Moreover it offers 
an occasion for free explorations of the space (the blank sheet of paper). The 
geometric tile structure limits degrees of freedom, but, as protocols shown, children 
were free enough in expressing their own intuitions. Furthermore the mind activity 
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required to construct and to colour the drawing is, in our opinion, a suitable, right 
task of spatial - geometric activity necessary to prepare the next more formal 
treatment of geometry.  
The ‘floor’ consists of an A4 blank sheet (21 cm × 29.7 cm); it must be paved gluing 
tiles on. Sides of the square tiles measure 2.5 cm; therefore they do not fit the sides of 
the paper. The children have not scissors, and therefore they have to face problems 
regarding their conception of space (for an investigation of this issue using different 
tools, see Marchini, 2004) in filling the space as actual tiles do with an actual floor. 
The problem was worsened because our 14,700 tiles were slightly irregular having 
been photocopied and cut up by hand.  
The whole experimental activity took one school year (2005-2006). The activity of 
each child was video-recorded, in order to allow a deeper of deep thought processes 
manifested by body and gestures. Figure 2 presents some examples of protocols. 

Fig. 2        a                       b                          c                            d                          e 

The second phase is centred on the use of colour: each protocol was photocopied, the 
pupil coloured his/her protocol and gave it a title. The introduction of colour and title 
for protocols is the main distinction in the methodology of the research respect to 
original Swoboda one (Swoboda, 2005b). In this way we get each protocol in black 
and white and in colour. We show here some examples: 
 
 
 
Fig. 3.    a                        b               c                                 d 

The colour could afford new information about pupil’s aims. The colour can be also a 
kind of language, therefore we asked children to colour the ‘paving’ tessellation, as 
this might reveal the criteria the learners base their design on. The colour and the title 
given to the protocol, take place of semantics for the black and white drawing. 

THE PROTOCOLS.  
Choosing and gluing each tile carefully it is possible to ‘save’ 4 mm and to cover 
exactly 27.5 cm of the ‘long’ side of the sheet. Another way is to place tiles not 
contiguously, leaving small regular gaps between them. In this way, the number of 
tiles that can be glued onto the sheet without going over the edges is 88. We consider 
this number 88 as the theoretical covering index (in the following it is assumed as 1, 
by normalization). We find only 11 pupils using exactly this numbers of tiles. On the 
other hand, 32 children choose to extend the paving beyond the sheet edges and use 
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96 tiles (constructing an 8 × 12 floor, they cover a hypothetical sheet of 20 cm × 30 
cm). We obtain 119 protocols using less than 88 tiles, 58 protocols (more than 
27.35%) which used from 88 to 96 tiles and 35 protocols using more than 96 tiles. 
By a rough analysis, protocols we obtained are of the same types of Polish pupils’ 
products. We obtained works showing the presence of feeble structures (fig. 2.a) [3], 
some others are revealing the presence of rigid structures (figg. 2.b - 2.e), as in 
Poland. In Polish experience, protocols where tiles are placed in one ‘horizontal’ row, 
in the middle of the sheet, approximately (fig. 3.d), were absent.  

THE QUANTITATIVE ANALYSIS OF RESULTS.  
We recorded the number of tiles of each kind, in each protocol. We also introduced a 
diversity index, borrowed from biological research. This kind of protocols 
investigation is absent in Polish research.  
The first type of analysis is obtained by counting the number and type of tile each 
child used. It is remarkable that it yields interesting information.  
Covering index. It is possible that the number of tiles the children glue on the sheet is 
determined by their attention span, by their manual coordination, by their 
commitment to the task, and by their interest in producing their own design, and also 
it can be related with age and teacher’s practice. Since the number of tiles is simple to 
calculate it can be used as a rough indicator of all these aspects.  
Table 1 shows the average covering index values. It is clear that the average covering 
index increases with the years of schooling. The presence of high scores for particular 
classes could be explained by pupils’ possible independent experience of a similar 
activity or by different teaching practices.  

School no. pupils Sample Male  Female  
Kindergarten 97 53.5 47.9 59.8 

1st grade Prim. 68 77.1 79.1 74.0 
2nd grade Prim. 47 86.5 87.2 85.4 

Table 1: Average Covering Index 

In more details, in Bedoli and San Pietro Kindergartens, in 1E and 2A of Primary 
School, the males’ average covering index is greater than the females’ one, in the 
remaining classes it is conversely. The following figure 4 shows the average covering 
index for each class, together with diversity index. 
Diversity index. It is the Shannon’s entropy measure. It varies between 0 (every tile in 
the protocol of the same kind) and 2 (equal number of tiles of each kind in the 
protocol). In Biology, the good ecological ‘health’ of an environment is measured by 
a diversity index near to 2. In our work, we can consider the high diversity index as a 
measure of the great teacher’s respect for the propensities of pupils. 
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Figure 4: Average Covering and Diversity Indexes for classes.  

Average use of tiles. Table 2 shows the number of tiles children used in paving the 
‘floor’. This Table is of immediate interest in that it shows a clear difference between 
males and females, which is evident at Kindergarten and Primary School, both. In a 
sense the tiles have a gender connotation. The way girls and boys use the flowery 
tiles is particularly striking. The ‘monopolization’ of the flowery tiles by girls lowers 
the diversity index. These facts are thence connected.  

 Flowery 
rate of use  

Branch rate 
of use  

Straight 
rate of use 

Swallows 
rate of use  

Total n. of 
tiles 

Sample Males 15.77 16.18 14.12 21.91 8,294 
Sample Fem. 36.21 10.12 13.23 12.06 6,446 

K. Males 18.17 17.27 17.15 29.82 5,851 
K. Females 46.25 12.66 13.50 11.61 3,697 

1st grade Males 14.69 14.36 12.55 37.50 3,332 
1st grade Fem. 35.88 5.27 16.46 16.35 1,923 
2nd grade Mal. 23.21 21.48 23.83 18.69 2,529 
2nd grade Fem. 61.22 9.33 8.78 6.06 1.537 

Table 2: Rates of tile use. 

We think that a quantitative investigation of this kind can give some interesting 
information to teachers. It seems us a tool which is enough simple to apply. Other 
more sophisticated analyses, e.g. recognition of feeble and rigid structures or the 
interpretation of gesture, require more competencies. 

QUALITATIVE ANALYSYS OF THE PROTOCOLS.  
Firstly, protocols reveal different concepts of space. It can be intra-figural or inter-
figural (fig. 2.b, 2.e). The space can be limited (fig. 2.c, 2.e) or unlimited (fig. 2.d) 
and  
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“Greek thought …tried to escape from the unlimited, considered a form of imperfection. 
For Aristotle there is no space above the sky of fixed stars” (Speranza, 1997).  

This is the same conception which leads some learners in our activity not to stick on 
tiles which would go over the edge of the sheet of paper. Other learners conceive of 
space as unlimited, and have thus an ‘in act’ conception of infinity (Marchini, 2004). 
Moreover colour gives us much more information whether the pupil’s attention is on 
local features (fig. 3.a) or it concerns the drawing as a whole (fig. 3.b). 
The second intuition is connected with important concepts of area and plane. An 
actual floor is designed by covering a plane space without gaps and without 
superimposing tiles. A child who leaves “space” between the sides of the tiles does 
not still have the idea of covering. Usually there is a privileged reference frame, 
namely, the edges of the sheet, which makes ‘horizontal’ and ‘vertical’ array more 
likely, but some protocols use only ‘horizontal’ lines, others only ‘vertical’ ones. 
They lack the idea of bi-dimensional distribution and the concept of array that 
underlies multiplication, according to (Rozek & Urbanska, 1998).  
Using square tiles with drawings which make creating some “whole” or patterns 
possible, children can fell a need to arrange tiles one close to another, sometimes also 
in row-column order (fig. 3.a). 
Thirdly, the regular size of the tiles and the drawing on they (fig. 1) can focus the 
children’s attention to the connection in order to construct continuous patterns. The 
colouring of drawings confirms that continuity is present in pupils’ mind even if, 
from the real gluing of tiles, the connection is not complete (fig. 3.c). 
Fourthly, on the basis of our experience, we cannot confirm the hypothesis of Nùñez 
et al. (1999). The embodied cognition of ‘balance metaphor’, did not affect the 
pupils’ products, since there was not a relevant presence of symmetries. We suggest 
that symmetry is only a learning object.  
An analysis of protocols allows making an initial classification based on the criteria 
used by the pupils in the construction of the floor. We distinguish the following kinds 
of criteria: 
0) random: pupils glue the tiles as they pick them up at random, without 
observing the drawing on them; 
1) taking account of the drawing on the tile: on the straight tile the line is parallel 
to the edge; so the children tend glue the tile with the line ‘horizontal’ or ‘vertical’. 
Other tiles do not have a preferred direction, although tiles tend to be placed with 
their sides parallel to the edges of the paper as far as this is possible. There are few 
cases in which swallows and branch tiles are placed with tile diagonal parallels to 
sheet edges, and in these case the ‘non-intersecting’ diagonal is ‘vertical’ (fig. 2.b);  
2) influenced by and based on neighbouring tiles: construction of a route, 
translation, symmetry; construction of a flower in the case of flowery; 
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3) regular: an iterative and regular tessellation (fig. 2.d and left side of fig. 3.a); 
4) progressive conquest of regularity: initially the pupils glue tiles at random and 
subsequently choose regular tessellation; 
5) project: pupils first ‘see’ a mental representation, and then proceed to the 
concrete manipulation (fig. 2.d and 2.e).  
In case 2) and 4) there are feeble structures, generally; in case 3) and 5) the structure 
is generally rigid, when the project is realized in a complete way or the regularity is 
observed in all the work. Sometimes pupils are unable to concretise their mental 
spatial image obtaining feeble structures (fig. 2.a; 3.c; 3.d). 
The drawings on the tiles are such that when the same type of tiles is placed next to 
one another, the lines fit together perfectly. This feature leads pupils to imagine 
concrete things drawing. For example, the swallows or straight tiles might give the 
idea of a road; the branch might give the idea of a scene from nature such as a thorny 
lawn, the flowery tile a garden. But pupils’ imagination is even more fertile than this; 
they ‘see’ for example a chick and a cat in the following arrangements of tiles. 
 
 
 
Figure 5: Chick and cat.  

Geometry of tiles also influenced the children’s work. Their drawings are of three 
kinds from point of view of inherited symmetries: 
1) straight: two reflections with orthogonal axis, the medians and consequently a 
central symmetry; 
2) branch and swallows: two reflections with orthogonal axis, the diagonals and 
consequently a central symmetry;  
3) flowery: one reflection on a diagonal line. 
The flowery tile allows for different ‘interpretations’. The tiles can be glued so that 
the wider lines connect, or to compose whole flowers instead, without connection of 
wider lines. The arrangements with more symmetries followed fit both, see 
Appendix. The protocols show all these arrangements, often locally, only; we think 
that it could be a result obtained by chance, but it can be a good occasion given to 
teacher. 
It may be the case that it is more mature pupils who create a greater number of basic 
motives (Budden, 1972). Some of the older Primary School children showed the 
presence of strong structures and pupils there tended to opt for the flowery tile. Girls 
are naturally more mature than boys and this may be the reason they chose the 
flowery tile (Arnheim, 2005). There was however a considerable increase in the use 
of the flowery tile in the second grade.  
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NOTES 
1. Work done in the sphere of Local Research Unit into Mathematics Education, Parma 

University, Italy. 
2. We would like thank the School Heads and the teachers of Bedoli, Carrobbio, Cogozzo, and San 

Pietro Kindergartens, and Classes 1A, 1C, 1E, 2A and 2C of Primary School, for permitting and 
collaborating with our work.  

3. We superimpose some oval on the reproduction of original protocol in Fig. 2.a, in order to draw 
attention to feeble structures. 
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THE PROCESS OF COMPOSITION AND DECOMPOSITION OF 
GEOMETRIC FIGURES WITHIN THE FRAME OF DYNAMIC 

TRANSFORMATIONS 
Markopoulos, Ch., Potari, D. and Schini, E.

University of Patras 
In this paper, we investigate children’s strategies while they decompose and compose 
geometrical shapes and we study these strategies within the frame of dynamic 
transformations. Twelve children, in the context of a clinical interview, faced six 
tasks that involved the above processes and which varied in terms of the kind of the 
decomposed shape and the elements of the transformation that were given. The 
results indicate that children developed different strategies and built certain 
relations. By reflecting on the process of transformation (decomposition – 
composition) the children acted intentionally and considered the shapes as 
geometrical objects.

INTRODUCTION
The process of composing and decomposing quantities is considered as the basis for 
constructing mathematical concepts. For example, the concepts of number and area 
are approached by defining the unit, iterating it, and creating composite units (Steffe 
and Cobb, 1988). Moreover, the composition and decomposition of shape is related to 
the development of visual reasoning, an important ability in problem solving (Ferrari, 
1992). In geometry, there are research examples that focus on children’s ability to 
compose and decompose geometrical figures that lead to a hierarchical description of 
children’s strategies during this process (Clements, Sarama & Wilson, 2001).  
In our study, we consider these two processes as types of dynamic transformations of 
geometrical shapes. This frame allows us to see these two processes as interrelated, as 
one is the inverse function of the other, and consequently focus on their effect on 
children’s understanding of geometrical shape.

THEORETICAL FRAMEWORK 
A dynamic transformation of a geometrical shape is defined as the process in which 
the shape changes its form through the variation of some of its elements and the 
conservation of others. This seems to be related to the “concept of invariance” which 
promotes intuitive reasoning (Otte, 1997). Different types of dynamic transformations 
have been described in our previous work, where the transformation is concrete (eg. 
Markopoulos and Potari, 2000) or mental (Markopoulos and Potari, 2005). In these 
transformations the focus was on the dynamic manipulation of geometrical solids, a 
process where “the solid changes its form through the variation of some of its 
elements and the conservation of others” (Markopoulos & Potari, 2000). These 

Working Group 7

CERME 5 (2007) 1042



contexts supported children’s transition from physical to visual and finally to mental 
actions.
In this study, the process of decomposing a shape by cutting it and dividing it into 
two parts and the rearrangement and composition of these parts defines a 
transformation. The process of this transformation is a function where an initial shape 
corresponds to another one of the same area. An infinite number of transformations 
can be defined. For example, if the initial shape is an isosceles triangle and it is 
divided by the height into two equal right-angled triangles, then there is an infinite 
number of rearrangements that can be performed and an infinite number of potential 
shapes. The transformation involves three elements: an initial shape, the process of 
transformation and the produced shape. A number of tasks can be developed by 
varying which of those elements are given. For example, the initial shape and the 
produced can be given while the process has to be defined or the initial shape and the 
process can be given while examples of produced shapes are required. In this context, 
the composition and decomposition of shapes are interrelated as they are parts of the 
same transformation that provides students with the opportunity to experience a 
variety of forms realize the concept of geometrical shape, its properties and relations.
Duval (1995) distinguishes four hierarchical levels in the way that children look at a 
geometrical figure: perceptual, sequential, discursive and operative apprehension. 
Composing and decomposing a geometrical figure is characterized by Duval as the 
mereologic way of modifying a given figure. This operation constitutes a specific 
figural processing which provides figures with a heuristic function and is an 
expression of operative apprehension. To conceive figures dynamically with this 
heuristic function supports problem solving in geometry. However, to create such 
flexible images is not an automatic process and requires children’s involvement in 
situations which encourage such dynamic transformations of the figure. Examples of 
research in this area are the work of Clements, Sarama & Wilson (2001) and  Carter 
and Ferruci (2003). The first example offers a hypothetical learning trajectory 
consisting of six levels of thinking in the domain of composing geometric figures. 
The second example is a survey of paper cutting and folding in mathematics 
textbooks. In this study, we focus on the processes of cutting a shape and 
reassembling its parts to produce other shapes. In particular, we investigate children’s 
strategies during these two processes; the reasoning they developed while comparing 
the initial and the produced shapes and the emerged relations between the different 
elements of the transformation. 

METHODOLOGY
The participants 
The methodology adopted in this study is the clinical interview (Hunting, 1997). 
Twelve children participated in the main research process, six of the 4th grade and six 
of the 6th grade of a primary school in Patras. The choice of these twelve children was 
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based on their responses in written geometrical tasks. In this pre- test phase of the 
research, 31 children participated, 18 children of the 4th grade and 13 children of the 
6th grade. The children worked in pairs in a 30-minute session. Each pair was given 
two different figures (figure1 and figure 2) and asked to write a description of each 
figure which would be given to one of their classmates.  
The description should be as accurate as possible, so that 
their classmate could reconstruct each figure based only 
on their description. From the analysis of their responses, 
we identified three groups of children in each classroom 
according to the way they referred to the properties of 
each figure. The first group involved the children that saw 
the shapes on a holistic level. Children of the second 
group could identify some of the properties of the shape 
while the third group of children could relate the shape to 
its properties. For the main research we chose one pair of 
children of each of the three categories for each classroom. So, we formed a group of 
three pairs of children from the 4th grade and three pairs from the 6th grade 
accordingly.

Figure 1 

Figure 2 

The process
In the main research process children had to face six tasks involving the process of 
transformation. As we mentioned above the transformation involves three elements: 
the initial shape, the process of transformation and the produced shape. The six tasks 
varied in the form of the initial shape and the produced one as well as in the kind of 
appropriate cutting and assembling processes. Children were interviewed in pairs for 
about one hour.
The tasks 
Task 1: Children were given a rectangle and asked to cut it and reassemble the 
dissected parts in order to construct as many different shapes as possible. The 
children were asked to compare each of the produced shapes with the initial one. In 
this task only the initial shape was given. The mathematical concepts that are implicit 
in this task are the conservation of area and the concept of polygon. 
Task 2: The difference of this task from the previous was that the line section was 
given and it was the diagonal of the rectangle. Two elements of the transformation 
were given: the initial shape and the line section. The transformation is realised under 
certain conditions. Possible mathematical issues that can emerge from this task are 
the equality of the two dissecting areas, the conservation of the area, and the equality 
of the sides.
Task 3: In this task, the produced shape was given, a triangle, while the initial was 
again the rectangle. Children had to anticipate the result of the cutting – assembling 
process in order to construct the triangle. In particular, they had to construct a mental 
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image of the produced shape and mentally relate the cutting and the assembling 
process with the initial shape and the produced one. In terms of mathematics the 
children had to consider the conservation of area and the equality of sides and angles.
Task 4: This task is the same as task 1 but in this case the initial shape was an 
unfamiliar shape, a concave quadrilateral.  
Task 5: The difference of this task from task 4 was that the line section was given.
Task 6: In the last task children were given an isosceles triangle and its height as the 
line section. They were asked to imagine the assembling process and produce as 
many different shapes as they could. They had to draw the produced shapes and make 
comparisons between each of the produced shapes and the initial one. In this task 
children actually had to anticipate the effect of the transformation process and 
perform the whole process mentally. Here, the children had to consider the properties 
of the isosceles triangle and through the comparisons to consider certain relations 
between the properties of the two shapes. Moreover, they had to realise the difference 
between the equality of areas and the equality of shapes. 
Analysis of the data
The data consists of the six transcribed video recordings and written responses to the 
six tasks. Two levels of analysis were implemented. In the first one we tried to chart 
the strategies that children followed through the cutting and assembling processes as 
well as their strategies for comparing. In the second level we attempted to identify 
relations between the different elements of transformations that children built during 
the experiment. 

RESULTS
The process of transformation 
Cutting

Cutting 

Direction of the section line 

Nature of the dissected parts 
Equal 

Of the same shape as initial 

Horizontal 

Vertical

Diagonal 

Arbitrary 

Figure 3: The process of dissecting the initial shape 
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The cutting process that children followed throughout the tasks could be represented 
using the systemic network in figure 3. In particular, children’s strategies of cutting 
the initial shape varied in the direction of the section line and in the nature of the 
dissected parts. The direction of the line was horizontal, vertical, diagonal or 
arbitrary. By horizontal or vertical we mean the relation of the section line to the 
orientation of the initial shape. The diagonal direction of the section line was the 
diagonal of the rectangle. Most children tended to cut the initial shape in order to 
keep its symmetry.  
Assembling
Children’s strategies while assembling the dissected parts could be characterized by 
the process and/or the produced shape (Figure 4). In particular, the process of 
assembling was either mental or concrete and could be characterized either as 
experimental and/or as a process that involved the anticipation of a certain produced 
shape.

Process

Produced shape 

Assembling 

Mental

Concrete

Anticipating a 
certain shape

Experimental 

Pattern making

Picture making 

Dynamic manipulation

Free

Sliding 

Rotating 

Flipping 

Type

Number 

Concave

Familiar
Prototypical

Non prototypical

The same as the initial 

Other shape 

A limited number 
of shapes (up to 3)

A large number of 
shapes

An “infinite” 
number of shapes 

Figure 4: The process of assembling the produced shape 

The experimental process of reassembling the dissected part could be characterized as 
pattern making, picture making, dynamic manipulation or free exploration. By pattern 
making we mean the re-composition of the two parts by rearranging its position in a 
rather systematic way. The picture making experimental process of reassembling the 
two parts referred to the children’s tendency to look for familiar shapes that formed 
unintentionally. The dynamic manipulation involved children’s strategies of re-
composition by sliding, flipping or rotating the two parts. Finally, the free exploration 
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process of assembling referred to those children’s strategies that seemed to be 
arbitrary.
The shape that was produced through the assembling process was either a concave or 
a familiar one. Children tended to construct familiar shapes with a prototypical form. 
This prototypical form was either the same as the initial shape or a different one 
which was known to the children. In most cases these shapes were either rectangles 
or triangles. Finally, children’s reassembling strategies varied in terms of the number 
of the produced shapes. There seems to be a relation between the number of the 
produced shapes and the process of assembling that had been used. Children who 
used an experimental pattern making process of re-composing the dissected parts, 
produced a large number of shapes, while two children that manipulated the two parts 
dynamically, referred to the possibility of producing an “infinite” number of shapes.  
Comparing
Children’s comparison strategies varied according to the objects of the comparison 
and the criteria by which the comparison was made. Some children could not make 
any comparisons. Others were limited to comparisons between the dissected parts. 
Those children could not see the composition of two parts into a whole shape. Some 
others compared the dissected parts with the initial shape. Most children in the last 
two categories compared the shapes in terms of their form. The children who referred 
to the properties of the shapes were those that compared the initial shape with the 
produced one. Finally, some of them based their reasoning on the process of 
transformation (cutting – assembling).  

Figure 5: The comparing strategies

Form 

Properties 

Transformation 
Assembling 

Cutting 

No comparisons 

The dissected parts with the initial 

The initial with the produced 

The dissected parts 

What 

Comparing 

In terms of what 

Relations within the transformation 
From children’s work through the tasks, certain relations among the elements of the 
transformation emerged. Figure 6 shows possible relationships that can exist between 
these elements. As the arrows illustrate, these relationships can be of one direction or 
of the inverse. For example, the arrow from the initial shape to the process of cutting 
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shows that the children cut the initial shape physically or mentally. The inverse 
denotes that the children consider the part – whole relationship as they realize that the 
two dissected parts form the initial shape.  Children’s flexibility in building complex 
relations among the elements of the transformation as well as their ability to justify 
these relations adequately indicate children’s geometrical understanding. We present 
below three types of relations that children built during the teaching experiment. 

Initial shape Cutting Assembling Produced shape 

Figure 6: The possible relations in the process of transformation

Building oneway relations
The children “moved” along the transformation from left to right without reflecting 
on previous steps. In particular, they cut the initial shape by drawing a section or 
following a given. Then they reassembled the dissected parts experimentally and 
produced pictures of different shapes. They tended to produce concave shapes but 
also prototypical ones. They did not conceive of any relation between the initial and 
the produced shapes. When the initial and the produced shapes were given, the 
process of transformation (cutting and reassembling) could not be realized. The above 
actions could be performed only in a concrete context. All the children managed to 
follow this linear path. A typical case is Stavros (fourth grade) who seemed to 
consider geometrical shapes at a holistic level.  Stavros cut the rectangle horizontally 
dividing it into two almost equal rectangles (Figure 7a). He rearranged the two 
pieces, placed them side by side and made a different rectangle (Figure 7b). While the 
researcher asked him to compare the produced shape with the initial, he referred to 
the dissected parts and named them “rectangles”. In his attempts to make other shapes 
he formed a concave shape (Figure 7c) and he recognized it as a picture: “It is the 
letter T”. Again when he was asked to make comparisons he only referred to the two 
parts “The top one is fatter that the lower one”. The only way that he brought the 
initial shape into the discussion was by trying to identify its image as a part of the 
produced one. In task 3, where he was asked to cut a rectangle to make a triangle, he 
could not make any cut. He believed that he could form a triangle only if he drew two 
line sections. To face the above task he had to build a relation between the produced 
and the initial shapes by considering the cutting and assembling processes 
simultaneously and anticipating the effect of these processes. In the last task, he was 
also unable to perform the process of transformation mentally. 
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Figure 7a Figure 7b Figure 7c 

Building relations by reflecting on the process of transformation
In this case, the children moved along the transformation but could also reflect on the 
previous steps. They seemed to be aware of the effect of the transformation on the 
initial shape. In particular, they saw relations between the initial and the produced 
shape by considering both the cutting and the assembling processes. While 
comparing the initial and the produced shape they used the inverse transformation 
process to justify their claims. They could perform the above actions in both a 
concrete and imaginary context. Four children managed to build these kinds of 
relations (two of the 6th grade and two of the 4th grade).
An interesting example is the case of Nikos (fourth grade) 
who could recognize properties of the geometrical shapes. 
Nikos cut the rectangle diagonally (figure 8a) and 
produced convex and concave shapes. He used both 
geometrical terms and similes to name these shapes: “it 
makes a rhombus” (figure 8b), “it looks like a bird, an 
airplane, an arrow” (figure 8c). While he compared the 
produced shapes with the initial one, he blended intuitive 
and formal knowledge by both referring to shapes’ 
geometrical attributes (number of angles, dimensions) and 
its perceptual features like “it seems bigger, it is also 
longer”. He not only compared the two geometrical shapes 
as different entities, but he also reflected on the 
transformation process to indicate the conservation of 
areas of the shapes. By referring to figure 8a he 
reconstructed the initial shape (rectangle) and he suggested 
that “the shape (figure 8a) is different because it is a 
different shape but when we join these parts together it will be the same as the 
initial”. His ability to reflect on the transformation process was also indicated in task 
3 where he could cut and assemble the dissected parts by anticipating the result of his 
actions. In the last task, he acted at a mental level and produced a number of different 
shapes.

Figure 8a 

Figure 8b 

Figure 8c 

Building intermediate relations 
The above two relations indicate different levels of awareness of the process of 
transformation. In the first relation the children implemented the transformation but 
without being aware of its role in the relation between the initial and the produced 

Working Group 7

CERME 5 (2007) 1049



shapes. In the second, the children could reflect on the process and were aware of its 
effect. However, most children moved between these two extremes.
For example, Christos (sixth grade), who could identify some geometrical properties, 
produced a large number of different shapes and discovered a dynamic way (figure 9) 
of assembling the parts to form these shapes. He 
said that he could make “thousands of shapes” and 
he rotated and slid the dissected pieces to produce 
both concave and convex shapes. In his 
comparisons, he reflected on the cutting and 
assembling processes and related the initial shape 
to the two dissected parts: “the two parts are 
similar to the initial shape because they can make it (the initial,)”, “one part stayed 
the same and I placed the other in another place”. However, he could not see the 
produced shape as an independent entity. In task 3 he did not anticipate the result of 
the cutting- assembling process but rather he acted intuitively. He drew the diagonal 
and then he applied the transformation mentally to check if he could get a triangle.

Figure 9 

Another case which can be characterized as an example of intermediate relations is 
Fay’s (sixth grade) contributions. Fay used the transformation as a tool to produce 
only convex shapes but there was no reference during her work to the process of 
transformation. She could see the initial and the produced shapes as different 
geometrical entities and she compared them in terms of their angles and sides. 
However, her knowledge remained at a typical level and in the case of the concave 
initial shape (task 4) she could not produce any shape. 

CONCLUDING REMARKS 
Children developed different strategies in their attempts to face the designed tasks. In 
the cutting process, children tended to keep the symmetry. The process of assembling 
was mental or concrete, experimental or intentional. Pattern making, picture making, 
dynamic manipulation or free exploration were some strategies that produced a large 
number of different shapes. These strategies of recomposition of the shape seem to be 
related to the development of children’s mathematical actions-on-geometrical objects 
proposed by Clements, Sarama & Wilson (2001). Certain conceptions of geometrical 
shape also emerged, including prototypical examples, geometrical objects and real 
life pictures. In terms of the comparison between the initial shape and the produced 
one, children’s strategies were either independent or related to the transformation 
process. In cases where the children reflected on the cutting – assembling processes, 
they seemed to have as the basis for their comparisons the shapes’ properties.
Considering the role of transformation on understanding the concept of geometrical
shape, the children built certain relations. Some moved “along” the transformation 
and performed the various tasks at a concrete and experimental level. In this case 
their understanding was limited to the recognition of the form of the shapes. Those 
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who could reflect on the process of transformation and build relations among its 
elements acted rather in an intentional way, considering the shapes as geometrical 
objects and comparing them in terms of their properties.  
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The study explores different aspects of students’ abilities in problem solving 
concerning area and volume and their interrelation across two grades. Students in 
grades 9 and 10 were given a test involving three types of problems: usual 
computation problems, pseudo-proportional problems and unusual ones. The results 
suggest that the type of reasoning involved in the tasks has an effect on students’ 
problem solving processes. This effect, though, varies across grades. For the younger 
students the pseudo-proportional problems were of a similar nature as the usual 
problems. Older students approached the pseudo-proportional problems differently 
from the usual ones, indicating a weaker impact of the linear model on their 
reasoning compared to younger students’ thinking.

INTRODUCTION

Geometry has always been a privileged domain of research among psychologists and 
researchers of Mathematics Education. The continual interaction between theory and 
space and between text and figure gives to geometry learning a distinctive character. 
A topic of particular interest in geometry is measurement of length (Nuhrenborger, 
2001) and area (Frade, 2005). Students’ abilities in problem solving concerning the 
concepts of length, area and volume have been studied extensively in the recent years 
(De Bock, Verschaffel & Janssens, 1998; Modestou & Gagatsis, 2007, 2006) under 
the perspective of the phenomenon of the illusion of linearity (pseudo-
proportionality). This phenomenon refers to students’ tendency to apply the linear 
model in non-proportional situations of area and volume, which involve an 
enlargement or reduction of the figure’s size in relation to its side length. The 
objective of the present paper is to illuminate this phenomenon by articulating a 
structural model related to geometry problem solving and more specifically to the 
abilities involved in solving area and volume problems. A main concern is also to 
compare the structure of the aforementioned model between students in 9th grade and 
in 10th grade. The two grades examined were deliberately chosen based on the fact 
that grade 9 and grade 10 belong to two different educational levels in Cyprus with 
different approaches in the teaching of geometry. In particular, in grade 10 the 
Euclidean geometry is taught in a more systematic manner as a continuation and 
extension of the teaching of the particular topic in grade 9.   
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THEORETICAL CONSIDERATIONS
Linear relations constitute the easiest way for getting access to the world of functions. 
Therefore, they have been given a special attention and status, starting from the early 
years of age.  Linear or proportional relations refer to the function of the form f(x) = 
ax (with a�0) and are represented graphically by a straight line passing through the 
origin (De Bock, Van Dooren, Janssens, & Verschaffel, 2002). The basic linguistic 
structure for problems involving proportionality includes four quantities (a, b, c, d), 
of which, in most cases, three are known and one unknown, and an implication that 
the same multiplicative relationship that links a with b, links c with d. Consider for 
example the following problem case: “A pianist needs 5 minutes to perform 2 
musical themes. How much time does he need to execute 3 themes of the same 
duration as the first ones?” In this case a true proportionality exists as the relationship 
between the terms is a fixed ratio.  
However, there are cases where problems match this general linguistic structure 
without being proportional ones. In these cases the problems are considered “pseudo-
proportional”, because of the strong impression they create for the application of the 
linear model.  For example, in the case of the constant problem: “A pianist needs 5 
minutes to execute a musical theme. How much time do 3 pianists need to execute the 
same theme in the same orchestra?”,  students spontaneously answer that the pianists 
need 15 minutes, falling in this way to the pseudo-proportionality trap; that is they do 
not consider the fact that the 3 piano players perform the theme simultaneously. 
Therefore, if a problem matches the general linguistic structure of proportionality, the 
tendency to evoke direct proportionality can be extremely strong even if it does not 
befit these problems (Verschaffel, Greer & De Corte, 2000).   
Freudenthal (1983) focuses on the appropriateness of the linear relation as a 
phenomenal tool of description and indicates that there are cases in which this 
primitive phenomenology fails. One of these cases, which is the focus of the present 
study, is the case of the non-linear behaviour of area and volume under linear 
enlargement or reduction. Students’ former real life practices with enlarging and 
reducing operations do not necessarily make them aware of the different growth rates 
of lengths, areas and volumes (De Bock et al., 2002). Students in fact fail to see the 
non-linear character of the increase and handle the relations between length and area 
or between length and volume as linear instead of quadratic and cubic (Modestou & 
Gagatsis, 2007). Consequently, they apply the linear scale factor instead of its square 
or cube to determine the area or volume of an enlarged or reduced figure.  
In recent years, researchers (De Bock et al., 1998, 2002; Modestou & Gagatsis, 2007) 
have examined students’ tendency to deal linearly with non-proportional tasks, and 
have suggested ways of overcoming it.  In particular, De Bock et al. (1998, 2002) 
showed an alarmingly strong tendency among 12-16 year old students to apply 
proportional reasoning to problem situations concerning areas, for which it is not 
suited. Furthermore, the use of a number of different experimental scaffoldings did 
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not yield the expected results. The inclusion of visual support at the non-proportional 
problems, like self-made or given drawings, did not have a beneficial effect on 
students’ performance, as students most often relied on formal strategies such as 
using formulas (De Bock et al., 1998).  Students in some cases even discarded the 
results given from well-used formulas for finding the area and volume of a figure, in 
favour of the application of the linear model (Modestou & Gagatsis, 2007). In some 
cases where the improvement of students’ success rates at the non-proportional tasks 
was achieved, drawbacks at the proportional tasks were observed as students started 
to apply non proportional methods at these tasks (De Bock et al., 2002).  
The actual processes and the mechanisms used by students while solving non-
proportional problems were unravelled by means of interviews (De Bock et al., 2002; 
Van Dooren, De Bock, Janssens & Verschafel, in press). It appears that explanatory 
elements of the phenomenon of the "illusion of linearity" (i.e., an explicit belief in a 
linear relation between lengths, areas and volumes of similarly enlarged figures) can 
also be found in the intuitive and heuristic nature of the linear model, shortcomings in 
geometrical knowledge and inadequate habits and beliefs about solving word 
problems. Linearity appears to be deeply rooted in students’ intuitive knowledge and 
is used in a spontaneous way, which makes the linear approach quite natural, 
unquestionable, and to certain extents inaccessible to introspection (De Bock et al., 
2002).  
The originality of our study lies in fact in the structural model that we develop in an 
attempt to give insight into different aspects of problem solving abilities on area and 
volume and their interrelations for each of the two age groups of students: 14 and 15 
years of age. The present study intends also to investigate the variance of students’ 
problem solving abilities in geometry and their structure across grades: 9th grade and 
10th grade.  
METHOD
The sample of this study consisted of 653 students of grade 9 and 10 (14 and 15 year 
olds) of 13 different gymnasiums and 10 lyceums in Cyprus. In particular, 348 
students attended the 9th grade and 305 students the 10th grade. These two grades 
were chosen as suitable for the study as the test consisted of tasks of geometrical 
nature that required the use of mathematical formulas for their solution. Therefore, 14 
and 15-year old students could more easily handle such tasks. 
The students were administered a 40 minutes test that consisted of 9 geometrical 
word problems concerning the perimeter, area and volume of different figures, 
offered in groups of three. Each group of problems was accompanied by a given 
number. Students were first asked to solve all of the three problems of each group and 
then to choose the problem that was appropriate for the given number, i.e. the one 
problem that had the same solution as the number given at the beginning of each 
group of word problems. Each group of problems consisted of the usual problem 
which was Appropriate for the given number (�1, �2 & �3), of one Pseudo-
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proportional problem, where the application of the linear model would give the given 
number as an answer (Pa1, Pa2, Pv3), and one “Unusual” problem (Un1, Un3), which 
had many solutions. Any sensible solution for the unusual problems could not result 
to the given number, whereas any attempt to solve them, using only the syntax of the 
problem ignoring semantic implications, would give the given number as an answer. 
The responses that were considered as appropriate for the unusual problems were the 
ones that involved explicitly the realization that they did not have only one answer or 
even that they could not be solved. The first group’s problems are given in Table 1. 
The other two groups were formed accordingly.  
As an exception to the formulation of the groups, a perimeter pseudo-proportional 
problem (Pl2) was included in the place of the unusual problem, in the second group 
of problems. The particular problem was as follows: “Consider two equal semicircles. 
The perimeter of each semicircle is 9� cm. If the two semicircles are joined together 
in such way that they form a circle, find the perimeter of the circle”.  On one hand the 
geometric nature of this problem yields the application of the linear process. On the 
other hand, the fact that the problem incorporates the configuration of the two 
semicircles makes it similar to the structure of one of the unusual problems in the test 
(see Problem C in Table 1 - Un1).   

Table 1: Example of the problem formulation in the first group of problems

50 

A. 
Mr. Ben emptied all the water of an open cubic tank, in order to paint it. If he 
needs 10L of paint to paint the bottom of the tank, how much paint will he 
need for the entire tank?                                      (Appropriate-Usual - A1) 

B. 
George measured the surface of his classroom floor and found that its area is 
25m².  The gym’s floor has double the dimensions of the classroom. What is 
the area of the gym’s floor?                                 (Pseudo-proportional - Pa1)   

C. 

A classroom has two rectangular blackboards joint together with a common 
width. The first blackboard’s perimeter is 30m and the second one’s 20m. 
How many meters of ribbon are needed in order to frame both blackboards 
together?                                                                            (Unusual - Un1) 

The particular structure of the test is justified by the fact that this study is a part of a 
larger research project, which aimed not only at exploring and comparing students’ 
performance in the three problem categories, but also at making students question the 
spontaneous and uncritical application of linearity (Modestou & Gagatsis, 2006). 
However, the focus of this study is not to investigate students’ choices of the 
problems that corresponded to the given number, but to examine and compare their 
problem solving abilities in the three different types of tasks and their problem 
solving reasoning behaviour across grades.   

Working Group 7

CERME 5 (2007) 1055



  
RESULTS
A 2 (the two age groups) X 3 (appropriate-usual vs pseudo-proportional vs unusual 
problems) multivariate analysis of variance (MANOVA) was performed to specify 
the possible influence of the task variable, that is the type of the problems and the 
subjects’ variable, that is age, on problem solving.  
The effect of age F(1,651)=3.121, p=.078, �2 =0.005 was not significant, indicating that 
mean performances of the two age groups were not significantly different. The main 
effect of the type of tasks was very strong F(2,650)= 1086.906,  p<0.0005, �2 =0.770. 
Mean scores in the three types of tasks by the students of the two grade levels are 
shown in Table 2. Decomposing this effect by means of a univariate analysis revealed 
that the appropriate-usual problems were significantly easier than the pseudo-
proportional problems, which in turn were easier than the unusual problems. The 
relative difficulty of the three types of tasks applied in both age groups, as no 
interaction between age and type of task appeared F(2,650)= .924,  p=.397, �2 = .003.  

 Whole sample Grade 9  Grade 10 

Type of tasks Mean SD Mean SD Mean SD 

Usual 1.859 .952 1.793 .944 1.934 .957 

Pseudo-
proportional 

1.155 1.081 1.118 1.069 1.197 1.095 

Unusual .107 .447 .089 .403 .128 .493 

Table 2: Mean scores and standard deviations in each type of tasks for the whole 
sample and by grade 

Confirmatory Factor Analysis (CFA), has been employed to explore the structural 
organization of the various dimensions of geometrical problem solving, examined 
here, in each age group. Bentler’s (1995) EQS program was used for the analysis. 
The tenability of a model can be determined by using the following measures of 
goodness-of-fit: X2/df, CFI (Comparative Fit Index), RMSEA (Root Mean Square 
Error of Approximation) and SRMR (Standardized Root Mean Square Residual) 
(Bentler, 1995). The following values of the three indices are needed to hold true for 
supporting an adequate fit of the model: The observed values for X2/df should be less 
than 2, the values for CFI should be higher than .9, the values of RMSEA need to be 
lower than .06 and the values of SRMR should be lower than .10. 
The a priori model hypothesized that the variables of the test would be explained by 
two main first-order factors. In particular, we assumed that one of the first-order 
factors would be measured by the usual tasks involving calculations of area, 
perimeter and volume, i.e. A1, A2 and A3, as well as by the pseudo-proportional 
tasks, i.e. Pa1, Pa2, Pv3 and Pl2. The formulation of the assumption for the first 
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factor was based on well documented research findings suggesting students’ strong 
tendency to use similar processes in solving usual and non-proportional tasks, such as 
employing the linear model and formal strategies (e.g. using formulas) (De Bock et 
al., 1998, 2002; Modestou & Gagatsis, 2007). Concerning the other factor we 
assumed that it would correspond to the scores of the unusual problems, i.e. Un1 and 
Un3, as they seem to have a different geometric character from the other problems.  
However, the fit of this model was poor in both grades [Grade 9: X2 (14) =45.685; 
CFI=.908; RMSEA=.081, SRMR=.174; Grade 10: X2 (15) =38.317; CFI=.956; 
RMSEA=.071, SRMR=.127]. In particular, due to problem’s Pl2 difference from the 
other pseudo-proportional problems as regards the solution process it required, its 
increased difficulty level and the resemblance of its context with the context of an 
unusual problem, the model was modified. In particular, the solution of this problem 
depended on the understanding of the configuration of two figures and on the 
processing of the rather complex algebraic relations that emerge. As a result, students 
may have treated it as an unusual problem. Therefore, the observed variable Pl2 was 
removed from the first factor and was added to the second factor’s indicators. The fit 
of the model (see Figure 1) was good [X2 (14) =15.985; CFI=.997; RMSEA=.014; 
SRMR=.085] in the group of the 9th grade students. This was not, however, the case 
in the group of the older students [X2 (15) =38.510; CFI=.956; RMSEA=.072; 
SRMR=.115].   
 
 
 
 
 
 

Figure 1: The model for the two aspects of problem solving ability in geometry in 
grade 9 [1],[2],[3] 

Exploratory factor analysis in the group of 10th graders showed that two factors are 
also needed to explain the intercorrelations of the nine observed variables [X2 (12) 
=11.9, p=.45]. However, the problems used to measure each of the factors in the 
group of 10th grade students were different from the ones in the group of 9th grade 
students, indicating that the ways of understanding and solving the problems differed 
between the two grade levels. According to the outcomes of the exploratory factor 
analysis, a CFA model of a different structure was tested in the group of the older 
students. The model (see Figure 2) involved two first-order factors, the first one of 
which was measured by the usual tasks as well as the unusual problems. The second 
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factor was comprised by the pseudo-proportional tasks. The fit of the model was 
good [X2 (15) =15.985; CFI=.998; RMSEA=.015; SRMR=.085]. 
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Figure 2: The model for the two aspects of problem solving ability in geometry in 
grade 10 [1], [4], [5]

The results of the CFA in both groups indicate that the one-level architecture captures 
accurately the data. The models in both groups involve two first-order factors that 
although different in each age group, they are intercorrelated. This suggests that the 
type of reasoning that the different type of tasks require, does have an effect on 
students’ problem solving performance; an effect that varies across the two age 
groups. The significant correlation of the two latent factors in both groups however, 
can be seen as an indication that the two dimensions of the variables investigated 
here, although distinct, are interconnected and may contribute to the overall problem 
solving ability in geometry.   
DISCUSSION
The majority of the researchers that have worked on students’ reasoning in problem 
solving concerning area and volume and specifically on the tendency to deal linearly 
with non-proportional tasks agree that the obstacle of linearity is very difficult to 
overcome by the students (De Bock et al., 2002; Modestou & Gagatsis, 2006). Other 
studies showed that there are not any differences in students’ solutions of these 
problems across different grades (Modestou & Gagatsis, 2007). However, the 
findings of this study illustrate that despite the invariance of the students’ mean 
performance in problem solving with respect to grade level, the structure of a model 
involving problem solving of pseudo-proportional tasks in combination with problem 
solving of unusual and typical tasks on area and volume does show variance between 
grade 9 and 10. Students of the two different grades responded to the given set of 
tasks in a manner that resulted in different dimensions of geometrical problem 
solving. This provides support for the idea that instruction and maturity may have a 
role in developing the understanding of spatial-organized quantities and in problem 
solving that requires different types of reasoning.  
The tendency of the 9th grade students to apply the proportional model was strong 
and for these students the pseudo-proportional problems were almost of the same 
nature as the usual geometrical problems. For this reason the three usual problems 
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and the three pseudo-proportional ones constituted one factor. On the other hand, the 
present study indicates that students of 15 years of age started to differentiate their 
ways of interpreting and understanding this kind of problems. They appeared to 
approach the pseudo-proportional problems by activating different processes from the 
ones they used in usual problems. This change may be due to 10th grade’s 
mathematics curriculum which, unlike 9th grade curriculum, gives special attention to 
inductive reasoning, on one hand, and to definitions and theorems, on the other hand. 
Inductive reasoning is directly associated with analogical reasoning (NCTM, 2000) 
and consequently can help students realize the structural similarity between situations 
and not focus on perceptual similarities (Gonswami, 1992). Moreover, the definitions 
and theorems of Euclidean geometry that are emphasized in grade 10 may have 
helped students to better conceptualize the situation described in the problems.   
Therefore, 10th grade students may have confronted the non-proportional problems in 
a less superficial way relatively to the younger students, indicating the weaker impact 
of the linear model on their reasoning. In other words, they started to question to 
some degree the deep-rooted linear model’s applicability in all the types of geometry 
problems. However, further qualitative research is needed to substantiate this 
inference. Interviewing students of the same mathematical ability level across the two 
grades while solving non-proportional problems may unravel the actual processes and 
the mechanisms used by them and allow their in-depth and more analytic comparison.  
The unusual problems were also handled differently across the two grades. Students 
of grade 9 dealt with these problems differently from the other two types of problems, 
as they formed a distinct factor. However, the abilities of 10th grade students to 
tackle the unusual problems and to resolve the usual tasks established a common 
factor.  A hypothetical explanation for this finding is that older students were more 
familiar with the structure of the unusual problems, because of their more systematic 
involvement with problems of Euclidean geometry.  
The above results suggest that the type of reasoning that the particular geometrical 
tasks require does have an effect on students’ problem solving processes. Despite the 
significant variation of these effects across the two age groups, certain commonalities 
appeared in the models of the groups, revealing that some aspects of their ways of 
thinking in problem solving remained invariant with development. A particular 
problem, although pseudo-proportional and solvable (Pl2), was confronted as an 
unusual one by the students of the two age groups, as in both models it belonged to 
the same factor as the unusual problems. The similarity of its context and its syntax 
with the unusual problems and the quite advanced algebraic reasoning that it involved 
made students treat it like the “unusual” problems.  
Another common feature in the models of the two groups concerns the lower factor 
loadings of the solutions of usual computation tasks relatively to the approaches in 
dealing with the pseudo-proportional problems and with the unusual ones. The 
different nature and reasoning requirements of the typical tasks compared to the other 
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two types of tasks may provide an explanation for this difference.  Even though good 
geometrical knowledge and competence in employing formal strategies such as using 
formulas met the requirements of the usual computation tasks, they were not 
sufficient for the solution of the pseudo-proportional or the unusual problems. 
Solving the pseudo-proportional problems required students’ overcoming of the 
illusion of linearity, while tackling the unusual problems required students’ sensible 
and realistic considerations for the interpretation of the situations involved, 
understanding of the semantic implications of the problems and breach of inadequate 
habits and beliefs about solving word problems, such as that they are obliged to 
provide only one answer to all the problems given to them.  
The research directed towards finding ways to develop students’ flexibility in dealing 
with geometrical problems of different reasoning requirements should continue so as 
to provide explanations for the variation of the structure of students’ problem solving 
abilities across grades and to determine those factors concerning the students 
themselves, i.e. intuitive ideas, level of geometrical knowledge, habits and beliefs 
towards solving word problems, students’ experiences in the mathematics 
classrooms, that may interact with age in the development of these abilities. The 
results of such attempts may help teachers at the high school levels to place emphasis 
on certain dimensions of geometrical problem solving and use more appropriate 
approaches to teaching them. By these means students can be assisted in constructing 
a solid and deep understanding of length, area and volume and their different growth 
rates, in interpreting different types of problems on these notions appropriately and in 
employing the solution processes that correspond to their reasoning requirements 
adequately and flexibly.    
NOTES
1. A1, A2, A3, Pa1, Pa2, Pv3, Un1, Un3 and Pl2 stand for the observed variables corresponding to students’   
performance to the tasks 

2. “UPpAb” stands for the ability to solve Usual problems and Pseudo-proportional problems in geometry   

3. “UnAb” stands for the ability to solve Unusual problems in geometry 

4. “UUnAb” stands for the ability to solve Usual problems and Unusual problems in geometry   

5. “PpAb” stands for the ability to solve Pseudo-proportional problems in geometry 
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The aim of this paper was to investigate how different subcomponents of spatial 
ability are related to the performance of primary (grades 4 and 6) and secondary 
school students (grade 8) on geometry tasks involving 2D figures, 3D figures or nets 
of geometrical solids. The results suggest that image manipulation, mental rotation 
and coordination of perspectives are predicting factors of students’ geometry 
performance. The similarity analysis reveals that, while students of all three age 
groups generally confronted spatial abilities tasks and geometry tasks involving 2D 
and 3D figures in a different way, the older students realize that the same cognitive 
processes underlie image manipulation tasks and mental rotation tasks on one hand, 
and manipulating net-representations of 3D geometrical figures on the other hand. 

INTRODUCTION
Geometry and spatial reasoning are important as a way to interpret and reflect on the 
physical environment. As Bishop (1983) has noted, geometry is the mathematics of 
space. Mathematics educators, therefore, are concerned with helping pupils gain 
knowledge and skills in the mathematical interpretations of space.  
The research in geometry and spatial thinking has evolved from studies in 
psychology, when in the 1970s some researchers were interested in the relationship 
of spatial abilities to mathematical learning and problem solving (Owens & Outhred, 
2006). Research on spatial ability as a single component has indicated that it has a 
strong connection with achievement in mathematics (Clements and Battista, 1992). 
However, it is not clear how certain subcomponents of spatial ability are related to 
students’ geometry performance. Additionally, no pieces of research investigated 
whether students confront spatial ability tasks and geometry tasks in a similar or in a 
different way. This is what this study aims to do. 

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS 
Spatial Abilities 
Generally speaking, the concept of spatial ability is used for the abilities related to the 
use of space. Psychologists as well as mathematics educators have contributed to the 
discussion of how spatial ability may be understood. But, as Wheatley (1998) has 
noted, the way the term spatial ability (and other related terms) have been defined and 
the instruments used to collect data are nearly as varied as the number of studies 
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using this term. For example, spatial ability may be defined as “the ability to 
generate, retain, retrieve and transform well-structured visual images” (Lohman, 
1996). Despite the fact that there is no agreement on the definition of the concept, 
researchers agree that spatial ability is not a unitary construct. Different components 
of “spatial ability” have been identified, each emphasizing different aspects of the 
process of image generation, storage, retrieval, and transformation. The three major 
dimensions of spatial ability that are commonly addressed are spatial visualization, 
spatial orientation and spatial relations. In the present study we follow Demetriou and 
Kyriakides (2006) suggesting three components related to the spatial-imaginal 
specialized structural system of the human mind: image manipulation, mental rotation 
and coordination of perspectives.
Geometry and Spatial Abilities 
When mathematics educators consider geometry from a theoretical perspective, the 
key role of spatial abilities is universally accepted, even though spatial knowledge is 
not thought of as a synonym for geometric knowledge (Gorgorió, 1998). The 
development and improvement of spatial ability is regarded to be one of the basic 
aims of geometry in elementary school. On the other hand, for many mathematics 
educators, spatial ability is regarded an important prerequisite for geometry problem 
solving in particular, and by some researchers even for mathematics learning in 
general. High levels of spatial abilities have frequently been linked to high 
performance in mathematics in general, or especially in geometry. For instance, 
Battista (1990) indicated in his study that spatial visualization is an important factor 
in geometry learning, while Tartre (1990) suggested that spatial orientation skill is 
related with mathematical problem solving behaviour. In more recent studies spatial 
ability and declarative knowledge of geometric concepts were reported among the 
variables which correlated with scores on geometry questions (Reiss, 1999). 
However, it would be interesting to examine the relation of different subcomponents 
of spatial ability and different aspects of geometry performance, as this is related to 
the different dimensions of the geometrical figures involved in geometry tasks. 
The present study 
This paper is based upon a larger research project which investigates the transition 
from elementary to secondary school geometry in Cyprus, gathering data concerning 
students’ performance in tasks involving 2D shapes, 3D shapes and nets of 
geometrical solids, as well as the students’ spatial abilities. The aim of the present 
paper was to investigate whether and to what extent primary and secondary school 
students’ spatial abilities are related to their performance on geometry tasks involving 
2D figures, 3D figures, or nets of solids. The research questions are: 

� Which spatial ability subcomponents are more likely to predict students’ 
performance in tasks involving geometrical figures? 
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� How is the level of students’ spatial ability related to their performance in 
geometry tasks? 

� Do the primary and secondary school students confront spatial ability tasks and 
geometry items involving (a) two-dimensional figures, (b) three-dimensional 
figures and (c) nets in a similar or in a different way? 

� Which implicative relations, if any, exist amongst spatial ability tasks and 
geometry tasks? 

So, in this study we investigate the relation between students’ spatial abilities and 
their geometry performance, trying to extend the research on geometry and spatial 
thinking in three ways: First, we accept that spatial ability is not a unitary construct 
and we examine the role of distinct spatial abilities (image manipulation, mental 
rotation, and coordination of perspectives) on geometry performance. Second, we 
investigate the role of spatial abilities on geometry performance that is differentiated 
based on the geometrical figures involved in the geometry tasks (2D figures, 3D 
figures and nets of geometrical solids). Third, we make a further step towards the 
relation of spatial abilities and geometry performance trying to gather information on 
the tasks’ level, investigating the existence of similarity and implicative relations 
amongst spatial ability tasks and different geometry tasks. 

METHOD
Participants
The participants were 1000 primary and secondary school students (488 males and 
512 females). Specifically, 332 were 4th graders (10 years old), 333 were 6th graders 
(12 years old) and 335 were 8th graders (14 years old). 
Material and Procedure 
Data were collected through a written test which was administered to all students of 
the three age groups and consisted of spatial ability tasks and geometry items. The 
test was administered in two parts during normal teaching, either by the first author 
or by  students in Mathematics Education at the University of Cyprus, who followed 
specific instructions concerning the test administration. The first part of the test was 
administered to all schools in the same week, while the second part of the test was 
administered one week later. 
The geometry tasks presented to the students were chosen taking into consideration 
the geometry curriculum (part of the mathematics curriculum) in Cyprus and the 
geometry tasks presented in mathematics books at the primary education level. The 
geometry test consisted of tasks involving 2D geometric figures, 3D figures and nets 
of geometrical solids. It mainly included recognition items where students had to 
identify different representations of geometrical shapes (a) in simple geometrical 
figures and (b) in complicated geometrical figures, problem solving tasks which 
involved the use of geometrical reasoning to be solved and some multiple choice 
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questions examining declarative knowledge of geometric concepts. Examples of the 
geometry items used can be found in the Appendix. The spatial ability battery test 
administered consisted of tasks used by Demetriou and his associates in their studies 
of mind (for full description of the tasks, see Demetriou & Kyriakides, 2006). It 
included five tasks addressed to image manipulation (paper folding task), mental 
rotation (cubes task and clock task), and coordination of perspectives (tilted bottle 
task and car task). Each item involved was scored on a pass (1) / fail (0) basis. The 
total task score equaled the number of items passed by the participant. 
Statistical Analyses 
With the use of the Extended Logistic Model of Rasch (Rasch, 1980), an interval 
scale presenting both item difficulties and students’ performance was created (a) for 
the geometry test and (b) for the spatial abilities test. The analysis of data revealed 
that the two batteries of tests had satisfactory psychometric properties, namely 
construct validity and reliability.
For the analysis and processing of the data collected the statistical package of SPSS 
was used, as well as Gras’s similarity and implicative statistical analysis by using the 
computer software CHIC (Classification Hiérarchique Implicative et Cohésitive) 
(Bodin, Couturier, & Gras, 2000).

RESULTS
The main findings of this study are presented in three sections. The first one refers to 
the results of regression analyses using students’ geometry performance as the 
dependent variable. In the second section we present the results of crosstabs analyses 
examining how the level of students’ spatial ability is related to their geometry 
performance and vice versa, while the third section elaborates on the similarity and 
implicative statistical analysis conducted based on students’ performance in spatial 
ability and geometry tasks. 
Regression Analyses Results 
Regarding the prediction of performance in geometry tasks including geometrical 
figures, Stepwise Regression analysis was first performed for the entire sample. The 
results indicated that the statistically significant predictive factors are, in order of 
significance: students’ performance in the spatial abilities test (Beta=0.449, t=15.660, 
p<0.01) and students’ age (Beta=0.191, t=6.676, p<0.001). These factors account for 
up to 30% of the variation of students’ performance in geometry tasks. On the 
contrary, students’ gender (Beta=0.046, t=1.731, p=0.084) does not contribute to the 
performance of students in the specific geometry tasks. 
Considering the fact that performance in the spatial abilities test and students’ age 
appeared to be predictors of geometry performance, it would be valuable to examine 
whether there is a pattern of variables referring to distinct spatial abilities which 
predict geometry performance for each age group. Table 1 presents the summary of 
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stepwise multiple regression analyses conducted separately for each age group, using 
as independent variables the scores for (a) image manipulation, (b) mental rotation, 
and (c) coordination of perspectives, for predicting students’ performance in 
geometry tasks involving geometrical figures. 

4th graders 6th graders 8th graders Predictors

Beta t p Beta t p Beta t p

I. M. * 0.281 5.603 0.001 0.352 7.250 0.001 0.326 6.564 0.001

M.R. * 0.271 5.414 0.001 0.284 5.848 0.001 0.342 6.820 0.001

C.P.* 0.194 3.872 0.001 0.222 4.587 0.001 0.176 3.504 0.001

Model* 0.181 0.232 0.202

(*I.M.=image manipulation, M.R.=mental rotation, C.P.=coordination of perspectives, 
Model=Adjusted R-Square of Model) 
Table 1: Summary of stepwise multiple regression analyses of geometry performance 
by age group 

The most important conclusion of the regression analysis is that in the case of 4th and 
6th graders image manipulation, mental rotation, and coordination of perspectives, in 
descending order of significant importance, were the most significant factors for 
predicting performance in geometry tasks. In the case of 8th graders mental rotation 
appeared to be a more significant predictor of students’ geometry performance than 
image manipulation. 
Crosstabs Analyses Results 
The Extended Logistic Model of Rasch (Rasch, 1980) was used in order to create 
interval scales presenting item difficulties and students’ performance on the geometry 
test and on the spatial abilities test. Using the information retrieved from this 
analysis, students were assigned to five levels of performance concerning geometry 
tasks and to five levels of performance concerning spatial tasks. Crosstabs tables of 
geometry performance level by spatial ability level were obtained for each age group 
in order (a) to trace the spatial ability level of students who have achieved high 
performance in the geometry test, and (b) to examine the performance level achieved 
in the geometry test by high spatial ability students. The crosstabs results are 
summarized in Table 2 and Table 3. 
The results presented in Table 2 indicate that students who evidenced high 
performance in the geometry test (geometry performance level 4 and 5) belong to the 
high spatial ability groups (spatial ability level 4 and level 5) as formed based on the 
responses in the spatial ability battery used. This is the general observation for all 
three age groups, except from the case of 4th graders, where a percentage of 41.1% of 
the students whose performance in the geometry test ranks them in level 4 have been 
assigned to level 3 as far as spatial ability is concerned. 
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Geometry performance L4* Geometry performance L5* 

4th

graders
6th

graders
8th

graders
4th

graders
6th

graders
8th

graders

Spatial ability L3* 41.1 % 15.6 % 13.2 % 0 % 2.4 % 5.1 % 

Spatial ability L4* 26.0 % 21.3 % 30.9 % 12.5 % 9.5 % 18.6 % 

Spatial ability L5* 23.3 % 58.2 % 54.6 % 87.5 % 88.1 % 76.3 % 

(*L=level)
Table 2: Crosstabs of high geometry performance level by spatial ability level

The majority of primary school students (grade 4 and grade 6) who were assigned in 
spatial ability level 4 and level 5 reached a performance in the geometry test which 
ranked them in geometry level 3 (except from 6th graders coming from the highest 
level of spatial ability group, who reached level 4 in geometry performance). In the 
case of 8th graders the majority of high spatial ability students reached level 4 in 
geometry performance, while there is also a percentage of students remaining to 
scores that assigned them to geometry level 3. 

Spatial ability L4 Spatial ability L5 

4th

graders
6th

graders
8th

graders
4th

graders
6th

graders
8th

graders

Geometry L3 63.5 % 50.0 % 33.7 % 50.0 % 35.7 % 24.9 % 

Geometry L4 30.2 % 41.9 % 51.1 % 34.0 % 42.3 % 48.0 % 

Geometry L5 1.6 % 6.5 % 12.0 % 14.0 % 22.0 % 26.0 % 

(*L=level)
Table 3: Crosstabs of high spatial ability level by geometry performance level

To sum up, crosstabs analyses indicated that the majority of the students who attained 
high scores in the geometry test are also included in the high spatial ability groups. 
The reverse, though, is not valid, since students with high spatial ability have not 
necessarily attained the best scores in the geometry test. 
Similarity and Implicative Analysis Results 
For the purposes of this paper we refer to the similarity diagrams and the implicative 
graphs produced by CHIC when conducting similarity and implicative analysis of the 
data (Bodin, Couturier, & Gras, 2000). The similarity diagram allows for the 
arrangement of tasks into groups according to their homogeneity and the implicative 
graph contains implicative relations, which indicate whether success to a specific task 
implies success to another task related to the former one. 
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The objective of conducting Gras’s similarity analysis was to examine whether 
students of the three different age groups confronted spatial ability tasks and 
geometry tasks involving geometrical figures in a similar or in a different way. For 
this purpose, three similarity diagrams were produced for each age group from the 
application of implicative analysis. The first similarity diagram refers to geometry 
tasks involving 2D figures and spatial ability tasks, the second diagram refers to 
geometry tasks involving 3D figures and spatial ability tasks, and the last one refers 
to tasks involving nets of geometrical solids and spatial ability tasks. Due to space 
limitations here we do not present the diagrams, but we sum up the observations that 
arise from them. 
In the case of all three age group students, the majority of spatial ability tasks formed 
separate clusters from the clusters involving 2D figures. The same picture was 
revealed in the similarity diagram presenting spatial ability tasks and geometry items 
involving 3D figures. So, the most important finding is that students generally dealt 
with spatial ability tasks in different ways than with tasks involving 2D or 3D 
geometrical figures. The way students have confronted spatial ability tasks in relation 
to the geometry tasks involving nets of solids differentiated in relation with their age. 
More specifically, in the case of 4th graders, tasks involving nets of solids were 
confronted in a totally different way than the spatial ability items. The young students 
could not see any similarity in the underlying geometrical concepts. But in the case of 
6th graders and more clearly in the case of 8th graders the involvement of spatial 
ability tasks in the same clusters with net-representations items provided evidence 
that the older students realize to a bigger extent that the same cognitive processes 
underlie spatial abilities and manipulating net-representations of three-dimensional 
figures.
The objective of conducting Gras’s implicative analysis was the investigation of the 
presence of any implicative relations between spatial ability and geometry tasks. As  
mentioned above, the implicative graphs produced contain implicative relations, 
which indicate whether success on a specific task implies success on another task 
related to the former one. Three implicative graphs were produced, one investigating 
relations between tasks involving 2D figures and spatial items, one investigating 
relations between tasks involving 3D figures and spatial items, and the third one 
investigating relations between tasks involving nets of solids and spatial ability tasks. 
In the case of spatial ability tasks and geometry tasks involving 2D figures as well as 
in the case of spatial ability tasks and geometry tasks involving 3D figures, the first 
and the most important observation was that the implicative relations observed are 
“intra-categorical”, that they concern the same category of tasks. No implications 
between the two different categories of tasks were observed. The picture changed 
when we examined spatial ability tasks and geometry items involving nets of 3D 
geometric figures. Though in the case of the younger students (4th graders), no 
implicative relations were observed between nets items and spatial ability tasks, this 

Working Group 7

CERME 5 (2007) 1068



was not the case for the older students. Apart from intra-categorical relations, the 
analysis revealed implicative relations between tasks from the two different 
categories: nets items leading to spatial ability tasks and spatial ability tasks leading 
to tasks referring to nets. In the older students’ minds, we might think, there are not 
only intra–categorical relations, but it seems that successful performance on geometry 
tasks including nets implies success on spatial ability tasks and vice versa. 

DISCUSSION
In this paper we have tried to extend the research on geometry and spatial ability. 
Specifically, we investigated how three different components of spatial ability, as 
proposed by Demetriou and Kyriakides (2006), namely image manipulation, mental 
rotation and coordination of perspectives are related to primary (grade 4 and grade 6) 
and secondary (grade 8) students’ geometry performance in tasks involving 2D 
figures, 3D figures, or nets of geometrical solids. 
The results of this study indicate that students’ performance in the spatial abilities test 
was the most significant predictor of their geometry performance. Examination of the 
three different subcomponents of spatial ability we have measured, revealed that 
image manipulation and mental rotation are predicting factors of both primary and 
secondary students’ geometry performance. Additionally, coordination of 
perspectives is a predictor of geometry performance only in the case of primary 
school students.
On the other hand, though, the crosstabs analyses revealed that only part of the 
students who were included in the high spatial ability groups have reached the higher 
levels in the geometry test. This finding seems to be contradicting the previous 
findings concerning the predictive role of spatial ability factors as far as geometry 
performance is concerned. But, one should keep in mind that the spatial abilities 
aforementioned are not the only predictors of students’ geometry performance. These 
factors explain only a part of the variation of geometry performance. In subsequent 
research other cognitive as well as metacognitive factors can be investigated in this 
direction.
The similarity and implicative analyses conducted in this study provides evidence 
that students of all three age groups generally confronted spatial abilities tasks and 
geometry tasks involving two- or three-dimensional figures in a different way. 
Consequently, no implicative relations were evident between tasks of these 
categories. On the contrary, in the case of tasks involving nets of geometrical solids, 
only the students in grade 4 considered these tasks totally different from spatial 
abilities tasks. Younger students did not recognize any similarities between those two 
categories of tasks, while the older students in the study confronted a number of tasks 
involving nets similarly to spatial abilities tasks. This implies that the older students 
can realize that the same cognitive processes underlie spatial abilities such as image 
manipulation and mental rotation on one hand, and manipulating net-representations 
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of 3D geometrical figures. This finding is in line with Potari’s and Spiliotopoulou’s 
proposition that the whole process of developing solids and handling their net-
representations requires the student not only to “see” the objects and recognize their 
elements, but also to mentally “combine the latter in a transformed position and 
probably take into consideration the reverse process” (Potari & Spiliotopoulou, 2001, 
p. 41).
Our findings make us consider once again the idea that systematic training in spatial 
abilities should be a principal aim of geometric teaching. They also raise questions 
that need to be examined further on the role of certain spatial abilities in different 
geometrical tasks. 
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APPENDIX : Examples of tasks used 

(Problem 2D: Circle 
and Rectangle) 

    (Problem 2D: Equal area figures)   (Task 3D) 

     (Recognition of the net of cube)   (Spatial ability: image manipulation) 
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SPATIAL ABILITY AS A PREDICTOR OF STUDENTS’ 
PERFORMANCE IN GEOMETRY  

Marios Pittalis, Nicholas Mousoulides & Constantinos Christou 
Department of Education, University of Cyprus 

The aim of this study is twofold: First, to investigate whether certain abilities 
compose 5th and 6th grade students’ spatial ability and second to examine the relation 
between students’ spatial ability and their performance in geometry. To this end, a 
model for spatial ability was formulated, and validated. The major constructs 
incorporated in this framework were spatial visualization (Vz) and spatial relations 
(SR). It was also hypothesized that tasks derived from the ETS kit of Factor-
Referenced Cognitive Tests, constituted markers of the two constructs. A 
confirmatory factor analysis demonstrated that Vz and SR predict fairly well 
students’ spatial ability.  Path analysis revealed that spatial ability constitutes a 
strong predictor of students’ performance in geometry. 

INTRODUCTION
The development of a general spatial ability is an important factor associated with 
geometric understanding (Bishop, 1980). Spatial ability implies the generation, 
retention, retrieval, and transformation of visuo-spatial information (Colom, 
Contreras, Botella, & Santacreu, 2001) and is used in problem solving activities 
which particularly require the processing of visuo-spatial information.  The ability to 
represent and process spatial information is important for many common activities, 
such as finding our way to and from places in the environment, moving furniture, 
packing a suitcase, and catching a ball (Hegarty & Waller, 2005). The National 
Council of Teachers of Mathematics (2000) emphasizes the importance of spatial 
abilities in mathematics education and stresses the significance of developing 
students’ spatial skills throughout the geometry curriculum. It recommends that 2D 
and 3D spatial visualization and reasoning should be core skills that all students 
develop.  
Although, there is much literature on the measurement of spatial abilities (Lohman, 
1988), there is limited information on the relation between clearly defined spatial 
ability factors and measures of geometry ability. The relation of spatial and geometry 
abilities will enable educators to develop appropriate programs for the teaching of 
geometry. The aim of the present study is twofold. First, to investigate whether 
certain spatial abilities compose 5th and 6th grade students’ general spatial ability and 
second to examine the relation between students’ spatial ability and their 
performance in geometry.  
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THEORETICAL CONSIDERATIONS 
Definition of Spatial Ability 
Although various definitions have been used to describe spatial ability by 
psychologists and mathematics education researchers, there is a lack of a unique 
operational definition. Thus, the term spatial ability is identified as spatial cognition, 
spatial intelligence, spatial reasoning and spatial sense (Lohman, 1988), while Linn 
and Petersen (1985) define spatial ability as the mental process used to perceive, 
store, recall, create, edit, and communicate spatial images. Most other researchers 
define the concept of spatial ability through the use of factors resulted from analytic 
studies. For example, Lohman (1988), based on the results of a meta-analysis, 
proposed a three-factor-model including the spatial visualization (Vz), the spatial 
orientation (SO), and the spatial relations (SR) abilities. Vz is the ability to 
comprehend imaginary movements in a three-dimensional space or the ability to 
manipulate objects in imagination. The manipulation could be in a holistic, as well as 
piece-by-piece fashion and the movements must be imagined. Vz is often 
differentiated from SO by the mental processes and stimuli involved (McGee, 1979). 
SO is a measure of one’s ability to remain unconfused by the changes in the 
orientation of visual stimuli. SO requires the mental rotation of the object as a whole 
whereas Vz requires the movement of parts of the object. Tests that measure spatial 
orientation require the subject to imagine how a shape would appear from a different 
perspective and then to make a judgement from that imagined perspective. SR is 
defined by the speed in manipulating simple visual patterns such as mental rotations 
and describes the ability to mentally rotate a spatial object fast and correctly (Carroll, 
1993). Some researchers assert that the differing element between SO and SR is that 
in SO situations the body orientation of the observer is an essential part of the 
problem (McGee, 1979; Carroll, 1983).  
 
Mathematics Education and Spatial Ability 
From almost the earliest days of intelligence testing, spatial ability has been 
considered to be closely related to academic achievement, particularly to success in 
mathematics. In addition to general intelligence, mathematical reasoning is typically 
thought to require abilities associated with visual imagery, as well as the ability to 
perceive, number, and space configurations (Hegarty & Waller, 2005). There is a 
substantial literature in which relations between factors of spatial ability, such as 
visualization, mental imagery, and mathematical performance have been investigated 
(e.g. Bishop, 1980; Presmeg, 1992). Though there are some differences in the 
literature, the importance of spatial ability to the development of mathematical 
thinking is supported by many researchers (Bishop, 1980; Tartre, 1990; Gutiérrez, 
1996). Connor and Serbin (1985) found that the skills of spatial orientation and 
spatial visualization contribute meaningfully to predicting mathematics achievement. 
In a meta-analysis that included 75 studies, Friedman (1995) found that correlations 
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between spatial and mathematical ability generally ranged between 0,3 and 0,45. 
Although moderate in size, these correlations suggest a substantial relationship 
between spatial and mathematical abilities. However, research has shown that spatial 
ability correlates more highly with ability in geometry than with algebra (Bishop, 
1980). Tartre (1990) found that spatial orientation skill was involved in specific ways 
in the solving of geometry problems, while Saads and Davis (1997) showed the 
importance of both spatial ability and language use in the on-going development of 
geometric thought. Tso and Liang (2002) showed that a significant correlation existed 
between students' spatial abilities and van Hiele levels of thinking in geometry. They 
suggested that spatial abilities are important cognitive factors in learning geometry 
and that incorporating spatial visualization and manipulation into learning activity 
could improve geometric learning.  

THE PROPOSED MODEL AND THE PURPOSE OF THE STUDY 
Notwithstanding the extent of research into students’ spatial ability, recent research 
has not investigated systematically the relation of spatial ability with students’ 
performance in geometry. Accordingly, the literature does not provide the kind of 
coherent picture of how students’ spatial ability affects their geometry thinking that is 
desirable for current approaches in geometry instruction. In this paper, we propose a 
model, which may enable 5th and 6th grade students’ spatial ability to be described 
across two dimensions. As it is highlighted in Figure 1, we speculate that students’ 
spatial ability is not a unitary construct, but it is defined by two spatial factors, spatial 
visualization (Vz) and spatial relations (SR). Although, many other spatial factors 
have been identified, in the proposed model we incorporate only Vz and SR which 
are the most prominent ones (Colom, et al., 2001). Based on a synthesis of the 
literature, it is also hypothesized that tasks derived from the Form-Board Test, the 
Paper-Folding Test, and the Surface- Development Test of the ETS kit (Ekstrom et 
al., 1976) constitute markers of the Vz factor, and tasks derived from the Card 
Rotations Test and the Cube Comparisons Test are SR markers respectively. 
In order to capture the nature of students’ performance in geometry, our model (see 
Figure 1) incorporates forms of geometry situations according to Van Hiele’s theory 
(Van Hiele, 1986; Burger & Shaughnessy, 1986). Fifth and 6th grade students are 
expected to reach maximum the 3rd Van Hiele level, so in the model we only 
incorporate visualization, analysis and abstraction situations. Students at Level 1 
(Visualization) recognize figures by appearance alone, often by comparing them to a 
known prototype. Students at Level 2 (Analysis) analyse figures in terms of their 
parts and the relationships between these parts, establish the properties of a class of 
figures empirically, and use properties to solve problems. At Level 3 (Abstraction) 
students perceive relationships between properties and figures. 
The purposes of the study were: (a) to examine whether 5th and 6th grade students’ 
spatial ability is composed by distinct spatial abilities (Vz and SR) and (b) to examine 
the relation between students’ spatial ability and their performance in geometry. 
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METHOD
Participants and Instruments 
Data reported in this paper were collected through tests administered to 187 5th and 
6th grade students in four urban schools in Cyprus (in Cyprus 6th grade is the last year 
of primary school). In the study two tests were used: the spatial ability test and the 
geometry test. The tests were administered during the students’ mathematics course. 
Students were asked to answer each test in 40 minutes. The administration of the 
geometry test took place one week after the administration of the spatial ability test.  

Form-board (3 tasks): 

 Indicate which of the pieces, when fitted together, 
would form the outline. 

 
Surface-development (4 tasks): 

The diagram shows how a piece of paper might be 
cut and folded as to make the solid form. Dotted 
lines show where the paper is folded. Indicate 
which lettered edges in the drawing correspond to 
numbered edges or dotted lines in the diagram 
(Segment “3” corresponds to the edge “LM”).  
Paper-folding (4 tasks): 

The final drawing of the folded paper shows 
where a hole is punched in it. Select which 
drawing shows how the punched sheet would 
appear when fully reopened (the paper cannot be 
rotated while folded or unfolded). 

 

Card-rotation (4 tasks):  

Under the card there are five other drawings of the 
same card, one of them merely rotated. Indicate 
the rotated card. 

 
Cube-comparison (4 tasks): 

Assuming no cube can have two faces alike, 
indicate whether these drawings can be of the 
same cube or not.  
Table 1: Examples of Spatial Ability Tasks 
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The spatial ability test contained 19 tasks which were adopted from the Form-Board, 
the Paper-Folding, the Surface-Development, the Card-Rotation and the Cube-
Comparison tests, which are included in the ETS kit (Ekstrom et al., 1976). These 
tests are considered strong markers of the corresponding factors, as described above, 
by several researchers (Lohman, 1998; Colom, et al., 2001). All tasks were modified 
in order to become suitable for 5th and 6th grade since the original ones refer to 
students in grades greater than 8th. Examples of the tasks are presented in Table 1. 
The geometry test contained 10 tasks. Three of them were visual tasks which 
presented several drawings and students were asked to recognize specific shapes. The 
four analytic tasks required students to investigate the properties of figures and to 
calculate the area of figures. Finally, to solve the four abstract tasks, students were 
asked to perceive relationships between properties and between figures. Due to space 
limitations, examples of the geometry tasks are presented in Table 2. 

 

 

 

Visualization 
task 

Circle the parallelograms: 

 

Analytic task 

Draw in the following grid a non right-angle triangle. The vertices of the 
triangle should lie on the bullets. 

 
 
 
 
 

. . .

. . .

. . .

Abstract task 

 
(a) Write down two differences and two similarities between a 

rectangle and a parallelogram.  

(b) Could you describe to a friend of yours how you can transform a 
parallelogram first to a rectangle and then to a square. 

Table 2: Examples of Geometry Tasks 
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Data Analysis 
The goal of the analysis was to estimate the relative strength of the proposed model. 
Because we proposed a theoretically driven model about the components of spatial 
ability, our first interest was in the assessment of fit of the hypothesized a priori 
model to the data. The assessment of the proposed model was based on confirmatory 
factor analysis (CFA). One of the most widely used structural equation modelling 
computer programs, MPLUS, was used to test for model fitting (Muthen & Muthen, 
2004) and three fit indices were computed: The chi-square to its degrees of freedom 
ratio (x2/df), the comparative fit index (CFI), and the root mean-square error of 
approximation (RMSEA). The observed values for �2/df should be less than 2, the 
values for CFI should be higher than .9, and the RMSEA values should be lower than 
.08 to support model fit (Marcoulides & Schumacker, 1996). 

RESULTS
In this section, we refer to the results of the analysis, establishing the validity of the 
latent factors and the viability of the structure of the hypothesized latent factors. In 
this study, we posited an a-priori structure of the proposed model and tested the 
ability of a solution based on this structure to fit the data and then conducted a path 
analysis to examine the relation between students’ spatial ability and their 
performance in geometry. 
The Distinct Nature of Spatial Ability 
To examine the first aim of the study, we proposed and examined the validity of a 
model consisting of two second-order latent factors (Vz and SR) which should have 
been able to model the performance of students on the tasks addressed in the spatial 
ability test and compose the third-order latent factor spatial ability. As it is 
highlighted in Figure 1, the Vz factor was composed by three first-order latent factors 
and the SR factor was composed by two first-order latent factors, respectively. The 
proposed model incorporated also a second-order geometry performance latent factor 
composed by three first-order latent factors: the visual, the analytic and the 
abstraction factors. CFA showed that each of the tasks employed in the present study 
loaded adequately (i.e., they were statistically significant) on each factor, as shown in 
Figure 1. It also showed that the observed and theoretical driven factor structures 
matched for the data set of the present study and determined the ‘goodness of fit’ of 
the factor model (CFI=.92, �2=125.81, df=90, �22/df=1.39, RMSEA=.04).  
The r-squares (shown in parentheses in Figure 1) also illustrated that modest to large 
amounts of variance are accounted for all tasks corresponding to each spatial factor 
and suggested that ability in form-board, paper-folding and cube-comparison tasks 
explained the shared variance of their corresponding tasks much better than did 
ability in surface-development and card-rotation tasks. The structure of the proposed 
model also addressed the differential predictions of the ability in the tasks used for 
Vz and SR. Considering the effects among the two spatial ability factors revealed that 
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ability in the paper-folding and form-board tasks were the primary source explaining 
students’ Vz (r2=.95 and r2=.91, respectively), while ability in cube-comparison tasks 
was the primary source explaining SR (r2=.93). However, the structure of the 
proposed model revealed that Vz and SR have almost the same prediction validity on 
spatial ability (r2=.99 and r2=.97, respectively). The abstract and the analytic factors 
were the primary source explaining geometry reasoning (r2=.99 and r2=.99, 
respectively) while the visual factor had a moderate effect (r2=.89).  
The Relation between Spatial Ability and Geometry Performance 
Path analysis was used to investigate the relation between students’ spatial ability and 
their performance in geometry. Thus, we tested the validity of a model where the 
second-order latent variable geometry performance is regressed on the third-order 
latent factor spatial ability; assuming a causal effect between spatial ability and 
geometry performance (see Figure 1).  The model fitted the data, and fitting indices 
were adequate to provide evidence that supported the relation implied in it (CFI=.92, 
�2=125.81, df=90, �2/df=1.39, RMSEA=.04). These results gave strong evidence to 
the assumption that spatial ability is a predictor of geometry performance. The 
regression coefficient of spatial ability on geometry performance was extremely high 
(r=0.76, z=4.37, p<0.05). 

DISCUSSION 
Despite the fact that spatial ability has become widely recognized as a basic skill and, 
as such, has been incorporated in many tests of general aptitude or intelligence, its 
status as a predictor of geometry thinking has never been clearly established. There is 
also a need for a theoretical framework that outlines the space of different cognitive 
abilities associated with representing and processing spatial information. It was 
argued in this study that few models exist to help researchers and educators explain 
how spatial ability actually affects geometry thinking. Hence, the goal of this study 
was to articulate and empirically test a theoretical model to help educators build new 
understandings about the structure of spatial ability. The model integrated two 
prominent factors of spatial ability, spatial visualization (Vz) and spatial relations 
(SR) (Lohman, 1988; Carroll, 1993) and extended the literature in a way that 
validated a model examining the relation of spatial ability and geometry performance 
based on empirical, quantitative data.  
The model proved to be consistent with the data leading to the conclusion that Vz and 
SR mediate 5th and 6th grade students’ spatial ability. Specifically, it was found that 
Vz and SR contribute to students’ spatial ability, with the two factors being the same 
important, showing that spatial ability is not a single, undifferentiated construct, but 
instead is composed of separate abilities, such as spatial visualization and spatial 
relations. These distinctions have evolved over decades of ongoing research. The 
validation of a path analysis model revealed a causal effect between spatial ability 
and geometry performance, indicating that spatial ability constitutes a strong 
predictor of students’ performance in geometry. This particular finding suggests that 
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an improvement of students’ spatial ability may result to an improvement of their 
geometry performance.  The underlying assumption is that students improve at 
solving geometry tasks with practice in spatial ability tasks. These findings show also 
that spatial ability is important in various geometrical situations 
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Figure 1: The Structure of the Proposed Model 

Note: F1=Surface Development test, F2=Form board test, F3=Paper Folding test, F4=Cube 
Comparison Test, F5=Card Rotation test, F6=Spatial Visualization, F7=Spatial Relations, 
F8=Spatial Ability, F9=Visual, F10=Analytic, F11=Abstraction and F12=Geometry Performance, 
q1-q19 refer to the spatial ability tasks and q20-q30 refer to the geometry ones. 

* The first number indicates factor loading and the number in parenthesis indicates the 
corresponding r2. 
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The model used in this study offers teachers and researchers a means to examine the 
complexity and sophistication of spatial ability. From the perspective of teachers, the 
model may be used in order to include in their instruction activities that contribute to 
the development of Vz and SR and consequently to the development of their 
geometry performance. From the prospective of researchers, it is likely that the model 
could be useful as a prototype for further analyses of the structure of spatial ability 
and its relation with geometry performance. The model can also be linked with recent 
research on people’s cognitive style and how they represent problems in 
mathematics. Kozhevnikon, Hegarty and Mayer (2002) showed that visualizers with 
high spatial ability are more successful in problem solving because they are more 
likely to construct diagrams or schematic spatial representations of the spatial 
relations between objects described in a problem. As a result, the model could be 
used to further examine how students with different levels of thinking in spatial 
ability and cognitive style can grasp the spatial relations in pure geometrical 
situations. 
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COMPUTER GEOMETRY AS MEDIATOR 
OF MATHEMATICAL CONCEPTS[1] 

Paola Vighi [2] 
Mathematics Department – University of Parma - Italy 

This work takes cue from a “paradox”, based on the destabilization of the concepts 
of equiextension and equidecomposability, which occurs when specific computer 
software for the game Tangram is used. We presented this paradox to the students of 
various ages, with the aim to investigate their behaviours in consequence of it. We 
examine the strategies used and the concepts, geometrical or not, employed to justify 
the paradox.

INTRODUCTION
The literature on real or apparent paradoxes in mathematics is very rich. Particularly 
well-known is “Riddles in Mathematics” (Northrop, 1944), which classifies them into 
groups such as arithmetical, geometric, algebric, logic, etc. But, nowadays a new type 
of paradox appears, that concerns graphical visualisation on a computer screen. 
In particular, there are different paradoxes about Tangram (Pellegrino, 1986); for 
instance, that of Dudeney is based on ingenious dispositions of all seven pieces, 
which misleads the visual perception. 
Here we use the word ‘paradox’ with the etymological meaning: a thing that 
contradicts a common opinion. We can also give this definition: 

“something which at first sight seems false, but which is in reality true, or something 
which seems true, but which is false, or something which is simply contradictory” 
(Northrop, 1944) 

Yet in our case, the conflict arises between some images on the computer screen and 
some concepts of Euclidean geometry. The paradox don’t is inside a theory, it 
suggested in the computer world, but it refers to geometrical world. We could 
denominate it “xenodox” (from Greek word “@ABCD” that means “foreign”), with 
reference to it. In other words, our use of word paradox can be inappropriate, but we 
choose it for simplicity. 
This work doesn’t concern the computer geometry. It uses particular and unsuitable 
Tangram software, that presents an apparent paradox and creates a cognitive conflict. 
The aim is to investigate the student’s behaviour in front of this paradox, especially to 
observe their use of geometrical intuition and knowledge, when they search to justify 
an apparent contradictory geometrical situation. We want to observe also how much 
the ordinary geometry is consolidating in the minds of the students. Another aim is to 
study the possible misconceptions that this kind of activity can do to emerge. 
In this research, a particular paradox provides a basis for consideration of some 
mathematical concepts: area, equiextension, congruence of shapes, geometrical 
transformation (translation, rotation, glide reflection), invariance for congruence. We 
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think that this riddle would be a good starting point to study ‘discrete – continuous’ 
conflict, concept of irrational number. We propose to work afterwards about this. 
At the beginning we studied the paradox from a mathematical point of view, after we 
presented it to students between the ages of 10 and 18 [3]. Finally we analysed the 
different types of answers they gave. 
THEORETICAL FRAMEWORK 
Our first question is whether it is opportune to submit a paradox to the students. From 
the constructivist point of view, the answer is certainly yes, in that the paradox is an 
instrument for creating a stage of disequilibrium; this causes a cognitive conflict, 
which in turn generates or facilitates acquisition of new knowledge (Henry, 1991). In 
our work, the conflict is a result of the contrast between previous geometrical 
knowledge and what appears on the computer screen. In other words, a conflict 
occurs between what the mind thinks and what the eyes see. For the conflict to be 
overcome we need investigate it and to deepen some mathematical and informatics 
knowledge.
Another possible answer to the previous question is: to submit a paradox to the 
students it is an occasion to study their argumentations, their thinking and also 
possible mathematical misconceptions. 
In didactical research in mathematics is well-known the role of misconceptions as a 
source of errors. The misconceptions have an influence on the learning and, of 
consequence, they are an useful instrument in order to prevent learning difficulties. 
The presentation of ‘strange’ situations, that can be in conflict with the opinion of the 
students, often provokes to emerge of misconceptions. The awareness of 
misconceptions influence is documented in research in didactics of mathematics 
(Schoenfeld, 1985; Maurer, 1987). 
This research is based on computer’s drawings, that are objects of Geometry I or 
“Natural Geometry” in which “the source of validation is the sensitive” (Houdement, 
Kusniak, 2003). “To produce new knowledge in this paradigm, all the methods are 
allowed: evidence, real or virtual experience and of course reasoning. The backward 
and forward motion between the model and the real is permanent and enables to 
prove the assertions: the most important thing is to convince.” (Houdement, 2007). In 
secondary school the drawings are only one starting point for more in-depth study, 
but also in primary school it is important the transition from intuition to the 
argumentations.
For some time the role of informatics instruments in teaching–learning of 
mathematics has been under discussion in didactic of mathematics. The studies have 
focussed particularly on computer mediation for comprehension of mathematical 
concepts, and is investigating new opportunities for interaction between knowledge 
and learner (Bottino & Chiappini, 2002). Often the computer is considered as a tool 
for presenting concepts in an innovative and stimulating way. But learners are warned 
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of the limits of computers and software. For example, in geometry, it is emphasised 
that drawing with Cabri-Géomètre software allows the user to formulate conjectures, 
but not to prove them. 
In this paper, the computer is taken to be a cultural artefact (Saxe, 1991) which 
mediates geometrical concepts (equiextension, conservation of quantity, isometry, 
etc.) and informatics concepts (computer geometry, approximation).  
THE PARADOX 
The Chinese game Tangram has been a candidate for graphics programmes, since 
operational systems started to elaborate sophisticated graphics. TANGRAM software, 
designed and manufactured by the Dutch professor Mark Overmars, allows the user 
to construct shapes at different levels of difficulty. With a click of the mouse you can 
shift or rotate or overturn each piece to construct a shape. When the shape is formed 
correctly, there is ‘applause’ from the computer, and another shape to build appears 
on the screen. The idea of this work born casually: I used this software with the aim 
to drawing shapes of Tangram and I made some attempts of constructions of shapes. 
One of these, an irregular pentagon, was very interesting because it was possible to 
construct it on the screen indifferently with 6 or 7 pieces of Tangram, but an applause 
arrive only in the second case. The following images, realised with software above-
mentioned, show the “strange” situation described. What explanation for this 
apparent ‘deception’? 

Fig. 1: the paradox 

At the beginning, I studied this problem for a personal curiosity. I used Paint Brush to 
verify that the two pentagonal shapes in Fig.1 can be perfectly superimposed on one 
another. Seemingly they can be formed in a different way with a different number of 
pieces and it would seem to mean they have different areas! I decided to investigate 
this in deep and, after my personal study, I found a possibility to use it as the starting 
point of a didactical research. 
We label a the cathetus of the smaller triangles and we base the other measurements 
on a (Fig. 2). There it appears to be something strange in the central part, in which a 
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segment has a length of 22a as the hypotenuse of an isosceles triangle with cathetus
2a, while its length becomes instead 3a as the “sum” of three segments of length a.

Fig. 2: algebraic explaination 

Using this algebraic notation we have also that the areas of the two shapes of  Fig. 1 
are respectively 15a2/2 and 8a2. In order to find why the paradox arises, we can take a 
two dimensional concrete tangram and we can attempt to reproduce the two shapes. 
We can observe that it can be constructed only with seven pieces. The shape on the 
screen made up of six pieces appeared to have no concrete existence. Why is this? 
Evidently the software does not conserve the extension of some of the pieces. If we 
observe the Fig. 1, we note that the squares are oriented in the same way in both 
shapes and that their dimensions do not change. Other pieces of the tangram, the 
parallelogram, the ‘medium’ triangle and the small triangle are unvaried as they are 
rotated of 90° in the passage from the first to the second shape of Fig. 1. But the 
‘large’ triangles ‘shrink’ in the rotation. In this software when a shape is rotated of 
odd multiples of 45°, a similar shape is obtained, but it is not congruent to the initial 
shape.
It would be interesting and significant to investigate about the reasons for this, but it 
lies outside our aims. Yet it is important to furnish an explanation to the students, 
after the paradox’s presentation. It is sometimes said that the computer is ‘wrong,’ 
but a more accurate observation is that computer graphics are not ‘Euclidean’. We 
choose to re-propose a geometrical explanation based on pixels since, en effect, the 
focus of our work was into geometry. We found this possible “trivial” explanation: 
that succeed because computer graphics use the pixel. We are conscious that is it 
possible to do others justifications, more appropriate and pertinent, but we want 
remain in geometry world and we prefer to take this problem as a starting point for 
speaks about discrete geometry. 
The computer screen use a discrete geometry based on pixels, a “graphical atom”; 
every picture on the screen is composed of pixels. A geometrical shape is realised by 
putting pixels together in an opportune way. Of consequence, a diagonal line that 
forms an angle of 45° with the horizontal is formed by the same number of pixels 
composing each of its orthogonal projections (Fig 3). In this strange triangle, the 
cathetus and the hypotenuse are all made up of the same number of squares. 
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Fig. 3: a “pixel-triangle” 

So when the software a piece of the Tangram is rotated by an odd multiple of 45° it is 
transformed into a shape that is similar but not congruent.  
The computer graphics is discrete and not continuous and not allows the 
representation of irrational. In other words, we meet again 

“…the idea of the world as a finite set of atom-points probably held by the early 
Pythagoreans” (Speranza, 1997). 

On the screen, length and area are measured in the same unit, the pixel. Now it is 
clear why it is possible to put the pieces of tangram side by side virtually and obtain 
the result shown in Fig 1. The measurements of some sides of the tangram pieces are 
expressed as a function of 2 , but this cannot be shown correctly on the screen.  

RESEARCH METHODOLOGY 
We presented the paradox to learners at different stages of schooling, in different 
ways according to their age.  

Fig. 4: the task on the screen 

In primary school, we involve two classes of children 10-11 years old (45 pupils). 
They worked in small groups (4-5 pupils in each group), with the sequent modalities. 
At the beginning the activity is proposed with the computer, under teacher guidance. 
The pupils were asked to construct the following pentagonal shape with six pieces, 
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using TANGRAM software previously mentioned (Fig. 4). If it was necessary, the 
teacher suggested some help. The task was: “Cover the pentagonal shape in the 
screen with these six pieces of Tangram, that compare in the right side.” They were 
around the computer, they used in turns the mouse, all of them observe the screen and 
suggest how to put the pieces on the screen. 
The learners were next asked to rebuild the same shape on the screen using the seven 
pieces of Tangram. The ‘strange’ situation was emphasised by the teacher. 
Afterwards the children were asked to think about it and to work all together on the 
desk. We provide them with a sheet of paper in which there were copies of Fig 1. 
They were also asked to attempt to explain the ‘paradox’. Another sheet of paper for 
each group was used for writing a report of observations and of discussion results. 
Finally we proposed to rebuild the pentagon using concrete two-dimensional pieces 
of Tangram. The aim of this final activity was to do a final answer to the question. In 
this case, the children conclude that “the computer made a mistake”. The teacher 
prefers to say: “The computer makes what it can do!” and he delays later an in-depth 
explanation.
In the secondary school the experimentation involved one class of 25 students 12-13 
years old and two classes of 42 students 17-18 years old. The work was at the 
beginning all together in the computer classroom and after individual: the students 
were asked to look the projection of the computer screen. We make both 
constructions, with 6 and 7 pieces, and we ask to comment on what they saw. After 
each student was asked to investigate about the copies of two shapes of Fig. 1 onto 
paper, to make comments in writing and to provide some explanations of the paradox.  
Later we analyse the protocols of each primary school groups, the papers wrote from 
secondary school students and also the films recorded during the activities. 

RESEARCH RESULTS AND CONCLUSIONS 
This research allows us to make only a qualitative description of learner’s behaviour. 
It is however richly significant in analysing learning of some concepts and in 
investigating learner’s conceptions.   
On the whole, the mains interesting results came from Primary School pupils. First of 
all, we must explain that we worked in two particular classes: the teachers are also 
researchers that usually collaborate with us. Always they, in their didactical activity, 
ask to the pupils to do a justification of their answers to the questions. Those classes 
were already familiar with formulae of area and perimeter and they had already 
worked on “equi-composed” shapes. 
The younger learners carried out the activity with enthusiasm and showed great 
familiarity with the computer, perhaps even blind faith. Only one girl, after her group 
had built the shape with six pieces, declared that it was useless to continue and that 
the next exercise was impossible. The others believed what they saw on the screen, at 
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least until the teacher pointed out the paradox. In the second part of activity, when 
they worked in groups on a sheet of paper, with reproductions of two constructions, 
they used different approaches to the problem. At the beginning, we have two 
different kind of explanation: 
- explanation based on ‘big’ triangles: the children perceive that the problem 
concerns the bigger triangles of Tangram, using observation and visual intuition (7 
groups). To test this hypothesis, they choose different methods: measure with scale 
the sides of big triangles, measure and calculation of areas with comparison, use of 
scissors and superposition.
- explanation based on equi-estension: “In the first shape a piece must have the same 
area equal that two shape in the second” (1 group). This argumentation is based on 
geometrical idea that congruent shapes have the same area, but the observation shows 
that in the second there is a piece more. 
The others 2 groups attempt to explain, without success. In particular, in one of these 
a pupil refuses the question: the paradox creates unease and it stops the resolution. 
The most interesting conjectures arise from the first explanation:  how justify the role 
of the big triangles? Some groups (4) found the cause in a difference of occupied 
space, that depends to the mutual position of big triangles: 

“In the first shape the big triangles are near to one another and they take up a lot of space. 
In the second shape the big triangles are distant and they take up less space”. 

So they doubt the conservation of quantity. The pupils think that the positions of 
triangles (near or far) change the occupied space. They correctly found the reason of 
the paradox, but they justify their argumentation using a misconception: two shapes 
occupy different space if they are near or far. This phenomenon is documented in 
researches with lower aged pupils (Montis, 2003), but here re-emerge. It was a 
surprising answer for us; we suppose that the conservation of quantity has not been 
completely acquired. It may be that the paradox leads the learners into error, but 
further investigation about this, which we are unable to report here, confirmed this 
hypothesis. Only one group attempts a check with calculation of areas: they calculate 
the area of the small triangle more in second shape; they calculate also the difference 
between the areas of big triangles present in the first and the second shape, finally 
they compare these areas, but with failure.
Also the invariance for isometry seems in doubt. In two groups the problem it is 
found in the different orientations of big triangles. In effect, they distinguish a 
triangle that “stand up” from another that “lie down”, because they are perceptively 
different.

“If we put the triangles ‘in height’, they occupy more space. If we put ‘in largeness’, they 
occupy less space”. 

This is another misconception: the space occupied by a shape change with the its 
‘position’. Others activities confirmed that also the shape can be change with position 

Working Group 7

CERME 5 (2007) 1088



(Vighi, 2003).  A possible explanation of it is that frequently in Italy the focus of 
Geometry is the measure of perimeters and areas. A sort time is dedicated to 
“division in equal parts” of shapes.  
The learners also showed the ‘conflict between perimeter and area’ (Marchetti, 
Medici, Vighi & Zaccomer, 2005): some pupils wrote that the perimeter of the shapes 
is the same but the internal areas may vary. 
We observe two main differences for learners aged 12-13: the missed recourse at 
perception and eyes, the systematic use of the scale, measure and formulas. They first 
measured the shapes sides they had copied onto paper and made long laborious 
calculations of the areas. They supplied empirical verification that the problem is 
absurd and that equi-extension does not take place, but they could not supply any 
explanation. They conclude: “The computer makes a mistake”. We attempt to throw 
again the problem, without success. We don’t have significant results in this class: the 
pupils renounce to think and make only a lot of calculation. 
Learners aged 17-18 gave more significant replies. In the first part of the task, some 
observed that the problem lies in “the arrangement of the pieces”. Others ascribed it 
to “automatic adjustment” made by the computer or to a problem in segment’s 
contact (overlapping? Few millimetres incorporated in separation lines?). Others 
simply noted that it is impossible for one of these constructions to exist (oneness of 
solution). Others were worried that “the computer does it, but it can’t be true”. Others 
made a dangerous distinction between area and “occupied space”: the misconception 
above reported reappears. In the second part of the task they mainly used the numeric 
and algebric register, similar to ours used in Fig. 2. Some of them used geometry and 
broke the small triangles as units of measurement, without however reaching any 
conclusions. One student made recourse to a Euclidean geometrical theorem and 
emphasised that it was not verified by the computer screen. Others suspected the 
existence of properties of areas which they are as yet unaware of. Some students 
speak about “a problem of proportion” connected with “shapes similar but not 
identical”, but nobody locates the problem in particular rotations. The transformation 
geometry seems not interiorised. 
Only one student identified the possible cause of the problem in the presence of 
irrational 2 and of the ratios between measurements of sides. His comments 
prompted us to re-propose the “crisis of the incommensurable” and discuss the 
concept of number, particularly irrational number, with the class.  
This paradox was chosen as a focus of research as a vehicle for significant thought 
processes, as well as instrument to reflection on geometrical concepts. The hands-on 
verification on paper led the younger learners to the conclusion that “you can’t place 
trust in computer”. For the older learners it was a source of enquiry and finding out. 
From the teaching point of view, the opposition between the Euclidean and virtual 
reality is constructive. In this case we choose to use it for supplies an important 
opening for the introduction of ineluctable and necessary irrational number. This does 
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not mean that the mathematical approach is preferable, rather it emphasises the 
relativity of concepts also in mathematics. Nowadays there is insistence on the 
history and epistemology of mathematics in teaching. Our experiment shows a good 
way of continuing the work: introducing learners to a historical learning process 
through the modern instrument of the computer. Starting from a point as ‘grain of 
sand’ to a geometrical entity with no dimensions, from discrete to continuous, from 
irrational number perceived with many decimal digits but not infinite, from the 
limited to the unlimited, from the finite to the infinite. In other words, we share the 
following sentence: 

“New technologies offer occasions to allow to learner a complete mathematical
experience and, in this meaning, they offer the possibility to realize a reasonable 
didactics of mathematics” (Paola, 2001). 
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